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Abstract—Recent advances in sensing, computing, and net-
working have paved the way for the emerging paradigm of
Mobile Crowd Sensing (MCS). The openness of such systems
and the richness of data MCS users are expected to contribute
to them raise significant concerns for their security, privacy-
preservation and resilience. Prior works addressed different
aspects of the problem. But in order to reap the benefits of
this new sensing paradigm, we need a holistic solution. That
is, a secure and accountable MCS system that preserves user
privacy, and enables the provision of incentives to the participants.
At the same time, we are after a MCS architecture that is
resilient to abusive users and guarantees privacy protection
even against multiple misbehaving and intelligent MCS entities
(servers). In this work, we meet these challenges and propose
a comprehensive security and privacy-preserving architecture.
With a full blown implementation, on real mobile devices, and
experimental evaluation we demonstrate our system’s efficiency,
practicality, and scalability. Last but not least, we formally assess
the achieved security and privacy properties. Overall, our system
offers strong security and privacy-preservation guarantees, thus,
facilitating the deployment of trustworthy MCS applications.

Index Terms—Mobile Crowd Sensing, Security, Privacy, Incen-
tive Mechanisms

I . I N T R O D U C T I O N

Mobile Crowdsensing [1] (MCS) has emerged as a novel

paradigm for data collection and collective knowledge forma-

tion practically about anything, from anywhere and at anytime.

This new trend leverages the proliferation of modern sensing-

capable devices in order to offer a better understanding of

people’s activities and surroundings. Emerging applications

range from environmental monitoring [2, 3] to intelligent

transportation [4, 5, 6] and assistive healthcare [7].

MCS users are expected to contribute sensed data tagged with

spatio-temporal information which, if misused, could reveal

sensitive user-specific information such as their whereabouts

and their health condition [8, 9]. Even worse, data contributions

are strongly correlated with the current user context (e.g.,

whether they are at home or at work, walking or driving, etc.);

there is a significant risk of indirectly inferring daily routines or

habits of users participating in MCS applications. By inferring

user context, one can obtain deeper insights into individual

behavior, thus, enabling accurate user profiling [10, 11]. As

recent experience shows, assuming that users can simply trust

the MCS system they contribute sensitive data to, is no longer

a viable option. Therefore, it becomes imperative to ensure

user privacy in mobile crowdsensing scenarios.

Furthermore, although privacy protection will facilitate user

participation it cannot, per-se, ensure it. This is critical since

if users do not engage in great numbers, thus, providing

a sufficient influx of contributions, MCS systems will not

succeed. In the absence of intrinsic motivation, providing

incentives becomes vital [12]. Indeed, the research community

has identified various forms of incentives based on monetary

rewards [13], social or gaming-related mechanisms [14] along

with methods for incorporating them in MCS systems [15,

16, 17, 18]. In particular, micro-payments have been shown

effective in encouraging user participation and increasing their

productivity [19].

However, the common challenge is providing incentives

in a privacy-preserving manner; users should be gratified

without associating themselves with the data they contribute.

One possible solution the literature has proposed is the use

of reverse auctions, among anonymous data providers and

requesters [13, 20]. Such schemes necessitate user participation

throughout the whole duration of a task. However, MCS users

may join and leave sensing campaigns at any time, thus,

making the implementation of such auction-based mechanisms

impractical [16]. Moreover, the employed incentive provision

methods must be fair: (selfish) users should not be able to

exploit them and gain inordinate, to their contributions, utilities.

At the same time, aiming for the participation of any user

possessing a sensing-capable device is a double-edged sword:

participants can be adversarial seeking to manipulate (or even

dictate) the MCS system output by polluting the data collection

process. Even worse, detecting offending users and sifting their

malicious contributions is hindered by the desired (for privacy-

protection) user anonymity. What we need is mechanisms that

can hold offending users accountable, but without necessarily

disclosing their identity.

Motivation & Contributions: To reap the benefits of this

new community sensing paradigm we must work towards

three directions; incentivizing user participation, protecting

the users from the system (i.e., ensuring their privacy) and, at

the same time, protecting the system from malicious users (i.e.,

holding them accountable of possible system-offending actions).

Despite the plethora of existing research efforts, the state-of-the-

art in the area of secure and privacy-preserving MCS systems

still lacks comprehensive solutions; most works either focus

solely on user privacy without considering accountability or

they facilitate incentive provision in a non-privacy-preserving

manner (i.e., by linking users to their contributions). Therefore,

the design of secure and privacy-preserving MCS systems,

capable of insentivizing large-scale user participation, is the

main challenge ahead.

To meet this challenge, we extend SPPEAR [21], the state-

of-the-art security and privacy architecture for MCS systems
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to address: (i) security, (ii) privacy, (iii) accountability and (iv)

incentive provision. More specifically, although SPPEAR offers

broadened security and privacy protection under weak trust

assumptions (where even system entities might try to harm

user privacy), it does not capture the complete landscape of all

possible privacy repercussions that such attacks entail. We also

extend SPPEAR’s simplistic receipt-based rewarding mecha-

nism into a solution that fairly remunerates participating users

while supporting different incentive mechanisms including, but

not limited to, micro-payements. Overall, the suggested archi-

tecture provides high user-privacy assurance, while facilitating

the ample participation of extrinsically motivated users.

We provide an implementation of our system on real mobile

devices and extensively assess its efficiency and practicality.

Furthermore, we present a formal analysis of the achieved

security and privacy properties in the presence of strong

adversaries. To better examine the privacy implications of

such a broadened adversarial model, we also provide the first,

to the best of our knowledge, instantiation of inference attacks

(in the domain of MCS) that “honest-but-curious” system

entities can launch against user privacy. More specifically, we

show how such entities can extract sensitive user information

(i.e., whereabouts, activities) by leveraging machine learning

techniques and we discuss possible mitigation strategies.

The rest of this paper is organized as follows: Sec. II presents

the related work in the area of secure and privacy-preserving

MCS systems. We, then, describe the system and adversarial

models for our scheme (Sec. III) and discuss the envisioned

MCS security and privacy requirements (Sec. IV). In Sec. V,

we provide an overview of the system and the services it

offers followed by a detailed presentation of all implemented

components and protocols (Sec. VI). Sec. VII presents a

rigorous formal assessment of the achieved properties. The

experimental setup, used to evaluate our system, along with

the performance results are presented in Sec. VIII, before we

conclude the paper in Sec. IX.

I I . R E L AT E D W O R K

The security and the privacy of MCS have attracted the

attention of the research community [22, 8, 23]. Several works

try to protect user privacy by anonymizing user contributed

data [24, 25, 26] and obfuscating location information [27,

28, 29]. Additionally, other research efforts employ general-

ization [30] or perturbation [31, 32] of user contributions;

i.e., deliberately reducing the quality and the quantity of the

information users submit to the MCS system. Nevertheless,

although such techniques can enhance user privacy they do not

capture the full scope of privacy-protection; knowing that a

user participates in sensing campaigns monitoring, for example,

noise pollution during early morning hours already reveals

sensitive information such as the coarse-grained location of her

home [33]. Moreover, strong privacy-protection must hold even

in the case that MCS system entities cannot be trusted: i.e.,

they are curious to learn and infer private user information.

AnonySense [24] is a general-purpose framework for secure

and privacy-preserving tasking and reporting. Reports are

submitted through wireless access points, while leveraging Mix

Networks to de-associate the submitted data from their sources.

