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Abstract—Cryptographic hash functions reduce inputs of arbitrary or very large length to 
a short string of fixed length. All hash function designs start from a compression function 
with fixed length inputs. The compression function itself is designed from scratch, or 
derived from a block cipher or a permutation. The most common procedure to extend the 
domain of a compression function in order to obtain a hash function is a simple linear 
iteration; however, some variants use multiple iterations or a tree structure that allows for 
parallelism. This paper presents a survey of 17 extenders in the literature. It considers the 
natural question whether these preserve the security properties of the compression 
function, and more in particular collision resistance, second preimage resistance, 
preimage resistance and the pseudo-random oracle property. 
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1. INTRODUCTION 
A hash function *H :{0,1} {0,1}n→  is a function that maps arbitrarily long bit strings (or at 

least very long strings) to digests of fixed length. They were introduced in cryptology in the 
seminal paper of Diffie and Hellman on public-key cryptography [1] with as main goal to make 
digital signatures more efficient and compact: the idea is that one would sign a hash value of a 
message rather than a message itself. In his 1979 PhD thesis [2], Merkle stated the three main 
security properties of a hash function: collision resistance, second preimage resistance and pre-
image resistance. Cryptographic hash functions can be used in a broad range of applications: to 
compute a short unique identifier of an input string (for a digital signature as mentioned above), 
as one-way functions to hide an input string (e.g. for passphrase protection), to commit to a 
string in a protocol, for entropy extraction and for key derivation. Hash functions became a very 
popular tool during the 1990s because MD5 is 10 times faster than DES in software; moreover, 
it offered a larger security level than DES, could deal with short and long inputs, and posed less 
problems under export control laws. As a consequence, hash functions were even used to con-
struct MAC algorithms, stream ciphers and block ciphers. 

In order to accommodate the processing of messages of arbitrary size, similarly to encryption 
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modes of operation, most hash functions are designed by reusing small and fixed input length 
functions, known as compression functions, under some composition method. A compression 
function F  is a hash function whose message space M  is of a fixed size. We refer to the hash 
function under composition as a domain extender. The level of hash function modularity can be 
further refined by building compression functions on top of other building blocks, such as block 
ciphers and permutations. We will briefly elaborate on this in Sect. 7.  

The most straightforward way to construct a domain extender is an iterative composition, that 
is constructed starting from a compression function F :{0,1} {0,1} {0,1}n b n× → . One first pads the 
input string, divides it into exactly  b -bit blocks im  and computes iteratively 

1F( )i i ih h m−←  and returns h . The first example of such a design is the Rabin hash function [3], 
with ( ) = ( )yF x y xDES . Early designs did not specify the initial value 0=IV h . It is easy to see 
that this leads to trivial second preimage attacks and collision attacks, even if F  is second 
preimage resistant: it suffices to remove the first input block and select 1=IV h  for the second 
message. Similarly, finding preimages for the Rabin hash function is trivial if the IV  can be 
chosen by the attacker.  

A natural question is to ask which conditions should be imposed on the compression function 
and on the iteration mechanism for the hash function to be secure. For collision resistance, this 
question was answered by Damgård [4] and Merkle [5] in two independent papers published at 
Crypto'89. They both showed that if one has if one fixes the IV  and has an unambiguous pad-
ding scheme with the message length appended at the end, it is sufficient that F  is collision 
resistant for H  to be collision resistant. Lai and Massey called this construction Merkle-
Damgård strengthening [6]; the strengthened iteration described here is now commonly referred 
to as the Merkle-Damgård design. Subsequently Lai and Massey claimed that a hash function 
H  is ideally second preimage resistant, that is, it takes about 2n  steps to find a second pre-
image for F , if and only if F  is ideally second preimage resistant; unfortunately, this result 
turns out to be incorrect. Obtaining ideal (second) preimage resistance seems to be difficult.  

Until 2005, MD5 and SHA-1 were the most widely used hash functions; this is surprising, as 
collisions for the compression function of MD5 were already published in 1993 by den Boer and 
Bosselaers [7] and in 1996 by Dobbertin [8]. While these attacks were serious warnings, no one 
managed to find collisions for MD5 itself. However, in 2004 Wang et al. [9, 10] achieved a 
breakthrough on both MD5 and SHA-1: they made several clever improvements to differential 
cryptanalysis in order to find collisions for MD5 in 15 minutes on a PC and to speed up collision 
search for SHA-1 with a factor 2000. Around the same time, several results were published that 
showed subtle flaws in the Merkle-Damgård design [11-14]. These developments sparked a 
strong interest in the topic of hash functions, resulting in more cryptanalysis, new research on 
definitions [15], novel domain extenders and reduction proofs and new hash function construc-
tions. As a consequence of this hash function crisis, NIST decided to launch in 2007 a new hash 
function competition to select by 2012 the new SHA-3 standard [16].  

Six years after the beginning of the hash function crisis and three years after the start of the 
SHA-3 competition, this paper presents a comparative overview of the 17 domain extenders for 
hash functions that are currently known. In particular, we identify 8 security properties for hash 
functions and analyze to which extent the known domain extenders preserve these properties. 
Our work is relevant to the SHA-3 competition, but has also broader implications on the theory 
of hash functions.  

The remainder of this paper is organized as follows. In Sect. 2 we briefly summarize prelimi-
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naries on hash function theory. The Merkle-Damgård design and its security properties are dis-
cussed in Sect. 3. The ideas behind variations of the Merkle-Damgård design are considered in 
Sect. 4. Section 5 contains a list of Merkle-Damgård-based domain extenders, together with 
their security properties, and in Sect. 6 we elaborate on other domain extenders not directly re-
lated to the Merkle-Damgård design. In Sect. 7, we refine the level of modularity by considering 
hash function security properties with respect to idealization of the underlying permutations or 
block ciphers. Then, in Sect. 8, the findings of this work are applied to NIST's SHA-3 hash func-
tion competition. The work is concluded in Sect. 9.  

 
 

2. DEFINITIONS 
Notation. For n∈N , where N  is the set of natural numbers, let {0,1}n  denote the set of bit 

strings of length n , *{0,1}n  the set of strings of length a multiple of n  and *{0,1}  the set of 
strings of arbitrary length. If ,x y  are strings, then x y  is the concatenation of x  and y . If 

,k l∈N  then lk〈 〉  is the encoding of k  as an l -bit string. | |x  denotes the bit size of the 
string x . If S  is a set, then x S  denotes the uniform random selection of an element 
from S . We let A( )y x←  and y A( )x  be the assignment to y  of the output of a deter-
ministic and randomized algorithm A , respectively, when run on input x . 

 
2.1 Design of Hash Functions 

Keyless and keyed hash functions. A keyless hash function is defined as H : →M Y . The 
message space M  could be infinitely large, but we assume that there exists a λ∈N  such that 
{0,1}λ ⊆M , and the target space Y  is a finite set of bit strings. A keyed hash function takes an 
additional key input parameter from the finite key space K  and is formally defined as 
H : × →K M Y . The key is a public parameter that indexes the concrete hash instance of the hash 
function family H . We note that many existing hash functions, including SHA-1 and SHA-2, 
are unkeyed.  

