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Abstract—With more embedded systems networked, it becomes an important problem to effectively defend embedded systems

against buffer overflow attacks. Due to the increasing complexity and strict requirements, off-the-shelf software components are widely

used in embedded systems, especially for military and other critical applications. Therefore, in addition to effective protection, we also

need to provide an approach for system integrators to efficiently check whether software components have been protected. In this

paper, we propose the HSDefender (Hardware/Software Defender) technique to perform protection and checking together. Our basic

idea is to design secure call instructions so systems can be secured and checking can be easily performed. In the paper, we classify

buffer overflow attacks into two categories and provide two corresponding defending strategies. We analyze the HSDefender

technique with respect to hardware cost, security, and performance. We experiment with our HSDefender technique on the

SimpleScalar/ARM simulator with benchmarks from MiBench, an embedded benchmark suite. The results show that our HSDefender

technique can defend a system against more types of buffer overflow attacks with less overhead compared with the previous work.

Index Terms—Security, buffer overflow attack, embedded system, hardware/software, protection.
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1 INTRODUCTION

IT is known that buffer overflow attacks have been causing
serious security problems for decades. More than

50 percent of today’s widely exploited vulnerabilities are
caused by buffer overflow and the ratio is increasing over
time. One of the most famous examples in the early days is
the Internet worm in 1988 that made use of buffer overflow
vulnerabilities in fingerd and infected thousands of compu-
ters [2]. Recent examples include the Code Red, Code Red II,
and their variations which exploited known buffer overflow
vulnerabilities in the Microsoft Index Service DLL. The two
most notorious worms that occurred in 2003, Sapphire (or
SQL Slammer) and MSBlaster, also took advantage of buffer
overflow vulnerabilities to break into systems. In 2003,
buffer overflows accounted for 70.4 percent (19 of 27) of the
serious vulnerability reports from CERT advisories.

Buffer overflow attacks cause serious damage to special

purpose embedded systems as well as general purpose

systems. Because of the growing deployment of networked

embedded systems, security has become one of the most

significant issues for embedded systems. Many special

purpose embedded systems are used in military and critical

commercial applications. For example, a battle ship or an
aircraft has thousands of embedded components and a
nuclear plant has numerous networked embedded con-
trollers. A hostile penetration by using buffer overflow
attacks in such facilities could cause dramatic damage. In
this paper, we address the security issues of special purpose
embedded systems caused by buffer overflow attacks.

Due to the increasing complexity of embedded applica-
tions and the strict requirements in latency, throughput,
power consumption, area, cost, etc., it becomes more
attractive and necessary to design an embedded system
by integrating as many off-the-shelf components as
possible. Considering this trend, from a system integrator’s
point of view, there are three phases in the design flow, as
shown in Fig. 1:

1. System integrators assign tasks to third-party soft-
ware developers with certain requirements and rules.

2. Third-party software developers generate software
components based on the requirements and rules.

3. System integrators check whether all rules have been
followed and all requirements have been satisfied.

Considering the security problems that are caused by buffer
overflow attacks, in Phase 1, system integrators set security
requirements and rules; in Phase 2, third-party developers
add buffer overflow attack protection based on the
requirements and rules; in Phase 3, system integrators
check whether components have been protected from buffer
overflow attacks. Therefore, to effectively defend an
embedded system against buffer overflow attacks, we must
provide an approach that includes both the protection and
checking steps. The source code of some components may
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not be available when performing security checking, which
also needs to be considered.

A common approach to solving this problem is to ask
programmers to always do boundary checks. However, it is
not realistic to assume that all programmers will follow this
good practice or to assume that every off-the-shelf software
is immune to buffer overflow attacks. The use of the safe
programming languages is an effective way to defend
against buffer overflow attacks. But, for embedded system
applications, most software is still written in “unsafe”
languages such as C or assembly.

A lot of techniques have been proposed to defend
systems against buffer overflow attacks or check buffer
overflow vulnerabilities. Various techniques have been
proposed to defend systems against stack smashing attacks
by making the stack nonexecutable [3], intercepting vulner-
able library functions and forcing verification of critical
elements of stacks [4], adding extra instructions to guard
systems at runtime [5], [6], and designing special hardware
components and mechanism to guard the stack [7], [8], [9].
These techniques only prevent overflow attacks that over-
write return addresses along a stack. New attack techniques
[10] have been developed to bypass their protection by
corrupting pointers. To defend against pointer-corruption
attacks, several techniques [1], [11], [12], [13], are proposed
by encrypting pointer values while they are in memory and
decrypting them before dereferencing.

