This is the full version of the extended abstract which appears in
Proceedings of the 10th ACM Conference on Computer and Communications Security, pages 241-250
(October 27 — 30, 2003, Washington, DC, USA.)

Security Proofs for an Efficient Password-Based Key Exchange

E. Bresson!, O. Chevassut?, and D. Pointcheval?

! Département Cryptologie, CELAR, 35174 Bruz Cedex, France
Emmanuel .Bresson@m4x.org.
2 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
OChevassut@lbl.gov.
3 CNRS-Ecole normale supérieure, 75230 Paris Cedex 05, France
David.Pointcheval@ens.fr.

Abstract. Password-based key exchange schemes are designed to provide entities communicating over
a public network, and sharing a (short) password only, with a session key (e.g, the key is used for data
integrity and/or confidentiality). The focus of the present paper is on the analysis of very efficient schemes
that have been proposed to the IEEE P1363 Standard working group on password-based authenticated
key-exchange methods, but for which actual security was an open problem. We analyze the AuthA key
exchange scheme and give a complete proof of its security. Our analysis shows that the AuthA protocol and
its multiple modes of operation are provably secure under the computational Diffie-Hellman intractability
assumption, in both the random-oracle and the ideal-cipher models.

1 Introduction

Problem. The need for secure authentication seems obvious when two entities—a client and a server—
communicate on the wired-Internet, but proving an identity over a public link is complex. The method
deployed by the engineers of the Secure Shell protocol (SSH) [2] to determine a client’s identity to
log him/her into another computer, execute commands on a remote machine, and move files from
one machine to another is to ask him to type-in a password. The remote machine maintains the
association between the client name and the password. Another method is to take advantage of a
public-key infrastructure (PKI) to check that an entity knows the secret-key corresponding to the
public-key embedded in a certificate. This method was adopted by the IETF TLS Working Group
to secure the traffic between a web browser and a bank server over the wired-Internet, but work is
currently under way to enrich this “transport layer” security protocol (TLS) with password-based
authentication methods [18].

The primary raison d’étre for password-based authentication is to enable clients to identify them-
selves to servers through a lightweight process since no security infrastructure or special hardware to
carry the passwords is required. One example is when a password is used as a means to establish a
secure communication channel from the computing device a human relies on to the remote machine he
wants to talk to. This process, or password-authenticated key-exchange as it is often termed [6, 7, 21],
provides the two computing devices with a session key to implement an authenticated communication
channel within which messages sent over the wire are cryptographically protected. Humans directly
benefit from this approach since they only need to remember a low-quality string (i.e. 4 decimal digits)
chosen from a relatively small dictionary rather than a high-quality symmetric encryption key.

The fundamental security goal for a password-authenticated key exchange protocol to achieve is
security against dictionary attacks. One can not actually prevent the adversary from guessing a value
for the password and using this value in an attempt to impersonate a player. If the attack fails, the
adversary can eliminate this value from the list of possible passwords. However, one would like this
attack to be the only one the adversary can mount: after n active interactions with some participants
the adversary should not be able to eliminate a greater number of passwords than n. Namely, a passive
eavesdropping should be of no help to the adversary since an off-line exhaustive search on the password
should not get any bias on the actual password. The off-line exhaustive search is called a dictionary
attack.

© ACM Press, 2003.

The need for lightweight authentication processes is even greater in the case of the wireless-Internet.
Wireless nodes are devices with particular mobility, computation and bandwidth requirements (disk-
less base station, cellular phone, pocket PC, palm pilot, laptop computer, base station gateway) that
place severe restrictions when designing cryptographic mechanisms. The TLS protocol has been en-
riched with elliptic-curve cipher suites to run on low-power devices [8] and has within the WAP
Forum evolved into a “transport layer” security protocol to secure mobile-commerce (WTLS) [22].
The Wired Equivalent Privacy (WEP) protocol, which is part of the IEEE 802.11 standard, does rely
on high-quality symmetric encryption keys for protecting the wireless local-area network (WLAN)
traffic between a mobile device equipped with a wireless ethernet-card and a fixed access point, but
the WEP does not specify how the keys are established [9]. Currently, the IEEE 802.11 standard does
not specify any method for key exchange.

Contributions. This paper examines the security of the AuthA password-authenticated key exchange
protocol proposed to the IEEE P1363 Study Group on standard specifications for public-key cryptog-
raphy [20]. Although AuthA has been conjectured cryptographically secure by its authors, it has still
not been proven to resist dictionary attacks [4]. In this paper we provide a complete proof of security
for the AuthA protocol. We work out our proofs by first defining the execution of AuthA in the com-
munication model of Bellare et al. [3] and then adapting the proof techniques recently published by
Bresson et al. [12] for the password-based group key exchange.

We have defined the execution of AuthA in Bellare et al.’s model wherein the protocol entities are
modeled through oracles, and the various types of attacks are modeled by queries to these oracles.
This model enables a treatment of dictionary attacks by allowing the adversary to obtain honest
executions of the AuthA protocol. The security of AuthA against dictionary attacks depends on how
many interactions the adversary carries out against the protocol entities rather than on the adversary’s
computational power. Qur analysis shows that some of the AuthA modes of operation achieve provable
security against dictionary attacks in both the random oracle and ideal-cipher models [3, 5] under the
computational Diffie-Hellman intractability assumption.

Related Work. The IEEE P1363 Standard working group on password-based authenticated key-
exchange methods [21] has been focusing on key exchange protocols wherein clients use short passwords
in place of certificates to identify themselves to servers. This standardization effort has its roots in the
works of Bellare et al. [3] and Boyko et al. [11], wherein formal models and security goals for password-
based key agreement were first formulated. Bellare et al. analyzed the EKE protocol [6] (where EKE
stands for Encrypted Key Exchange), a classical Diffie-Hellman key exchange wherein the two flows
are encrypted using the password as common symmetric key. While they announced a security result
of this “elegant” and efficient structure in both the random oracle and ideal-cipher models, the full
proof never appeared anywhere. On the other hand, Boyko et al. [11] provided such a proof, but it was
in another security model, the multi-party simulatability model. We thus provide a complete proof
in the Bellare et al. security model, in a model where both a random oracle and an ideal-cipher are
available.

One should note that Boyko et al.’s security result [11] holds in the random oracle model, while
Bellare et al’s one [3] holds in both the random oracle model and the ideal-cipher one together.
More recent works provided password-based schemes for which security holds in the standard model
only [15-17]. These are either based on general computational assumptions, or on the Decisional Diffie-
Hellman problem (using a variant of the Cramer-Shoup encryption scheme [14].) While relying on a
strong computational assumption, they are neither practical nor very efficient.

These provably secure schemes in the standard model are from a theoretical point of view very
interesting, but fails to be practical. Ideal models (i.e. random-oracle, ideal-cipher) have thus been
defined to provide alternative security results. While not being formal proofs, they give strong evidence
that the schemes are not flawed. They often rely on weaker computational assumptions (e.g. the
computational Diffie-Hellman problem instead of the decisional one.)