 
2.2 Security of Hash Functions 

Security notions. In [15], Rogaway and Shrimpton investigate seven security notions for 
keyed hash functions as a natural extension of the three basic keyless notions of collision 
resistance ( Coll ), preimage resistance ( Pre ), and second preimage resistance ( Sec ). Four more 
notions emerge in the keyed setting and these are namely the always- and everywhere-variants 
of second preimage and preimage resistance ( aPre , aSec , ePre , and eSec ). Intuitively, collision 
resistance means that, for random key K K  it is hard for an adversary to find different 
messages ,M M ′  such that H( , ) = H( , )K M K M ′ . Second preimage resistance means that it, 
given a key K  and first preimage M , it is hard for an adversary to find a message M ′  such 
that H( , ) = H( , )K M K M ′ . In the original second preimage notion, both the key and message are 
generated at random, but the adversary may be possible to arbitrarily choose the key (always 
second preimage resistance) or the message (everywhere second preimage resistance). The 
preimage resistance notion differs from the second preimage resistance in the sense that the 
adversary learns a range point Y  of H , rather than a preimage M . More formally, we obtain 
the following definitions [15]. 
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Definition 1. Let H : × →K M Y  be a hash function. The advantage of an adversary A  in 
breaking a keyed hash function H  under security notion atk {Coll,Sec[ ],eSec,aSec[ ]}λ λ∈  is 
given by  

 
 atk

H atk(A) = Pr[Exp :  and H( , ) = H( , )],M M K M K M′ ′≠Adv            (1) 
 

and under security notion atk {Pre[ ],ePre,aPre[ ]}λ λ∈  by 
  

 atk
H atk(A) = Pr[Exp : H( , ) = ],K M Y′Adv                   (2) 

 
where the experiments atkExp  are given below. 

 

 

 
The hash function H  is called ( , )t ε  atk -secure if no adversary running in time at most t  
has advantage more than ε . 

 
Remark. The notions of everywhere preimage and second preimage security become meaning-

less in the keyless setting because the adversary wins trivially the security game. Indeed, in the 
keyless setting, for everywhere (second) preimage resistance the probabilities in (1) and (2) contain 
no randomness. The notions of always second preimage and preimage security on the other hand, 
merge with the standard second and preimage notion in the keyless setting, respectively. Now, for 
the keyless setting, the definitions for preimage and second preimage resistance (Def. 1) read as 
follows: the advantage of an adversary A  in breaking a keyless hash function H  under security 
notion atk {Sec[ ],Pre[ ]}λ λ∈  is given by atk

H atk(A) = Pr[Exp :  and H( ) = H( )]M M M M′ ′≠Adv  for 
atk = Sec[ ]λ , and by atk

H atk(A) = Pr[Exp : H( ) = ]M Y′Adv  for atk = Pre[ ]λ , where the experiments 
atkExp  are given below. 

 

 

 
Redefining the collision security in a similar fashion to the second preimage and preimage no-

tions is however not formally correct in the keyless setting, as was pointed out by Damgård [4]. 
The problem with such a definition is that there always exist an efficient attack algorithm that 
outputs a collision with probability 1; namely the algorithm that has hard-coded in it one of the 
many collisions. This definitional problem was further investigated by Stinson [17] and Roga-
way [18] who proposed a different theoretical treatment by using security reductions. In Roga-
way's interpretation, one tackles the stated “human-ignorance” problem by assuming the exis-



 
Elena Andreeva, Bart Mennink and Bart Preneel 

 

457 

tence of explicitly given reduction(s). Such a treatment says that for a collision secure hash func-
tion there is an explicitly given reduction of the following form: given an adversary A  against 
a scheme using internally H , there is a corresponding, explicitly-specified adversary B , as 
efficient as A , for finding collisions in H . This is a restatement of a standard reduction in 
cryptography meant to capture the idea that if someone knows how to break the higher-level 
scheme then they know how to find collisions in H , and if nobody can find collisions in H  
then nobody can break the scheme. The notions defined above in both keyed and keyless setting 
are referred to as standard security assumptions of the cryptographic strength of a hash function. 

 
Indifferentiability. To prove the security of practical systems or schemes, e.g. digital signa-

tures, one frequently uses to the ideal (random oracle) security model where the hash function is 
assumed to be an idealized function or a random oracle. A random oracle [19, 20] is a public 
function which returns random outputs for each new input query. An adversary that queries in-
puts to the random oracle function is said to have only “black-box” access to the function. 

While random oracles are monolithic objects, real world hash functions most commonly are 
highly structured, for example by following some composition method, as is the case with the 
Merkle-Damgård design. To formalize a notion that compares the behavior of such hash func-
tions to that of a random oracle, one may decide to use the definition of PRF (pseudorandom 
function) based on the indistinguishability concept. However, the PRF notion does not always 
capture the overall behavior of such highly structured primitives. In particular, most hash func-
tion designs employ a publicly computable compression function which implies that anyone can 
compute the intermediate state values of the hash function and reconstruct the hash result him-
self. This particular strength of a real world adversary is not reflected in the notion of indistin-
guishability (it becomes meaningless in the absence of randomness like a secret key) and thus 
resulted in the improved notion of indifferentiability of a hash function from a random oracle.  

The indifferentiability framework was introduced by Maurer et al. [21] as an extension of the 
classical notion of indistinguishability, and further developed in the context of hash functions by 
Coron et al. [11]. It proves that if a hash function FH  based on an ideal compression function 
subcomponent F  is indifferentiable from an ideal primitive R  (random oracle), then FH  
can replace R  in any system. Unlike for the security properties of Def. 1, in the indifferenti-
ability framework we consider information-theoretic adversaries. These adversaries are compu-
tationally unbounded, and their advantages are measured in the number of queries made to the 
oracles. 

 
Definition 2. A hash function H  with oracle access to an ideal compression function 

primitive F  is said to be ( , , , )D St t q ε  indifferentiable from an ideal primitive R  if there 
exists a simulator S , such that for any distinguisher D  it holds that:  

 

 
FPRO H ,F ,

H, (D) = Pr D = 1 Pr D = 1 < .ε⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Adv

RR S
S                (3) 

 
The simulator has oracle access to R  and runs in time at most St . The distinguisher runs in 

time at most Dt  and makes at most q  queries. 
 
The distinguisher D  converses either with the real world F(H , F)  or the simulated world 
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( , )RR S , and its goal is to tell both worlds apart. 
 
Provable security approach. In the provable security framework, one argues xxx  security of 

the domain extender hash function H  under some assumption on the yyy  security of the 
underlying compression function F . We say that H  is ( , )t ε  xxx -secure if any adversary A  
running in time at most t  has ε  probability of success in breaking the xxx  security of H . 
Similarly, we define the security of the compression function F . Now, assuming a secure 
compression function F  with respect to property yyy  under the provable security design 
paradigm, we prove security of H  for property xxx . That allows to upper bound the 
advantage xxx

HAdv . If yyy  is identical with xxx , we speak of security preservation and 
when we have a weaker than xxx  security goal for yyy  we speak of property amplification. 
Hash function security preservation results in the standard model for  
yyy {Coll,Sec[ ],eSec,aSec[ ],Pre[ ],ePre,aPre[ ]}λ λ λ λ∈ are discussed broadly in [15, 22] and in 
Sect. 5. 

 
 

3. THE MERKLE-DAMGÅRD DESIGN AND SECURITY PROPERTIES 
As mentioned in Sect. 1, the most adopted approach for hash function domain extenders is the 

iterative composition: let the compression function F :{0,1} {0,1} {0,1}n b n× →  take as inputs a 
chaining or state variable h  of size n  bits and a message block m  of size b  bits, and 
output the updated chaining variable of size n  bits. In order to allow for input messages of 
arbitrary length, the Merkle-Damgård hash function needs an injective padding pad , that trans-
forms M  into a message = pad( )M M′  of length a multiple of the block size. However, as 
becomes clear in Sect. 4.2, a simple injective padding is not sufficient. In particular, we will 
consider the Merkle-Damgård design with length strengthening, due to Merkle [5], or strength-
ened Merkle-Damgård [6]. This strengthened design uses a padding function ls pad−  that ap-
pends the encoding of the message length at the end of the message to generate the padded mes-
sage = ls pad( )M M′ − . Then, M ′  is processed as a sequence of message blocks 1m m…  
with | |=im b  bits for = 1, ,i … . Additionally, the strengthened Merkle-Damgård design em-
ploys a fixed IV , for initialization vector (cf. Sect. 1). This value will be the first state value of 
the Merkle-Damgård design.  