However, the way it employs group signatures (i.e., [34]), for

the cryptographic protection of submitted reports, renders it

vulnerable to Sybil attacks (Sec. VII). Although AnonySense

can evict malicious users, filtering out their faulty contributions

requires the de-anonymization of benign reports1; besides

being costly, this process violates the anonymity of legitimate

participants. Misbehavior detection may occur even at the

end of the sensing task when all contributions are available.

On the contrary, our system shuns out offending users and

sifts their malicious input through an efficient revocation

mechanism (Sec. VI-D) that does not erode the privacy of

benign users.

Group signature schemes can prevent anonymity abuse by

limiting the rate of user authentications (and, thus, of the

samples they submit), to a predefined threshold (k) for a

given time interval [35]. Exceeding this threshold is considered

misbehavior and results in de-anonymization and revocation.

Nonetheless, this technique cannot capture other types of

misbehavior, i.e., when malicious users pollute the collected

data by submitting (k−1) faulty samples within a time interval.

In contrast, our scheme is misbehavior-agnostic and prevents

such anonymity abuse by leveraging authorization tokens and

pseudonyms with non-overlapping validity periods (Sec. VII).

PEPSI [25] prevents unauthorized entities from querying the

results of sensing tasks with provable security. It leverages a

centralized solution that focuses on the privacy of data queriers;

i.e., entities interested in sensing information without consider-

ing accountability and privacy-preserving incentive mechanisms.

PEPPeR [26] protects the privacy of the information querying

nodes (and, thus, not of the information contributing nodes),

by decoupling the process of node discovery from the access

control mechanisms used to query these nodes. PRISM [36]

focuses on the secure deployment of sensing applications and

does not consider privacy.

In PoolView [31] mobile clients perturb private measure-

ments before sharing them. To thwart inference attacks,

leveraging the correlation of user data, the authors propose an

obfuscation model. The novelty of this scheme is based on the

fact that although private user data cannot be obtained, statistics

over them can be accurately computed. PoolView considers

only privacy of data streams and, thus, does not consider on

accountability for misbehaving users.

In [37] the authors propose a privacy-preserving data

reporting mechanism for MCS applications. The intuition

behind this work is that user privacy is protected by breaking

the link between the data and the participants. Nonetheless,

opposite to our work, the proposed scheme solely focuses on

privacy and, thus, does not consider incentive mechanisms and

accountability for misbehaving users.

Addressing aspects beyond the scope of this work, in [38,

39] the authors propose a reputation-based mechanism for

assessing the data-trustworthiness of user contributed data.

Similarly, SHIELD [40] leverages machine learning techniques

to detect and sift faulty data originating from adversarial users

seeking to pollute the data collection process. In this work, we

1Submitted by users that belong to the same cryptographic group as the
revoked ones.
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assume the existence of such a scheme capable of assessing

the overall contributions made by anonymous (for privacy-

protection users).

A significant body of work in the area of MCS focuses on

the provision of incentives to stimulate user participation [15,

41, 42, 20, 43, 19]. These works leverage mechanisms such as

auctions, dynamic pricing, monetary coupons, service quotas

and reputation accuracy. However, they do not consider user

privacy and, thus, can leak sensitive information by linking the

identity of users with the data they contribute. The approach

presented in [44] user privacy by remunerating users according

to their privacy exposure: as the privacy exposure of users

increases, better services (e.g., QoS-wise) and rewards are

offered to them as compensation.

I I I . S Y S T E M & T H R E AT M O D E L

System Model: We consider generic MCS systems compris-

ing the following entities:

Task Initiators (TI), (Information Consumers): Organi-

zations or individuals initiating data collection campaigns by

recruiting users and distributing sensing tasks to them. The TI

initiates sensing tasks and campaigns. Each task is essentially

a specification of the sensors users must employ, the area of

interest, and the lifetime of the task. The area of interest is the

locality within which participating users must contribute data

and it can be defined either explicitly (e.g., coordinates forming

polygons on maps) or implicitly (through annotated geographic

areas, e.g., Stockholm). In any case, it is divided into regions

that can correspond to, for example, smaller administrative

areas (e.g., municipalities) comprising the area of interest.

Users (Information Producers): Operators of sensing-

capable mobile devices (e.g., smart-phones, tablets), and nav-

igation modules (e.g., GPS). Devices possess transceivers

allowing them to communicate over wireless local area (i.e.,

802.11a/b/g/n) and (or) cellular networks (3G and LTE).

Back-end Infrastructure: System entities responsible for

supporting the life-cycle of sensing tasks: they register and

authenticate users, collect and aggregate user-contributed reports

and, finally, disseminate the results (in various forms) to all

interested stake-holders.

Threat Model: MCS can be abused both by external and

internal adversaries. The former are entities without any

established association with the system; thus, their disruptive

capabilities are limited. They can eavesdrop communications in

an attempt to gather information on user activities. They might

also manipulate the data collection process by contributing

unauthorized samples or replaying the ones of benign users.

Nonetheless, such attacks can be easily mitigated by employing

simple encryption and access control mechanisms. External

adversaries may also target the availability of the system by

launching, for example, jamming and (D)DoS attacks. However,

such clogging attacks are beyond the scope of this work and,

therefore, we rely on the network operators (e.g., Internet

Service Providers (ISPs)) for their mitigation.

Internal adversaries are legitimate participants of the system

that exhibit malicious behavior. We do not refer only to human

operators with malevolent intentions but, more generally, to

compromised devices (clients), e.g., running a rogue version of

the MCS application. Such adversaries, can submit faulty, yet

authenticated, reports during the data collection process. Their

aim is to distort the system’s perception of the sensed phe-

nomenon, and thus, degrade the usefulness of the sensing task.

For instance, in the context of traffic monitoring campaigns [4],

malicious users might contribute false information (e.g., low

velocities) to impose a false perception of the congestion levels

of the road network. Such data pollution attacks can have far

graver implications if malicious users impersonate other entities

or pose with multiple identities (i.e., acting as a Sybil entity).

Internal adversaries may also have a strong motive to

manipulate the incentive provision mechanism. For instance,

leveraging their (for privacy protection) anonymity, they could

try to increase their utility (e.g., coupons, receipts) without

offering the required contributions.

At the same time, internal attacks can target user privacy, i.e.,

seek to identify, trace and profile users, notably through MCS-

specific actions2. This is especially so in the case of honest-

but-curious and information-sharing infrastructure components;

i.e, entities (Sec. V) that execute the protocols correctly but

are curious to infer private user data by (possibly) colluding

with other entities in the system (Sec. VII-B).

I V. S E C U R I T Y & P R I VA C Y R E Q U I R E M E N T S

In this work, we aim for accountable yet privacy-preserving

MCS architectures that can integrate advanced incentive

mechanisms. Definitions of the expected security and privacy

requirements follow:

• R1: Privacy Preserving Participation: Privacy preserva-

tion in the context of MCS mandates that user participation is

anonymous and unobservable. More specifically, users should

contribute to sensing tasks without revealing their identity.

Identities are both user (e.g., name, email address) and device-

specific; e.g., device identifiers such as the International Mobile

Subscriber Identity (IMSI) and the International Mobile Station

Equipment Identity (IMEI).

Furthermore, external (e.g., cellular providers) or internal

(i.e., MCS infrastructure entities or users) observers should not

be able to infer that anonymous users have (or will) contribute

to specific sensing tasks.

User-contributed data should be unlinkable: no entity having

access to user reports (i.e., information users contribute to the

MCS system) should be able to link reports to the users from

which they originated or to infer whether two or more reports

were contributed by the same user.

