Security-Reliability Tradeoff Analysis of Artificial Noise Aided Two-Way Opportunistic Relay Selection

Xiaojin Ding, Student Member, IEEE, Tiecheng Song, Member, IEEE, Yulong Zou, Senior Member, IEEE, Xiaoshu Chen, and Lajos Hanzo, Fellow, IEEE

Abstract

In this paper, we investigate the physical-layer security of cooperative communications relying on multiple two-way relays using the decode-and-forward (DF) protocol in the presence of an eavesdropper, where the eavesdropper appears to tap the transmissions of both the source and of the relay. The design tradeoff to be resolved is that the throughput is improved by invoking two-way relaying, but the secrecy of wireless transmissions may be degraded, since the eavesdropper may overhear the signals transmitted by both the source and relay nodes. We conceive an artificial noise aided two-way opportunistic relay selection (ANaTWORS) scheme for enhancing the security of the pair of source nodes communicating with the assistance of multiple two-way relays. Furthermore, we analyze both the outage probability and intercept probability of the proposed ANaTWORS scheme, where the security and reliability are characterized in terms of the intercept probability and the security outage probability. For comparison, we also provide the security-reliability tradeoff (SRT) analysis of both the traditional direct transmission and of the one-way relaying schemes. It is shown that the proposed ANaTWORS scheme outperforms both the conventional direct transmission, as well as the one-way relay methods in terms of its SRT. More specifically, in the low main-user-to-eavesdropper ratio (MUER) region, the proposed ANaTWORS scheme is capable of guaranteeing secure transmissions, whereas no SRT gain is achieved by conventional one-way relaying. In fact, the one-way relaying scheme may even be inferior to the traditional direct transmission scheme in terms of its SRT.

Index Terms-Artificial noise, opportunistic relay selection, physical-layer security, security-reliability tradeoff (SRT), two-way relay.

I. INTRODUCTION

COOPERATIVE relaying has attracted substantial research interests from both the academic and industrial community, since it is capable of mitigating both the shadowing

[^0]and fast-fading effects of wireless channels. There are two popular relaying protocols, namely the amplify-and-forward (AF) [1], [2] as well as the decode-and-forward (DF) [3], [4]. In the case of AF relaying, the selected relay multiplies its received signals by a gain factor and then forward them to the destination [1], [2]. By contrast, the DF relay decodes its received signals and then the selected relay forward its decoded signal to the destination [3], [4]. Additionally, in [5], both AF and DF relaying schemes are investigated. In general, closer to the source, DF relaying has a high probability of successful decoding and flawless retransmission from the relay to the destination from a reduced distance [6]. By contrast, close to the destination the DF relay has just as bad reception as the destination itself, hence it often inflicts error propagation. Fortunately in the vicinity of the destination AF relying tends to outperform DF relaying [6]. Additionally, [7] also shows that adaptive DF outperforms AF in terms of its frame error rate (FER).

At the time of writing this paper, physical-layer security [8], [9] in cooperative relay networks is receiving a growing research attention as benefit of its capability of protecting wireless communications against eavesdropping attacks. In [10] and [11], the physical-layer security of MIMO-aided relaying networks has been explored, demonstrating that the secrecy capacity can indeed be improved by using MIMO-aided relays. Additionally, Tekin and Yener [12] proposed the cooperative jamming philosophy, and studied the attainable secrecy rate with the objective of improving the physical-layer security. As a further development, Long et al. [13] investigated cooperative jamming schemes in bidirectional secrecy communications. In [14] and [15], beamforming techniques have been investigated and significant wireless secrecy capability improvements were demonstrated with the aid of beamforming techniques. Additionally, the impact of antenna selection on secure two-way relaying communications has been analyzed in [16].

As a design alternative, relay selection schemes may also be used for improving the physical-layer security of wireless communications. One-way relaying has been analyzed in [17][24]. Specifically, hybrid relaying and jamming schemes are explored in [17]-[22]. In [17]-[19], joint AF relaying and jammer selection schemes have been investigated. Additionally, hybrid cooperative beamforming and cooperative jamming have been proposed in [20] and [21]. In [22], joint DF relaying and cooperative jamming schemes have been investigated. Moreover, in [23], the AF- and DF-based optimal relay selection schemes have been proposed. The associated intercept probabilities have also been analyzed in the context of both AF- and DFbased one-way relaying schemes, where an eavesdropper is only
capable of wiretapping the transmissions of the relays. By contrast, in [24], an eavesdropper was tapping the transmissions of both the source and of the relays. Moreover, the securityreliability tradeoff (SRT) has been explored in the context of the proposed opportunistic relay selection scheme in the high main-user-to-eavesdropper ratio (MUER) region, where the MUER is defined as the ratio of the average channel gain of the main links (spanning from the source to the destination) to that of the wiretap links (spanning from the source to the eavesdropper). Additionally, two-way relaying has been explored in [25]-[31]. Specifically, Mo et al. [25] investigated two-way AF relaying schemes relying on either two slots or three slots demonstrated that the three-slot scheme performs better than the two-slot scheme, when the transmitted source powers approach zero. In [26], DF relaying has been invoked for improving the wireless security of bidirectional communications, where a relay is invoked for transmitting artificial noise in order to perturb the eavesdropper's reception both in the first and in the second transmission slot. In [27], joint relay and jammer selection of two-way relay networks have been proposed. In [28], Wang et al. explored hybrid cooperative beamforming and jamming of two-way relay networks. In [29], secure relay and jammer selection was conceived for the physical-layer security improvement of a wireless network having multiple intermediate nodes and eavesdroppers, where the links between the source and the eavesdropper are not considered. In [30], three different categories of relay and jammer selection have been considered, where the channel coefficients between the legitimate nodes and the eavesdroppers are used both for relay selection and for jammer selection. In [31], a wireless network consisting of two source nodes is considered and multiple DF relay nodes are involved in the presence of a single eavesdropper. The outage probability (OP) has been analyzed for the two-way DF scheme relying on three transmission slots.

Motivated by the above considerations, we investigate a wireless network supporting a pair of source nodes with the aid of N two-way DF relays in the presence of an eavesdropper. In contrast to [17]-[24], we explore a two-way relaying aided wireless network. Furthermore, we propose an artificial noise aided twoway opportunistic relay selection (ANaTWORS) scheme, and analyze the SRT of the wireless network investigated. Due to the channel state information (CSI) estimation error, it is impossible to guarantee that no interference is received at the relay nodes, caused by the specially designed artificial noise. Moreover, the impact of the artificial noise both on the relays and on the eavesdropper is characterized, which will be taken into account when evaluating the wireless SRT of the proposed ANaTWORS scheme. Against this background, the main contributions of this paper are summarized as follows.