More interestingly, EKE later evolved into the proposal AuthA [4], which is formally modeled by
the One-Encryption Key-Exchange (OEKE) in the present paper: only one flow is encrypted (using
either a symmetric-encryption primitive or a multiplicative function as the product of a Diffie-Hellman
value with a hash of the password). The advantage of such a scheme over the classical EKE, wherein
the two Diffie-Hellman values are encrypted, is its easyness of integration. An OEKE cipher enables us
to avoid many compatibility problems when adding password-based capabilities to existing network
security protocols since the initial messages of the security protocols do not need to be modified.
This argument in favor of OEKE was put forward when discussions were under way to enrich the
Transport Layer Security (TLS) protocol with password-based key-exchange cipher suites [18,19]. In
a TLS One-Encryption Key-Exchange initiated by the server, the server does not need to know the
client’s name (a name is mapped to a password by the server using a local database) to compute and
send out the server’s TLS key-exchange message, but does need it to process the incoming client’s
TLS key-exchange message. Therefore, engineers embodied the client’s name in the client’s TLS key-
exchange message rather than embodying it in the client’s TLS hello message [18]. OEKE is thus of
great practical interest, but none of the previous security analyses ever dealt with it.

Our paper is organized as follows. In Section 2, we recall the model and the definitions that
should be satisfied by a password-based key exchange protocol. In Section 3, we show that OEKE,
a “simplified” variant of a AuthA mode of operation, is secure. In Section 4, we build on this result
to show that some of the AuthA modes of operation proposed to the IEEE P1363 Study Group are
secure.

2 Model

In this section we recall the formal model for security against dictionary attacks where the adversary’s
capabilities are modeled through queries. In this model, the players do not deviate from the protocol
and the adversary is not a player, but does control all the network communications.

2.1 Security Model

Players. We denote a server S and a user, or client, U that can participate in the key exchange
protocol P. Each of them may have several instances called oracles involved in distinct, possibly
concurrent, executions of P. We denote client instances and server instances by U® and S’ (or by I
when we consider any kind of instance).

The client and the server share a low-entropy secret pw which is (uniformly) drawn from a small
dictionary Password of size IN. The assumption of the uniform distribution for the password is just
to make notations simpler, but everything would work with any other distribution, replacing the
probability ¢/N by the sum of the probabilities of the ¢ most probable passwords.

Abstract Interface. The protocol AuthA consists of the following algorithm:

— The key exchange algorithm KEYEXcH(U?, S7) is an interactive protocol between U? and S/ that
provides the instances of U and S with a session key sk.

Queries. The adversary A interacts with the participants by making various queries. Let us explain
the capability that each query captures:

— Execute(U*, S7): This query models passive attacks, where the adversary gets access to honest
executions of P between U’ and S7 by eavesdropping.

— Reveal(I): This query models the misuse of the session key by instance I. The query is only
available to A if the targetted instance actually “holds” a session key and it releases sk to A.

— Send(Z,m): This query models A sending a message to instance I. The adversary A gets back
the response I generates in processing the message m according to the protocol P. A query
Send(U?, Start) initializes the key exchange algorithm, and thus the adversary receives the flow
the client should send out to the server.

The Execute-query may at first seem useless since using the Send-query the adversary has the ability
to carry out honest executions of P among parties. Yet the Execute-query is essential for properly
dealing with dictionary attacks. The number g5 of Send-queries directly asked by the adversary does
not take into account the number of Execute-queries. Therefore, q¢ represents the number of flows the
adversary may have built by itself, and thus the number of passwords it would have tried.

2.2 Security Notions

Freshness. The freshness notion captures the intuitive fact that a session key is not “obviously”
known to the adversary. An instance is said to be Fresh in the current protocol execution if the
instance has accepted and neither it nor the other instance with the same session tag have been asked
for a Reveal-query.

The Test-query. The semantic security of the session key is modeled by an additional query Test(I).
The Test-query can be asked at most once by the adversary A and is only available to A if the attacked
instance I is Fresh. This query is answered as follows: one flips a (private) coin b and forwards sk
(the value Reveal(I) would output) if b = 1, or a random value if b = 0.

AKE Security. The security notions take place in the context of executing P in the presence of
the adversary A. The game Gameake(A, P) is initialized by drawing a password pw from Password,
providing coin tosses to A, all oracles, and then running the adversary by letting it asking a polynomial
number of queries as described above. At the end of the game, A outputs its guess b’ for the bit b
involved in the Test-query.

We denote the AKE advantage as the probability that A correctly guesses the value of b; more
precisely we define Advi®(A) = 2Pr[b = b/] — 1, where the probability space is over all the random
coins of the adversary and all the oracles. The protocol P is said to be AKE-secure if A’s advantage

is negligible in the security parameter.

Authentication. Another goal of the adversary is to impersonate the client or the server. In the
present paper, we focus on unilateral authentication of the client, thus we denote by Succj;g_aUth (A)
the probability that A successfully impersonates a client instance in an execution of P: this means
that a server would accept a key while the latter is shared with no client. The protocol P is said to
be C-Auth-secure if such a probability is negligible in the security parameter.

2.3 Computational Diffie-Hellman Assumption

Let G = (g) be a finite cyclic group of order a ¢-bit prime number ¢, where the operation is denoted
multiplicatively. A (¢,¢)-CDH attacker in G is a probabilistic machine A running in time ¢ such that

Succ@jh(A) =Pr[A(g",¢") = g"¥] > ¢
z,y

where the probability is taken over the random values x and y. The CDH-Problem is (¢, ¢)-intractable
if there is no (¢, ¢)-attacker in G. The CDH-assumption states that is the case for all polynomial ¢ and
any non-negligible ¢.

3 One-Encryption Key Exchange

In this section, we describe OEKE, a “simplified” variant of a AuthA mode of operation [4], and prove
its security in the random oracle and the ideal-cipher models. At the core of this variant resides only

Client U Server S
pw pw
accept <+ false accept «+ false
terminate < false terminate < false

xﬁ[laq_ll y£[17q_1]

X gt UX oyl

S, Y*
Y — Dy (Y™) ’ Y* — Epu(Y)
Ky < Y* Ks — XY

Auth — Ha (U||S| XY || Kv)
sku — Ho(U||S|| XY || Ku)
Auth

accept — true —— 1 Auth £ H,y (US| XY || Ks)
if true, accept « true
sks — Ho(U||S|IX[Y | Ks)

terminate < true terminate « true

Fig.1. An execution of the protocol OEKE, run by the client U and the server S. The session key is sk =
Ho(UIISIXIY[Y™) = Ho(U[IS[XY [XY).

one flow of the basic Diffie-Hellman key exchange encrypted under the password and two protocol
entities holding the same password. It therefore slightly differs from the original EKE [3, 6] in the sense
that only one flow is encrypted using the password; instead of the two as usually done. But then, it is
clear that at least one authentication flow has to be sent. We prove this is enough to satisfy the above
security notions.

3.1 Description of the Scheme

The arithmetic is in a finite cyclic group G = (g) of order a ¢-bit prime number ¢, where the operation
is denoted multiplicatively. Hash functions from {0,1}* to {0,1}% and {0,1}** are denoted Hy and
Hi. A block cipher is denoted (£, Dy) where k € Password. We also define G to be equal to G\{1},
thus G = {¢” |z € Z}}.

As illustrated on Figure 1 (with an honest execution of the OEKE protocol), the protocol runs
between a client U and a server S, and the session-key space SK associated to this protocol is {0, 1}
equipped with a uniform distribution. Client and server initially share a low-quality string pw, the
password, uniformly drawn from the dictionary Password.