• R2: Privacy-Preserving & Fair Incentive Mechanisms:

Users should be rewarded for their participation without

associating themselves to the data they contribute. Furthermore,

incentive mechanisms must be resilient; misbehaving or selfish

users should not be able to exploit them for increasing their

utility without making the necessary contributions.

• R3: Communication Integrity, Confidentiality and Au-

thentication: All system entities should be authenticated and

their communications should be protected from any alteration

by and disclosure to unauthorized parties.

2For instance, user de-anonymization by examining the content of the reports
they submit [24]
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Fig. 1: System Overview

• R4: Authorization and Access Control: Participating users

should act according to the policies specified by the sensing

task. To enforce such policies, access control and authorization

mechanisms must be in place.

• R5: Accountability: Offending users should be held

accountable for any disruptive or system-harming actions.

• R6: Data Verification: MCS systems must provide the

necessary means to identify and sift faulty data originating

from, potentially, misbehaving users.

V. S Y S T E M E N T I T I E S

In this section, we begin with an overview of the system

entities (Fig. 1) comprising our architecture and we, then, move

on explaining how trust relations are established amongst them:

• Mobile Client: Users download a mobile client on

their devices. This application collects and delivers sensed

information by interacting with the rest of the infrastructure.

• Group Manager (GM): It is responsible for registering

user devices to sensing tasks, issuing them anonymous creden-

tials. The GM authorizes the participation of devices (in tasks)

in an oblivious manner, using authorization tokens.

• Identity Provider (IdP): This entity authenticates user

devices and mediates their participation to sensing tasks.

• Pseudonym Certification Authority (PCA): It provides

anonymized ephemeral credentials (digital certificates), termed

pseudonyms, to the users (mobile clients). Pseudonyms (i.e.,

the corresponding private/public keys) can cryptographically

protect (i.e., ensure the integrity and the authenticity) informa-

tion that clients submit. For unlinkability purposes, devices can

obtain multiple pseudonyms from the PCA.

Reporting Service (RS): Mobile clients submit samples to

this entity responsible for storing and processing the collected

data. Although privacy-preserving data processing [45, 46])

could be employed, we neither assume nor require such

mechanisms; this is orthogonal to our work and largely depends

on the task/application. The RS issues receipts to participants

later used for redeeming rewards.

• Resolution Authority (RA): This entity is responsible

for revoking the anonymity of offending devices (e.g., devices

that disrupt the system or pollute the data collection process).

Our goal is to separate functions across different entities,

according to the separation-of-duties principle [47]: each entity

is given the minimum information required to execute the

Notation Meaning

TI Task Initiator

GM Group Manager

IdP Identity Provider

PCA Pseudonymous Certification Authority

RS Reporting Service

RA Resolution Authority

PKx Public key of authority X

PRx Private key of authority X

tr Sensing task request

gski Group signing key

gpk Group public key

PS Pseudonym

t Authorization token

transient Transient SAML identifier

r Report receipt

σX Signature of authority X

φi Shapley value of user i

TABLE I: Abbreviations & Notations

desired task. This is to meet the requirements (Sec. IV) under

weakened assumptions on system trustworthiness; in particular

we achieve strong privacy protection even in the case of “honest-

but-curious” infrastructure. Sec. VII further discusses these

aspects.

Trust Establishment: To establish trust between system

entities (Fig. 1), we leverage Security Assertion Markup

Language (SAML) assertions that represent authentication

and authorization claims, produced by one entity for another.

To establish trust between the IdP and the PCA, a Web

Service (WS)-Metadata exchange takes place. Metadata are

XML-based entity descriptors containing information including

authentication requirements, entity URIs, protocol bindings and

digital certificates. The metadata published by the IdP contain

the X.509 certificates the PCA must use to verify the signatures

of the assertions produced by the IdP. The PCA publishes

metadata that contain its digital identifier and certificates.

To verify authorization tokens (Sec. VI-A), the IdP possesses

the digital certificate of the GM. The pseudonyms issued to

user devices are signed with the PCA private key. New tasks

are signed by the TIs and verified by the GM. Finally, the RS

possess the digital certificate of the PCA.

The confidentiality and the integrity of the communication

is guaranteed by end-to-end authenticated Transport Layer

Security (TLS) channels established between the devices

and the MCS entities (i.e., IdP, PCA, RS). Furthermore, to

prevent de-anonymyzation on the basis of network identifiers,

mobile clients can interact with system entities via the TOR

anonymization network [48].

V I . P R E L I M I N A R I E S & S Y S T E M P R O T O C O L S

As depicted in Fig. 1, the TI creates and signs task requests

(tr) with a private key (PRTI ) of an ECDSA key-pair and

sends them to the GM. The public key (PKTI ) is certified

and known to the GM.

Upon reception of a tr, the GM challenges the TI with

a random nonce to verify that it is actually the holder

of the corresponding PRTI . Then, the GM instantiates a

group signature scheme that allows each participant (Pi) to

anonymously authenticate herself with a private group signing

(gski). The GM pushes the group public key (gpk) to the IdP

that is responsible for authenticating users.

Group signatures fall into two categories: static (fixed number

of group members) and dynamic (dynamic addition of group
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Algorithm 1 Authorization Token Acquisition

Initialization Phase(GM) Transfer Phase(GM & DV)

Data: N generated authenti- Data: Computed token com-

cation tokens mitments Yi,j

Begin Begin

1. GM ։ S : [
√
N,

√
N ] 1. GM ։ {rR, rC}

2. GM ։ 2
√
N random keys 2. Randomize row & column keys:

(R1, ..., R√
N

), (C1, ..., C√
N

), (R1 · rR, , ..., R√
N

· rR)

for each Row & Column (C1 · rC, ..., C√
N

· rC )

3. for every Xi,j in S do 3. If device wishes Xi,j

GM ։ {Ki,j , Yi,j}, where then

Ki,j = g
RiCj , where OT

√
N

1 [GM,DV ]
Pick−−−→ Ri · rR

{Gg, g} DDH−−−→ {Grp,Genr} OT

√
N

1 [GM,DV ]
Pick−−−→ Cj · rC

Yi,j = commitKi,j
(Xi,j) end

end 4. GM sends g
1

rRrC

3. GM sends to the device 5. Device reconstructs

Y1,1, ..., Y
√
N,

√
N Ki,j = g

( 1
rRrC

Ri)·rRCj ·rC

6. Obtain Xi,j by opening Yi,j with

Ki,j

End End

participants). Selecting the appropriate scheme depends on the

sensing task. For instance, sensing campaigns requiring the

participation of only “premium” users can be accommodated by

static group signature schemes since the number of participants

is known. Otherwise, dynamic group signatures are necessary.

Our system supports, but is not limited to, two schemes;

Short Group Signatures [34] (static) and the Camenisch-Groth

scheme [49] (dynamic).

Clients receive task descriptions (tr) through a Pub-

lish/Subscribe announcement channel. They can automatically

connect (i.e., subscribe) and receive all task descriptors, tr,

immediately after they are published by the GM. Each client

can employ task filtering based on the device’s current location

so that users are presented with only those tasks for which

they can accommodate the specified area of interest. If a user

is willing to participate in a task, she authorizes her device to

obtain the group credentials (i.e., gski) and an authorization

token from the GM (Sec. VI-A). Then, the device initiates the

authentication protocol with the IdP and obtains pseudonyms

from the PCA (Sec. VI-B). With these pseudonyms the device

can (anonymously) authenticate the samples it submits to the

task channel and receive the corresponding payment receipts

(Sec. VI-C).