First, we propose an ANaTWORS scheme for protecting the ongoing transmissions against eavesdropping. To be specific, in the first time slot, S_{1} transmits its signals to the relays, and S_{2} transmits artificial noise in order to protect the signals transmitted by S_{1} against eavesdropping. Similarly to the first time slot, S_{2} transmits its signals to the relays in the second time slot under the protection of artificial noise transmitted by S_{1}. In

Fig. 1. Wireless network consisting of a pair of source S_{1}, S_{2}, and N relays in the presence of an eavesdropper E.
the third time slot, the relay forward the encoded signals to S_{1} and S_{2}.

Second, we present the mathematical SRT analysis of the proposed ANaTWORS scheme in the presence of artificial noise imposed both on the relays and on the eavesdropper for transmission over Rayleigh fading channels. Moreover, we assume that the teletraffic of S_{1} and S_{2} is different. Closed-form expressions are obtained both for the OP and for the intercept probability (IP) of both S_{1} and S_{2}.

Finally, it is shown that as the impact of artificial noise on the main link is reduced and on the wiretap link is increased, the SRT of the proposed ANaTWORS scheme is improved. Furthermore, our performance evaluations reveal that the proposed ANaOTWRS scheme consistently outperforms both the traditional direct transmission regime and the one-way transmission scheme [24] in terms of its SRT.

The organization of this paper is as follows. In Section II, we briefly characterize the physical-layer security of a two-way wireless network. In Section III, the SRT analysis of the conventional direct transmission scheme as well as of the proposed ANaOTWRS scheme communicating over a Rayleigh channel is carried out. Our performance evaluations are detailed in Section IV. Finally, in Section V, we conclude the paper.

II. System Model and Relay Selection

A. System Model

As shown in Fig. 1, we consider a wireless network consisting of a pair of source nodes, denoted by S_{1} and S_{2}, plus N two-way DF relays, denoted by $R_{i}, i \in\{1, \ldots, N\}$, which communicate in the presence of an eavesdropper E, where E is assumed to be within the coverage area of S_{1}, S_{2}, and R_{i}. All nodes are equipped with a single antenna. We assume that there is no direct link between S_{1} and S_{2} due to the path loss. Furthermore, in the spirit of [21], both the main and the wiretap links are modeled by Rayleigh fading channels, where the main and wiretap links are represented by the solid and dashed lines in Fig. 1, respectively. Let $h_{s_{1} i}, h_{s_{2} i}, h_{s_{1} e}$, and $h_{s_{2} e}, i \in\{1, \ldots, N\}$, represent the $S_{1}-R_{i}, S_{2}-R_{i}, S_{1}-E$,
and $S_{2}-E$ channel gains, respectively. We assume that the channel coefficients $h_{s_{1} i}, h_{s_{2} i}, h_{s_{1} e}$, and $h_{s_{2} e}$ are mutually independent zero-mean complex Gaussian random variables (RVs) with variances of $\sigma_{s_{1} i}^{2}, \sigma_{s_{2} i}^{2}, \sigma_{s_{1} e}^{2}$, and $\sigma_{s_{2} e}^{2}$, respectively. Moreover, we assume that the $S_{1}-R_{i}$ and $S_{2}-R_{i}$ links are reciprocal, i.e., we have, $h_{s_{1} i}=h_{i s_{1}}$ and $h_{s_{2} i}=h_{i s_{2}}$. For simplicity, we assume $\sigma_{s_{1} i}^{2}=\alpha_{s_{1} i} \sigma_{m}^{2}, \sigma_{s_{2} i}^{2}=\alpha_{s_{2} i} \sigma_{m}^{2}, \sigma_{s_{1} e}^{2}=\alpha_{s_{1} e} \sigma_{e}^{2}$, and $\sigma_{s_{2} e}^{2}=\alpha_{s_{2} e} \sigma_{e}^{2}$, where σ_{m}^{2} and σ_{e}^{2} represent the average channel gains of the main links and of the wiretap links, respectively. Moreover, let $\lambda_{m e}=\sigma_{m}^{2} / \sigma_{e}^{2}$, which is referred to as the MUER.

The thermal noise of any node is modeled as a complex Gaussian random variable with a zero mean and a variance of N_{0}, denoted by $n_{s_{1}}, n_{s_{2}}, n_{i}$, and n_{e}, respectively. Following [31], the operation of the two-way DF scheme relying on opportunistic relay selection is split into three time slots. We assume that the nodes in the network are synchronized with each other. In the first time slot, S_{1} transmits its signal, denoted by $x_{s_{1}}$ to the relays, and then S_{2} transmits the artificial noise $\omega_{s_{2}}$ simultaneously. In the second time slot, S_{2} transmits its signal $x_{s_{2}}$ to the relays and S_{1} transmits artificial noise simultaneously. In the third time slot, the selected relay forward the signal x_{r} to both S_{1} and S_{2}, where we have $x_{r}=x_{s_{1}} \oplus x_{s_{2}}$, and \oplus denotes the XOR operation. Furthermore, the proposed relay selection can be coordinated by relying on a distributed pattern (governed by a timer). Without loss of generality, we assume $E\left[\left|x_{s_{j}}\right|^{2}\right]=1$, $E\left[\left|\omega_{s_{j}}\right|^{2}\right]=N_{0}, j=1,2$.

Furthermore, we also assume that S_{1} and S_{2} have to convey different-rate traffic, denoted by $R_{s_{1}}$ and $R_{s_{2}}$, respectively. For comparison, the one-way relaying scheme (ORS) of [24] can be simply extended to a two-way scenario relying on four time slots. To be specific, S_{1} transmits its signals to the relays in the first time slot, S_{2} transmits its signals to the relays in the second time slot, and the selected relay forward the decoded signals to S_{2} and S_{1} in the third time slot and the fourth time slot, respectively.

B. Two-Way Relaying Scheme

In this section, we first consider the physical-layer security of the two-way relaying scheme. We then propose our ANaTWORS arrangement.

1) S_{1} and S_{2} Transmit: In the first time slot, S_{1} transmits its signal to the relays under the protection of artificial noise transmitted by S_{2}. For the sake of a fair power consumption comparison with both the direct transmission and the ORS schemes, the total transmit power of S_{1} and S_{2} is constrained to P_{s}, thus the transmit powers of S_{1} and S_{2} are denoted by $P_{s} / 2$. As mentioned above, it is impossible to guarantee that the artificial noise perfectly lies in the null space of the $S_{1}-R_{i}$ channels, due to the ubiquitous CSI estimation error, hence leading to a certain interference received at R_{i}. The impact of the artificial noise on R_{i} is quantified by α. The signals received at R_{i} transmitted by S_{1} can be expressed as

$$
\begin{equation*}
y_{s_{1} i}=h_{s_{1} i} \sqrt{P_{s} / 2} x_{s_{1}}+h_{s_{2} i} \sqrt{\alpha P_{s} / 2} \omega_{s_{2}}+n_{i} . \tag{1}
\end{equation*}
$$

From (1), the achievable rate of the $S_{1}-R_{i}$ link can be 23 expressed as

$$
\begin{equation*}
C_{s_{1} i}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{1} i}\right|^{2} \gamma_{s}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}\right) \tag{2}
\end{equation*}
$$

where the factor $1 / 3$ arises from the fact that three orthogonal 233 time slots are required for completing the signal transmission 234 from S_{1} to S_{2} via R_{i}.

