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Communications over a secure network

secure network

B (Bob)A (Alice)
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Communications over an insecure network

insecure network

B (Bob)A (Alice)

C (attacker)

A talks to B on an insecure network
⇒ need for cryptography in order to make communications secure

for instance, encrypt messages to preserve secrets.
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
e.g. encryption and signatures.
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
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encryption decryption
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
e.g. encryption and signatures.

Signatures

signature ok?
signature verification

private key public key
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Example

Denning-Sacco key distribution protocol [Denning, Sacco, 1981]
(simplified)

k fresh

B (Bob)A (Alice)

{s}k

{{k}skA
}pkB

The goal of the protocol is that the key k should be a secret key, shared
between A and B . So s should remain secret.
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The attack

The (well-known) attack against this protocol.

as A (Alice)
A (Alice)

k fresh {{k}skA
}pkC

{s}k

B (Bob)

{{k}skA
}pkB

C (attacker)

The attacker C impersonates A and obtains the secret s.
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The corrected protocol

k fresh

{s}k

A (Alice) B (Bob)

{{A,B , k}skA
}pkB

Now C cannot impersonate A because in the previous attack, the first
message is {{A,C , k}skA

}pkB
, which is not accepted by B .
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Examples

Many protocols exist, for various goals:

secure channels: SSH (Secure SHell);
SSL (Secure Socket Layer), renamed TLS (Transport Layer Security);
IPsec

e-voting

contract signing

certified email

wifi (WEP/WPA/WPA2)

banking

mobile phones

. . .
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Why verify security protocols ?

The verification of security protocols has been and is still a very active
research area.

Their design is error prone.

Security errors not detected by testing:
appear only in the presence of an
attacker.

Errors can have serious consequences.
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Models of protocols

Active attacker:

The attacker can intercept all messages sent on the network

He can compute messages

He can send messages on the network
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Models of protocols: the symbolic model

The symbolic model or “Dolev-Yao model” is due to Needham and
Schroeder (1978) and Dolev and Yao (1983).

Cryptographic primitives are blackboxes. sencrypt

Messages are terms on these primitives. sencrypt(Hello, k)

The attacker is restricted to compute only using these primitives.
⇒ perfect cryptography assumption

So the definitions of primitives specify what the attacker can do.
One can add equations between primitives.
Hypothesis: the only equalities are those given by these equations.

This model makes automatic proofs relatively easy.
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Models of protocols: the computational model

The computational model has been developped at the beginning of the
1980’s by Goldwasser, Micali, Rivest, Yao, and others.

Messages are bitstrings. 01100100

Cryptographic primitives are functions on bitstrings.

sencrypt(011, 100100) = 111

The attacker is any probabilistic polynomial-time Turing machine.

The security assumptions on primitives specify what the attacker
cannot do.

This model is much more realistic than the symbolic model, but until
recently proofs were only manual.
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Models of protocols: side channels

The computational model is still just a model, which does not exactly
match reality.

In particular, it ignores side channels:

timing

power consumption

noise

physical attacks against smart cards

which can give additional information.
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Security properties: trace and equivalence properties

Trace properties: properties that can be defined on a trace.

Symbolic model: they hold when they are true for all traces.
Computational model: they hold when they are true except for a set of
traces of negligible probability.

Equivalence (or indistinguishability) properties: the attacker cannot
distinguish two protocols (with overwhelming probability)

Give compositional proofs.
Hard to prove in the symbolic model.
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Security properties: secrecy

The attacker cannot obtain information on the secrets.

Symbolic model:

(syntactic) secrecy: the attacker cannot obtain the secret (trace
property)
strong secrecy: the attacker cannot distinguish when the value of the
secrecy changes (equivalence property)

Computational model: the attacker can distinguish the secret from a
random number only with negligible probability (equivalence property)
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Security properties: authentication

If A thinks she is talking to B , then B thinks he is talking to A, with the
same protocol parameters.

Symbolic model: formalized using correspondence assertions of the
form “if some event has been executed, then some other events have
been executed” (trace property).