A. Registration & Authorization Token Acquisition

To participate in a sensing task, the mobile client registers

with Group Manager (GM) to obtain the private group key

key gski by initiating an interactive JOIN protocol with

the GM.3 This protocol guarantees exculpability: no entity

can forge signatures besides the intended holder of the key

(gski) [50].

Subsequently, the GM generates an authorization token

dispenser, Dauth. Each token of the dispenser binds the client

identity with the identifier of each active task. This binding

is done with secure and salted cryptographic hashes. Tokens

are also signed by the GM to ensure their authenticity. More

specifically, the dispenser is a vector of tokens, Dauth =
[t1, t2, ..., tN ], where each token, ti, has the form:

3Due to space limitations, we refer the reader to [34, 49]

ti = {tid, h(userid || taski ||n), taski}σGM

where N is the number of currently active sensing tasks, n
is a nonce, and tid is the token identifier.

To participate in a task, the device must pick the corre-

sponding token. Nevertheless, merely requesting a token would

compromise users’ privacy; besides knowing real user identity,

the GM would learn the task she wishes to contribute to.

For instance, knowing a user participates in a sensing task

measuring noise pollution during night hours within an area

“A”, can help the GM deduce the user home location [51].

To mitigate this, we leverage Private Information Retrieval

(PIR) techniques. Currently, our system supports the “Oblivious

Transfer with Adaptive Queries” protocol [52]. The scheme

has two phases (see Alg. 1): the initialization phase, performed

by the GM, and the token acquisition phase involving both

the device and the GM. For the former, the GM generates

and arranges the N authorization tokens in a two-dimensional

array, S, with
√
N rows and

√
N columns. Then, it computes

2
√
N random keys, (R1, R2, ..., R√

N ), (C1, C2, ..., C√
N ), and

a commitment, Yi,j , for each element of the array. These

commitments are sent to the device.

During the token acquisition phase, the GM randomizes the

2
√
N keys with two elements rR and rC . Then, the device

initiates two Oblivious Transfer sessions to obtain the desired

token, Xi,j ; one for the row key, Ri · rR, and another for the

column key, Cj · rC . After receiving g
1

rRrC , from the GM,

and with the acquired keys, the device can now obtain Xi,j

by opening the already received commitment, Yi,j .

The security of this scheme relies on the Decisions Diffie-

Helman assumption [52]. As the token acquisition protocol

leverages oblivious transfer, the GM does not know which

token was obtained and, thus, cannot deduce the task the user

wishes to contribute to. In Sec. VIII we present a detailed

performance analysis of the PIR scheme.

B. Device Authentication

Having the signing key, gski, and the authorization token,

ti, the device can now authenticate itself to the IdP and receive

pseudonyms from the PCA. Pseudonyms are X.509 certificates

binding anonymous identities to public keys. Fig. 2 illustrates

the protocol phases:

Phase 1: The mobile client generates the desired amount of

key-pairs and creates the same number of Certificate Signing

Requests (CSRs) (Step 1).

Phase 2: The client then submits the generated CSRs to

the PCA to obtain pseudonyms (Step 2). Since the device is

not yet authenticated, the PCA issues a SAML authentication

request (Step 3) to the IdP, signed with its private key and

encrypted with the public key of the IdP. SAML requires that

requests contain a random transient identifier (transientid) for

managing the session during further execution of the protocol.

The request is then relayed by the device to the IdP (Step 4),

according to the protocol bindings agreed between the PCA

and the IdP during the metadata exchange (Sec. V).

Phase 3: The IdP decodes and decrypts the authentication

request, verifies the XML signature of the PCA and initiates the

authentication process. As aforementioned, our authentication
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PCA Device IdP

1. Key Gen.

2. Pseud.Request

3. Auth. Request

4. Auth. Request

5. timestamp
6. {timestamp}gski , ti

7. Verification

8. Auth. Response

9. Auth. Response

10. Verification

11. Pseudonyms

Fig. 2: Authentication Protocol

is based on group signatures. In particular, the IdP sends a

challenge (in the form of a timestamp/nonce) to the device

(Step 5). The device, then, produces a group signature on

the challenge with its signing key gski. It also submits the

token, ti, obtained by the GM (Step 6). The IdP verifies the

challenge with the use of the gpk (obtained from the GM).

Upon successful authentication (Step 7), the IdP generates

a SAML authentication response signed with its private key

and encrypted with the public key of the PCA. The response

contains the transientid and an authentication statement

(i.e., assertion): this asserts that the device was successfully

authenticated (anonymously) through a group signature scheme

and it includes the authorization token and the access rights of

the device. Finally, the SAML response is encoded and sent

back to the device (Step 8).

Phase 4: The device delivers the SAML assertion to the

PCA (Step 9), which decrypts it and verifies its signature and

fields (Step 10). Once the transaction is completed, the device

is authenticated and it receives valid pseudonyms (Step 11).

Each pseudonym has a time validity that specifies the period

(i.e., the pseudonym life time) for which it can be used. The

PCA issues pseudonyms with non-overlapping life times (i.e.,

pseudonyms are not valid during the same time interval).

Otherwise, malicious users could expose multiple identities

simultaneously, i.e., launch Sybil attacks.

C. Sample Submission and Incentives Support

With the acquired pseudonyms, the device can now partici-

pate in the sensing task by signing the samples it contributes

and attaching the corresponding pseudonym. More specifically,

each sample, si, is:

si = {v || t || (loc) ||σPrvKey ||Ci}
where v is the value of the sensed phenomenon, t is a

time-stamp and σPrvKey is the digital signature, over all the

sample fields, generated with the private key whose public key is

included in the pseudonym Ci. The loc field contains the current

location coordinates of the device. In Sec. VII-C, we analyze

the privacy implications due to device location in samples.

Upon reception of a sample, the RS verifies its signature and

time-stamp, against the time validity of the pseudonym. If the

sample is deemed authentic, the RS prepares a receipt, ri, for

the device:

ri = {receiptid || regioni || taskid || time ||σRS}
σRS is the digital signature of the RS. regioni is the region

(Sec. III) including the loc specified in the submission si. The

device stores all receipts until the end of the task.

D. Pseudonym Revocation

If required, our system provides efficient means for shunning

out offending users. Assume a device whose (anonymously)

submitted samples significantly deviate from the rest. This

could be an indication of misbehavior; e.g., an effort to pollute

the results of the task. We refrain from discussing the details

of such a misbehavior detection mechanism and we refer the

reader to SHIELD [40], the state-of-the-art data verification

framework for MCS systems. Misbehaving devices should be

prevented from further contributing to the task. On the other

hand, it could also be the case that the devices equipped with

problematic sensors must be removed from the sensing task. To

address the above scenarios, we design two grained revocation

protocols, suitable for different levels of escalating misbehavior:

Total Revocation: The RA coordinates this protocol based

on a (set of) pseudonym(s) PSi (Fig. 3). Upon completion,

the device owning the pseudonym is evicted from the system:

Phase 1: The RA provides the PCA with the PSi (Step

1). The PCA, then, responds with the authorization token, ti,
included in the SAML assertion that authorized the generation

of pseudonym PSi (Step 2). This token is then passed by the

RA to the GM (Step 3).

Phase 2: Based on the received ti, the GM retrieves the

whole token dispenser, Dauth, that included ti. This dispenser

is sent to the IdP (Step 4) that blacklists all its tokens and

sends back a confirmation to the GM (Steps 5, 6). From this

point on, the device can no longer get authenticated because

all of its tokens were invalidated.

Phase 3: To revoke the already issued pseudonyms, the

GM sends the dispenser, Dauth, to the PCA that determines

which of these tokens it has issued pseudonyms for. It, then,

updates its Certificate Revocation List (CRL) with all the not

yet expired pseudonyms of the device (Steps 7, 8), forbidding

it essentially from (further) submitting any samples to the RS.