The protocol consists of three flows. The client chooses a random exponent xz and computes the
value ¢® which he sends to the server. The server in turn chooses a random exponent gy, computes
the value ¢g¥, and encrypts the latter under the password pw before to send it out on the wire. Upon
receiving the client’s flow, the server computes the Diffie-Hellman secret value ¢*¥, and from it the
session key sk. Upon receiving the server’s flow, the client decrypts the ciphertext, computes the Diffie-
Hellman secret value, and an authentication tag Auth for client-to-server unilateral authentication.
The client then sends out this authenticator. If the authenticator verifies on the server side, the client
and the server have successfully exchanged the session key sk.

3.2 Semantic Security

In this section, we assert that under reasonable and well-defined intractability assumptions the protocol
securely distributes session keys. More precisely, in this section, we deal with the semantic security

goal. We consider the unilateral authentication goal in the next section. In the proof below, we do
not consider forward-secrecy, for simplicity, but the semantic security still holds in this context, with
slightly different bounds. The details can be found in the Appendix D. However, remember that any
security result considers concurrent executions.

Theorem 1. Let us consider the OEKE protocol, where SK is the session-key space and Password is
a finite dictionary of size N equipped with the uniform distribution. Let A be an adversary against
the AKE security of OEKE within a time bound t, with less than qs interactions with the parties and
qp passive eavesdroppings, and, asking qp hash-queries and q. encryption/decryption queries. Then we
have
(2ge +3g5 +34,)* | qj + 44

+ -

q—1 24

Adve (A) < 3 x q—]\j + 8qp x SuccSh(#') +
where t' <t + (gs + qp + g + 1) - TG, with 7¢ denoting the computational time for an exponentiation
in G. (Recall that q is the order of G.)

This theorem shows that the OEKE protocol is secure against dictionary attacks since the advantage
of the adversary essentially grows with the ratio of interactions (number of Send-queries) to the number
of passwords. This is particularly significant in practice since a password may expire once a number of
failed interactions has been achieved, whereas adversary’s capability to enumerate passwords off-line
is only limited by its computational power. Of course, this security result only holds provided that the
adversary does not solve the computational Diffie-Hellman problem.

Proof (of Theorem 1). In this section we incrementally define a sequence of games starting at the real
game G and ending up at Gsg.

Game Gq: This is the real attack game, in the random oracle and ideal-cipher models. Several oracles
are thus available to the adversary: two hash oracles (Ho and H;), the encryption/decryption oracles
(€ and D), and all the instances U® and S7 (in order to cover concurrent executions). We define several
events in any game G,:

— event S,, occurs if b = b, where b is the bit involved in the Test-query, and b’ is the output of the
AKE-adversary;

— event Encrypt,, occurs if A submits a data it has encrypted by itself using the password;

— event Auth,, occurs if A submits an authenticator Auth that will be accepted by the server and
that has been built by the adversary itself.

By definition,
Advake (A) = 2Pr[Sg] — 1. (1)

oeke

In the games below, we furthermore assume that when the game aborts or stops with no answer b’
outputted by the adversary A, we choose this bit b’ at random, which in turn defines the actual value
of the event Si. Moreover, if the adversary has not finished playing the game after ¢, Send-queries
or lasts for more than time ¢, we stop the game (and choose a random bit b’), where g5 and ¢ are
predetermined upper-bounds.

Game Gi: In this game, we simulate the hash oracles (Ho and Hj, but also two additional hash
functions Hs : {0,1}* — {0,1}*2 and H3 : {0,1}* — {0,1}%, with £, = £y and ¢3 = £;, that will
appear in Game G7) and the encryption/decryption oracles, as usual by maintaining a hash list Ay
(and another list A4 containing the hash-queries asked by the adversary itself) and an encryption list
Ag (see Figure 2) We also simulate all the instances, as the real players would do, for the Send-queries
(see Figure 3) and for the Execute, Reveal and Test-queries (see Figure 4).

From this simulation, we easily see that the game is perfectly indistinguishable from the real attack,
unless the permutation property of £ or D does not hold. One could have avoided collisions but this

For a hash-query H;(q) (with ¢ € {0,1,2,3}), such that a record (i, q,r) appears in Ay, the answer is r.
Otherwise the answer r is defined according to the following rule:

»Rule HY — Choose a random element r € {0, 1}*.

The record (i, q,r) is added to Ax. If the query is directly asked by the adversary, one adds (i,q,7) to Aa.

For an encryption-query £x(Z), such that a record (k, Z, x, %, Z*) appears in Ag, the answer is Z*. Otherwise
the answer Z* is defined according to the following rule:

»Rule £ — Choose a random element Z* € G.

Then one adds the record (k, Z, L,E,Z%) to As¢.

For a decryption-query Dy (Z*), such that a record (k, Z, %, %, Z*) appears in Ag, the answer is Z. Otherwise,
one applies the following rule to obtain the answer Z:

»Rule DY) — Choose a random element ¢ € Zy, compute the answer Z = g¥ and add the record
(k, Z, 0, D, Z*) to Ag.

Fig. 2. Simulation of the random oracles, and the encryption/decryption oracles

We answer to the Send-queries to the client as follows:

— A Send(U?, Start)-query is processed according to the following rule:
»Rule U1 — Choose a random exponent 6 € Zy and compute X = g°.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2 — Compute Y = Dy, (Y*) and Ky = Y.
»Rule U3 — Compute the authenticator Auth = Hy(U||S|| X||Y||Kv) and the session key
sku = Ho(U[IS| XY | Kv).
Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds ((U, X), (S,Y™), Auth) to Aw. The variable Ay keeps track of the exchanged messages.

We answer to the Send-queries to the server as follows:

— A Send(S7, (U, X))-query is processed according to the following rule:
»Rule S1V — Choose a random exponent ¢ € Z3, compute Y = g¥, Y* = £,,(Y) and
Ks = X*.
Finally, the query is answered with S, Y™ and the server instance goes to an expecting state.
— If the server instance S is in an expecting state, a query Send(S?, H) is processed according to the
following rules:
»Rule S2) — Compute H' = H1(U||S|| X||Y||Ks), and check whether H = H'. If the equality
does not hold, the server instance terminates without accepting.
If equality holds, the server instance accepts and goes on, applying the following rule:
»Rule S3Y — Compute the session key sks = Ho(U||S| X[V Ks).
Finally, the server instance terminates.

Fig. 3. Simulation of the Send-queries

An Exe_(:ute(Ui7Sj)-query is processed using successively the simulations of the Send-queries: (U, X) «—
Send(U*, Start), (S,Y™) « Send(S”, (U, X)) and Auth « Send(U"*, (S,Y™)), and outputting the transcript
(U, X),(S,Y"), Auth).

S
A Reveal(I)-query returns the session key (sku or sks) computed by the instance I (if the latter has accepted).

A Test(I)-query first gets sk from Reveal(I), and flips a coin b. If b = 1, we return the value of the session
key sk, otherwise we return a random value drawn from {0, 1}%.