Naturally, the artificial noise is specially designed to interfere with the eavesdropper. However, its perturbation imposed on the eavesdropper may be imperfect due to CSI estimation errors, which is characterized by β. Hence, the signals received at E from S_{1} can be expressed as

$$
\begin{equation*}
y_{s_{1} e}=h_{s_{1} e} \sqrt{P_{s} / 2} x_{s_{1}}+h_{s_{2} e} \sqrt{\beta P_{s} / 2} \omega_{s_{2}}+n_{e} \tag{3}
\end{equation*}
$$

From (3), the achievable rate of the $S_{1}-E$ link can be formulated as

$$
\begin{equation*}
C_{s_{1} e}^{s}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{1} e}\right|^{2} \gamma_{s}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}\right) \tag{4}
\end{equation*}
$$

In the second time slot, S_{2} transmits its signals to the relay nodes, and S_{1} simultaneously transmits artificial noise. Similarly, the signals received at R_{i} transmitted by S_{2} can be expressed as

$$
\begin{equation*}
y_{s_{2} i}=h_{s_{2} i} \sqrt{P_{s} / 2} x_{s_{2}}+h_{s_{1} i} \sqrt{\alpha P_{s} / 2} \omega_{s_{1}}+n_{i} \tag{5}
\end{equation*}
$$

Using (5), the achievable rate of the $S_{2}-R_{i}$ link is given by

$$
\begin{equation*}
C_{s_{2} i}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{2} i}\right|^{2} \gamma_{s}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}\right) \tag{6}
\end{equation*}
$$

Similarly, the signals received at E from S_{2} can be represented as

$$
\begin{equation*}
y_{s_{2} e}=h_{s_{2} e} \sqrt{P_{s} / 2} x_{s_{2}}+h_{s_{1} e} \sqrt{\beta P_{s} / 2} \omega_{s_{1}}+n_{e} \tag{7}
\end{equation*}
$$

while the achievable rate of the $S_{2}-E$ link is

$$
\begin{equation*}
C_{s_{2} e}^{s}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{2} e}\right|^{2} \gamma_{s}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}\right) \tag{8}
\end{equation*}
$$

2) Decoding Set: In this section, we analyze the successful decoding set of the wireless network portrayed in Fig. 1. As shown in [24], the resultant successful decoding set of the ORS scheme is given by Ω, where $\Omega=\left\{\phi, D_{1}, D_{2}, \ldots, D_{n}, \ldots, D_{2^{N}-1}\right\}, \phi$ denotes the empty set and Φ_{n} represents the nth nonempty subset of the N relays, $n \in\left\{1,2, \ldots, 2^{N}-1\right\}$. The successful decoding sets of the relays defined as those that are capable of successfully decoding $x_{s_{1}}$ and $x_{s_{2}}$ are denoted by Ω_{1} and Ω_{2}, respectively. Consequently, the set of the relays that successfully decode both $x_{s_{1}}$ and $x_{s_{2}}$ is denoted by Ψ, which is formulated as $\Psi=\left\{\phi, \Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}, \ldots, \Phi_{2^{N}-1}\right\}$, where we have $\Psi=\Omega_{1} \cap \Omega_{2}$.

For example, the decoding sets of Ω_{j} and Ψ have been shown as Table I, where we have $N=3$ and $j \in\{1,2\}$.:

TABLE I
Decoding Sets of Ω_{j} And Ψ, When $N=3$ AND When $j \in\{1,2\}$

Ω_{j}	Elements	Ψ	Elements
ϕ	ϕ	ϕ	
D_{1}	$\left\{R_{1}\right\}$	Φ_{1}	ϕ
D_{2}	$\left\{R_{2}\right\}$	Φ_{2}	$\phi,\left\{R_{1}\right\}$
D_{3}	$\left\{R_{3}\right\}$	Φ_{3}	$\phi,\left\{R_{3}\right\}$
D_{4}	$\left\{R_{1}, R_{2}\right\}$	Φ_{4}	$\phi,\left\{R_{1}\right\},\left\{R_{2}\right\},\left\{R_{1}, R_{2}\right\}$
D_{5}	$\left\{R_{2}, R_{3}\right\}$	Φ_{5}	$\phi,\left\{R_{2}\right\},\left\{R_{3}\right\},\left\{R_{2}, R_{3}\right\}$
D_{6}	$\left\{R_{1}, R_{3}\right\}$	Φ_{6}	$\phi,\left\{R_{1}\right\},\left\{R_{3}\right\},\left\{R_{1}, R_{3}\right\}$
D_{7}	$\left\{R_{1}, R_{2}, R_{3}\right\}$	Φ_{7}	$\phi,\left\{R_{1}\right\},\left\{R_{2}\right\},\left\{R_{3}\right\},\left\{R_{1}, R_{2}\right\},\left\{R_{2}, R_{3}\right\}$
			$\left\{R_{1}, R_{3}\right\},\left\{R_{1}, R_{2}, R_{3}\right\}$

$$
\begin{equation*}
C_{s_{1} i}<R_{s_{1}} \text { or } C_{s_{2} i}<R_{s_{2}}, i \in\{1,2, \ldots, N\} \tag{9}
\end{equation*}
$$

while the event of $\Phi=\Phi_{n}$ can be expressed as

$$
\begin{align*}
& C_{s_{1} i}>R_{s_{1}} \text { and } C_{s_{2} i}>R_{s_{2}}, i \in \Phi_{n} \\
& C_{s_{1} j}<R_{s_{1}} \text { or } C_{s_{2} j}<R_{s_{2}}, j \in \bar{\Phi}_{n} \tag{10}
\end{align*}
$$

269 where $\bar{\Phi}_{n}$ represents the complementary set of Φ_{n}.
3) Relay Transmits: Without loss of generality, here we as-

The source S_{1} may invoke successive interference cancelation (SIC), thus, (18) can be written as

$$
\begin{equation*}
y_{s_{1}}(i)=h_{i s_{1}} \sqrt{P_{s}} x_{s_{2}}+n_{s_{1}} \tag{12}
\end{equation*}
$$