Now, we can define the Merkle-Damgård hash function  as follows: 
 

 

 
The established padding function ls pad−  for the Merkle-Damgård extender is a specific 

form of a suffix-free padding. A suffix-free padding ensures that pad( ) pad( )X M M ′≠  for all 
M M ′≠  and all arbitrary bit strings X . A distinct padding rule is the prefix-free one where for 
any distinct ,M M ′ , there exists no bit string X  such that pad( ) = pad( )M M X′ . One exam-
ple of a prefix-free hash function includes the message length in bits as a part of the first mes-
sage block. Note that this padding rule is highly inefficient for long messages, the length of 
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which is not known in advance. In the remainder, by sf pad−  and pf pad−  we denote any 
suffix-free and prefix-free padding algorithm, respectively. 

From a practical perspective [3], the iterative principle of message processing offers the bene-
fit of computing the message digest “on the fly”. More precisely, the message is processed in 
chunks of message blocks which are small enough to call the Merkle-Damgård design a stream-
ing mode of operation. We clarify that classical streaming modes work on bit level, whereas 
here we mean blockwise streaming. Other than temporarily storing message bits up to a full 
block size ready to be evaluated, the Merkle-Damgård hash function stores temporarily also the 
intermediate chaining state result (until the next message block arrives). On the negative side, 
the Merkle-Damgård design does not permit for parallel processing which offers a potential 
speed-up if multiple processors are available.  

From a security perspective, the Merkle-Damgård design with length strengthening ( ) 
offers Coll  security guarantees by means of property preservation [5, 4]. The Sec  and Pre  
preservation of the  domain extender and its variants remained long underexplored. In 
[22], Andreeva et al. showed that the iteration preserves neither of the two properties.1 A result 
by Dean [23] and Kelsey and Schneier [14] shows that the Merkle-Damgård iteration looses a 
factor linear in the message length (in blocks) of the second preimage security when the under-
lying compression function is assumed to be ideal.  

If the underlying compression function of the  extender is a keyed function, then  
preserves only the ePre  security notion and fails in the preservation of aPre , aSec  and 
eSec  [22].  

The indifferentiability analysis shows that the Merkle-Damgård domain extender does not be-
have like a random oracle. A concrete counterexample in the framework of Maurer et al. [21] 
was exhibited in the work of Coron et al. [11]. A much earlier attack, known as the length exten-
sion attack, also exemplifies the non-random behavior of the Merkle-Damgård extender. Let 

1 1= H( )h M  be the hash result of the message 1M  where 1M  is unknown to the adversary, but 
the length 1| |M  is known. It is easy for the adversary to append a suffix 2M  and compute the 
hash value 2 1 2= H( )h M M . Such an attack should be infeasible in | |1min{2 ,| |}M Y  hash func-
tion evaluations for an ideal function as a domain extender and shows that the Merkle-Damgård 
construction deviates from an ideal function.  

 
 

4. MERKLE-DAMGÅRD VARIANTS: CLASSIFICATION AND PROPERTIES 
Most popular domain extenders nowadays use the Merkle-Damgård construction internally. 

In our attempt to provide a summary of the main Merkle-Damgård-based domain extenders, we 
first classify them according to several criteria. 

 
4.1 Classification 

Wide- versus narrow-pipe domain extenders. Analyzing the recent designs submitted to the 
NIST SHA-3 hash function competition [16], we distinguish two main design strategies: nar-
row-pipe and wide-pipe. The original wide-pipe design was introduced by Lucks [24], and is 
                                                           
1 We note that, albeit [22] considers  in the keyed setting, the results carry over to the setting where  is key-

less: the proof of preservation of Coll  and the non-preservation of Sec  and Pre  does not explicitly use the fact 
that the design is keyed. 
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characterized by keeping a full large internal state in the iterative Merkle-Damgård portion. As 
final step, a distinct final output transformation is employed on this “wide” state to compress it 
to the desired output hash length, which is shorter than the internal state size. The concept of 
wide-pipe designs is generalized as a generic transform that encompasses hash functions which 
process a large internal state (as a result of internal compression function calls) and produce 
their outputs by invoking a distinct output transformation function. Note that the final transfor-
mation could also evaluate additional inputs other than the state value, such as message, fixed 
padding, or counter bits. Several second round SHA-3 candidates have adopted the wide-pipe 
strategy, namely Blue Midnight Wish [25], CubeHash [26], ECHO [27], Fugue [28], Grøstl [29], 
JH [30], Keccak [31], Luffa [32], SIMD [33] and Shabal [34].  

Narrow-pipe constructions, introduced by Rabin [3], are designated by iterating a state as 
large as the output hash value. These constructions may also contain an optional output trans-
formation or other features but in essence are iterative designs with a narrow state. Second 
round SHA-3 narrow-pipe designs are BLAKE [35], Hamsi [36], SHAvite-3 [37] and Skein [38].  

 
Keyed versus keyless domain extenders. Another separation of domain extenders is based on 

the presence or lack of an explicit key input. When the key is unique for every message, we refer 
to it as salt. Keyed designs are often less efficient than keyless but come with more security 
guarantees. Many designs that have advanced in the NIST competition include them as an op-
tional input. 

To clarify the use of keys in domain extenders in relation to the preservation security results 
of Andreeva et al. [22], we provide a short discussion on the interpretation of these results. All 
of the domain extenders in the work of Andreeva et al. are analyzed in the keyed setting. 
Namely, the authors consider that the underlying compression function(s) are keyed and in that 
sense the whole domain extender is rendered keyed. Thus, the security results for all 
investigated domain extenders deal with property-preservation of the seven main security 
notions of Rogaway and Shrimpton [15] (see Sect. 2.2). In our work, we deal with seven 
security property preservation only when the underlying compression function is explicitly 
keyed by design. Otherwise (when the compression function is keyless) for both keyed and 
keyless domain extenders, we only consider the three properties Coll , Sec[ ]λ , and Pre[ ]λ  
(see Sect. 2.2). 

We clarify that all findings of Andreeva et al. [22] translate easily to the ones presented here. 
This is done by just ignoring the key input to the compression function in the work of Andreeva 
et al. that is possible because the relevant security results here are independent of whether or not 
the compression function is keyed. Thus, all results of analyzed keyed constructions in Andre-
eva et al. are reducible to the seven or three main (overlapping) notions that are relevant for the 
treatment of keyed versus keyless domain extenders in this work. 

  
4.2 Security Properties: High Level Intuition 

In this section we provide a general discussion on Merkle-Damgård variants with respect to 
their (1) security guarantees in the standard model achieved by means of security preservation 
making a standard security assumption on the compression function(s), and (2) indifferentiabil-
ity results in the random oracle model when the compression function(s) is viewed as an ideal 
function. 



 
Elena Andreeva, Bart Mennink and Bart Preneel 

 

461 

Collision security. The  design preserves Coll  security due to its suffix-free padding. 
Suffix-free padding as a means of collision preservation was further generalized by Andreeva, 
Mennink and Preneel [39] to facilitate the analysis of the second round SHA-3 hash function 
candidates. The theorem applies to any suffix-free Merkle-Damgård-based construction that 
allows for an additional collision secure output transformation and/or a possible chopping at the 
end. For convenience, this theorem is included in App.A. On the negative side, Merkle-
Damgård-based designs without suffix-free padding, need not result in collision resistance pres-
ervation as shown by Bellare and Ristenpart [40]. 