Fig. 4. Simulation of the Execute, Reveal and Test-queries

8

happens with probability at most g2/2(q — 1) since |G| = (¢ — 1), where g¢ is the size of Ag:

| Pr[Sq] — Pr[So] | < ﬁ (2)

Game Gy: We define game Go by modifying the way the server processes the Send-queries so that
the adversary will be the only one to encrypt data. We use the following rule:

»Rule S1? — Choose a random Y* € G and compute Y = D,,,(Y*). Look for the record
(pw,Y,p,*,Y*) in the list A¢ to define ¢ (we thus have Y = g¢¥), and finally compute
Kg = X%

The two games Go and Gy are perfectly indistinguishable unless ¢ = L. This happens when
Y™* has been previously obtained as the ciphertext returned by an encryption-query. Note that this
may happen when processing a Send-query, but also during a passive simulation when processing an
Execute-query:

qsqe
| Pr[Sq] — Pr[Sq] | < —=, (3)
q—1
where gg is the number of involved server instances: ¢s < gs + ¢p. Furthermore note that from now,
only the adversary may ask encryption queries, since the server is simulated using the decryption
oracle.

Game Gs: In this game, we avoid collisions amongst the hash queries asked by the adversary to H1,
amongst the passwords and the ciphertexts, and amongst the output of the Send-queries. We play the
game in a way that: no collision has been found by the adversary for H1; no encrypted data corresponds
to multiple identical plaintext; at most one password corresponds to each plaintext-ciphertext pair;
abort if two instances of the server have used the same random values. This will help us later on to
prove Lemma 2, the key step in proving Theorem 1. We use the following rules:

»Rule H®) — Choose a random element r € {0,1}%. If i = 1, this query is directly asked by
the adversary, and (1,x,7) € A4, then we abort the game.

Then, for any H, #{(1,*, H) € A4} < 1. But this rule may make the game to abort with probability
bounded by ¢2 /2111

»Rule £6) — Choose a random element Z* € G. If (x, %, L, &, Z*) € Ag, we abort the game.

Then, for any Z*, #{(x,*, L,E,Z*) € A¢} < 1. But this rule may make the game to abort with
probability bounded by ¢2/2(g — 1).

»Rule D) — Choose a random element ¢ € Zy and compute Z = g?. If (x, Z,x, %, 2*) € Ag,
we abort the game. Otherwise, we add the record (k, Z, ¢, D, Z*) to Ag.

Then, for any pair (Z,2*), #{(x, Z,*,%,Z*) € A¢} < 1. But this rule may make the game to abort
with probability bounded by ¢2/2(q — 1).

»Rule S13) — Choose a random Y* € G. If (%,Y*) € Ag, abort the game, otherwise add the
record (j,Y™) to Ag. Then, compute Y = D,,,(Y™), look for the record (pw,Y, p,*,Y*) in Ag
to define ¢ (we thus have Y = ¢g¥), and compute Kg = X¥. The variable Ag keeps track of
the messages sent out by the server S.

Then, there is no collision among the Y* outputted by the server instances (and thus the used V). But
this rule may make the game to abort with probability bounded by the birthday paradox, q% /2(qg—1),
where gg is again the number of involved server instances.

The two games Gg and Go are perfectly indistinguishable unless one of the above rules make the
game to abort:

2% + ¢ e
Pr[S3] — Pr[Ss] | < =218 h 4
Game G4: We define game G4 by aborting the executions wherein the adversary may have guessed
the password and used it to send an encrypted data to the client. We achieve this aim by modifying
the way the client processes the queries. We use the following rule:

»Rule U2 — Look for (pw,*, L,£,Y*) € Ag. If the record is found, define Encrypt, as true
and abort the game. Otherwise, compute Y = Dy, (Y*) and Ky = Y.

The two games G4 and Gg are perfectly indistinguishable unless event Encrypt, occurs:
| Pr(S4] — Pr{Ss] | < PrlEncrypt,]. (5)

Game Gs: We define game Gj by aborting the executions wherein the adversary may have been
lucky in guessing the authenticator (that is, without asking the corresponding hash query). We reach
this aim by modifying the way the server processes the queries:

»Rule S2(°) — Check whether H = H’, where H' = H1(U||S|| X||Y || Ks). If the equality does
hold, check if (1,U||S||X||Y || Ks,H) € A4 or (U, X),(S,Y*),H) € Ag. If these two latter
tests fail, then reject the authenticator: terminate, without accepting. If this rule does not
make the server to terminate, the server accepts and moves on.

This rule ensures that all accepted authenticators will come from either the simulator, or an adversary
that has correctly decrypted Y* into Y, (computed Kg) and asked the query to the oracle H;. The two
games Gy and Gy are perfectly indistinguishable unless the server rejects a valid authenticator. Since
Y did not appear in a previous session (since the Game G3), this happens only if the authenticator
had been correctly guessed by the adversary without asking H1(U||S|| X||Y || Ks):

| Pr[Encrypts] — Pr[Encrypt,] | < 5’71 | Pr[Ss] — Pr[S4]| < % (6)
Game Gg: We define game Gg by aborting the executions wherein the adversary may have guessed
the password (that is the adversary has correctly decrypted Y* into Y') and then used it to build and
send a valid authenticator to the server. We reach this aim by modifying the way the server processes
the queries:

»Rule S2(6 — Check if (U, X),(S,Y*),H) € Ay. If this is not the case, then reject the
authenticator: terminate, without accepting. Check if (1, U||S|| X ||Y ||*, H) € A 4. If this is the
case, we define the event Authy to be true, and abort the game.

This rule ensures that all accepted authenticators come from the simulator. The two games G¢ and Gj
are perfectly indistinguishable unless either (1, U||S|| X ||Y || Kg, H) € Aqor (1, U||S||X||Y ||+, H) € A,
which both lead to Authy to be true:

| Pr[Encryptg] — Pr[Encrypt;] | < Pr[Authg] | Pr[S¢] — Pr[Ss5] | < Pr[Authg]. (7)

Game Gr: In this game, we do no compute the authenticator Auth and the session key sk using
the oracles Hy and Hi, but using the private oracles Ho and Hg so that the values Auth and sk are
completely independent from Hg and Hy, but also Y, pw and any of Ky or Kg. We reach this aim by
using the following rules:

»Rule U3(W — Compute the session key sky = Ho(U||S||X||Y*) and the authenticator
Auth = Hz(U||S||X||Y™*).

10

»Rule S3(" — Compute the session key skg = Ha(U||S|| X ||V *).

Since we do no longer need to compute the values Ky and Kg, we can also simplify the way client
and server process the queries:

»Rule U2(W — Look for a record (pw,*, L, E,Y*) in Ag. If the record is found, we define
Encrypt, as true and abort the game.

»Rule S1(" — Choose a random Y* € G. If (%,Y*) € Ag, one aborts the game, otherwise
adds the record (j,Y™) to Ag. Then, compute Y = D, (Y™).

The games G7 and Gg are indistinguishable unless the following event AskH occurs: A queries
the hash functions Hy or H; on U||S||X||Y||Ky or on U||S||X||Y]| Kg, that is on the common value
UlIS X[y |CDH(X, Y):

| Pr[Encrypt;] — Pr[Encryptg] | < Pr[AskH7] | Pr[S7] — Pr[S¢] | < Pr[AskH7]
| Pr[Auth?] — Pr[Authg] | < Pr[AskHy]. (8)

Lemma 2. The probabilities of the events S7, Encrypt,, and Auth’ in game G7 can be upper-bounded
by the following values:

Pr[Sq] = % PriEncrypty] < v PriAuth] <)
Proof. The formal proof of this lemma can be found in the Appendix A.1. The main idea in simulating
this game is to choose the password pw at the end of the game. The password pw is in fact only needed
to determine whether the events Encrypt, or Auth% have occurred, and it turns out that determining
whether these events have occurred can be postponed until the time limit has been reached or the
adversary has asked g5 queries. The probabilities of Encrypt, or Auth’, can then be easily upper-bounded
since no information, in the information theoretical sense, about the password pw is known by the
adversary along this simulation. a

Game Gg: In this game, we simulate the executions using the random self-reducibility of the
Diffie-Hellman problem, given one CDH instance (A, B). We do not need to known the values of 6 and
, since the values Ky or Kg are no longer needed to compute the authenticator and the session keys:

»Rule U1® — Choose a random element o € Zy, and compute X = A®. Also add the record
(a, X) to A A-

»Rule D® — Choose a random element 3 € Zy, and compute the answer Z = BP. Also add
the record (3, 7Z) to Ap. If (x, Z,*,%, Z*) € Ag then we abort the game; otherwise we add the
record (k,Z, L, D,Z*) to Ag.