Similarly, S_{2} can also invoke SIC, thus the signals received at S_{2} from R_{i} can be written as

$$
\begin{equation*}
y_{s_{2}}(i)=h_{i s_{2}} \sqrt{P_{s}} x_{s_{1}}+n_{s_{2}} \tag{14}
\end{equation*}
$$

The signals received at E from R_{i} can be written as

$$
\begin{equation*}
y_{i e}=h_{i e} \sqrt{P_{s}} x_{r}+n_{e}=h_{i e} \sqrt{P_{s}}\left(x_{s_{1}} \oplus x_{s_{2}}\right)+n_{e} \tag{16}
\end{equation*}
$$

4) An Optimal Two-Way Relay Selection Criterion: In 282 this section, we present the relay selection criterion of the

ANaTWORS scheme, which can be given by

$$
\begin{align*}
o & =\arg \max _{i \in \Phi_{n}}\left[\min \left(C_{i s_{1}}(i), C_{i s_{2}}(i)\right)\right] \\
& =\arg \max _{i \in \Phi_{n}}\left[\min \left(\left|h_{i s_{1}}\right|^{2},\left|h_{i s_{2}}\right|^{2}\right)\right] \tag{17}
\end{align*}
$$

where o denotes the selected optimal relay. Moreover, from a 284 more practical point of view, the CSIs $\left|h_{i s_{1}}\right|^{2}$ and $\left|h_{i s_{2}}\right|^{2}$ can be 285 estimated in practical wireless communications, using channel 286 estimation schemes [32].
5) Condition of Intercept Event: In the $\Phi=\phi$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}, when $C_{s_{1} e}^{s}>R_{s_{1}}$.

In the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}>R_{s_{1}}$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}.

In the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}<R_{s_{1}}$ scenario, if $C_{s_{2} e}^{s}<R_{s_{2}}$, an eavesdropper cannot successfully wiretap the signal transmitted by S_{1}. If $C_{s_{2} e}^{s}>R_{s_{2}}$, the signal received at E can be rewritten as

$$
\begin{equation*}
y_{o e}=h_{o e} \sqrt{P_{s}} x_{s_{1}}+n_{e} \tag{18}
\end{equation*}
$$

The achievable rate of the $R_{o}-E$ link can be formulated as

$$
\begin{equation*}
C_{o e}=\frac{1}{3} \log _{2}\left(1+\left|h_{o e}\right|^{2} \gamma_{s}\right) \tag{19}
\end{equation*}
$$

Clearly, in the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}<R_{s_{1}}$ case, an eavesdropper can only successfully wiretap the signal transmitted by S_{1} when $C_{s_{2} e}^{s}>R_{s_{2}}$ and $C_{o e}>R_{s_{1}}$.

Similarly, we can formulate the condition of an eavesdropper successfully wiretapping the signal transmitted by S_{2} as

In the $\Phi=\phi$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{2}, provided that $C_{s_{2} e}^{s}>R_{s_{2}}$.

In the $\Phi=\Phi_{n}$ and $C_{s_{2} e}^{s}>R_{s_{2}}$ scenario, an eavesdropper can successfully wiretap the signal transmitted by S_{2}.

In the $\Phi=\Phi_{n}, C_{s_{2} e}^{s}<R_{s_{2}}, C_{s_{1} e}^{s}>R_{s_{1}}$, and $C_{o e}>R_{s_{2}}$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}.

III. SECURITY-RELIABILITY TRADEOFF ANALYSIS

 Over Rayleigh Fading ChannelsIn this section, we analyze both the OP and IP of the proposed ANaTWORS schemes over Rayleigh fading channels.

A. SRT Analysis of the Proposed ANaTWORS Scheme

1) SRT Analysis of S_{1} : In the ANaTWORS scheme, a relay will only be chosen from the set Φ_{n}. With the aid of Shannon [33] and the law of total probability [34], the OP of the $S_{1} \rightarrow S_{2}$ link relying on the ANaTWORS scheme can be formulated as

$$
\begin{align*}
P_{\text {out } s_{1}}^{\text {single }}= & \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\Phi_{n}\right) \tag{20}
\end{align*}
$$

In the case of $\Phi=\phi$, no relay is chosen for forwarding the signals, which leads to $C_{o s_{2}}=0$ for $\Phi=\phi$. Thus, (20) can be

289290292

321 rewritten as

$$
\begin{equation*}
P_{\text {out_ } s_{1}}^{\text {single }}=\operatorname{Pr}(\Phi=\phi)+\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\Phi_{n}\right) \tag{21}
\end{equation*}
$$

Based on (9) and (10), (21) can be expressed as

$$
\begin{align*}
P_{\text {out_s }_{1}}^{\text {single }}= & \prod_{i=1}^{N}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& +\sum_{n=1}^{2^{N}-1}\left(\prod _ { i \in \Phi _ { n } } \left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} j}\right|^{2}}{\alpha\left|h_{s_{2} j}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} j}\right|^{2}}{\alpha\left|h_{s_{1} j}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \left.\times \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)\right) \tag{22}
\end{align*}
$$

323 where we have $\Delta_{1}=\left(2^{3 \cdot R_{s_{1}}}-1\right) / \gamma_{s}$, and $\Delta_{2}=$ $324\left(2^{3 \cdot R_{s_{2}}}-1\right) / \gamma_{s}$.
325 Based on Appendix A, $\operatorname{Pr}\left(\frac{\left|h_{s_{i} i}\right|^{2}}{\left.\alpha\left|h_{s_{2}}\right|\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)$ can be 326 expressed as

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)=\frac{\sigma_{s_{1} i}^{2}}{\Delta_{1} \alpha \gamma_{s} \sigma_{s_{2} i}^{2}+\sigma_{s_{1} i}^{2}} \exp \left(-\frac{2 \Delta_{1}}{\sigma_{s_{1} i}^{2}}\right) . \tag{23}
\end{equation*}
$$

327 According to Appendix $\left.B, \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)\right)$ can be 328 expressed as

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)=\sum_{i \in \Phi_{n}}\left(\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right. \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1} \\
& \times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \\
& -\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right. \\
& \times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1}
\end{aligned}
$$

$$
\begin{align*}
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1}\right. \\
& \left.\left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right)\right) . \tag{24}
\end{align*}
$$

Substituting (23) and (24) into (22), $P_{\text {out_ } s_{1}}^{\text {single }}$ can be obtained.
In our ANaTWORS scheme, an eavesdropper can overhear 331 the signals transmitted by S_{1}, S_{2}, and R_{i}. Using the law of total 332 probability [34] and the definition of an intercept event, we can 333 express the IP of the $S_{1} \rightarrow E$ link as

$$
\begin{align*}
P_{\text {int }-s_{1}}^{\text {single }}= & \operatorname{Pr}\left(C_{s_{1} e}^{s}>R_{s_{1}}, D=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{1} e}^{s}>R_{s_{1}}, \Phi=\Phi_{n}\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{1} e}^{s}<R_{s_{1}}, C_{s_{2} e}^{s}>R_{s_{2}}, C_{o e}>R_{s_{1}}, \Phi=\Phi_{n}\right) . \tag{25}
\end{align*}
$$