 
Second preimage and preimage security. Second preimage resistance of the Merkle-Damgård 

domain extender was first studied in the work of Lai and Massey [6]. In [22], it was shown that 
most of the Merkle-Damgård variants do not preserve Sec  and Pre . The counterexamples 
that exhibit the lack of preservation exploit the possible loss of entropy in the iteration of the 
state value. Most often loss of entropy is due to the introduction of fixed bits through the state 
input by the initialization vector and possibly through the message input. For example, typical 
counterexamples for Sec  and Pre  security consist of constructing an underlying compres-
sion function that outputs IV  if the state input equals IV , but acts like a Sec / Pre  secure 
compression function for all other inputs. Another security weakness that additionally hurdles 
the preservation are the fixed padding message bits. Such non-random inputs to the compression 
function lead to insecure Merkle-Damgård style domain extenders, unless some message and 
state randomization is applied. The approach of randomizing the compression function inputs in 
the iterative portion of the domain extender was for instance taken by [22, 41]. 

 
Always and everywhere second preimage and preimage security. The security notions aPre , 

aSec , ePre , and eSec  are only valid for keyed domain extenders. The general preservation 
recipe for the second preimage and preimage security is applicable for aSec  and aPre . To 
achieve eSec , the randomization of the fixed padding bits is not required since an eSec  
adversary controls the message bits and therefore the constant padding bits. Surprisingly, the 
property of ePre  is the easiest to satisfy and is preserved by all keyed domain extenders. The 
reason for that is straightforward: the preservation of ePre  depends on the ePre  security of 
the final compression function which is ePre  by the original assumption. 

 
Pseudorandom oracle behaviour. The length extension attack is a clearly demonstrate that the 

domain extender is differentiable from a random oracle. An obvious way to avoid extension 
attacks is to apply an independent output transformation at the end of a Merkle-Damgård itera-
tive hash function. Now, under the assumption that the internal iterated compression function F , 
as well as the independent output transformation G  are ideal functions, Coron et al. [11] show 
that the resulting composition is a PRO . They also observed that iterative constructions that 
chop the final bits of the output, or with present prefix-free padding also succumb to the exten-
sion attacks and allow for indifferentiability proofs. For a series of other indifferentiability re-
sults on hash functions, we refer to [42-44]. 

Another structural approach to indifferentiability was exhibited by Dodis, Ristenpart and 
Shrimpton [45]. Instead of assuming an ideal compression function F  in the iteration, they 
relax the idealness assumption by substituting it with the notion of preimage awareness. Pre-
image awareness is a weaker notion than idealness (but a stronger notion than collision resis-
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tance), and intuitively it means that if an adversary outputs a range value of H  for later use, 
then he must already know a preimage of it. Preimage awareness is a notion which is preserved 
under iterative composition. Additionally, when a distinct final ideal output transformation G  
is applied, the resulting domain extender also exhibits ideal behavior in the sense of indifferenti-
ability. 

If a hash function design is proven indifferentiable, it means that the function behaves like a 
random oracle. In particular, it guarantees that, up to a certain degree, the design is secured 
against any generic attack, such as finding preimages, collisions, multicollisions, etc., in the ideal 
model where the adversary has query access to the ideal compression function [39, Thm. 1].  

While these results are very helpful for generic compositions, often the underlying compres-
sion function exhibits a highly non-ideal behavior, which makes most of the above result inap-
plicable. In such cases, the indifferentiability proof is attempted by posing assumptions on the 
idealness of the smaller scale components, e.g. permutations, block ciphers, etc. (see Sect. 7).  

 
 

5. CONCRETE MERKLE-DAMGÅRD ALTERNATIVES AND THEIR SECURITY 
PROPERTIES 

Next, we summarize the main characteristics and security properties of some of the most 
prominent theoretical constructions in the hash function literature, as opposed to new proposals 
to the NIST competition. This is a conscious decision aiming to provide an insight into the de-
sign characteristics and security properties of theoretical domain extenders, which give inspira-
tion for the practical ones. A similar survey for the second round SHA-3 candidates is conducted 
in the work of Andreeva, Mennink and Preneel [39]. 

The algorithms of the theoretical domain extenders are given in Fig. 1. In Table 1, the security 

Table 1.  A summary of the security results of the theoretical domain extenders discussed in this 
work. The symbol “ ” indicates that the notion is provably preserved by the domain extender, 
and “ ” means that it is not preserved. The symbol “?” means that no result is known, and “ − ” is 
used to indicate that the security notion is irrelevant for the (keyless) domain extender. The
security notions are explained in Sect. 2.2, and the domain extenders in Sects. 3, 5 and 6. 
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properties of the constructions are summarized. Recall that the security of the  construc-
tion is already analyzed in Sect. 4.2. We note that this work does not consider the tightness of 
the security reductions (cf. [15]). These formal bounds can be found in the corresponding refer-
ences. 

 
Prefix-free Merkle-Damgård. The basic prefix-free Merkle-Damgård [11] ( ) designs are 

narrow-pipe, keyless iterative domain extenders that apply a prefix-free padding function 
pf pad−  (cf. Sect. 2). 

 
Fig. 1.  Iterations  and use compression function F :{0,1} {0,1}n b n+ → ; 

 and  use F :{0,1} {0,1} {0,1}k n b n+× → ;  uses 2F :{0,1} {0,1}n b n+ → ;  uses 
F :{0,1} {0,1}an n→ ;  and  use F :{0,1} {0,1} {0,1}k an n× → ;  and  use F :{0,1} {0,1}n b l s n+ + + → , 
where for , = 16l  and = 0s . Iteration  requires the parameters to satisfy 64b n≥ + , 
requires b n≥ , and  requires b r t≥ + . The function ( )iν  is the largest integer j  such that 
2 |j i . 1G  and 2G  are described in Sect. 5. :{0,1} {0,1}n nπ →  is a random permutation. 
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Prefix-free domain extenders are proven to be indifferentiable from a random oracle in the 
work of Coron et al. [11]. If the prefix-free designs are not as well suffix-free, they do not 
preserve Coll , but they do if the padding is also suffix-free [22]. Irrespectively of the presence 
of suffix-free padding, the prefix-free constructions also fail to achieve preservation of Sec  and 
Pre  [22]. 

 
Enveloped Merkle-Damgård. The enveloped Merkle-Damgård [40] ( ) was proposed by 

Bellare and Ristenpart and resembles the design of HMAC [46]. It is a narrow-pipe, keyless 
domain extender.  uses two fixed initialization vectors IV  and 'IV . The first vector is 
applied in a Merkle-Damgård style as input to the first compression function. The second 'IV  
is provided as input to the final compression function together with the chaining variable and the 
final input message bits and this step is known as the “enveloping” step of the construction. 

 is proven to be Coll  preserving and indifferentiable from a random oracle in [40]. 
The suffix-free padding ensures the collision preservation. The “enveloping” is applied to hide 
the internal Merkle-Damgård construction and guarantees the indifferentiability result. Similar 
enveloping domain extenders are previously used by the NMAC and HMAC constructions [46] 
to build PRFs out of compression functions, both proven to be indifferentiable transforms in 
[11]. In [22], the  hash function is shown not to be Sec  and Pre  preserving. 

 
Merkle-Damgård with permutation. The Merkle-Damgård with permutation, due to Hirose, 

Park and Yun [47], ( ) domain extender is a narrow-pipe, keyless variant of the original 
Merkle-Damgård design. The difference with the Merkle-Damgård construction is that a permu-
tation is applied before the processing of the last message block. 

The permutation masks the internal Merkle-Damgård style processing, similarly to the idea of 
, and  is proven indifferentiable from a random oracle when the underlying 

compression function is an ideal function [47].  also preserves Coll  security due to the 
suffix-free Merkle-Damgård padding [39], but does not achieve Sec  and Pre  security 
preservation by analogy to the Merkle-Damgård style designs analyzed in Andreeva et al. [22]. 
As a way of example, these non-preservation results are proven in App.B. 