Some techniques have been proposed to check buffer
overflow vulnerabilities by adding instructions to check
array bounds and perform pointer checking at runtime [14],
[15], detecting the vulnerabilities by analyzing the C source
code [16], and executing programs with specific inputs[17].
These techniques either incur a big performance overhead
[14], [15] or can only detect known vulnerabilities [16], [17].
Our technique is based on a hardware/software method
and can effectively and efficiently defend systems against
not only stack smashing attacks but also function pointer
attacks with minor hardware/software modifications. Such
modifications may cause portability and compatibility
problems for general-purpose systems. However, it is
feasible for embedded systems, where hardware/software
can be specially designed and optimized for a single
application.

The technique, HSDefender (Hardware/Software Defen-
der), is proposed to protect embedded systems against

buffer overflow attacks and allow system integrators to
easily perform security checking even without knowledge
of source code. Our basic idea is to design secure call
instructions so systems can be secured and checking can be
easily performed. The HSDefender technique considers the
protection and checking together and enables more com-
plete protection than the previous work. In the paper, we
classify overflow-based attacks into two categories: stack
smashing attacks and function pointer attacks. HSDefender
approaches each of them with different mechanisms.
HSDefender achieves the following properties:

. For stack smashing attacks, the most common attacks,
we propose two methods to completely protect a
system against these attacks and avoid system
crashes.

. For function pointer attacks, our method will make it
extremely difficult for a hacker to change a function
pointer leading to the hostile code.

. Using HSDefender, the security checking is very
easy for system integrators and the rules are easy to
follow for software developers. With special secure
call instructions, the problem of verifying whether a
component is protected is transformed to the
problem of checking whether there exist old call
instructions. Therefore, we can use a software tool to
verify components even without the presence of
source code by scanning the code to find old call
instructions.

. The overhead is minimal. There is only a very minor
addition to the current CPU architectures. The
performance overhead is also minimal, so this
approach can be easily applied to embedded
applications that have real-time constraints.

We analyze and experiment with our HSDefender
technique on the SimpleScalar/ARM Simulator [18]. The
results show that HSDefender can defend a system against
more types of buffer overflow attacks with much less
overhead compared with the previous work.

The rest of this paper is organized as follows: In Section 2,
examples are given to show the basic buffer overflow attack
methods that provide the necessary background for under-
standing our approach. Our Hardware/Software defending
technique, HSDefender, is presented in Section 3. The
performance comparison and experiments are presented in
Sections 4 and 5, respectively. Section 6 concludes this paper.

2 BACKGROUND

In this section, the examples for basic buffer overflow attack
methods are shown to provide the background for under-
standing why our approach is necessary and how it works.
A common stack smashing attack example is shown first.
Then, we give two advanced stack smashing attack
examples. Finally, a BSS overflow attack example is given.
The stack structure of Intel x86 processors is used in these
examples because it is easy to explain and understand.

Fig. 2a(2) shows a typical stack structure after function
copy() is called, where arguments, return address, previous
frame pointer, and local variables are pushed onto the stack
one by one. The arrows in Fig. 2a(2) show the growth
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Fig. 1. The basic design flow in embedded systems using components.



directions of stack and memory, respectively. Function copy
has the most common stack overflow vulnerability. It uses
strcpy() to copy the inputs into buffer[]. Since strcpy() does
not check the size of the inputs, it may copy more than
512 characters into buffer[]. Therefore, the inputs can
overflow the return address in the stack and make it point
to the attack code injected in buffer[] as shown in Fig. 2a(2).
Then, the attack code will be executed after the program
returns from copy() to main(). Almost all techniques
introduced in Section 1 can defend against this kind of
attack. A variation of this kind of attacks is to overflow
previous fp only. Since previous fp will point to the stack
frame of main() after returning from copy(), a similar attack
can be activated when the program returns from main(). It is
used in [19], [20] to defeat the protections of StackShield
and StackGuard.