Using (4), (8), and (19), (25) can be expressed as
$+\sum_{n=1}^{2^{N}-1}\left[\prod_{i \in \Phi_{n}}\left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right.$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right)$
$\times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right)$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right]$
$+\sum_{n=1}^{2^{N}-1}\left[\prod_{i \in \Phi_{n}}\left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right.$

336

$$
\begin{align*}
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
& \left.\times \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)\right] \tag{26}
\end{align*}
$$

According to Appendix C,

$$
\operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)
$$

338 can obtained as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
& \quad=\left(1-\frac{\Delta_{2} \gamma_{s} \beta \sigma_{s_{2} e}^{2}}{\Delta_{2} \gamma_{s} \beta \sigma_{s_{1} e}^{2}+\sigma_{s_{2} e}^{2}}\right) \exp \left(-\frac{2 \Delta_{2}}{\sigma_{s_{2} e}^{2}}\right) \tag{27}
\end{align*}
$$

According to Appendix $\mathrm{D}, \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)$ can be formu340 lated as

$$
\begin{align*}
& \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)=\sum_{i \in D_{n}}\left[\left(1+\sum_{m=1}^{2^{\left|D_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\right.\right. \\
& \left.\quad\left(\frac{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right) \\
& \left.\quad \times \exp \left(-\frac{\Delta_{1}}{\sigma_{i e}^{2}}\right)\right] \tag{28}
\end{align*}
$$

341 Substituting (27) and (28) into (26), $P_{\text {int } S_{1}}^{\text {single }}$ can be obtained.
342 2) SRT Analysis of S_{2} : Similarly to S_{1}, the OP of S_{2} can be 343 expressed as

$$
\begin{equation*}
P_{\text {out }-s_{2}}^{\text {single }}=\operatorname{Pr}(\Phi=\phi)+\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{1}}<R_{s_{2}}, \Phi=\Phi_{n}\right) \tag{29}
\end{equation*}
$$

Meanwhile, the IP of S_{2} can be shown to obey

$$
\begin{align*}
P_{\text {int }-s_{2}}^{\text {single }}= & \operatorname{Pr}\left(C_{s_{2} e}^{s}>R_{s_{2}}, D=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{2} e}^{s}>R_{s_{2}}, \Phi=\Phi_{n}\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{2} e}^{s}<R_{s_{2}}, C_{s_{1} e}^{s}>R_{s_{1}}, C_{o e}>R_{s_{2}}, \Phi=\Phi_{n}\right) . \tag{30}
\end{align*}
$$

Clearly, $P_{\text {out }-s_{2}}^{\text {single }}$ and $P_{\text {int_s } s_{2}}^{\text {single }}$ can be obtained similarly to $P_{\text {out } s_{1}}^{\text {single }}$ and $P_{\text {int_S }}^{\text {single }}$.
3) SRT analysis of S_{1} and S_{2} : The IP and OP of the pair 347 of sources is defined as the average IP and OP of S_{1} and $S_{2}, \quad 348$ respectively:

$$
\begin{equation*}
P_{\mathrm{int}}^{\text {single }}=\frac{P_{\mathrm{int}-s_{1}}^{\text {single }}+P_{\mathrm{int}-s_{2}}^{\text {single }}}{2} \tag{31}
\end{equation*}
$$

and

IV. Performance Evaluation

For comparison, the SRT analysis of the conventional direct transmission scheme operating without relays is also provided. The total IP and OP of S_{1} and S_{2} with the traditional direct transmission scheme is defined as

$$
\begin{equation*}
P_{\mathrm{int}}^{\mathrm{direct}}=\frac{P_{\mathrm{int}^{\mathrm{direct}}{ }_{1}}^{\mathrm{di}}+P_{\mathrm{int} _s_{2}}^{\mathrm{direct}}}{2} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{out}}^{\mathrm{direct}}=\frac{P_{\mathrm{out}-s_{1}}^{\mathrm{dirrect}}+P_{\mathrm{out}-s_{2}}^{\mathrm{direct}}}{2} \tag{34}
\end{equation*}
$$

 are given by $P_{\text {int }_{-} 1_{1}}^{\text {direct }}=\exp \left(-\frac{\Lambda_{1}}{\sigma_{s_{1}} e}\right), \quad P_{\text {int }_{-} s_{2}}^{\text {direct }}=\exp \left(-\frac{\Lambda_{2}}{\sigma_{s_{2} e}}\right)$, $P_{\text {out } s_{1}}^{\text {direct }}=1-\exp \left(-\frac{\Lambda_{1}}{\sigma_{s_{1} s_{2}}^{2}}\right)$, and $P_{\text {out_ } s_{2}}^{\text {direct }}=1-\exp \left(-\frac{\Lambda_{2}}{\sigma_{s_{2} s_{2}}^{2}}\right)$, respectively. Moreover, we have $\Lambda_{1}=\left(2^{2 R_{s_{1}}}-1\right) / \gamma_{s}$ and $\Lambda_{2}=$ $\left(2^{2 R_{s_{2}}}-1\right) / \gamma_{s}$. Noting that $\sigma_{s_{2} s_{1}}^{2}, \sigma_{s_{1} e}^{2}$, and $\sigma_{s_{2} e}^{2}$ are the expected values of the RVs $\left|h_{s_{2} s_{1}}\right|^{2},\left|h_{s_{1} e}\right|^{2}$, and $\left|h_{s_{2} e}\right|^{2}$, respectively.

In this section, we present both our numerical and simulation results for the traditional direct transmission, as well as for the ORS [24] and for the ANaTWORS schemes in terms of their SRTs. Moreover, the analytic IP versus OP results of the direct transmission and ANaTWORS schemes are obtained by plotting (33), (34), (31), and (32), respectively. It is pointed that the IP versus OP results of the ORS scheme are calculated from (27) and (19) of [24], where α is rewritten as $\left(2^{4 R_{d}}-1\right) / \gamma_{s}$. Throughout this performance evaluation, we assumed $\alpha_{s_{1} i}=$ $\alpha_{s_{2} i}=\alpha_{s_{1} e}=\alpha_{s_{2} e}=\alpha_{s_{1} s_{2}}=1$.