 
Linear hash. The linear hash function as described by Bellare and Rogaway [48] ( ) is a 

narrow-pipe, keyed Merkle-Damgård domain extender. The only difference with the Merkle-
Damgård design is that it accepts an additional key input in every call of the iteration. Moreover, 
each key is distinct and therefore  requires number of key inputs that is a linear in the mes-
sage size. Notice that this approach ensures a domain separation of the underlying compression 
function, and another way to view the construction is to assume that it employs distinct com-
pression functions for each message block evaluation. 

Bellare and Rogaway showed in [48] that the design preserves eSec  in case of equal-
length messages (thus in case  is a fixed input length domain extender), but that it does 
not preserve eSec  in the general case (where the target and forged message may be of dif-
ferent lengths). Additionally, the extender preserves ePre  resistance, but it fails to conserve 
the remaining four properties [22]. Bellare and Ristenpart [40] prove that domain extenders 
that apply a distinct final compression function are indifferentiable from a RO. This result 
applies to . 
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Linear XOR. The linear XOR by Bellare and Rogaway [48] ( ) is a narrow-pipe, keyed 
Merkle-Damgård domain extender. In contrast to the  hash function it adds the same num-
ber of distinct keys by XORing these with the chaining values resulting from each iteration of 
the Merkle-Damgård style hash function. The first key is XORed with the initialization vector 
IV  and the final key is XORed with the final intermediate chaining value, while the final hash 
result is left unmodified. 

The  domain extender is shown to preserve eSec  in [48]. Additionally, [22] showed 
that this construction preserves Coll  and ePre , and does not preserve the remaining security 
properties.  is not is differentiable from a RO, by virtue of an attack described by [49]. 

 
Shoup’s hash. Shoup's hash function [50] ( ) derives from the linear XOR hash function 

and optimizes it in terms of the number of keys. It uses logarithmic number of keys (instead of 
linear), following a specific sequence; the sequence was proven in [50] to be the optimal to suf-
fice to prove everywhere second preimage security (similarly to the latter two designs). 

The security results are identical to the results for . 
 
ROX. The ROX [22] ( ) domain extender is a narrow-pipe, keyed hash function. It draws 

largely from the XOR-linear hash and Shoup's hash.  requires a logarithmic number of 
masks, instead of keys (as in the Shoup's hash function), to be XORed with the chaining values. 
The masks are generated by applying a function 1G  to a sequence of strings ( , , )nK iμ 〈 〉  (for 

= 1, , log( )i ⎣ ⎦… ) that consist of the compression function key K  of length k , the first k  
bits of the message, and an encoding of a counter i . A function 2G  (optionally 2G  could be 
identical with 1G ) is applied on inputs the first message bits μ , the length encoding of the 
processed message length λ  and a counter i  of the necessary invocations of the function to 
create the padding string. The padding function is suffix- but not prefix-free. 

From a security perspective, the suffix-free padding ensures the Coll  security preservation, 
and ePre  security is trivially preserved. Everywhere second preimage security is argued simi-
larly to the latter two designs. The novelty here is the preservation of the remaining four security 
properties. This is due to the randomization provided both by the masks in the iteration and by 
the padding scheme chosen; however, the result is partially in the random oracle model where 

1G  and 2G  are assumed to be random functions and the iterated compression function F  is 
realized in the standard model and achieves standard model security guarantees.  is not 
PRO  as a result of an attack described in [51]. 

 
BCM. The backwards chaining mode by Andreeva and Preneel [41] ( ) is a narrow-pipe, 

keyed hash function. It uses three keys 1K , 2K  and 3K  of fixed length ( 2 )b n+  bits, where 
2| |=K b  and 1 3| |=| |=K K n  where n  is the state and b  is the block size. It XORs the key 

1K  and the most significant n  bits of block 2m  with the fixed initial chaining variable IV . 
The message block 1m  together with the resulting value from the XOR computation form the 
input to the first application of F . In the iteration the message block im  and the chaining 
variable 1ih −  in-line are XORed with the most significant n  bits of the next-in-line message 
block 1im +  and form the inputs to the i -th compression function F . The one but last block 

1m −  is interpreted differently than the rest of the message blocks. Here the difference is that the 
least significant n  bits of 1m −  are XORed with the key 1K , while the chaining variable 

2h −  is XORed with the first significant bits of 2K  and m . The final input to the last com-
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pression function is provided by the last message block m  and the chaining variable 1h −  
XORed with keys 2K  and 3K , respectively. 

The idea behind the  domain extender is the preservation of the main security proper-
ties in the standard model eliminating the need of random functions to generate masking input as 
is the case with the  construction.  succeeds in attaining Coll  and Sec  preserva-
tion and the latter is possible due to the randomization of the internal chaining values with mes-
sage blocks down the line and the external states and the padding bits with the provided three 
keys.  additionally preserves Pre  security in the random oracle model assuming the 
underlying compression function is an ideal function. No indifferentiability result is known for 
the  construction. 

 
HAIFA. The HAIFA design by Biham and Dunkelman [52] ( ) is a narrow-pipe hash 

function characterized by the inclusion of an bit counter of size usually 64 bits (to accommodate 
long messages) and an optional key input in every invocation of the compression function. 
HAIFA is often referred to as a framework or a general transformation technique that can be 
applied to any domain extender that is defined with the latter two characteristics. The idea is 
incorporated also in three second round SHA-3 candidates: BLAKE [35], ECHO [27] and SHA-
vite-3 [37]. 

The inclusion of a bit counter ensures the suffix and prefix properties of the design and helps 
to prove it Coll  secure and indifferentiable from a random oracle [39, 11]. HAIFA does not, 
however, achieve Sec  and Pre  security in the preservation sense [22]. An alternative result 
in the random oracle model shows that HAIFA achieves optimal ( 2n ) second preimage security 
if the underlying compression function is assumed to be a random oracle [53]. 

 
Dither hash. The dither hash function by Rivest [54] ( ) is a narrow-pipe, keyless hash 

function. Similarly to the HAIFA hash function it includes an additional counter-like input. And 
while HAIFA introduces a bit counter and requires its size to accommodate long messages, the 
design intension behind the dither construction is to decrease the number of bits used for this 
extra input to either 2 or 16 bits. This increases the bandwidth available for actual data. The ad-
ditional input, called the “dithering” input, to the compression function is formed by the con-
secutive elements of a fixed sequence. In his proposal Rivest suggested the use the infinite abe-
lian square-free sequence [54]. 

With respect to Coll , Sec  and Pre  preservation, the same results as for  apply to 
the  construction. No indifferentiability result is known for the  hash function. 

 
Randomized hash. Randomized Hashing or RMX by Halevi and Krawczyk [55] ( ), simi-

larly to the HAIFA framework, can be adopted as a transform for any domain extension method. 
The  transform is in its essence a message modification technique. It prepends a random 
string R  to the message as a first message block to be processed and then the same random 
string is XORed with each message block. The idea is to randomize the message inputs by 
XOR-ing a key (salt) input into the message.  was proposed as a general transform that is 
particularly well-suited for digital signature applications of hash functions. It aims the provision 
of security guarantees even when the compression function is compromised with respect to col-
lision security. It was formally showed that just finding collisions on the compression function is 
not sufficient in order to break the resultant signatures: instead, the attacker needs to solve a 
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much harder cryptanalytical problem, closer to finding second preimages. 
The randomized hash mode of operation was hence originally proved to be everywhere sec-

ond preimage secure by making stronger (than everywhere second preimage) assumptions on the 
underlying compression function. In the security analysis of  [22] treating the value R  
as either randomness per message or long term key yields identical results with respect to seven 
property preservation. There, it is proven that  preserves Coll  and ePre , but none of 
the other notions are preserved. No indifferentiable results are known for the  transform. 
In [56], Gauravaram and Knudsen demonstrated an existential forgery attack for the -hash-
then-sign signature scheme, where the  hash function employs the Davies-Meyer com-
pression function. However, this result does not contradict the security claims of [55]. 