Pr[AskHs] = Pr[AskHs]. (10)

Remember that AskHg means that the adversary A had queried the random oracles Hy or H;
on U||S||X||Y||Z, where Z = CDH(X,Y). By picking randomly in the A 4-list we can get the Diffie-
Hellman secret value with probability 1/g;. This is a triple (X,Y,CDH(X,Y")). We can then simply
look in the lists A4 and Ap to find the values o and (3 such that X = A% and Y = B?:

CDH(X,Y) = CDH(A®, B?) = CDH(4, B)*".

Thus:
Pr[AskHg] < g, Succgn (). (11)

11

This concludes the proofs (the details of the computations can be found in the Appendix A.2. Simply
note that gg¢ is the size of Ag, which contains all the encryption/decryption queries directly asked by
the adversary, but also all the decryption queries made by our simulation: at most one per Send-query
(direct or through Execute-queries), which makes ¢¢ < ¢e + ¢s + gp. Similarly, ¢g is the number of
involved server instances, and thus gs < g¢s + ¢p. Furthermore, one can easily see that in this last
game, t' <t+ (gs+qp+ge +1) - 16. O

3.3 Unilateral Authentication

The following theorem shows that the OEKE protocol furthermore ensures authentication from client
to server, in the sense that a server instance will never accept an authenticator that has not actually
been sent by the corresponding/expected client instance with probability significantly greater than

gs/N.

Theorem 3. Let us consider the OEKE protocol, where SK is the session-key space and Password a
finite dictionary of size N equipped with the uniform distribution. Let A be an adversary against the
AKE security of OEKE within a time bound t, with less than g, interactions with the parties and g,
passive eavesdroppings, and, asking qp hash-queries and q. encryption/decryption queries. Then we
have
(2ge + 3¢5 +39p)* | ap +44s

2(¢g—1) 2061+1

s
X

Advcfauth (.A) S

oeke

N w

+ 3qp, x Succn(t') +

2|8

where t' <t + (¢s + gp + ge + 1)7G, with 7g denoting the computational time for an exponentiation in
G. (Recall that q is the order of G.)

Proof. The proof is similar to the previous one. But one can find more details in the Appendix B. O

4 Applications

We describe some applications of our security results. We first show that some of the AuthA modes
of operations [4] proposed to the IEEE P1363 Standard working group encompass particular cases of
OEKE. Then, we make the ideal-cipher model more concrete.

4.1 Verifier-based Key Exchange

The AuthA protocol standardized by the IEEE organization is slightly different from our protocol
since client and server do not share a password pw. The AuthA has an added mechanism preventing
an adversary corrupting the password table of a server from impersonating a client at once. The AuthA
protocol takes advantage of the asymmetric cryptography principles when generating the passwords
hold by the client and the server. The client holds a derived password pwy = H'(U||S||PW) (where
PW is the actual password, and pwy has the same entropy but in Z;) and the server holds a value
pwg derived from the latter password as follows pwg = ¢gP*V. It has the same entropy as PW too. It
is then straightforward to modify our protocol to make use of these values pwy and pwg rather than
just the shared password pw (see Figure 5): pwg plays the role of the common password, and

Ho(U||SIX[Y(|Z2) — HHU|SIX[[Y|2)[10) HiUISIX[Y]Z) — HHUSI XY 2)[[Y 7).

As a consequence, one can claim exactly the same security results about this scheme as the ones
stated in the Theorems 1 and 3. More details can be found in the Appendix C.

12

Client Server
pwy pws = g"*v
accept <+ false accept « false
terminate < false terminate < false
$£[17q—1] y£[17q_1]
X —g° XX Y —g¥, Y*—Eu(Y)
UX* U XxX*
S, Y* S, Y*
Y « Dpus (YY), Ku <YY" X~ X" Ks«X'
PWy « YPvu PWgs «— pws?

MKy — H(U|S| XY Kv)
Auth «— H(MKUHPWU)
sky — H(MKvy||0)
accept < true

Auth Auth

MKs — HU|S|X[[Y [Ks)
Auth £ H(MKs|PWs)

if true, accept « true
sks — H(MKs||0)

terminate < true terminate < true

Fig. 5. The AuthA protocol run by the client U and the server S — The session key for U is sky = H(H(U||S|| X ||Y]IY*)]|0).
The session key for S is sks = H(H(U||S||X||Y|X¥)]0).

4.2 The AuthA Modes of Operation

When engineers choose a password-based key exchange scheme, they take into account its security,
computation and communication efficiency, and easiness of integration. Since they do not all face the
same computing environment, they may want to operate the AuthA protocol in different ways: encrypt
both flows of the basic Diffie-Hellman key exchange; achieve mutual-authentication; the server sends
out the first protocol flow. These different ways have already been described in [4] and do not seem to
alter the security of the AuthA protocol. But more precise security analyses similar to the above ones
should be performed before actually using the other modes.

4.3 Instantiating the Encryption Function

It is clear that a simple block-cipher can not be used in place of the ideal-cipher required by the security
result. We indeed need permutations onto G for all the secret keys, otherwise partition attacks can be
mounted [10]. In specific cases where the encoding of the elements is compact, on can use the iterated
technique [1]: one encrypts the element, and reencrypts the result, until one finally falls in the group G.
Decryption operates the same way. With well-chosen elliptic curves, the average number of iterations
can be bounded by 2. Furthermore, the size of the blocks can thus be less than 256 bits. However, one
must be careful in the implementation to prevent timing attacks.

A promising avenue is to also instantiate the encryption primitive as the product of a Diffie-
Hellman value with a hash of the password, as suggested in AuthA [4]. Preliminary investigations have
shown that this multiplicative function leads to a password-based key-exchange scheme secure in the
random-oracle model only [13].

13
5 Conclusion

The reductions presented in this paper are not optimal, but our intend was to present easy to read,
understand and meaningful proofs rather than very efficient ones. We think that the terms 3¢s/2N
or 3¢qs/N can be improved to gs/N, but the proof would then in turn becomes very intricate. For
technical reasons the hash function H; used to build the authenticator has to be collision-resistant in
our proofs, but the authors of AuthA [4] suggest to use a 64-bit authenticator. This may turn out
to be enough in practice, but the proof presented in the paper would then need to be modified. It,
however, seems a bad idea to use the same hash function H everywhere in AuthA.

Acknowledgments

The second author was supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, Mathematical Information and Computing Sciences Division, of the U.S. De-
partment of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-51868.
Disclaimer available at http://www-library.1lbl.gov/disclaimer.

References

1. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-Key Encryption. In Asiacrypt 01,
LNCS 2248, pages 566—582. Springer-Verlag, Berlin, 2001.