Computational model: matching conversations or session identifiers,
which essentially require that the messages exchanged by A and B are
the same up to negligible probability (trace property).
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Verifying protocols in the symbolic model

Main idea (for most verifiers):

Compute the knowledge of the attacker.

Difficulty: security protocols are infinite state.

The attacker can create messages of unbounded size.

Unbounded number of sessions of the protocol.
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Verifying protocols in the symbolic model

Solutions:

Bound the state space arbitrarily:
Trace properties: exhaustive exploration (model-checking: FDR,
SATMC, . . . );
find attacks but not prove security.

Bound the number of sessions:

Trace properties: insecurity is NP-complete (with reasonable
assumptions).
OFMC, Cl-AtSe
Equivalence properties: a few recent decision procedures and tools,
e.g. [Cheval et al, CCS 2011], [Chadha et al, ESOP 2012]

Unbounded case:
the problem is undecidable.
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Solutions to undecidability

To solve an undecidable problem, we can

Use approximations, abstraction.

Not always terminate.

Rely on user interaction or annotations.

Consider a decidable subclass.
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Solutions to undecidability

Not always terminate

Logics (BAN, PCL, . . . )

Abstraction

Typing (Cryptyc)

Maude-NPA (narrowing)
Strong tagging scheme

User help

Decidable subclass

Horn clauses (ProVerif)

Scyther (strand spaces)

Theorem proving (Isabelle)Control-flow analysis

Tree automata (TA4SP)

Bruno Blanchet (INRIA, ENS, CNRS) ETAPS March 2012 21 / 48



Introduction Symbolic Model Computational Model Implementations Conclusion

ProVerif

False attack: I don’t know

Horn clauses

Resolution with selection

Non-derivable: the property is true Derivation

Derivability queries

Automatic translator

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication,
process equivalencesPrimitives: rewrite rules, equations

Attack: the property is false

Bruno Blanchet (INRIA, ENS, CNRS) ETAPS March 2012 22 / 48



Introduction Symbolic Model Computational Model Implementations Conclusion

Features of ProVerif

Fully automatic.

Works for unbounded number of sessions and message space.

Handles a wide range of cryptographic primitives, defined by rewrite
rules or equations.

Handles various security properties: secrecy, authentication, some
equivalences.

Does not always terminate and is not complete. In practice:

Efficient: small examples verified in less than 0.1 s;
complex ones in a few minutes.
Very precise: no false attack in our tests for secrecy and authentication.
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Syntax of the process calculus

Pi calculus + cryptographic primitives

M,N ::= terms
x , y , z , . . . variable
a, b, c , s, . . . name
f (M1, . . . ,Mn) constructor application

P ,Q ::= processes

M〈N〉.P output
M(x).P input
0 nil process
P | Q parallel composition
!P replication
(νa)P restriction
let x = g(M1, . . . ,Mn) in P else Q destructor application
if M = N then P else Q conditional
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Constructors and destructors

Two kinds of operations:

Constructors f are used to build terms
f (M1, . . . ,Mn)

Example

Shared-key encryption sencrypt(M,N).

Destructors g manipulate terms
let x = g(M1, . . . ,Mn) in P else Q

Destructors are defined by rewrite rules g(M1, . . . ,Mn)→ M.

Example

Decryption sdecrypt(M ′
,N): sdecrypt(sencrypt(m, k), k)→ m.

We represent in the same way public-key encryption, signatures, hash
functions, . . .
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Example: The Denning-Sacco protocol (simplified)

Message 1. A→ B : {{k}skA
}pkB

k fresh
Message 2. B → A : {s}k

(νskA)(νskB)let pkA = pk(skA) in let pkB = pk(skB) in

c〈pkA〉.c〈pkB〉.

(A) ! c(x pkB).(νk)c〈pencrypt(sign(k , skA), x pkB)〉.

c(x).let s = sdecrypt(x , k) in 0

(B) | ! c(y).let y ′ = pdecrypt(y , skB) in

let k = checksign(y ′, pkA) in c〈sencrypt(s, k)〉
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The Horn clause representation

The first encoding of protocols in Horn clauses was given by Weidenbach
(1999).