 
 

6. OTHER DOMAIN EXTENDERS 
In the quest for Merkle-Damgård alternatives, apart from the ones described in Sect. 5, a 

number of domain extenders have appeared in literature that do not directly extend the original 
Merkle-Damgård design. In this section, we discuss some tree-based hash functions and multi-
pass hash functions. The incentives of these designs are twofold: increasing the efficiency rate 
and/or the security guarantees. The theoretical domain extenders discussed in this section are 
also included in Fig. 1 and Table 1. 

 
6.1 Tree-Based Hash Functions 

The tree-based constructions, in contrast to the Merkle-Damgård based designs, allow for 
parallelism. While Merkle-Damgård-based designs require the message to be processed in a 
sequential order, tree constructions split the message into blocks which could be processed by 
independent processors or machines and the final result is combined to produce the hash value. 
For applications where large amounts of data have to be hashed using parallel processors, tree 
constructions are much more appropriate. They have the disadvantage of a larger state informa-
tion that needs to be kept (logarithmic in the message length, as opposed to linear), but have the 
advantage that different branches in the tree can be computed independently. 

In this section, we will discuss three tree-based hash functions, namely the (strengthened) 
Merkle tree [57], tree hash [48] and XOR-tree hash [48]. For conciceness, we will not discuss 
variants of these that appeared in literature, such as [58-60], and constructions based on concrete 
designs, such as [38]. Finally, we mention that Dodis et al. [61] and Bertoni et al. [62] analyzed 
the required properties of tree hash functions to obtain indifferentiable designs. We note that 
these results do not apply to the three tree-based designs discussed here. 

 
Strengthened Merkle tree. The strengthened Merkle tree [57] ( ) is a narrow-pipe, keyless 

domain extender. Firstly, to hash a message of arbitrary size, it is padded to the correct length 
with a single 1 bit and a sufficient number of zeroes, such that it fills the minimal number of 
blocks to produce a message with number of blocks multiple to da  where a  is the arity or 
number of inputs to the compression function and d  is the minimal tree depth required for 
hashing the message. On the very top level of the tree the message blocks are hashed independ-
ently and the intermediate hash values are the result of the second layer of inputs in the tree. The 
process is iterated until the root of the tree is reached where the final compression function takes 
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an extra input which is the message length encoding as part of the strengthening.  
Damgård [4] and later Andreeva et al. [22] showed that tree hash preserves Coll  security, 

but Sec  and Pre  are not preserved. No indifferentiability results are known for tree hashes.  
 
Tree hash function. The tree hash [48] ( ) is a narrow-pipe, keyed hash function. It differs 

from the strengthened Merkle tree-based construction in the sense that an independent key iK  
is assigned to each level i  of the tree.  

For equal-length messages (thus in case  is a fixed input length domain extender), the 
design has been showed eSec  secure by Bellare and Rogaway [48], but in the general case 
(where the target and forged message may be of different lengths), the domain extender is 
shown to preserve ePre  only [22].  

 
XOR-tree hash function. The XOR-tree hash function [48] ( ) is a narrow-pipe, keyed 

hash function. Differing from , the outputs of every tree level are XORed with a per level 
key. The number of keys are logarithmic in the size of the padded message in blocks. Several 
variants of XOR-tree hash function have appeared in the literature [58-60]. These variants work 
towards minimizing the key schedule for the basic XOR-tree hash while retaining the same se-
curity strength. The optimizations are mainly achieved following a key schedule similar to the 
Shoup's hash function key scheduling scheme.  

For equal-length messages, again Bellare and Rogaway [48] showed this domain extender to 
preserve eSec . For arbitrary-length messages, Andreeva et al. [22] showed that this construc-
tion preserves Pre  and ePre , and that it does not preserve aSec  and aPre . The authors 
were unable to show or contradict the preservation of Coll  and Sec , no to show (non)-
preservation of eSec  for arbitrary-length messages.  

To fix the deficiencies of the basic XOR-tree hash function for arbitrary message lengths with 
respect to property preservation, Andreeva et al. [63] suggest a slightly modified construction 
called the modified XOR-tree hash function. The construction is proved to preserve all three 
notions of Coll , Sec , and Pre . The only difference with the original XOR-tree domain ex-
tender is that here, the key used before the final application of the compression function is a 
fixed key *K , which means that *K  is independent of the tree depth, while in the original 
XOR-tree extender it would simply be the next key in the sequence.  

 
6.2 Multi-Pass Hash Functions 

A multi-pass domain extender processes the data in more than one pass. Multi-pass designs 
can process additionally interleaved parts of the message. The idea behind having less efficient 
multi-pipe designs is to ensure better security guarantees. However, as becomes clear below, this 
goal is not always so easily attained. 

 
Double pipe design. The double-pipe design [24] ( ) was proposed by Lucks. It processes 

the message in two dependent Merkle-Damgård chains under two distinct initialization vectors 
and the final result is computed by applying a final output transformation, which is not necessar-
ily distinct from the internal chained compression function(s).  

Lucks double-pipe hash function achieves the same preservation security guarantees as the 
Merkle-Damgård design. In particular, the counterexamples for the preservation of Sec  and 
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Pre  of the Merkle-Damgård design as illustrated in [22], apply to  similarly. Collision 
resistance of  follows from the collision preservation proof of [39]: it can be shown that 
collisions for the domain extender  can be reduced to collisions for either F , or G  
defined as G( , , ) = (F( ),F( ))h h m h h m h h m′ ′ ′ , but it is clear that collisions for G  and F  are 
equally hard to find. Finally, the  domain extender is proven indifferentiable in [64].  

 
Zipper hash function. The zipper hash [65] ( ) was proposed by Liskov. The message is 

processed forward in a Merkle-Damgård fashion. Then, the intermediate hash result is used to 
initialize the further iterative processing of the same message in a reverse order (reversing the 
data blocks), possibly with some distinct underlying compression function under the Merkle-
Damgård iteration.  

The counterexamples for the Merkle-Damgård hash of Andreeva et al. apply to the zipper 
hash to show that no Sec  and Pre  preservation is achievable for zipper hash. Additionally, 
no security results are known on the Coll  preservation of . The zipper hash is proven 
indifferentiable from a random oracle up to the birthday bound even if the compression func-
tions in use are weak, i.e., they can be inverted and collisions can be found efficiently.  

 
Concatenated hash function. The concatenated hash function is a multi-pipe design in the 

sense that it concatenates the hash result of the processing of multiple independent message 
pipes. Each pipe produces a hash result using a domain extension method. The final hash value 
is the concatenation of the hash values from all message pipes. The concatenated hash is there-
fore a general transform that is applied as a form of final transformation on the result of hash 
values of independent evaluations of the same message under identical or distinct domain ex-
tenders. The most popular in the literature is the concatenation of multiple pipes of Merkle-
Damgård chains, each initialized under distinct initialization vectors IV s. In general, concate-
nated hashing can be applied to any combination of domain extenders, and therefore we do not 
include it in Fig. 1 and Table 1.  

It was broadly believed that the bit security level of concatenated hash scales with the number 
of hash pipes employed. For iterated domain extenders this turns out not to be the case as colli-
sion attacks of Joux [12] show where the security level is only marginally higher than a single 
plain Merkle-Damgård chain. As for the preservation property results, we notice that these fol-
low from the combined security of the underlying domain extenders.  