2. M. Bellare and T. Kohno and C. Namprempre. Authenticated Encryption in SSH: Provably Fixing the SSH Binary
Packet Protocol. In Proc. of the 9th CCS. ACM Press, New York, 2002.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In
Eurocrypt ’00, LNCS 1807, pages 139-155. Springer-Verlag, Berlin, 2000.

4. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenticated Key Exchange. Contributions
to IEEE P1363. March 2000. Available from http://grouper.ieee.org/groups/1363/.

5. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols. In Proc.
of the 1st CCS, pages 62-73. ACM Press, New York, 1993.

6. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure against Dictionary
Attacks. In Proc. of the Symposium on Security and Privacy, pages 72-84. IEEE, 1992.

7. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol Secure against
Dictionary Attacks and Password File Compromise. In Proc. of the 1st CCS, pages 244-250. ACM Press, New York,
1993.

8. S. Blake-Wilson, V. Gupta, C. Hawk, and B. Moeller. ECC Cipher Suites for TLS, February 2002. IEEE RFC
20296.

9. N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications: The Insecurity of 802.11. In Proc.
of ACM International Conference on Mobile Computing and Networking (MobiCom’01), 2001.

10. C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authenticated Key Exchange Protocols. In
ACISP ’01, LNCS 2119, pages 487-501. Springer-Verlag, Berlin, 2001.

11. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated Key Exchange Using Diffie-Hellman.
In Eurocrypt 00, LNCS 1807, pages 156—171. Springer-Verlag, Berlin, 2000.

12. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange Secure against Dictionary
Attacks. In Asiacrypt 02, LNCS 2501, pages 497-514. Springer-Verlag, Berlin, 2002.

13. E. Bresson, O. Chevassut, and D. Pointcheval. Encrypted Key Exchange using Mask Generation Function. Work in
progress.

14. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext
Attack. In Crypto ’98, LNCS 1462, pages 13-25. Springer-Verlag, Berlin, 1998.

15. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. In Crypto 01, LNCS 2139,
pages 408-432. Springer-Verlag, Berlin, 2001.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using Human-Memorizable
Passwords. In Furocrypt 01, LNCS 2045, pages 475-494. Springer-Verlag, Berlin, 2001.

17. J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-only Key Exchange Protocols. In Proc. of SCN
’02, 2002.

18. M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher Suite for TLS. ACM Transactions
on Information and System Security (TISSEC), 4(2):134-157, 2001.

19. D. Taylor. Using SRP for TLS Authentication, november 2002. Internet Draft.

14

20. IEEE Standard 1363-2000. Standard Specifications for Public Key Cryptography. IEEE. Available from
http://grouper.ieee.org/groups/1363, August 2000.

21. IEEE Standard 1363.2 Study Group. Password-Based Public-Key Cryptography. Available from
http://grouper.ieee.org/groups/1363/passwdPK.

22. Wireless Application Protocol. Wireless Transport Layer Security Specification, February 2000. WAP TLS, WAP-
199 WTLS.

A Complements for the Proof of Theorem 1

A.1 Proof of Lemma 2

Game G7: In this game, we compute the authenticator sky and the session key skg using the private
oracles Ho and Hs3 as depicted on Figure 6. Generating these values by querying the private oracles
only X and Y™* enable us to no longer need to compute the values Y, Ky, and Kg for the simulation,
but just to compute them at the end with the actual value of pw for defining the events Encrypt; and
Auth?.

The Rule U2(M, Rule S1(") and Rule S2(") can indeed be rewritten as rules that do not need
the password along the simulation, but only make use of it at the end of the simulation. One can
casily see on Figure 7 that the Rule U2+ and Rule S2+(are not useful for the simulation, but
that they are only useful to determine whether events Encrypt; or Auth’ occurred. They can thus be
postponed until the adversary has asked g, queries, or time limit expired. But then, one can note that
the password pw is not used anymore, until these last rules are proceeded: one can run the simulation,
without any password, and just choose it before processing these two rules.

Let us denote by R(U) the set of Y* received by a client instance, and by R(S) the set of (H,Y™)
used by a server instance. From an information theoretical point of view, since we have avoided
collisions in the Game Gg,

Pr[Encrypt,;] = Pr[3Y™ € R(U), (pw,*, L,E,Y™) € A¢g] < #Ij\([U)
pw
o * * #R(S)
Pr[Auth?] = Pr[3(H,Y™) € R(S),Y « Dy (Y™), (L, US| X||Y ||*, H) € A4] < N
pw

By definition of the sets R(U) and R(S), since Y* is received in the second query to the user, and H
in the second query to the server, the cardinalities are both upper-bounded by ¢/2.

Moreover, the session keys are random, independent from any other data (from an information
theoretical point of view, since Ho and Hj are private random oracles). Then, Pr[S7] = 1/2. 0

A.2 Conclusion of the Proof of Theorem 1
By summing up all the relations, one completes the proof. From Equations (1), (2), (3), (4) and (5),

2 2 2 2
de qsqe 2q¢ + q5 4p
Pr[S4] — Pr[So] | <
[PriSa] = Prl 0”_2(q—1) q—1 2((1—1)+2“1

(2qs + gs)? N qa
2(¢—1) 26+

From Equations (6 — 8), | Pr[Encrypt;| — Pr[Encrypt,] | and | Pr[S7] — Pr[S4]| are both upper-bounded
by

+ Pr[Encrypt,]

< + Pr[Encrypt,]

% + Pr[Auth}] + Pr[AskHy] < 2‘171 + Pr[Auth}] + 2 Pr[AskHo]. (12)

Then,
(2qe +as)” a4 | 2as
20q—1) 20+ T 9h
+ Pr[Encrypt;] + 2 Pr[Auth?] + 4 Pr[AskH~].

|Pr(Sy] — Pr[So] | <

We answer to the Send-queries to the client as follows:

— A Send(U?, Start)-query is processed according to the following rule:
»Rule U1(” — Choose a random exponent 6 € Z; and compute X = gQ.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™*)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2(" — Lookup (pw,*, L,E,Y™) € Ag. If found, define Encrypt, as true and abort the
game.

»Rule U3™ — Compute the session key sky = Ho2(U|S||X||Y*) and the authenticator
Auth = Hs(U||S|| X ||Y™).
Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds (U, X), (S,Y™), Auth) to Ag.

We answer to the Send-queries to the server as follows:

— A Send(S7, (U, X))-query is processed according to the following rule:
»Rule S1” — Choose a random Y* € G. If (x,Y™) € Ag, one aborts the game, otherwise
adds the record (j,Y™) to Ag. Then, compute Y = D, (Y).
Finally, the query is answered with S, Y™ and the server instance goes to an expecting state.
— If the server instance S is in an expecting state, a query Send(S7, H) is processed according to the
following rules:

»Rule S2(7 — Check if (X,Y*, H) € Ag. If this is not the case, then reject the authenticator:
terminate, without accepting. Check if (1, U||S||X||Y||*, H) € A.a. If this is the case, we define
the event Auth’, to be true, and abort the game.

If the server instance has not terminated, it accepts and moves on to apply the following rule:

»Rule S3(" — Compute the session key sks = H2(U||S[| X|[Y*).

Finally, the server instance terminates.

Fig. 6. Simulation of the Send-queries in Gr

We first rewrite the Rule U2:

»Rule U2-(7 — Does nothing.