We first consider the effect of different MUERs. Fig. 2 depicts the SRTs of both the direct transmission, of the ORS [24] and of the ANaTWORS schemes for different MUERs. Both the numerical and simulation results characterizing the SRT of the ANaTWORS scheme are provided in this figure. Observe from Fig. 2 that as the MUER decreases, all the IPs of the direct transmission, of the ORS and of the ANaTWORS schemes are increased, which can be explained by observing that upon decreasing the MUER, an eavesdropper can achieve a higher achievable rate. Moreover, Fig. 2 also illustrates that the proposed ANaTWORS scheme generally has a lower IP than the traditional direct transmission and ORS regime for $M U E R=3 \mathrm{~dB}$ and $M U E R=0 \mathrm{~dB}$. Additionally, the difference between the analytic and simulated IP versus OP curves

Fig. 2. IP versus OP of the direct transmission, ORS, and ANaTWORS schemes for different MUERs $\lambda_{m e}$ and for $N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 3. IP versus OP of the direct transmission, ORS and ANaTWORS schemes for different number of relays associated with an MUER of $\lambda_{m e}=$ 0 dB , which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).
of the ANaTWORS scheme is negligible, demonstrating the accuracy of our SRT analysis.

In Fig. 3, we show the IP verus OP performance of both the direct transmission, as well as of the ORS and of the ANaTWORS scheme for different number of relays N. We can observe from Fig. 3 that as the number of relays N increases from $N=4$ to 8 , the IP of all schemes is reduced at a specific OP, which means that increasing the number of relays improves the security versus reliability tradeoff of wireless transmissions. Additionally, Fig. 3 also demonstrates that IP versus OP performance of the proposed ANaTWORS scheme is better than that of the direct transmission and of the ORS schemes for all the N values considered.

Fig. 4. IP versus OP of the direct transmission, ORS, OSJ-MMISR, and ANaTWORS schemes for different α and β associated with an MUER of $\lambda_{m e}=0 \mathrm{~dB}, N=8$, which were calculated from [24, (33), (34) and [27]], $[(24),(19)]$, and (31) and (32).

Fig. 4 illustrates the IP versus OP of both the direct transmission, as well as of the ORS, of the optimal selection with jamming with max-min instantaneous secrecy rate (OSJMMISR) [30] and of the ANaTWORS schemes for different self-interference and interference factors, where $(\beta, \alpha)=$ $(0.95,0.06)$ and $(\beta, \alpha)=(0.99,0.02)$ are considered. Observe from Fig. 4 that as the artificial noise parameters of $(0.95,0.06)$ are changed to $(0.99,0.02)$, the IP versus OP performance of the ANaTWORS scheme improves. Furthermore, Fig. 4 also illustrates that the proposed ANaTWORS scheme outperforms the direct transmission, the ORS and the OSJ-MMISR schemes in terms of its IP versus OP tradeoff for both the $(\beta, \alpha)=(0.95,0.06)$ and $(\beta, \alpha)=(0.99,0.02)$ cases, since the CSI of the eavesdropper links cannot be readily acquired, the CSIs of the wiretap links are not taken into account in the proposed ANaTWORS scheme. For the sake of a fair comparison, the CSIs of the wiretap links in the OSJ-MMISR scheme [30] are not considered either.

Fig. 5 shows the IP versus OP of the direct transmission, of the ORS and of the ANaTWORS schemes for different tele-traffic ratios of S_{1} and S_{2}, namely, for $R_{s_{1}} / R_{s_{2}}=0.5, R_{s_{1}} / R_{s_{2}}=1$, and $R_{s_{1}} / R_{s_{2}}=2$. Observe from Fig. 5 that the ANaTWORS scheme performs best for $R_{s_{1}} / R_{s_{2}}=1$. Moreover, the difference remains modest for asymmetric traffic ratios of both $R_{s_{1}} / R_{s_{2}}=0.5$ and $R_{s_{1}} / R_{s_{2}}=2$. This is due to the fact that for a fixed power allocation case, some of the power will be wasted, when the instantaneous channel gain is sufficiently high and the traffic demand is low. Additionally, no beneficial reliability improvement is achieved, despite degrading the security. This is interesting, hence we will adopt an adaptive power allocation scheme for improving the security of wireless transmissions in our future research. Finally, Fig. 5 also illustrates that the proposed ANaTWORS scheme performs better than the direct transmission and ORS schemes for all three traffic-ratios considered.

Fig. 5. IP versus OP of the direct transmission, ORS and ANaTWORS schemes for different traffic associated with an MUER of $\lambda_{m e}=0 \mathrm{~dB}, N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 6. IP x OP of the direct transmission, ORS and ANaTWORS schemes with $\lambda_{m e}=0 \mathrm{~dB}$ and $N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 6 illustrates the (IP x OP) product of the direct transmission, of the ORS, and of the ANaTWORS schemes for different SNRs. Observe from Fig. 6 that upon increasing the SNR, all the schemes can exhibit an (IP x OP) peak, but the maximum (IP x OP) product of the proposed ANaTWORS scheme is smallest of the three schemes, which demonstrates its superiority.

V. Conclusion

In this paper, we proposed an ANaTWORS scheme for a wireless network consisting of the pair of source nodes S_{1} and S_{2}, and multiple two-way relays $R_{i}, i \in\{1,2, \ldots, N\}$, communicating in the presence of an eavesdropper. We analyzed the SRT performance of both the ANaTWORS and of the traditional direct transmission schemes. Moreover, due to the presence of CSI estimation errors, it was impossible to guarantee that the
specially designed artificial noise was projected onto the null space of R_{i}, hence resulting in a certain amount of interference imposed on the relays. Hence, the self-interference and the interference factors were taken into account for characterizing the wireless SRTs of the proposed ANaTWORS, where the security and reliability are quantified in terms of the IP and OP, respectively. It was also illustrated that the ANaTWORS scheme outperforms both the conventional direct transmission and the ORS schemes in terms of its (IP x OP) product. Furthermore, as the number of relays increases, the SRT of the ANaTWORS scheme improves.

Here, we only explored the allocation of a fixed power to the source nodes and relays nodes. In our future work, we will adopt an adaptive power allocation scheme in this scenario. Specifically, the power can be dynamically allocated according to the near instantaneous channel gain and the traffic demands of users.