 
 

7. BLOCK CIPHER OR PERMUTATION BASED DOMAIN EXTENDERS 
A common approach to design compression functions is by building them based on one or 

more block ciphers or permutations, and we will briefly elaborate on it. Notice, however, that 
the security notions (Sect. 2.2) are not relevant to these primitives. In particular, collisions for a 
permutation do not exist, and additionally, block ciphers and permutations are usually easily 
invertible. As a consequence, when proving security properties of block cipher or permutation 
based compression functions, one usually relies on the ideal model. In the ideal model, the un-
derlying building blocks are assumed to behave like random primitives, and the adversary has 
only query access to these primitives. The adversary is computationally unbounded, and his ad-
vantage is measured in the number of queries made to the oracles. Note that if a compression 
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function F  is atk -secure in the ideal model, and a domain extender is applied on top of F  
that is atk -preserving in the sense of Sect. 2.2 (Table 1), then the obtained hash function can be 
considered atk -secure in the ideal model as well. 

Consequently, there exist two ways to obtain security results of hash functions based on per-
mutations or block ciphers. First, if a compression function based on a block cipher or permuta-
tion is proven secure in the ideal cipher model, one can exhibit further preservation of that prop-
erty by the domain extender (Sects. 3 and 5) again in the ideal cipher model. Alternatively, if the 
compression function built on permutation(s) or block cipher(s) is trivially insecure with respect 
to the basic properties, then one aims at proving direct security of the domain extender assuming 
ideal behavior of the underlying primitive (permutation or block cipher). 

 
7.1 Block Cipher Based Domain Extenders 

A block cipher E : × →K M M  is a family of permutations indexed by K , and associ-
ated to it is its inverse function 1E :− × →K M M . Usually, both 1E,E−  are efficiently com-
putable, and the adversary has access to both. 

 
Compression function security. Preneel, Govaerts and Vandewalle (PGV) [66] analyzed and 

categorized 64 block cipher based compression functions, and twelve of them are formally 
proven collision and preimage resistant by Black, Rogaway and Shrimpton [67]. Among these 
are the Matyas-Meyer-Oseas, the Miyaguchi-Preneel and the Davies-Meyer compression func-
tions. We note that all of these compression functions are keyless by design, and as such the 
always and everywhere second preimage and preimage security is inapplicable. 

Additionally, we note that the twelve secure PGV constructions are insecure in the indifferen-
tiability model, merely due to the presence of fixed-points [66, 68]. The results of [66, 67] have 
been recently generalized by Stam [69], to cover more general block cipher based compression 
function designs. 

 
Security of the domain extender. Additionally to the results on the compression function, 

Black et al. showed that eight of the remaining 52  PGV compression functions, would result 
in collision and (non-optimal) preimage security in the  iteration. These bounds have been 
improved by Duo and Li [70]. Additionally, Duo and Li analyze the second preimage resistance 
of the 20 PGV-based hash function designs. 

This result is, again, generalized by Stam [69]. The way to prove security of this form is gen-
erally done in a graph-based approach, where the edge correspond to compression function exe-
cutions that can be realized using the queries to the oracle made by the adversary. It is shown 
that all of twenty PGV compression functions are indifferentiable from a random oracle when 
iterated in a  with chop, NMAC and HMAC construction, and for sixteen of the twenty 
constructions, the construction results in an indifferentiable design [11, 42, 71, 72]. 

 
7.2 Permutation Based Domain Extenders 

A permutation :π →M M  is a map for which the domain and range space are identical. 
Therefore, in order to build a permutation-based compression function, the compressing needs to 
happen at a different time in the execution (e.g. before the permutation π  is executed). 
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Compression function security. In [73], Black, Cochran and Shrimpton analyzed 2n -bit to 
n -bit compression functions based on one n -bit permutation, and proved them insecure 
against collision and (second) preimage attacks. This result has been generalized by Rogaway 
and Steinberger [74] and Stam [75] to compression functions with arbitrary input and output 
sizes, and an arbitrary number of underlying permutations. Their bounds indicate the expected 
number of queries required to find collisions or preimages for permutation based compression 
functions. As positive results, Rogaway and Steinberger [76] and Shrimpton and Stam [77] pro-
pose 2n - to n -bit compression functions based on 3 permutations that achieve optimal colli-
sion and preimage resistance with respect to the bounds of [74, 75]. No results are known on the 
second preimage resistance. No positive indifferentiability results are known for permutation 
based compression functions. 

 
Security of the domain extender. In the iteration, permutation based compression functions 

may result in a secure hash function, though. A well-known example of this is the sponge con-
struction, due to Bertoni et al. [78]. A broad interpretation of the sponge hash function renders it 
a keyless, wide-pipe, non-strengthened Merkle-Damgård construction. The sponge hash function 
iterates a state size of c r+  bits, where r  is the bit rate and c  is the capacity of the sponge. 
It consists of an absorbing phase and a squeezing phase. In the absorbing phase, message blocks 
of r  bits are compressed with the state by ways of its compression function 
F( , ) = ( ( 0 ))ch m h mπ ⊕ . After the processing of all message blocks is completed, a final 
transformation is applied, the squeezing phase, where the first r  bits of the state are returned 
as output blocks, interleaved with applications of the permutation until the desired output length 
is achieved. Notice, that in contrast to other domain extenders, the sponge hash function sup-
ports by design arbitrary output lengths. A well-known sponge construction is Keccak by Ber-
toni et al. [31]. 

Obviously, the sponge compression function is vulnerable to collision, second preimage and 
preimage attacks [73], and we cannot rely on the preservation strength of the design to obtain 
security properties of the hash function (in the ideal model). Yet, the sponge construction is 
proven indifferentiable from a random oracle if the permutation π  is assumed to be ideal [79]. 
In the ideal model, this results in collision, second preimage and preimage security of the sponge 
design [39]. 

Several “sponge-like” designs are known in literature, among which the Grindahl design by 
Knudsen, Rechberger and Thomsen [80], that do not exactly follow the original sponge design. 
Similar approaches can be applied to these domain extenders to obtain similar security bounds. 

 
 

8. APPLICATION TO NIST’S SHA-3 COMPETITION 
We will briefly consider the application of the classification of this work to NIST's SHA-3 

competition. We refer to [39] for a more detailed discussion of the security properties of the 14 
second round SHA-3 candidates.  

First of all, each of the 14 SHA-3 candidates can be seen as an extension of the keyless 
Merkle-Damgård design, with an optional final transformation and/or chopping. Five of the de-
signs employ a prefix-free padding rule, and can be seen as  constructions (three of 
which moreover fit within the  design). Eleven of the designs have a suffix-free padding 
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rule, and therefore preserve collision resistance (Sect. 4.2). No preservation results are known 
for the remaining security properties.  

Refining the level of modularity, the SHA-3 candidates SHAvite-3 and Skein employ a PGV-
construction proven collision and preimage secure in [67], and the compression functions of 
ECHO, Hamsi and SIMD fit in the generalized block cipher based model of [69]. For all of 
these designs, their domain extenders preserve collision resistance, which renders collision resis-
tance bounds of the hash functions in the ideal model. The compression function of the SHA-3 
candidate Grøstl can be proven preimage and collision resistant up to the bound of [74]. The 
Grøstl domain extender preserves collision resistance, but not preimage resistance.  

The SHA-3 candidates CubeHash, Fugue, JH, Keccak and Luffa can be considered sponge(-
like) designs, and all of these functions have a compression function vulnerable to the attacks 
described in [73]. The indifferentiability result of [79] can be directly applied to CubeHash and 
Keccak.  

We notice that for some of the candidates, design-specific security approaches have resulted 
in other security results [39], in particular with respect to indifferentiability bounds. Finally, we 
notice that indifferentiability bounds imply an upper bound on the success probabilities of 
breaking a hash function under any security notion [39]. Namely, one can show that for any 
security notion atk  of a hash function in the ideal model (Sect. 7), we have 

atk atk PRO
H RO H( ) ( ) ( )q q q≤ +Adv Pr Adv , where atk

H ( )qAdv  denotes the maximum advantage of any 
adversary/distinguisher against security notion atk  making at most q  queries, and atk

RO ( )qPr  
denotes the success probability of a generic attack against H  under atk , after at most q  
queries.  