The main predicate used by the Horn clause representation of protocols is
attacker:

attacker(M) means “the attacker may have M”.

We can model actions of the attacker and of the protocol participants
thanks to this predicate.

Processes are automatically translated into Horn clauses (joint work with
Mart́ın Abadi).
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Coding of primitives

Constructors f (M1, . . . ,Mn)
attacker(x1) ∧ . . . ∧ attacker(xn)→ attacker(f (x1, . . . , xn))

Example: Shared-key encryption sencrypt(m, k)

attacker(m) ∧ attacker(k)→ attacker(sencrypt(m, k))

Destructors g(M1, . . . ,Mn)→ M

attacker(M1) ∧ . . . ∧ attacker(Mn)→ attacker(M)

Example: Shared-key decryption sdecrypt(sencrypt(m, k), k)→ m

attacker(sencrypt(m, k)) ∧ attacker(k)→ attacker(m)
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Coding of a protocol

If a principal A has received the messages M1, . . . ,Mn and sends the
message M,

attacker(M1) ∧ . . . ∧ attacker(Mn)→ attacker(M).

Example

Upon receipt of a message of the form pencrypt(sign(y , skA), pkB),
B replies with sencrypt(s, y):

attacker(pencrypt(sign(y , skA), pkB))→ attacker(sencrypt(s, y))

The attacker sends pencrypt(sign(y , skA), pkB) to B , and intercepts his
reply sencrypt(s, y).
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Proof of secrecy

Theorem (Secrecy)

If attacker(M) cannot be derived from the clauses, then M is secret.

The term M cannot be built by an attacker.

The resolution algorithm will determine whether a given fact can be
derived from the clauses.

Remark: Soundness and completeness are swapped.
The resolution prover is complete
(If attacker(M) is derivable, it finds a derivation.)
⇒ The protocol verifier is sound
(If it proves secrecy, then secrecy is true.)
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Resolution with free selection

R = H → F R ′ = F ′

1 ∧ H ′ → F ′

σH ∧ σH ′ → σF ′

where σ is the most general unifier of F and F ′

1,
F and F ′

1 are selected.

The selection function selects:

a hypothesis not of the form attacker(x) if possible,

the conclusion otherwise.

Key idea: avoid resolving on facts attacker(x).

Resolve until a fixpoint is reached.
Keep clauses whose conclusion is selected.

Theorem

The obtained clauses derive the same facts as the initial clauses.
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Other security properties

Correspondence assertions:
If an event has been executed, then some other events must have
been executed.

Process equivalences

Strong secrecy
Equivalences between processes that differ only by terms they contain
(joint work with Mart́ın Abadi and Cédric Fournet)

In particular, proof of protocols relying on weak secrets.
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Sound approximations

Main approximation = repetitions of actions are ignored:
the clauses can be applied any number of times.

In M〈N〉.P , the Horn clause model considers that P can always be
executed.

These approximations can cause (rare) false attacks.

We have built an algorithm that reconstructs attacks from derivations
from Horn clauses, when the derivation corresponds to an attack (with
Xavier Allamigeon).
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Results

Tested on many protocols of the literature.
More ambitious case studies:

Certified email (with Mart́ın Abadi)
JFK (with Mart́ın Abadi and Cédric Fournet)
Plutus (with Avik Chaudhuri)

Case studies by others:
E-voting protocols (Delaune, Kremer, and Ryan; Backes et al)
Zero-knowledge protocols, DAA (Backes et al)
Shared authorisation data in TCG TPM (Chen and Ryan)
Electronic cash (Luo et al)
. . .

Extensions and tools:
Extension to XOR and Diffie-Hellman (Küsters and Truderung)
Web service verifier TulaFale (Microsoft Research).
Translation from HLPSL, input language of AVISPA (Gotsman,
Massacci, Pistore)
Verification of implementations (FS2PV, Spi2Java).
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Verifying protocols in the computational model

1 Linking the symbolic and the computational models

2 Adapting techniques from the symbolic model

3 Direct computational proofs
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Linking the symbolic and the computational models

Computational soundness theorems:

Secure in the
symbolic model

⇒
secure in the

computational model

modulo additional assumptions.