Even if the return addresses and frame pointers are
protected, we still cannot defend against the attack shown
in Fig. 2b. The vulnerable function copy() in Fig. 2b(1) has
one local pointer p and calls strcpy() twice. The location of p
(Fig. 2b(2)) is below the location of buffer[] in the stack. The
attack is deployed as follows: 1) In the first strcpy(), the
attack code is injected into the buffer and p is overwritten to
point to the entry of printf in the shared function pointer
table GOT (Global Offset Table), 2) the address of the attack

code is copied to the entry of printf in GOT by the second
strcpy(), and 3) the attack code is activated when the
program executes the call printf(“Finished!”) in copy(). This
example shows that the shared function pointer table GOT
has to be protected to defend against this kind of attack.

Our third example (Fig. 3a) shows that local function
pointers might be exploited in attacks. In this vulnerable
program (Fig. 3a(1)), strcpy() is called first and then the
function pointed by function pointer fptr is executed in copy().
In the stack (Fig. 3a(2)), the location of fptr is below the
location of buffer[]. Thus, fptr can be overwritten and pointed
to the attack code by strcpy(). Then, the execution of
(void)(*fptr)(buffer)will activate the attack code. Fig. 3b shows
a similar example to exploit a function pointer in BSS (Block
Storage Segment). In this attack, the exploitation occurs in
BSS, so stack smashing protection techniques such as
StackGuard, IBM SSP, etc., cannot protect against this kind
of attack. These examples show that function pointers need to
be protected to defend against these kinds of attacks.

3 HSDEFENDER: HARDWARE/SOFTWARE

DEFENDER

To effectively protect a system and efficiently perform
security checking, we need to consider the protection and

SHAO ET AL.: SECURITY PROTECTION AND CHECKING FOR EMBEDDED SYSTEM INTEGRATION AGAINST BUFFER OVERFLOW ATTACKS... 445

Fig. 2. (a) Vulnerable program 1 and its stack. (b) Vulnerable program 2 and its stack.

Fig. 3. (a) Vulnerable program 3 and its stack. (b) Vulnerable program 4 and its BSS (Block Storage Segment).



the checking together. Since hardware/software codesign,
such as hardware modification or adding new instructions,
is common practice in embedded systems design, our basic
idea is to add a secure instruction set and require third-
party software developers to use these secure instructions
to call functions. Then, a system integrator can easily check
whether old call instructions are used in a component based
on binary code. In this section, we propose our HSDefender
(Hardware/Software Defender) technique. We first classify
buffer overflow attacks into two categories. Then, we
propose and analyze our HSDefender technique with two
corresponding defending strategies.

3.1 The Categories of Buffer Overflow Attacks

It is extremely hard to design a pure hardware scheme to
protect all variables in stack, heap, BSS, or any data
segments from being overwritten by buffer overflow
attacks. This is because, from the hardware point of view,
the boundary information of each variable is not present for
most contemporary hardware systems. Therefore, we
should try to achieve a reasonable goal that is implemen-
table with minimum overhead so that a secure real-time
embedded system can be built.

We can classify overflow-based attacks into two cate-
gories:

Stack Smashing Attacks. This type of attacks either
overwrites a return addresses as shown in Fig. 2a or
overwrites a frame pointer, which indirectly changes a
return address when the caller function returns. This is the
easiest and also the most common attack.

Function Pointer Attacks. Based on different linking
methods (static linking and dynamic linking), function
pointers can be divided into two types: local function
pointers and shared function pointers. Accordingly, there
are two types of function pointer attacks: local function
pointer attacks and shared function pointer attacks.

A local function pointer is a pointer pointing to a function.
Its value is determined by the linker when an executable file
is generated during linking. A local function pointer can be
exploited either directly, as shown in Fig. 3a and Fig. 3b, or
indirectly by using a method similar to that shown in
Fig. 2b. If a vulnerable program has function pointers and
has a particular code sequence that causes two overflows, a
hacker may be able to change a local function pointer that is
stored in heap, BSS, or stack.

A shared function pointer is a pointer pointing to a
shared function. Its value is determined by the dynamic
linker when a shared function is loaded into the memory
during running time. Since it is common that a program is
dynamically linked with library functions, there is usually a
table storing shared function pointers in a program image.
A shared function pointer attack activates the attack code by
exploiting a shared function pointer in this table. For
example, the shared function pointer pointing to “printf” in
GOT is changed to point to the attack code in Fig. 2b.