For some of the SHA-3 candidates, using this result the indifferentiability bounds have re-
sulted in security bounds on the preimage, second preimage and collision resistance (in the ideal 
model). It is clear from the above that optimal preimage, second preimage and collision resis-
tance is obtained if PRO

H ( ) = ( / 2 )nq O qAdv .  
 
 

9. CONCLUSION 
We analyzed the state-of-the-art security results of the original Merkle-Damgård design and 

its derivatives, with respect to the security definitions posited by Rogaway and Shrimpton [15], 
and to the notion of pseudorandom oracle behavior, as formalized by Coron et al. in the context 
of hash functions [11]. These result consider the security preservation properties of the domain 
extenders from the underlying compression functions, and intuitively mean that if an attacker 
can break a hash function under a security notion atk , then, one can reduce this attack to an 
atk -forgery of the compression function. The presented analysis extends the work of [22] in the 
sense that a wider variety of domain extenders is considered, and that the security property 
PRO  (pseudorandom oracle behavior) is considered as well. A summary of the results is given 
in Table 1. Most of the 17 domain extenders considered in this work preserve collision resis-
tance, and about half of them is provably indifferentiable from a random oracle. On the down-
side, (second) preimage is only preserved by a small fraction of domain extenders. A way to 
resolve this preservation property issue is given in Sect. 4.2, but this still leaves a further direc-
tion in the area of provable security.  

 



 
Elena Andreeva, Bart Mennink and Bart Preneel 

 

473 

Besides, we briefly summarized the state-of-the-art security results of hash functions of which 
the underlying compression function consists of a block cipher or one or more permutations, and 
applied these results to the NIST SHA-3 hash function competition [16]. This survey partially 
summarizes the classification by Andreeva, Mennink and Preneel [39]. Here, one does not con-
sider “preservation” of security properties, but rather the security is considered in case the un-
derlying primitives are assumed to be ideal (for instance, a random permutation or random block 
cipher).  
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A. PRESERVATION OF COLLISION RESISTANCE 
In this appendix, we generalize the well-known collision resistance preservation result of the 

strengthened Merkle-Damgård design [5, 4]. The result of Thm. 1 differs in three cases: we con-
sider any suffix-free padding, the proof allows for different compression functions in one hash 
function evaluation, and it includes an optional chopping at the end. Related work can, a.o., be 
found in [5, 4, 81, 82]. 

 
Theorem 1. Let , ,l b n∈N  such that l n≥ . Let * *pad :{0,1} {0,1}b→  be a suffix-free 

padding and let :{0,1} {0,1} {0,1}l b lf × →  and :{0,1} {0,1} {0,1}l b ng × →  be two compression 
functions. Consider the hash function *:{0,1} {0,1}n→H  defined as follows, where 0 =h IV  is 
the initialization vector:  

 

 

 
The advantage of finding collisions for H  is upper bounded by the advantage of finding 

collisions for f  or g . Formally, if f  is 1 1( , )t ε  collision secure, and g  is 2 2( , )t ε  collision 
secure, then H  is ( , )t ε  collision secure for 1 2=ε ε ε+ , and 1 2= min{ , } 2( 1) ft t t K τ− − , where 

fτ  is the time to evaluate f  and K  is the maximum length of the messages, in blocks. 
 
Proof. Suppose A  is a ( , )t ε  collision finding attacker for H . We construct collision 

finding adversaries 1B  and 2B  for f  and g , respectively, using the following observation. 
Let ,M M ′  be two distinct messages such that ( ) = ( )M M ′H H . Let 1( , , )kM M…  be the 

padded message of M , and 1( , , )kM M ′′ ′…  be the padded message of M ′ . Define the 
intermediate state values ,i ih h ′  similarly. A collision on ,M M ′  means that 

1 1( , ) = ( ', ')k k k kg h M g h M′ ′− − . Now, if 1 1( , ) ( ', ')k k k kh M h M′ ′− −≠  this results in a collision for g . 
Assume the contrary, and let {1, ,min{ , } 1}j k k ′∈ −…  be the minimal index such that 

1 1( , ) ( ', ')k j k j k j k jh M h M′ ′− − − − − −≠ . We notice that such index j  exists: in case =k k ′  it exists as 
M M ′≠ , and in case k k ′≠  it exists as the padding rule is suffix-free. By definition of the 
index j , we have = 'k j k jh h ′− − , and in particular we obtain a collision for f :  

 
1 1( , ) = = ' = ( ', ').k j k j k j k j k j k jf h M h h f h M′ ′ ′− − − − − − − −  

 
Both 1 2B ,B  follow this procedure. If ,M M ′  define a collision for f , 1B  outputs this 

collision. Similarly for 2B  and g . Both adversaries work in time at most 2( 1) ft K τ+ − , from 
which we deduce 1 2min{ , } 2( 1) ft t t K τ≥ − − . The messages ,M M ′  define a collision for f  or g . 
Thus, we obtain 1 2ε ε ε≤ + .                                                    □ 

 
The functions f  and g  in the proof can in general be any function, and in particular need 

not be independent. For example, if =l n  and =g f  we retain the original Merkle-Damgård 
design, and if =g f π  we obtain the  mode of operation. The Merkle-Damgård design 
with chopping is also covered, with = chopl ng f− . We note that Thm. 1 can be generalized 
arbitrarily, e.g. to more different compression functions, but for the purpose of this paper, the 
mentioned generalization of the Merkle-Damgård structure suffices. 
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B. PRESERVATION PROOFS FOR MERKLE-DAMGÅRD WITH PERMUTATION 
In this section, we formally prove that the  domain extender does not preserve second 

preimage ( Sec ) and preimage resistance ( Pre ). This is done by constructing a atk -secure com-
pression function G , for which G is not atk -secure. The proof is similar to the proofs of 
[22], but differs in several aspects in order to cover the Merkle-Damgård with permutation con-
struction. 

 
Theorem 2. For atk {Sec,Pre}∈ , the following holds. If there exists a ( , )t ε  atk -secure 

compression function 2F :{0,1} {0,1}n b n+ −→ , then there exists a ( , 2 / 2 )nt ε +  atk -secure com-
pression function G :{0,1} {0,1}n b n+ →  and an adversary A  running in constant time with 
atk[ ]λ -advantage one in breaking G. 

 
Proof. Given a compression function 2F :{0,1} {0,1}n b n+ −→ , consider the compression 

function G :{0,1} {0,1}n b n+ →  given by:  
 

 

 
where π  is the permutation employed by  (see Fig. 1), and ( )ix  denotes the thi  bit 

of the complement of x . 
If F  is ( , )t ε  atk -secure, then G  is ( , 2 / 2 )nt ε +  atk -secure. Indeed, for Sec  security: 

given a uniformly random challenge {0,1}n bh m +∈ , provided that { , ( )}h IV IVπ∈ , finding a 
second preimage is equally hard for F  and G . Thus, given an adversary A  that breaks G  
in time t  and with probability ε , one can construct an adversary B  for F  that also runs in 
time t , who forwards the challenge to A , and simply returns A 's response h m′ ′ . We ob-
tain 

 

 

 
As this holds for any adversary A  for G , we obtain Sec Sec

F G(B) = (A) 2 / 2n−Adv Adv . The 
same analysis holds for Pre . 

Thus, G  is ( , 2 / 2 )nt ε +  atk -secure, but it is clear by construction that  
for all *{0,1}M ∈ , and hence any message M ′  renders a (second) preimage.             □ 

 
 
 