Partial Revocation: This protocol evicts a device from a

specific sensing task. The RA sends the pseudonym, PSi, to the

PCA, which retrieves the token, ti, from the SAML assertion

that authorized the issuance of PSi. Consequently, the PCA

revokes all the pseudonyms that were issued for ti. As a device

is issued only one token per task, and this is now revoked,

the device can no longer participate in this specific task. The

partial revocation protocol does not involve the GM and, thus,

it does not revoke anonymity of devices.

E. Task Finalization & User Remuneration

Upon completion of the sensing task, our system remunerates

users for their contribution. In case the remuneration mechanism

mandates, for example, micro-payments, each task description

(i.e., the corresponding tr) specifies the amount of remuneration,

B, that users will share.

This process is initiated when the completion of the task is

announced to the publish/subscribe channel (Sec. VI). Upon

reception of this finalization message, participants provide the
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Fig. 3: Pseudonym Revocation

TI with all the receipts they collected for their data submissions

(Sec. VI-C). The TI must then decide on a fair allocation of the

tasks’ remuneration amount (to the participating users) based

on the level of contribution (i.e., number of submitted data

samples) that each individual user had. To do this, we use

Shapley value [53], an intuitive concept from coalitional game

theory that characterizes fair credit sharing among involved

players (i.e., users). This metric allows us to fairly quantify

the remuneration of each user. Each user will be remunerated

with an amount equal to φi ·B. To compute φi the TI works

as follows:

1) Shapley Value: Let N be the total number of participating

users. For each subset of users (coalition) S ⊂ N , let v(S) be

a value describing the importance of the subset of users S.

For a value function v the Shapley value is a unique vector

φ = [φ1(v), φ2(v), ..., φN (v)] computed as follows:

φi(v) =
1

|N |!

∑

Π

[v(PΠ

i ∪ i)− v(PΠ

i )] (1)

where the sum is computed over all |N |! possible orders (i.e.,

permutations) of users and PΠ
i is the set of users preceding

user i in the order Π. Simply put, the Shapley value of each

user is the average of her marginal contributions.

Computing the Shapley value for tasks with a large number

of participants is computationally inefficient due to the com-

binatorial nature of the calculation. Nonetheless, an unbiased

estimator of the Shapley value is the following [53]:

φ̂i(v) =
1

k

∑

Π

[v(PΠ

i ∪ i)− v(PΠ

i )] (2)

where k is the number of randomly selected user subsets

(coalitions) to be considered; it essentially determines the error

between the real value and its estimate.

2) Defining the value function v: Our goal is to remunerate

users based not only on the number of their data submissions but

also on the spatial dispersion of their contributions. Intuitively,

this mechanism should favor reports submitted for regions

where the system perception of the sensed phenomenon is

low (i.e., less received data samples). On the other hand,

the value accredited to similar, or possibly replayed (i.e., the

same measurement for the same region), samples should be

diminished.

To achieve this, we devise the value function, v, as follows:

Let R = [R1, R2, ..., RN ] be the number of receipts the TI

receives from each user. The value v(S) of a coalition S is

computed as:

v(S) = H(RS) ·
∑

i∈S

Ri (3)

RS is the vector defining the number of samples this coalition

has contributed for each region. For instance, let us assume a

task for which the area of interest is divided into four regions

[regα, regβ , regγ , regδ]. Moreover, let S2 be a coalition of two

users each of which has submitted one sample to each of the

regions. In this case, RS = [2, 2, 2, 2]. H(RS) is Shannon’s

entropy:

H(RS) = −
∑

pi · log(pi) (4)

where pi is the proportion of samples, conditional on

coalition S, in region i. H(RS) is equal to 1 when all regions

have received the same number of samples. In this case,

the value of a coalition, v(S), is the sum of samples that

participating users contributed to the task. If a coalition is

heavily biased towards some regions, then H tends to 0 and,

thus, v(S) will be equal to some (small) fraction of the sum

of samples.

The above described remuneration protocol must be executed

on top of a data verification mechanism, such as [40], that

can detect and sift untrustworthy user contributions and, in

combination with the revocation protocol (Sec. VI-D), evict

malicious users without gratifying them.

V I I . S E C U R I T Y A N D P R I VA C Y A N A LY S I S

We begin with a discussion of the security and privacy of our

system with respect to the requirements defined in Section IV.

We then proceed with a formal security and privacy analysis.

Communications take place over secure channels (TLS). This

ensures communication confidentiality and integrity. Further-

more, each system entity possesses an authenticating digital

certificate (R3).

In our scheme, the GM is the Policy Decision Point, which

issues authorization decisions with respect to the eligibility

of a device for a specific sensing task. The IdP is the Policy

Enforcement Point which authorizes the participation of a device

on the basis of authorization tokens (R4).

Malicious devices can inject faulty reports to pollute the data

collection process. For instance, consider a traffic monitoring

task in which real-time traffic maps (of road networks) are

built based on user submitted location and velocity reports. By

abusing their anonymity or, if possible, by launching a Sybil

attack, misbehaving users can impose a false perception over

the congestion levels of the road network. Schemes (e.g., [24])

relying on group signatures for authenticating user reports are

vulnerable to abuse: detecting if two reports were generated

by the same device mandates the opening of the signatures

of all reports, irrespectively of the device that generated them.

Besides being costly4, this approach violates the privacy of

legitimate users.

We overcome this challenge with the use of authorization

tokens: they indicate that the device was authenticated, for

a given task, and that it received pseudonyms with non-

overlapping lifetimes. This way, the PCA can corroborate

the time validity of the previously issued pseudonyms and,

4Due to space limitations we refer the reader to [34]
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Datum Entity Secrecy Strong Secrecy/

Unlinakbility

Dev. id (id) GM X X

Auth. Token (t) IdP, PCA X X

Subm. sample. (s) RS X X

Device pseud. (PS) RS, PCA X X

Receipt (r) RS X X

TABLE II: Secrecy Analysis for Dolev-Yao Adversaries

if requested by the device, provide it with new pseudonyms

that do not overlap the previously issued ones. Thus, adversarial

devices cannot exhibit Sybil behavior since they cannot use

multiple pseudonyms simultaneously. Nevertheless, re-using

pseudonyms for cryptographically protecting multiple reports,

trades-off privacy (linkability) for overhead (Sec. VII-C).

The employed Private Information Retrieval scheme prevents

a curious GM from deducing which task a user wishes to

participate in. Moreover, devices get authenticated to the IdP

without revealing their identity (i.e., group-signatures). Finally,

pseudonyms allow devices to anonymously, and without being

linked, prove the authenticity of the samples they submit. By

using multiple pseudonyms (ideally one per report) and by

interacting with the RS via TOR, devices can achieve enhanced

report unlinkability. Furthermore, TOR prevents system entities

and cellular ISPs from de-anonymizing devices based on

network identifiers (R1). Essentially, with end-to end encryption

and TOR, our system prevents ISPs from gaining any additional

information from the participation to a sensing task.

The first two columns of Table II present the information each

system entity possesses. Our approach, based on the separation

of duties principle, prevents single infrastructure entities from

accessing all user-sensitive pieces of information (colluding

system entities are discussed in Sec. VII-B).

The employed cryptographic primitives ensure that offending

users cannot deny their actions. More specifically, the interactive

protocols, executed during the registration phase (Sec. VI-A),

guarantees that gski is known only to the device and as a result,

exculpability is ensured [34]. Furthermore, digital signatures

are generated with keys known only to the device and thus,

non-repudiation is achieved.