Note that these classification categories are not mutually
exclusive in some cases. For example, in a function pointer
attack, a stack smashing attack may be involved in the
beginning. To deploy a function pointer attack is harder than
to deploy a stack smashing attack.

We have different levels of strength to deal with the
above two types of attacks. For stack smashing attacks, the
most common attacking methods, our goal is to completely
defend against such attacks. For function pointer attacks, our
goal is to make it extremely hard for a hacker to change a
function pointer leading to the hostile code. HSDefender
requires two components: stack smashing protection and
function pointer protection, to achieve these goals.

3.2 Component 1: Stack Smashing Protection

Two methods are proposed to protect from stack smashing
attacks: hardware boundary check and secure function call.

Method 1: Hardware Boundary Check. The protection
scheme is to perform hardware boundary check using the
current value of the frame pointer. The basic approach is:

1. While a “write” operation is executed, an “address
check” is performed for the target’s address in
parallel.

2. If the target’s address is equal to or bigger than the
value of the frame pointer, the stack overflow
exception is issued; otherwise, do nothing.

The implementation of this hardware boundary check on
different processors may be different because of different
stack structures.

The requirement for third-party software developers is: If
a variable needs to be changed in child function calls, the
variable shouldbedefinedasaglobal variable, static variable,
or dynamic memory allocation (in data, BSS, heap segment)
rather than a local variable (in the stack). And, the frame
pointer needs to be explicitly loaded in a function call.

The security check is to execute the tested program and
see whether the stack overflow exception occurs. At
runtime, a system crash can be avoided by calling a
recovery program in the stack overflow exception handler
program. The recovery program can simply terminate the
program or apply other advanced methods.

The advantages of this approach are as follows: First, this
schemewill guarantee that the frame pointer, return address,
andargumentswill not be replacedbyanyoverflowedbuffer.
Therefore, we can defend a system against stack smashing
attacks completely. Second, we can implement boundary
checking in such a way that the writing and the boundary
checking can be executed in parallel. Therefore, there is no
performance overhead. Finally, source code and extra
protection code are not needed.

This approach provides a method for system integrators
to force third-party software developers to generate secure
software components. However, its strict requirements may
cause some difficulties for software developers. For exam-
ple, a legitimate “write” operation may be denied and cause
a stack overflow exception if its target address is bigger
than the frame pointer. And, the functions that change
environment variables may need to be revised since
environment variables are located at the bottom of a
program image in Unix or Linux. Therefore, a more general
method is proposed next.

Method 2: Secure Function Call. While Method 1 can
effectively protect systems against stack smashing attacks,
its requirements are too strict. Therefore, we propose
Method 2 to solve this problem. In Method 2, we design
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two secure function call instructions: “SCALL” and “SRET.”
Basically, “SCALL” will generate a signature of the return
address when a function is called and “SRET” will check
the signature before returning from this function. We
require that third-party software developers must use these
secure function calls instead of the original ones when
calling a function.

To implement “SCALL” and “SRET,” each process is
randomly assigned a key when it is generated and the key is
kept in a special register R. The special register R can only
be set up in the privilege mode through a system call. The
key can be generated by a loader when it loads a program
into the memory. It is unique for each process and needs to
be saved and restored with each context switch in a
multiprocess system. In the ordinary mode, this special
register cannot be read except that it is used in “SRET” and
“SCALL.” “SCALL” is used to call a function instead of the
original “CALL” instruction. Basically, a “CALL” instruc-
tion has two operations: push the return address onto the
stack and then put the address of the function into Program
Counter to execute the function. “SCALL” adds the
operations to generate the signature. It has four operations:

1. Push the return address onto the stack.
2. Generate a signature S by S ¼ XORðR;RetÞ, where

R stores the key and Ret is the return address.
3. Push signature S onto the stack.
4. Jump to the target address (put the address of

function into Program Counter).

“SRET” is used to return from a function instead of the
original “RET” instruction. Basically, a “RET” instruction
will pop the return address in the stack to the Program
Counter. Let ðSP Þ denote the value in the location pointed
to by SP . “SRET” adds the operations to check the
signature. It has four operations:

1. Load (SP ) and (SP þ 4) to two temporary registers,
T1 and T2 (T1 and T2 store the signature and the
return address pushed in SCALL, respectively).