Approach pioneered by Abadi & Rogaway [2000]; many works since
then.
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Linking the symbolic and the computational models:
application

Indirect approach to automating computational proofs:

1. Automatic symbolic
protocol verifier

↓
2. Computational

proof in the soundness proof in the

symbolic model −−−−−−→ computational model
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Various approaches

Trace mapping [Micciancio & Warinschi 2004], followed by others

Computational trace 7→ symbolic trace

up to negligible probability.

computational soundness for trace properties (authentication), for
public-key encryption, signatures, hash functions, . . .
computational soundness for observational equivalence [Comon-Lundh
& Cortier 2008]
modular computational soundness proofs.

Backes-Pfitzmann-Waidner library

UC-based approach [Canetti & Herzog 2006]
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Advantages and limitations

+ symbolic proofs easier to automate

+ reuse of existing symbolic verifiers

− additional hypotheses:

− strong cryptographic primitives
− length-hiding encryption or modify the symbolic model
− honest keys [but see Comon-Lundh et al, POST 2012]
− no key cycles

Going through the symbolic model is a detour

An attempt to solve these problems:
symbolic model in which we specify what the attacker cannot do
[Bana & Comon-Lundh, POST 2012]
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Adapting techniques from the symbolic model

Some symbolic techniques can also be adapted to the computational
model:

Logics: computational PCL, CIL

Type systems: computationally sound type system

Well-typed ⇒ secure in the computational model
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Direct computational proofs

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare & Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious
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Mechanizing proofs by sequences of games (1)

CryptoVerif, www.cryptoverif.ens.fr

generates proofs by sequences of games.

proves secrecy and correspondence properties.

provides a generic method for specifying properties of
many cryptographic primitives.

works for N sessions (polynomial in the security parameter), with an
active attacker.

gives a bound on the probability of an attack (exact security).

automatic and user-guided modes.

Similar tool by Ts̆ahhirov and Laud [2007], using a different game
representation (dependency graph).
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Mechanizing proofs by sequences of games (2)

CertiCrypt, http://software.imdea.org/~szanella/

Machine-checked cryptographic proofs in Coq

Interesting case studies, e.g. OAEP

Good for proving primitives: can prove complex mathematical
theorems

Requires much human effort

Improved by EasyCrypt: generates CertiCrypt proofs from proof
sketches (sequence of games and hints)

Idea also followed by Nowak et al.
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Verifying protocol implementations

Errors may appear in the protocol implementation, even if the
specification is secure.

⇒ one needs to prove the implementation itself, not only the
specification.

Proving implementations is more difficult.

Handle a full programming language.
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Generating implementations from specifications

Specification

Verifier

Compiler

Proof

Implementation
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Generating implementations from specifications: Spi2Java

Specification

Compiler

Proof

Implementation
Spi2Java

Java

Spi2ProVerif

Verifier

spi-calculus

ProVerif

ProVerif input
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Extracting specifications from implementations

F#

Implementation

FS2PV
F#
Java Elijah

FS2CV
ProVerif model

Protocol model

LySa model
CryptoVerif model

Analyzer

ProVerif
CryptoVerif
LySatool

Verifier
Proof

C ProVerif model ProVerifsymb. ex.
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Adapted and new methods

CSur:
H1CSur analyzer

C implementation Horn clauses Proof

F7/F⋆: typing F# implementations

Computational F7: use typing to test whether game transformations
are applicable.

ASPIER: verify C implementations by model-checking

Dupressoir et al [CSF’11] use the general purpose C verifier VCC to
prove memory safety and security.
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Conclusion and future challenges

Very active research area

Progress in all directions:

symbolic model
computational model
implementations
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Conclusion and future challenges

Very active research area

Progress in all directions:

symbolic model: fairly mature
computational model: much work to do
implementations: much work to do

Physical attacks: only the beginning.
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