Our system can shun out offending devices (Sec. VI-D)

without, necessarily, disclosing their identity (R1, R5). To

achieve permanent eviction of misbehaving mobile clients the

registration phase can be enhanced with authentication methods

that entail network operators (e.g., GBA [4]). However, we

leave this as a future direction.

We consider operation in semi-trusted environments. In

particular, a PCA can be compromised and issue certificates

for devices not authenticated by the IdP. If so, the PCA does

not possess any SAML assertion for the issued pseudonyms,

and thus, it can be held culpable for misbehavior. Moreover,

the IdP cannot falsely authenticate non-registered devices: it

cannot forge the authorization tokens included in the SAML

assertions (Sec. VI-B). As a result, the PCA will refuse

issuing pseudonyms and, thus, the IdP will be held accountable.

Moreover, SAML authentication responses (Sec. VI-B) are

digitally signed by the IdP and thus cannot be forged or

tampered by malicious devices. Overall, in our system, one

entity can serve as a witness of the actions performed by

another; this way we establish a strong chain-of-custody (R5).

A special case of misbehavior is when a malicious RS seeks

to exploit the total revocation protocol (Sec. VI-D) to de-

anonymize users. To mitigate this, we mandate that strong

indications of misbehavior are presented to the RA before the

resolution and revocation protocols is initiated. Nonetheless,

such aspects are beyond the scope of this work.

Malicious users cannot forge receipts since they are signed by

the RS. Furthermore, they are bound to specific tasks and thus

they cannot be used to earn rewards from other tasks. Colluding

malicious users might exchange receipts. Nevertheless, all

receipts are invalidated, by the TI, upon submission and, thus,

they cannot be “double-spent” (R2).

Receipts, generated by the RS, are validated by the TI, neither

of which knows the long-term identity of the user. As a result,

the incentive mechanism protects user anonymity.

Finally, although our system does not assess the trustwor-

thiness of user contributed data (i.e., R6) it can seamlessly

integrate data verification schemes, such as [40].

For the correctness of the employed cryptographic primitives

(i.e., group signature, PIR schemes) we refer to [34, 49, 52].

In what follows, we focus on the secrecy and strong-secrecy

properties of our system in the presence of external adversaries

and infomration-sharing honest-but-curious system entities.

A. Secrecy against Dolev-Yao adversaries

We use ProVerif [54] to model our system in π-Calculus.

System entities and clients are modeled as processes and

protocols (i.e., authentication, Sec. VI-B, sample submission,

Sec. VI-C, revocation, Sec. VI-D) are parallel composition of

multiple copies of processes. ProVerif requires sets of names

and variables along with a finite signature, Σ, comprising all

the function symbols accompanied by their arity. The basic

cryptographic primitives are modeled as symbolic operations

over bit-strings representing messages encoded with the use of

constructors and destructors. Constructors generate messages

whereas destructors decode messages.

ProVerif verifies protocols in the presence of Dolev-Yao

adversaries [55]: they can eavesdrop, modify and forge mes-

sages according to the cryptographic keys they possess. To

protect communications, every emulated MCS entity in the

analysis maintains its own private keys/credentials. This model

cannot capture the case of curious and information-sharing

MCS system entities (discussed in Sec. VII-B).

In ProVerif, the attacker’s knowledge on a piece of infor-

mation i, is queried with the use of the predicate attacker(i).
This initiates a resolution algorithm whose input is a set of

Horn clauses that describe the protocol. If i can be obtained by

the attacker, the algorithm outputs true (along with a counter-

example) or false otherwise. ProVerif can also prove strong-

secrecy properties; adversaries cannot infer changes of secret

values. To examine if strong-secrecy properties hold for a datum

i, the predicate noninterf is used. We evaluate the properties

of all specific to our system data. Table II summarizes our

findings: our system guarantees not only the secrecy but also

the strong-secrecy of all critical pieces of information and, thus,

it preserves user privacy.

Since Dolev-Yao adversaries cannot infer changes over the

aforementioned data. For instance, adversaries cannot relate two
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Honest-but-curious

(colluding) entities

Information

Linked

Privacy Implications

GM - No sensitive information can be inferred.

IdP t The IdP can simply infer that an anonymous user wishes to participate in a task.

PCA PS, t The PCA will infer that an anonymous user wishes to receive pseudonyms for a given task.

RS s, PS, r The RS knows that a given report was submitted for a specific sensing task.

GM, IdP t, id The GM and the IdP can infer that a user with a known identity wishes to participate to a specific task.

GM, PCA t, id, PS The GM and the PCA can infer that a user with a user with a known identity wishes to participate to a specific task

and has received pseudonyms.

GM, RS s, PS, r When the GM and the RS collude they can infer that a report was submitted by a pseudonymous user.

IdP, PCA t, PS These authorities can infer that an anonymous user received pseudonyms for a specific task.

PCA, RS t, PS, s, r The PCA and the RS can infer that an anonymous user received pseudonyms for a specific task and has submitted a

report.

GM, PCA, RS all Full de-anonymization of the user, the task she participates in and the reports she has submitted.

TABLE III: Honest-but-curious entities with ProVerif.

tokens, t1 and t2, belonging to the same user; the same holds

for the other protocol-specific data (e.g., samples, receipts).

B. Honest-but-curious System Entities

We consider the case of colluding (i.e., information-sharing)

honest-but-curious system entities aiming to infer private user

information. We model such behavior in ProVerif by using a spy

channel, accessible by the adversary, where a curious authority

publishes its state and private keys. To emulate colluding

infrastructure entities, we assume multiple spy channels for

each of them. We set the adversary to passive: she can only

read messages from accessible channels but not inject any

message. For this analysis we additionally define the following

functions in ProVerif:

MAP (x, y) = MAP (y, x)

LINK(MAP (x, a),MAP (a, y)) = MAP (x, y)

The first is a constructor stating that the function

MAP is symmetric. The second is a destructor stating

that MAP is transitive. For example, whenever the de-

vice submits an authorization token to the IdP it holds

that MAP (ANON USERα, tokenx) (i.e., an anonymous

user, α, wants to authenticate for task x). Of course, the

GM (and, thus, the adversary listening to the spy chan-

nel in case the GM is honest-but-curious) also knows

MAP (tokenx, USERα). In case these two entities col-

lude, querying MAP (ANON USERα, USERα) yields

true; these colluding entities know that a user, with a

known identity, participates in a task. Similarly we can is-

sue other queries (e.g., (MAP (USERα, PSEUDONYMy),
MAP (USERα, REPORTy)). Table III presents the pieces

of information that is known or can be inferred (along with

their semantics) for various combinations of honest-but-curious

colluding entities.

Single system entities cannot de-anonymize users as they

have limited access to user information (Table II). Furthermore,

our system is privacy-preserving even when two authorities

collude. To completely de-anonymize users and their actions, it

is required that the GM, the PCA and the RS collaborate.

Of course, if these entities are deployed within different

administrative domains, their collusion is rather improbable.

Nonetheless, if they are within the same administrative domain,

the separation-of-duties requirement no longer holds; thus, user

privacy cannot be guaranteed.5
5Please note that any distributed architecture would fail to preserve privacy

in this scenario.

C. Pseudonyms and Protection

To evaluate the unlinkability achieved by pseudonyms, we

consider the following MCS application: drivers, with the use

of their smart-phones, report their current location and velocity

to the RS. We assume that the RS is not trusted: it performs

no aggregation or obfuscation of the submitted data but rather

tries to create detailed location profiles for each vehicle, by

linking successive location samples submitted under the same

or different pseudonyms. Various techniques leveraging location

information and mobility can simulate such attacks. Here we

emulate such adversarial behavior with a Kalman filter tracker.