2. Calculate S0 ¼ XORðR; T2Þ.
3. Compare T1 and S0: If equal, move T2 to the Program

Counter; otherwise, generate a stack overflow
exception.

If a return address is overflowed, it can be found since
the two signatures (S0 and S) are different. The key is
randomly generated for each process, so it is extremely hard
for a hacker to guess the key. Therefore, a hacker cannot give
a correct signature even if he attempts to change both the
return address and the signature.

The key is stored in a special register, so it cannot be
overflowed by stack smashing attacks. But, the key is still
vulnerable if an attacker has access to the protected system.
Two possible vulnerabilities are as follows: Vulnerability 1:
The key may need to be stored in the memory due to context
switches. So, the key can be read from the memory (though
theattackermaynotneed toknowthekeyat that time sincehe
has already gained the root privilege if he can read the key
from the kernel data structure).Vulnerability 2: An attacker
can mount a known-plaintext attack based on multiple
pairs of plaintext (return address) and ciphertext (signa-
ture). Note that each process has an unique key generated

randomly, so the key obtained by attacking one process
cannot be applied to attack other processes.

Our method is used against stack overflow attacks that
mainly attack remote services from the external of a system.
Protecting against internal-user attacks is a much more
difficult problem which we do not address in this work. To
guess the key from the external of a system without local
access, an attacker can use the following two possible
methods. Attacking Method 1: Exhaustive search by trying
all possible key values. There are two reasons that it is very
hard for an attacker to find the key by the exhaustive search.
First, one input value that is not the key at one time does not
mean that it will definitely not be the key in the next time
because the key is randomly generated when a process is
constructed. Therefore, the exhaustive search by simply
excluding input values from the candidate-key pool will not
work. Second, trying all possible key values will cause a
server to frequently be down before the case occurs in which
the value matches the key. The frequent server down will
warn administrators so they can find the vulnerabilities and
identify the attacker, which attackers want to avoid.
AttackingMethod 2:Guess the key by constructing a similar
working environment as a remote system. Since the key is
randomly generated, it is very hard to make the key of a
process in a local machine match the key of a similar process
in the remote system.Without local access, an attacker cannot
collect the information about the exact settings of the remote
system, which also increases the difficulties in guessing the
key. Similarly to the second reason in the exhaustive search, if
this kindof attack is hard tomake succeed and causes a server
to frequently be down, then administrators will be warned
before the attack succeeds.

From the above discussion, we can see that it is very hard
to obtain the key from the outside of a system if the attacker
has no access to the system.

Our method advances StackGuard in terms of code size.
Code size is one of the most important concerns for
embedded system designs because of very limited memory
constraints. In Method 2, the generation and comparison of
a signature are done in call and return instructions. In
StackGuard, it needs extra instructions to push canaries
onto the stack and perform comparison. Therefore, the code
generated by Method 2 will need less memory space
compared to StackGuard.

In terms of security checking for components, it is very
easy for system integrators to check whether or not a third-
party component has been protected, even based on binary
code using ourmethod. They only need to checkwhether the
original “CALL” instructions are in a component and execute
it to see whether there is a stack overflow exception. At
runtime, system crashes can be avoided by calling a recovery
program in the exception handler program.

Compared with Method 1, this method introduces more
performance overhead and hardware cost. We give the
comparison for these two methods in terms of security,
hardware cost, and performance overhead in Section 5.

3.3 Component 2: Function Pointer Protection

For any function call, there must be a jump operation
involved. A target address of a “JMP” operation can be a
constant distance or a value stored in a register or a memory
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location.A function call througha functionpointermustuse a
register or a memory location to store the target address. We
call this type of jump an indirect jump. For any instruction
involving indirect jumps, we design a new “secure” instruc-
tion with secure jump operations and require third-party
software developers to use it whenever there is an indirect
jump. The new instruction is called SJMP.

As in Method 2 in stack smashing protection, each
process is randomly assigned a key when it is generated and
the key is stored in a special register R. The key is unique for
each process. The operations of SJMP are:

1. Generate an address by XORing the input address
with R (the key).

2. Jump to the XORed address.

Our function pointer protection technique has two require-
ments for third party software developers:

1. When they assign the address of a function to a
function pointer, the address of the function is first
XORed with R (the key) and then the result is put
into a function pointer.