Appendix A

Upon introducing the notation of $X_{1}=\left|h_{s_{1}}\right|^{2}$ and $X_{2}=$ $\left|h_{s_{2} i}\right|^{2}$, noting that RVs $\left|h_{s_{1} i}\right|^{2}$ and $\left|h_{s_{2} i}\right|^{2}$ are exponentially distributed and independent of each other. Thus, the probability density functions (PDFs) of X_{1} and X_{2} are $f_{X_{1}}\left(x_{1}\right)=$ $\frac{1}{\sigma_{s_{1} i}^{2}} \exp \left(-\frac{x_{1}}{\sigma_{s_{1} i}^{2}}\right)$ and $f_{X_{2}}\left(x_{2}\right)=\frac{1}{\sigma_{s_{2} i}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} i}}\right)$, respectively. Hence, $\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}<\Delta_{1}\right)$ can be expressed as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}<\Delta_{1}\right) \\
& =\operatorname{Pr}\left[x_{1}<\left(x_{2} \alpha \gamma_{s} \Delta_{1}+2 \Delta_{1}\right)\right] \\
& =\int_{0}^{\infty} \frac{1}{\sigma_{s_{2} i}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} i}^{2}}\right)\left(1-\exp \left(-\frac{2 \Delta_{1}+\Delta_{1} \alpha \gamma_{s} x_{2}}{\sigma_{s_{1} i}^{2}}\right)\right) d x_{2} \\
& =1-\frac{\sigma_{s_{1} i}^{2}}{\Delta_{1} \alpha \gamma_{s} \sigma_{s_{2} i}^{2}+\sigma_{s_{1} i}^{2}} \exp \left(-\frac{2 \Delta_{1}}{\sigma_{s_{1} i}^{2}}\right) \tag{A.1}
\end{align*}
$$

where $\sigma_{s_{1} i}^{2}$ and $\sigma_{s_{2} i}^{2}$ are the expected values of $\mathrm{RVs}\left|h_{s_{1} i}\right|^{2}$ and 474 $\left|h_{s_{2} i}\right|^{2}$, respectively.

Appendix B

Using the law of total probability [34], the term 477 $\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)$ can be rewritten as

$$
\begin{align*}
& +\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.\left.<\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{2}}\right|^{2}<\left|h_{i s_{1}}\right|^{2}\right)\right] \tag{B.1}
\end{align*}
$$

Denoting

$\Upsilon_{0}=\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\left|h_{i s_{1}}\right|^{2}\right.$,

$$
\left.\left|h_{i s_{1}}\right|^{2}<\left|h_{i s_{2}}\right|^{2}\right)
$$

481
and
$\Upsilon_{1}=\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\left|h_{i s_{2}}\right|^{2}\right.$,

$$
\left.\left|h_{i s_{2}}\right|^{2}<\left|h_{i s_{1}}\right|^{2}\right), \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)
$$

482 yields

$$
\begin{equation*}
\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)=\sum_{i \in \Phi_{n}}\left(\Upsilon_{0}+\Upsilon_{1}\right) \tag{B.2}
\end{equation*}
$$

$$
\begin{align*}
\Upsilon_{0} & =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\int_{0}^{y} f_{V}(v) d v\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<y\right)\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)\right) d y\right) d x \tag{B.3}
\end{align*}
$$

Noting that RVs $\left|h_{j s_{1}}\right|^{2}$ and $\left|h_{j s_{2}}\right|^{2}$ are exponentially distributed and independent of each other, based on [18], we have $\operatorname{Pr}\left(X_{j}<y\right)=1-\exp \left(-\frac{y}{\sigma_{j s_{2}}^{2}}-\frac{y}{\sigma_{j s_{1}}^{2}}\right)$. Thus, $\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)$ can be expanded as

$$
\begin{align*}
& \quad \prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)=\prod_{j \in \Phi_{n}-\{i\}}\left(1-\exp \left(-\frac{y}{\sigma_{j s_{2}}^{2}}-\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right) \\
& =1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right] \tag{B.4}
\end{align*}
$$

494
where $A_{n}(m)$ represents the mth nonempty subset of $\Phi_{n}-\{i\}$, and $\left|A_{n}(m)\right|$ denotes the cardinality of the subset $A_{n}(m) \cdot \sigma_{j s_{1}}^{2}$ and $\sigma_{j s_{2}}^{2}$ are the expected values of $\mathrm{RVs}\left|h_{j s_{1}}\right|^{2}$ and $\left|h_{j s_{2}}\right|^{2}$, 497 respectively.

Substituting (B.4) into (B.3) yields

$$
\begin{aligned}
\Upsilon_{0}= & \int_{0}^{\Delta_{1}} \frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\int_{0}^{x} \frac{1}{\sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{1}}^{2}}\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
& \left.\left.\times\left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right]\right) d y\right) d x
\end{aligned}
$$

$$
=1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)-\frac{\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}\right)\right)
$$

$$
+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}
$$

$$
\times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)
$$

$$
-\sum_{m=1}^{2^{|\Phi n|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right.
$$

$$
\times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1}
$$

$$
\begin{equation*}
\left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \tag{B.5}
\end{equation*}
$$

where $\left|\Phi_{n}\right|$ denotes the cardinality of the set Φ_{n}.
Now Υ_{1} can be rewritten as

$$
\begin{align*}
\Upsilon_{1} & =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\int_{0}^{x} f_{V}(v) d v\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<x\right)\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<x\right)\right) d y\right) d x . \tag{B.6}
\end{align*}
$$

Similarly to (B.4), $\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<x\right)$ can be expressed 501 as
$\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<x\right)=1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}$

$$
\begin{equation*}
\times \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right] \tag{B.7}
\end{equation*}
$$

$$
\begin{align*}
\Upsilon_{1}= & \int_{0}^{\Delta_{1}}\left(\frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\int_{x}^{\infty} \frac{1}{\sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{1}}^{2}}\right) d y\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
& \left.\left.\times\left[-\sum_{j \in A_{n}(m)}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right]\right)\right) d x \\
= & \int_{0}^{\Delta_{1}}\left(\frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\exp \left(-\frac{x}{\sigma_{i s_{1}}^{2}}\right)\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
= & \frac{\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}\right)\right) \\
& \left.\left.\left.+\sum_{j \in A_{n}(m)}^{2^{|\Phi n|-1}-1}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right]\right)\right) d x \\
& \times(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\right. \\
& \left.\left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)\right)^{-1} \\
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \tag{B.8}
\end{align*}
$$

Using (B.5) and (B.8), $\Upsilon_{0}+\Upsilon_{1}$ can be expressed as

$$
\begin{aligned}
& \Upsilon_{0}+\Upsilon_{1}=1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right) \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1} \\
& \times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \\
& -\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right. \\
& \times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1} \\
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((- 1) ^ { | A _ { n } (m) | } \left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\right.\right. \\
& \left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1} \\
& \times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \tag{B.9}
\end{align*}
$$

Substituting (B.9) into (B.2), $\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)$ can be 506 obtained.