We consider 250 vehicles and a geographic area of 105 urban

road links in the city of Stockholm. We generate mobility traces

with the SUMO [4] microscopic road traffic simulator. Our aim

is to understand the privacy implications of varying pseudonym

utilization policies. In Fig. 4 (a), we plot the fraction of vehicles

that our tracker tracked for more than 50% of their trip, as a

function of the report submission frequency (from 10 s to 5min
period interval) for different pseudonym (re)usage policies, i.e.,

the number of reports signed under the same pseudonym.

The tracker tracks 37% of the vehicles6 for a reporting

frequency of 10 s and a use of 1 pseudonym per report

(maximum unlinkability). Nonetheless, its success decreases for

more realistic reporting frequencies: the tracker receives less

corrections and, thus, produces worse predictions. On the other

hand, using the same pseudonym for multiple samples trades-

off privacy for overhead (but not significantly). For a sampling

frequency of 1 report/min, we observe that approximately

5% of the vehicles are tracked for more than 50% of their

trips. Similarly, by reusing the same pseudonym for 5 samples,

27% of the vehicles are tracked for more than 50% of their

trips. Overall, the effect of pseudonym reuse weakens as the

sampling frequency decreases to frequencies relevant to the

MCS context, i.e., 1 report/30s.

In Fig. 4 (b), we show that as the number of users increases,

so does the overall privacy offered by pseudonyms. For instance,

for 100 simulated vehicles, with a sampling rate of 10 s, and

changing pseudonyms every 10 samples, we see that almost

100% of all vehicles can be tracked for more than 50% of

their trips. Nonetheless, as the population of participating

vehicles grows, the tracker’s accuracy deteriorates because the

RS receives more location samples and, thus, the probability

6Please note that the regularity of vehicular movement works in favor of
the tracker.
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Fig. 5: Inferring User Context: (a,b) Classification Accuracy, (c) Sensor Evaluation.

of erroneously linking two successive samples also increases.

Simply put, users can better hide inside large crowds.

D. Inferring User Context from Sensor Readings

For this analysis we assume the worst-case scenario in terms

of privacy: we assume that user samples are linked and this

linking is facilitated by the limited user mobility (e.g., being

at home) and by the fact that they submit multiple samples

under the same pseudonym. The honest-but-curious RS might

attempt to infer the user context (i.e., activities: walking, driving,

sleeping) from those linked sensor readings [10, 11]. The rest

of this section discusses instantiations of such privacy attacks

and evaluates the effectiveness of different mitigation strategies.

1) Adversarial Instantiation: We leverage machine learning

mechanisms for predicting the user context. More specifically,

we assume that an honest-but-curious RS has a statistical model

of possible sensor values characterizing different user contexts.

Such knowledge can be obtained by, e.g., user(s) cooperating

with the RS. What the RS essentially needs is labeled training

sets: values from various sensors (e.g., accelerometer) mapped

to specific contexts or activities.

After obtaining training sets, the honest-but-curious RS

instantiates an ensemble of classifiers to predict the context of

the participating users. For the purpose of this investigation,

we use Random Forests: collections of decision trees, each

trained over a different bootstrap sample. A decision tree is

a classification model created during the exploration of the

training set. The interior nodes of the tree correspond to possible

values of the input data. For instance, an interior node could

describe the values of a sensor s1. Nodes can have other nodes

as children, thus, creating decision paths (e.g., s1 > α and
s2 < β). Tree leafs mark decisions (i.e., classifications) of all

training data described by the path from the root to the leaf.

For example, samples for which sensors s1 and s2 take the

values s1 > α, s2 < β describe the walking activity. After

training, the RS can classify user contexts based on the sensor

values sent by their mobile clients.

2) Attack Evaluation and Mitigation Strategies: For the

analysis, we employ the PAMAP7 dataset which contains sensor

readings (i.e., accelerometer, gyroscope, magnetometer) from

17 subjects performing 14 different activities (e.g., walking,

cycling, laying, ironing, computer work). We consider only a

subset of the included sensor types focusing on those that are al-

ready available in current smart-phones: temperature (Samsung

Galaxy S4 has a dedicated temperature sensor), accelerometer,

gyroscope and magnetometer. For each evaluation scenario,

we select one subject (at random) for training the classifier

ensemble and, then, examine its accuracy for the rest of the

dataset subjects. We additionally consider two of the most

well-know mitigation strategies against such inference attacks,

and assess their effectiveness: (i) suppressing sensor readings

(i.e., contributing samples according to some probability) and

(ii) introducing noise to the submitted measurements.

As shown in Fig. 5 (a), the overall ensemble classification

accuracy (for different user contexts) is above 50%. This

serves as an indication that an honest-but-curious RS can

effectively target user contextual privacy. Fig. 5 (b) illustrates

the classification accuracy when one of the previously described

mitigation strategies is employed. In particular, we assume that

users can either introduce some kind of error to their submitted

measurements or decide, according to some probability (i.e.,

suppression threshold), whether to submit a sample or not.

What we see is that when the suppression probability increases,

the accuracy of the classifier decreases. This is to be expected

because the classifier receives less samples and, thus, produces

worse predictions. Moreover, as the figure shows, introducing

noise in the data samples can also improve user privacy.

7http://www.pamap.org/demo.html
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Not submitting enough samples results in the accumulation of

fewer receipts by the client (Sec. VI-C): simply put, this strategy

trades-off rewards and credits for better privacy protection. At

the same time, anomaly detection mechanisms can flag samples

to which an error has been deliberately introduced. Overall,

although orthogonal to this work, the fine-tuning of these (or

similar) mitigation strategies merits further investigation.

Fig. 5 (c) presents the informativeness of the employed

sensor types with respect to user contexts. We express “sensor

importance” as the (normalized) total reduction of uncertainty

brought by that feature (i.e., the Gini importance [56]). As

it can be seen, magnetometers and gyroscopes are the most

intrusive sensors as they reveal the most about a user’s context.

By leveraging such knowledge, participating users can have an

estimation on their (possible) privacy exposure prior to their

participation in a sensing task; simply by examining the types

of sensors the task requires.

V I I I . S Y S T E M P E R F O R M A N C E E VA L U AT I O N

A. System Setup

The IdP, GM, PCA, and RA are deployed, for testing

purposes, on separate Virtual Machines (VMs) with dual-core

2.0 GHz CPUs. We distribute the services provided by PCA

over two VMs for our dependability evaluation (the same can

be applied to the other entities, but we omit the discussion

due to space limitations). We use the OpenSSL library for

the cryptographic operations, i.e., the Elliptic Curve Digital

Signature Algorithm (ECDSA) and TLS, and the JPBC library

for implementing the group signature schemes. We deployed the

sensing application on different Android smart-phones with 4-

Cores/1 GB RAM and 2-Cores/1 GB RAM. For the evaluation

of Sec. VIII-C we employ Jmeter to emulate multiple devices

accessing the infrastructure concurrently.

For sample submission and verification, we employ the

ECDSA with keys computed over 224 bit prime fields

(secp224k1 curve), thus, achieving a 112 bit security [57].