2. When they call functions using function pointers,
they must use the secure jump instruction “SJMP.”

Using our function pointer protection, if a hacker
changes a function pointer and makes it point to attack
code, the attack code cannot be activated because the real
address that the program will jump to is the XORed address
with the key. The key is stored in a special register;
therefore, the key value cannot be overwritten by buffer
overflow attacks. Since the key is randomly generated for
each process, it is extremely hard for a hacker to guess the
key. Thus, our method can defend systems against function
pointer attacks.

Our function pointer protection can be applied to protect
shared function pointers. In the following, we use ELF

dynamic linking to discuss this issue. In ELF dynamic
linking, a typical execution flow of a call through shared
library function involves two levels of indirection: PLT
(Procedure Linkage Table) in text segment and GOT in data
segment in a program image. As shown in Fig. 4a, when a
shared library function is called, the execution is first
passed to its PLT entry. (PLT is set up by the static linker at
compile time. See Fig. 4c as an example.) The first
instruction in the PLT entry is a indirect jump with the
address stored in the GOT. The initial values of the GOT are
set up by the loader when the program image is loaded into
the memory. If it is the first time to call this function, then
the address stored in the GOT is the address of the second
instruction in the PLT entry. As shown in Fig. 4c or Fig. 5a,
the second instruction in a PLT entry (except PLT0) pushes
an offset and then the execution is passed to PLT0 (the zero
entry). The code in PLT0 calls the dynamic linker through
an address stored in the GOT (set up by the loader). The
dynamic linker then finds the correct address where the
shared function is stored in the memory and stores it in the
GOT. When the same shared library function is called the
next time, the GOT will contain the address of the function.

The above discussion is based on “lazy evaluation” that
is the default mode when a program is compiled. A
complete ELF specification and the techniques related to
linking and loading can be found in [21], [22], [23]. Fig. 4
shows an ELF dynamic linking example. For the program
shown in Fig. 4b, Fig. 4c shows the corresponding assembly
code with ELF dynamic linking (obtained by using
“objdump” on Redhat Linux 9). Fig. 4d and Fig. 4e show
the values stored in the GOT before and after the first
printf() is called, respectively.

To protect shared function pointers, we need to use our
“SJMP” to replace all indirect jump instructions in the PLT,
as shown in Fig. 5b, which can be done by the static linker at
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Fig. 4. (a) The execution flow of a call through shared function pointer. (b) An exemplary program. (c) The corresponding assembly code with ELF

dynamic linking (elf32, Intel 386, gcc, Linux). (d) The address stored in the GOT before the first printf is called. (e) The address stored in the GOT

after the 1st printf is called.



compile time. When loading a program, the loader needs to
encrypt all initial pointers in the GOT by XORing each
pointer with the key. At runtime, when resolving a symbol,
the dynamic loader needs to store the encrypted address of
a shared function obtained by XORing the address with the
key. Each process has a key and the key is stored in a special
register, so these modifications can be easily achieved by
XORing with the special register.

System integrators can easily check whether SJMP has
been used in all function calls that use function pointers
based on binary code. In a program, there are two forms
into which a function call through a function pointer is
translated: either calling indirectly through a memory
location or a register where the address of a function is
stored. Therefore, a system integrator can easily check
whether there are such indirect function calls based on
binary code.

3.4 Security Analysis

The HSDefender technique protects important stack struc-
tures, shared function pointers, and local function pointers.
However, it is still possible that a variable can be overwritten
by a pointer in the heap or BSS. Then, an attack through a file
name, like in [2], canbedeployed.There is toomuchoverhead
if we protect every variable either by hardware or software.
But, for important variables, such as in FILE structure,we can
use software to encrypt them. For example, a filename or a file
descriptor id can be regarded as a possible “function pointer”

to the external file system. This requires a software approach
to protect the integrity of any file structure. For embedded
systems without file systems, the concern of such attacks is
not necessary. How to protect the FILE structure from buffer
overflow attacks will be one of our future research topics.