»Rule U2+ — Lookup (pw,*, L,E,Y™) € Ag. If found, define Encrypt, as true (and abort the
game).

We then modify the organization of the Rule S1 and the Rule S2:

»Rule S1-(” — Choose a random Y* € G. If (*,Y™) € Ag, one aborts the game, otherwise adds
the record (j,Y™) to As.

»Rule S2-(7 — Check if (U, X), (S,Y™*), H) € Ag. If this is not the case, then reject the authen-
ticator: terminate, without accepting.

»Rule S2+(— Compute Y = D, (Y™*), and lookup (1,U||S|| X||Y ||, H) € Aa. If found, define
Auth’, as true (and abort the game).

Fig. 7. Rewriting of some Rules in Gr

15

16

From Equations (9), (10) and (11), one gets

ds
2N

s

Pr[Encrypt,] < PriAuth?] < % PrlAskHy] < qnSuccn(t), (13)

which concludes the proof. a

B Proof of Theorem 3

We can actually use the proof presented in Section 3.2, since

Adyc—2auth (A) = Pr[Auth],

oeke

and see that in game Gg, Pr[Authg] = 0, and Equations (2), (3), (4), (5), (6), and (7) extends to

qsqe
q—1

2
| Pr[Authy] — Pr[Autho] | < §(£k;ij | Pr[Auths] — Pr[Authy] | <
q_

2g¢ +a5 4
2(q—1) 26+
| Pr[Auths] — Pr[Authy] | < % | Pr[Authg] — Pr[Auths] | < Pr[Authg].

| Pr[Auths] — Pr[Auths] | < | Pr[Authy] — Pr[Auths] | < Pr[Encrypt,]

Then, using Equations (12) from the conclusion of the previous proof, and Equation (8), one gets,

s
20

20 +a§ 4
T 2q-1) g-1 2(q-1) 26!
(2¢s +45)* | a4 + 245
2(q —1) 26+
as
+ (Pr[Encrypt7] +on
+ (Pr[Auth?] + Pr[AskH7])

(2qe +q5)* qp +44qs
T o2(-1) 2641

2
Advggkae”th (A) < de + 459¢ + + Pr[Encrypt,] + + Pr[Authg]

+ Pr[Auth}] + 2 Pr[AskH7]>

+ Pr[Encrypt;] + 2 Pr[Auth%] + 3 Pr[AskH],

which concludes the proof, using Equation (13). 0

C Security Proof of AuthA

Proving the security of this new protocol follows the same path as the one in Section 3.2, until the
Game Gg:

Game Gg: In that game, we simulate the executions using the random self-reducibility of the Diffie-
Hellman problem, given one Diffie-Hellman instance (A, B). We first choose a random element v € Zj
and define pwg = A7. We also add the record (v, pwg) to A4.

»Rule U1(®) — Choose a random element a € Z, and compute X = A%. Also add the record
(a, X) to A A-

»Rule D® — Choose a random element § € Zy, and compute the answer Z = BP. Also
add the record (8, Z2) to Ap. If (x,Z,*,%, Z*) € Ag, one aborts the game, otherwise adds the
record (k,Z, L, D,Z*) to Ag.

17

Pr[AskHs] = Pr[AskHy]. (14)

Remember that AskHg means that the adversary A queried the random oracles Hy or H; on
U||S||X][Y]|CDH(X,Y), and thus H on U||S||X||Y||CDH(X,Y) or %||CDH(pws,Y). By picking ran-
domly in the A 4-list, with probability 1/gp, we can get the Diffie-Hellman secret value. This is a triple
(X,Y,CDH(X,Y)). One then simply looks up into A4 and Ap to get a and 3 such that X = A% and
Y = BP:

CDH(X,Y) = CDH(A%, B?) = CDH(4, B)*¥.

Thus:
Pr[AskHg] < g, Succdn (). (15)

This concludes the proof. a

D Forward-Secrecy

The previous security results and proofs do not deal with forward-secrecy. Considering forward-secrecy
requires to take into account a new kind of query that we call the Corrupt-query (any other kinds of
queries can still be asked, before but also after this one):

— Corrupt(I): This query models the attacks resulting in the password pw of this party I to be
revealed. A gets back from its query pw but does not get any internal data of I.

Then we define a new flavor of freshness, saying that an instance is Fresh (or holds a Fresh key
sk) if the following conditions hold. First, the instance has computed and accepted a session key.
Second, no Corrupt-query has been made by the adversary since the beginning of the game (before the
session key is accepted). Third, neither it nor its partner have been asked for a Reveal-query.

This security level means that the adversary does not learn any information about previously
established session keys when making a Corrupt-query. We thus denote by Adv?;ke*fs (A) the advantage

an adversary can get on a fresh key, in the protocol P, with the ability to make a Corrupt-query.

Theorem 4 (AKE-FS Security). Let us consider the OEKE protocol, where SK is the session-key
space and Password a finite dictionary of size N equipped with the uniform distribution. Let A be an
adversary against the AKFE security of OEKE within a time bound t, with less than q interactions with
the parties and q, passive eavesdroppings, and, asking qp hash-queries and q. encryption/decryption
queries. Then we have

(QQe‘+'3QS‘+'3Qp)2 q% + 4q,
qg—1 260

Advke T (4) < 3 x qﬁ + 4gn(1 4 (gs + gp)%) x SuccEh (') +

oeke

where t' < t+ (qs + qp + ge) - TG, with 7¢ denoting the computational time for an exponentiation in G.
(Recall that q is the order of G.)

Proof. To deal with forward-secrecy, we define event Corrupted as the event that A asks a Corrupt-query,
and we refine events Encrypt, Auth, Auth’ and AskH respectively into EncryptBC, AuthBC, AuthBC’
and AskHBC respectively:

EncryptBC,, := Encrypt;, < Corrupted AuthBCy := Authg < Corrupted
AuthBC), := Auth), < Corrupted AskHBC), := AskHy < Corrupted

that is EncryptBCy, AuthBCy, AuthBC) or AskHBC, respectively occur if Encrypt;, Authg, Auth} or
AskHj, respectively occur before corrupting a player.

We can base the proof on a similar sequence of games as before, but just modifying some rules
before any corruption:

18

»Rule S26) — If (X, Y*,H) ¢ Ay, and either Corrupted = false or (Corrupted = true and
(LU|SIX|Y||Ks,H) ¢ Aa), then reject the authenticator: terminate, without accepting.
Moreover, if Corrupted = false and (1, U||S|| X||Y||*, H) € A4 we define the event AuthBCj to
be true, and abort the game.

»Rule U3 — If Corrupted = false, then compute the session key sky = Ha(U|| S| X||Y*)
and the authenticator Auth = H3(U||S||X||Y™*). Otherwise, compute the session key sky =
Ho(U||S|| XY ||Ky) and the authenticator Auth = H1(U||S|| X ||Y || Ky).

»Rule S3(7 — If Corrupted = false, then compute the session key skg = Ho(U||S||X||Y*).
Otherwise, compute the session key skg = Ho(U||S|| X[|Y || Ks).

»Rule U2(" — Lookup (pw,*, L,E,Y*) € Ag. If found, define Encrypt, as true and abort the
game. Otherwise, compute Y = D,,, (Y*). If Corrupted = false, furthermore define Ky = Y?.