B. User-Side Evaluation

Figure 6 illustrates the performance of the authentication and

pseudonym acquisition protocol (Sec. VI-B) on the two mobile

devices. For this evaluation, devices request one authorization

token from a set of 10 (i.e., 10 active tasks). We present the

time needed to execute the different steps of the algorithm (i.e.,

pseudonym generation, acquisition time and authentication at

the IdP), averaged over 50 observations. For the dual-core

phone, the time needed to get authenticated and obtain 10
pseudonyms is around 8 s. This increases linearly as the

device requests more pseudonyms: for 50 pseudonyms, the

authentication protocol is executed in 22 s. On the IdP site,

authentication (based on group signatures) requires 4 s. For the

quad-core device, the protocol requires significantly less time

(11 s for 50 pseudonyms). When using TOR, we experience

additional network latency. Due to space limitations, we present

here the results only for the quad-core device. TOR introduces

a latency of approximately 10 s, thus raising the authentication

time to 23 s for 50 pseudonyms. Even for substantial reporting

(task) periods such a number of pseudonyms provides adequate

privacy (Sec. VII-C).
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We also compare the efficiency of EC-based digital signatures

with group-signature schemes. This comparison yields that

ECDSA with SHA512 is approximately 10 times faster (on the

quad-core device) compared to group signature schemes (i.e.,

BBS scheme [34]) with the same security level. This serves

as a comparison of our system with AnonySense [24] that

relies on group signatures: as devices are expected to submit a

considerable amount of digitally signed samples, it is critical,

from the energy consumption point of view, that the process

is as efficient as possible.

Figure 7 evaluates the implemented PIR scheme: we show

the time needed to obtain an authorization token (for one task)

on the quad-core device, as a function of the number of active

tasks. This delay increases mildly with the number of active

tasks in the system. Even for a set of 100 active tasks, the PIR

protocol is executed in approximately 3.5 s.

We measure CPU utilization for the authentication protocol

on the two mobile devices (Figure 8). For the dual-core

device, the amount of CPU consumed ranges from 36%, for

10 pseudonyms, to approximately 50% for 50 pseudonyms.

For the quad-core phone, the CPU consumption significantly

drops, ranging from 20%, for 10 pseudonyms, to 23% for 50
pseudonyms. For comparison purposes, we measured the CPU

consumption of the Facebook application on the quad-core

device. On average the Facebook client consumes 18% of the

CPU, which is close to the CPU consumption of our client on

the same device (for 50 pseudonyms).

C. Infrastructure-Side Evaluation

We assess the performance of our infrastructure under

stressful, yet realistic, scenarios assuming a traffic monitoring
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sensing task: the mobile devices of drivers get authenticated to

our system and receive pseudonyms to protect and submit data

with respect to the encountered traffic conditions. This is a

demanding case of MCS since it entails strict location-privacy

protection requirements: users request many pseudonyms to

protect their privacy while submitting frequent location samples.

To emulate this task, we use the “TAPAS” data set [58]

that contains synthetic traffic traces from the city of Cologne

(Germany) during a whole day. We assume a request policy of

10 pseudonyms every 10 minutes, i.e. pseudonym lifetime of

1 minute each. By combining this policy with 5 000 randomly

chosen vehicular traces from the data set, we create threads for

Jmeter. Each thread is scheduled according to the TAPAS

mobility traces, with journeys specified by start and end

timestamps. Figure 9 shows that our system is efficient in

this high-stress scenario: it serves each request, approximately,

in less than 200ms. Furthermore, during the 1 hour execution

of this test, we simulate an outage of one of the two PCAs

lasting 11 minutes. As shown in the shaded area of Figure 9,

the request latency does not increase and the system recovers

transparently from the outage.

Figure 10 shows the time required for a single device

revocation, as a function of the number of pseudonyms in

the database. The RA queries the PCA for the authorization

token that the device used to request the pseudonym PS.

After retrieving the token, the RA asks the GM to translate it

to the device long term identifier. Then, the GM invalidates

all the dispenser corresponding to the token and informs the

IdP (Section VI-D). Accordingly, the PCA revokes all device

pseudonyms. These two processing delays are accounted for

as the time spent on PCA (tPCA) and GM (tGM), respectively.

The total time spent on RA is tTOT = tRA + tPCA + tGM, where

tTOT is the total execution time of revocation protocol.

The pseudonym set is generated by assuming the same

request policy for all devices. This maximizes the entropy of

the database set. Each assumed device obtained 10 tokens for

requesting a set of 10 pseudonyms per token, thus giving the

overall ratio 1 device : 10 tokens : 100 pseudonyms. The box-
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(10% and 30%)

plots in Figure 10 depict the results averaged over 100 runs,

with the pseudonym set increasing from 10 000 to 100 000
items linearly (i.e., we assume more devices). The performance

of the system is not significantly affected by the size of the

set. On average, revocation of a device requires 2.3 s.

D. Remuneration Evaluation

We evaluate the proposed remuneration mechanism for

the unbiased estimator of Eq. 2. We start by assessing the

mechanism fairness assuming sensing tasks with two user types:

honest users monitoring the sensed phenomenon and submitting

samples as they move along different regions and, selfish users

that obtain a single measurement, for a single region, and

massively replay it to the RS. This way, selfish users try to

gain inordinate, to their efforts, rewards: although they do not

spend resources for sensing the monitored phenomenon and

their location, they submit samples to the RS. To emulate such

a greedy deviant behavior, we synthetize a dataset of 40 users

participating in a sensing task. Fig. 11 presents our findings:

the left plot corresponds to a scenario where the fraction of

selfish users is 10%. The parameter α of the x− axis is the

replaying frequency of selfish users: for α = 20 malicious

users submit (i.e., replay) 20 times more messages than an

honest user to the RS. As the figure shows, even for the extreme

case that α = 30, selfish users receive, on average, 25% of

the total value; this is a result of the employed value function

(Sec. VI-E2): coalitions in which selfish users participate are

unbalanced; they contain many reports for one region, and are,

thus, evaluated lower (H → 0) compared to more balanced

coalitions. Increasing the amount of selfish users to 30% yields

higher utility for them but, still, disproportional to the number

of reports they replay to the system.

Indeed, selfish users could become malicious and spoof their

device location, thus, submitting reports for regions they are

not physically present. Mitigating such behavior is orthogonal

to this investigation since it necessitates a data trustworthiness

and verification framework such as [40] or position verification

and location attestation schemes. Furthermore, shelfish users

can also share measurements: a user in region A might receive

measurements from another user, for a region B, and submit

it to the system as hers (and vice versa). This behavior can

be easily mitigated due to the our sybil-proof scheme: simply

examining the distance between samples submitted under the

same pseudonym serves as an indication of such attacks (i.e.,

when the corresponding distances are implausible).
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Fig. 12 assesses the accuracy of the Shapley Estimator as a

function of the of number of sample permutations (variable k
of Eq. 2) for a sensing tasks with 40 participating users. As

we do not have any ground-truth we plot on the y − axis the

standard statistical error of the values the estimator assigns to

the different users. We observe that the relative standard error

is small. Moreover, as we trade-off efficiency for accuracy (i.e.,

increasing k), the error significantly diminishes.

I X . C O N C L U S I O N S

Technological advances in sensing, microelectronics and their

integration in everyday consumer devices laid the groundwork

for the rise of people-centric sensing. However, its success

requires effective protocols that guarantee security and privacy

for MCS systems and their users. To meet this challenge, we

presented a novel secure and accountable MCS architecture

that can safeguard user privacy while supporting user incentive

mechanisms. Our architecture achieves security, privacy and

resilience in the presence of strong adversaries. Moreover,

it enables the provision of incentives in a privacy-preserving

manner; a catalyst for user participation. We formally evaluated

the achieved security and privacy properties and provided a

full-blown implementation of our system on actual devices.
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