4 COMPARISON AND ANALYSIS

In this section, we first compare and analyze the two
methods for Stack Smashing Protection, the first component
of HSDefender (Section 4.2). Then we discuss hardware cost
and time performance of Function Pointer Protection, the
second component of HSDefender (Section 4.3). Finally, we
compare the protection of our HSDefender technique with
other existing work.

4.1 The Comparison of the Two Methods for Stack
Smashing Protection

The two methods of stack smashing protection of
HSDefender, hardware boundary check and secure function
call, are compared with respect to security, hardware cost,
and time performance.

Security. Both methods guarantee that it is extremely
hard for a hacker to use stack smashing attacks to execute
the inserted hostile code. However, hardware boundary check
provides a even better security than secure function call
because, as discussed in Section 3.2, hardware boundary check
protects frame pointers, return addresses, and arguments,
while secure function call only protects return addresses.

Hardware Cost. Both methods need very simple hard-
ware. Hardware boundary check only needs a comparator that
can compare if the target’s address of a write operation is
equal to or greater than the value of fp. Secure function call
needs two components: anXOR-operation unit that XORs the
return address and the key (to generate a signature), and a
comparator to compare if two register values are equal.

To have a realistic comparison, we designed and
synthesized the hardware based on the two methods,
assuming 16-bit word length. We describe our hardware
designs by VHDL in RTL (Register Transfer Level) and
perform simulation and synthesis using Synopsis. The
hardware architectures for the comparators for hardware
boundary check and secure function call are shown in Fig. 6.
The synthesis results are shown in Table 1.

From Table 1, hardware boundary check has less
hardware cost compared with secure function call. The
overall time performance is discussed next.
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Fig. 5. (a) The PLT without protection. (b) The PLT with protection.

Fig. 6. The comparators (a) for hardware boundary check and (b) for secure function call.



Time Performance. As most modern CPUs are designed
with pipelining, both methods introduce very little over-
head. To give a realistic comparison, we analyze time
overhead of the two methods based on the five-phase
pipeline architecture of DLX [24]. The five phases are: IF
(instruction fetch), ID (instruction decode), EX (execution),
MEM (memory access), and WB (write back). To make a fair
comparison, the worst case is considered.

Hardware Boundary Check. Using this method, we
compare the target’s address with the value of fp for each
write operation. We can add the additional hardware to
perform the comparison, while the write operation can be
performed at the same time in MEM phase. The buffer
overflow exception is issued only when the address is
greater than or equal to the value of fp; otherwise, nothing
happens. Therefore, there is no overhead.

Secure Function Call. “SCALL” adds two more opera-
tions to the original “CALL”: One is to generate the
signature and the other is to push the signature onto the
stack. Considering the worst case, it needs two extra clock
cycles to finish, although it is possible to overlap the first
operation (generate the signature by XORing) with the
pipeline stalls caused by “CALL.” “SRET” adds three more
operations to the original “RET”: 1) Load (SP ) and (SP þ 4)
to temporary registers T1 and T2, 2) generate S0 by XORing
T2 with the key stored in register R, and 3) Compare S0 with
T1. So, in the worst case, three extra clock cycles are added
for each “SRET.” In total, there are at most five extra clock
cycles for each call using secure function call method.

The overheads introduced by the two approaches are
summarized in Table 2.

Recommendations. Based on the above analysis, our
recommendations are listed in Table 3. If security and
performance are the major concerns, hardware boundary
check is recommended, which needs simpler hardware
and does not introduce overhead. If easy software

implementation is the major concern, secure function call is

recommended. The performance experiments in Section 5

show that the average overhead for MiBench on a Stron-

gARM simulator is small for secure function call.

4.2 Analysis for Component 2 of HSDefender

Function pointer protection, component 2 of HSDefender,

needs to decrypt a function pointer by XORing the address

of a function with the key. Its “SJMP” instruction needs to

add more operations to “JMP”: XOR the given address with

the key. In the worst case, the extra clock cycles for each call

through function pointer is one clock cycle. Based on their

similar operations, similar hardware components can be

used for function pointer protection as that for secure

function call.