»Rule S1(" — Choose a random Y* € G. If (%,Y*) € Ag, one aborts the game, otherwise
adds the record (j,Y™*) to Ag. Then, compute Y = Dy, (Y*). If Corrupted = false, furthermore
lookup (pw,Y,p,*,Y*) € Ag to define ¢ (we thus have Y = ¢¥), and compute Kg = X¥.

By evaluating the events Encrypt; and Auth7 at the corruption time, one gets as before

2qe +qs)® | @} 5

| Pr[Se] — Pr[Se] | < 2g—1) YIES]

Pr[EncryptBC,] < % + % + qnSuccgn (') Pr[AuthBCg) < 2q—]sv + qnSuccgn ().

As a consequence,

(2q¢ +4s)> | a4p 245
2(q—1) 20+ T oh”

3
| PrfSe] — Pr[So] | < S + 2g1 x Succg™(¢)) + (16)
We now go back the game Gg, as presented on Figure 8. We furthermore abort the game where
the events EncryptBCg or AuthBCy happen to be true.

Game G7: We now have to make a different analysis: we need to know the private exponents of
(almost) all the instances of the parties, since the adversary may send the authenticator after making
the Corrupt-query, and thus knowing the password. Otherwise, a later Reveal-query would not be
perfect. Therefore, one first bets on an execution (passive or active) to be tested: one chooses a
random index p € {1,...,¢gs + ¢p} and a random index v € {1,...,¢s + gp}. If the Test-query does
not correspond to the client involved in the p-th Send-query, and the server involved in the v-th Send-
query, then one aborts the game, outputting a random bit b’. Since the Test-query can only be asked
to an instance that has accepted before any corruption and that only simulated keys can be asked,

PI[S7] = 5 X PI‘[SG] + (1 -

1
(gs + qp) (gs + qp)2> 8 2’

Then,

‘Pr[S(;] - % ' = (gs + qp)* ¥

1
Pr[S;7] — 3 ‘ . (17)
Game Gg: We now inject a CDH instance into this specific execution: we are given (A, B), with the
discrete logarithms a and b

»Rule U1® — If this corresponds to the u-th instance of the client, set 8 = a, otherwise,
choose a random element ¢ € Zj. Then compute X = q°.

19

We answer to the Send-queries to the client as follows:

— A Send(U?, Start)-query is processed according to the following rule:
»Rule U1® — Choose a random exponent 6 € Z 5 and compute X = g°.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2©® — Lookup (pw,*, L,E,Y*) € Ag. If found, define Encrypty as true. Otherwise,
compute Y = D,,, (Y*). Furthermore define Ky = Y.

»Rule U3® — Compute the session key sk = Ho(U||S||X||Y||Kv) and the authenticator
Auth =H.1(U||S| X||Y || Kv).-
Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds (X,Y™, Auth) to Ag.

We answer to the Send-queries to the server as follows:

— A Send(S7, (U, X))-query is processed according to the following rule:
»Rule S1¥ — Choose a random Y* € G. If (%,Y*) € Ag, one aborts the game, otherwise
adds the record (7, Y™) to As. Then, compute Y = Dy (Y™), lookup (pw,Y, p,*,Y*) € Ae to
define ¢ (we thus have Y = g¥), and compute Ks = X?.
Finally, the query is answered with S, Y* and the server instance goes to an expecting state.
— If the server instance S7 is in an expecting state, a query Send(S’, H) is processed according to the
following rules:
»Rule S2(9 — If (X,Y*,H) ¢ Ay, and either Corrupted = false or (Corrupted = true and
(1L, U|SIIX||Y||Ks,H) ¢ Aa), then reject the authenticator: terminate, without accepting.
Moreover, if (1, U||S||X||Y ||*, H) € Aa we define the event Authg to be true.
If the server instance has not terminated, it accepts and goes on, applying the following rule:
»Rule S3(— Compute the session key sks = Ho(U||S||X||Y||Ks).
Finally, the server instance terminates.

Fig. 8. Simulation of the Send-queries in Gg

»Rule D®) — If this corresponds to the v-th instance of the server, set ¢ = b, otherwise choose
a random element ¢ € Z;. Then compute Z = B?. If (¥, Z,%,%,Z*) € Ag, one aborts the
game. One finally adds the record (k, Z, ¢, D, Z*) to A¢.

The games Gg and G7 are perfectly indistinguishable:

Pr[S7] = Pr[Sg]. (18)

Game Gg: In that game, the session key and the authenticator of this specific execution of the
protocol is defined using private random oracles Ho and Hs, independent from Hy and H;. For that,
we modify the following rules:

»Rule U2 — Lookup (pw,*, L,E,Y*) € Ag. If found, define Encryptg as true. If this does
not correspond to the p-th instance of the client, one computes ¥ = D, (Y*) and defines
Ky =Y? (otherwise we won’t need it).

»Rule U3® — If this corresponds to the p-th instance of the client, one computes the
session key sky = Ha2(U||S||X||Y™*) and the authenticator Auth = H3(U||S||X||Y™*). Oth-
erwise, compute the session key sky = Ho(U||S|| X||Y||Kyr) and the authenticator Auth =
HU||SIXY | Kv)-

»Rule S1 — Choose a random Y* € G. If (*,Y™*) € Ag, one aborts the game, otherwise adds
the record (j,Y™) to Ag. If this does not correspond to the v-th instance of the server, one
computes Y = Dy, (Y™*), looks up (pw,Y,p,*,Y*) € A¢ to define ¢ (we thus have Y = ¢¥),
and computes Kg = X% (otherwise we won’t need it).

20

»Rule S3 — If this corresponds to the v-th instance of the server, one computes the
session key skg = Ha(U||S||X||Y™*). and the authenticator Auth = H3(U||S||X|Y*). Oth-
erwise, compute the session key sky = Ho(U||S||X||Y||Ks) and the authenticator Auth =
HU|IS[IXY (| Ks).

The games Gg and Gg are indistinguishable unless the following event AskHg occurs: A queries the
hash functions Hy or H; on U||S||X||Y[|[CDH(X,Y):

| Pr[So] — Pr[Ss] | < PrlAskHs). (19)

Game Gig: Now, we are not given the discrete logarithms a and b anymore:
»Rule U119 — If this corresponds to the p-th instance of the client, set X = A, otherwise,

choose a random element 6 € Zj and compute X = q°.

»Rule DU — If this corresponds to the v-th instance of the server, set Z = B and ¢ = L,
otherwise choose a random element ¢ € Z7 and compute Z = BY. Finally, if (x, Z,*,*, Z*) €
Ag, one aborts the game. One then adds the record (k, Z, ¢, D, Z*) to Ag.

Since Ky and Kg are not required for this execution of the protocol (the session key and the authen-
ticator are defined using independent private random oracles on X and Y* only), the two games are
indistinguishable:

PI‘[SQ] = Pr[SlO] Pr[Asng] = PI‘[ASkHlo]. (20)

Furthermore, it is now clear that
Pr[AskH1o] = g, x SuccE (¢'). (21)

As a conclusion, from the Equations (16), (17), (18), (19), (20) and (21),
1
‘ Pr(Sg| — 5 ‘ < 2(qs + qp)? x Pr[AskHo] < 2(qs + qp)%qn x SuccE ().

This security result can definitely be improved using the random self-reducibility of the Diffie-Hellman
problem. Namely, one could remove the factor (¢s + qp)2, but this would make the reduction much
more intricate. O