4.3 The Comparison of Protection

Our HSDefender technique can defend against more types

of buffer overflow attacks by combining its two components

compared with the previous work. Using its stack smashing

protection component, it can defend against stack smashing

attacks no matter what return addresses or frame pointers

are used. HSDefender can defend against local function

pointer attacks and shared function pointer table attacks in

various places, which cannot be achieved by most of the

previous work. The security comparisons with previous

important work are summarized in Table 4.
In the table, “No” denotes that the corresponding

method listed in Column “Methods” fails to protect a

vulnerable program from the corresponding attacks under

field “Attacks”; “Yes” denotes that the method succeeds;

“Yes/No” denotes that the method either fails or

succeeds depending on certain circumstances. The “Yes/

No” under column “arguments” has different meanings

for IBM SSP and our HSDefender. In many cases, IBM

SSP can defend against stack smashing attacks through

arguments. But, it fails in some cases such as when the

program has a structure that contains both a pointer and

a character array. Our HSDefender can completely defend

against any attacks through arguments if hardware

boundary check is used in stack smashing protection.

Although arguments are not protected if secure function

call is used, it is very hard for a hacker to exploit

arguments because all function pointers are protected by

two components of HSDefender. HSDefender that uses

secure function call can protect a system against frame

pointer attacks because the change of fp can be captured

through the signature comparison. PointGuard can protect

the arguments if they are pointers, so we put the “Yes/

No” in the column “arguments.”

450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

TABLE 1
The Synthesis Results by Synopsis

TABLE 2
The Overheads for Each Function Call

TABLE 3
The Recommendations Based on Different Concerns
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TABLE 4
The Security Comparison of HSDefencer with the Previous Work

TABLE 5
The Comparison of the Execution Time of the Original Program and the Protected Program

on the SimpleScalar/ARM Simulator (SA-11 Core)



While the combination of StackGuard and PointGuard
can provide similar protection as HSDefender does,
HSDefender has the following advantages:

1. The code protected by HSDefender needs less
memory space compared to the code protected by
StackGuard and PointGuard.

2. HSDefender causes much less overhead compared
with the combination of StackGuard and Point-
Guard. Typically, it causes 5-10 percent overhead if
the combination of StackGuard and PointGuard is
used. As shown next, HSDefender causes about
0.1 percent overhead on average.

5 EXPERIMENTS

In this section, we experiment with our HSDefender
technique on the benchmarks from MiBench, a free,
commercially representative embedded benchmark suite
[25]. As in the analysis in Section 4, if the hardware
boundary check method is used as stack smashing protec-
tion, there is no performance overhead. Function pointers
are rarely used in embedded applications; therefore, the
total overhead approximates 0 if hardware boundary check
is used. So, in this section, we only consider the case that the
secure function call method is used as stack smashing
protection.

The SimpleScalar/ARM Simulator [18] that is config-
ured as the StrongARM-110 microprocessor architecture is
used as the test platform. Various benchmarks are
selected from MiBench and compiled as ARM-elf execu-
tables using a GNU ARM-elf cross compiler [26]. The
pipeline architecture of a StrongARM-110 microprocessor
is similar to that of DLX, which we use as the exemplary
architecture when analyzing the performance in Section 4.
For each benchmark, we add the corresponding overhead
into the assembly code obtained by the cross compiler
and then generate the simulated protected executable.
Protected executables and original ones are executed by
the SimpleScalar/ARM simulator and the total clock
cycles are recorded and compared. The test results are
shown in Table 5.

From Table 5, the results show that there is very little
overhead caused by HSDefender. The average overhead is
0.097 percent. Therefore, HSDefender can effectively protect
real-time embedded systems.

6 CONCLUSION AND WORK IN PROGRESS

In this paper, we proposed the Hardware/Software Defend-
ing Technique (HSDefender) to defend embedded systems
against buffer overflow attacks. Considering protection and
checking together, HSDefender provides a mechanism that
can effectively protect embedded systems against buffer
overflow attacks and efficiently check if a component has
been protected, evenwithout the presence of source code.We
classifiedbufferoverflowattacks into twocategories and then
provided two corresponding defending components. We
analyzed and experimented on our HSDefender technique
with MiBench, a free and commercially representative
embedded benchmark suite, on the SimpleScalar/ARM

simulator. The results show that our HSDefender technique

can defend more types of buffer overflow attacks with much

less overhead compared with the previous work. HSDefen-

der is more suitable for embedded system integration than

the previous approaches. We are currently working on

extending HSDefender so the protection can be directly

enforced by hardware with less software modification.
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