Appendix C

Let X_{1} and X_{2} denote $\left|h_{s_{1} e}\right|^{2}$ and $\left|h_{s_{2} e}\right|^{2}$, respec- 509 tively. Noting that RVs $\left|h_{s_{1} e}\right|^{2}$ and $\left|h_{s_{2} e}\right|^{2}$ are exponen- 510 tially distributed and independent of each other with the 511 means of $\sigma_{s_{1} e}^{2}$ and $\sigma_{s_{2} e}^{2}$, respectively. Hence, the PDFs of 512 X_{1} and X_{2} are $f_{X_{1}}\left(x_{1}\right)=\frac{1}{\sigma_{s_{1} e}^{2}} \exp \left(-\frac{x_{1}}{\sigma_{s_{1} e}^{2}}\right)$ and $f_{X_{2}}\left(x_{2}\right)=513$ $\frac{1}{\sigma_{s_{2} e}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} e}^{2}}\right)$, respectively. Due to X_{1} and X_{2} are independent of each other, thus $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$. $\operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2}}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)$ can be obtained as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
= & \int_{2 \Delta_{2}}^{\infty} \int_{0}^{\left(x_{2}-2 \Delta_{2}\right) / \Delta_{2} \beta \gamma_{s}} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
= & \int_{2 \Delta_{2}}^{\infty} f_{X_{2}}\left(x_{2}\right)\left(\int_{0}^{\left(x_{2}-2 \Delta_{2}\right) / \Delta_{2} \beta \gamma_{s}} f_{X_{1}}\left(x_{1}\right) d x_{1}\right) d x_{2} \\
= & \left(1-\frac{\Delta_{2} \gamma_{s} \beta \sigma_{s_{2} e}^{2}}{\Delta_{2} \gamma_{s} \beta \sigma_{s_{1} e}^{2}+\sigma_{s_{2} e}^{2}}\right) \exp \left(-\frac{2 \Delta_{2}}{\sigma_{s_{2} e}^{2}}\right) . \tag{C.1}
\end{align*}
$$

Appendix D
Using the law of total probability [34], $\operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right)$ can 518 be written as

$$
\begin{align*}
& \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right) \\
= & \sum_{i \in \Phi_{n}} \operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
= & \sum_{i \in \Phi_{n}} \operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}\right) \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) . \tag{D.1}
\end{align*}
$$

We Denote $X_{j}=\min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right), \quad Y=\min \left(\left|h_{i s_{2}}\right|^{2}, \quad 520\right.$ $\left|h_{i s_{1}}\right|^{2}$), and $V \max _{j \in \Phi_{n}-\{i\}} X_{j}$. As mentioned above, RVs 521
$\left|h_{j s_{1}}\right|^{2}, \quad\left|h_{j s_{2}}\right|^{2}, \quad\left|h_{i s_{1}}\right|^{2}, \quad$ and $\quad\left|h_{i s_{2}}\right|^{2}$ are exponentially 523 distributed and independent of each other. Thus, Pr $524 \quad\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right)$ 525 can be rewritten as

$$
\begin{align*}
& \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\int_{0}^{y} f_{V}(v) d v\right) d y \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<y\right)\right) d y \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)\right) d y . \tag{D.2}
\end{align*}
$$

526 As mentioned above, $\operatorname{Pr}(Y<y)=1-\exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right)$, 527 the PDF of Y can be expressed as

$$
\begin{equation*}
f_{Y}(y)=\frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) . \tag{D.3}
\end{equation*}
$$

Substituting (B.4) and (D.3) into (D.2) yields

$$
\begin{align*}
& \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
& =\int_{0}^{\infty} \frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) d y \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \\
& \times \int_{0}^{\infty} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right] d y \\
& =1+\sum_{m=1}^{2^{\mid \Phi n} \mid-1}-1 \\
& \times(-1)^{\left|A_{n}(m)\right|}\left(\frac{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}} \sum_{j \in A_{n}(m)}\right. \tag{D.4}\\
& \left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}
\end{align*}
$$

529 As $\left|h_{i e}\right|^{2}$ obeys exponential distribution, the PDF of $\left|h_{i e}\right|^{2}$ is 530 given by

$$
\begin{equation*}
\operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}\right)=\exp \left(-\frac{\Delta_{1}}{\sigma_{i e}^{2}}\right) \tag{D.5}
\end{equation*}
$$

531 where $\sigma_{i e}^{2}$ is the expected value of $\mathrm{RV}\left|h_{i e}\right|^{2}$.
$532 \quad$ Substituting (D.4) and (D.5) into (D.1), $\operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right.$) can 533

References

[1] Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: Optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3114-3123, Aug. 2007.
[2] W. Liu and J. D. Li, "The maximum-SNR optimal weighting matrix for a class of amplify-and-forward MIMO relaying assisted orthogonal space time block coded transmission," IEEE Trans. Commun., vol. 63, no. 8, pp. 2864-2872, Aug. 2015.
[3] T. R. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, "Highperformance cooperative demodulation with decode-and-forward relays," IEEE Trans. Commun., vol. 55, no. 7, pp. 1427-1438, Jul. 2007.
[4] G. K. Young and N. C. Beaulieu, "SEP of decode-and-forward cooperative systems with relay selection in Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 1882-1894, May 2015.
[5] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behaviour," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[6] L. Wang and L. Hanzo, "Dispensing with channel estimation: Differentially modulated cooperative wireless communications," IEEE Commun. Surveys Tut., vol. 14, no. 3, pp. 836-857, Mar. 2012.
[7] M. Souryal and B. Vojcic, "Performance of amplify-and-forward and decode-and-forward relaying in Rayleigh fading with turbo codes," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2006.
[8] A. D. Wyner, "The wire-tap channel," Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355-1387, 1975.
[9] S. K. Leung-Yan-Cheong and M. E. Hellman, "The Gaussian wiretap channel," IEEE Trans. Inf. Theory, vol. IT-24, no. 4, pp. 451-456, Jul. 1978.
[10] J. Huang and A. L. Swindlehurst, "Cooperative jamming for secure communications in MIMO relay networks," IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4871-4884, Oct. 2011.
[11] A. Mukherjee and A. L. Swindlehurst, "Securing multi-antenna two-way relay channels with analog network coding against eavesdroppers," in Proc. IEEE 11th Int. Workshop Signal Process. Adv. Wireless Commun., Jun. 2010, pp. 1-5.
[12] E. Tekin and A. Yener, "The general Gaussian multiple access and twoway wire-tap channels: Achievable rates and cooperative jamming," IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2735-2751, Jun. 2008.
[13] H. Long, W. Xiang, J. Wang, Y. Y. Zhang, and W. B. Wang, "Cooperative jamming and power allocation with untrusty two-way relay nodes," IET Comтип., vol. 8, no. 13, pp. 2290-2297, Sep. 2014.
[14] A. Mukherjee and A. Swindlehurst, "Robust beamforming for security in MIMO wiretap channels with imperfect CSI," IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351-361, Jan. 2011.
[15] C. Jeong, I. Kim, and K. Dong, "Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system," IEEE Trans. Signal Process., vol. 60, no. 1, pp. 310-325, Jan. 2012.
[16] Z. Ding, M. Zheng, and P. Fan, "Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise," IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 2189-2203, Apr. 2014.
[17] Z. Ding, K. Leung, D. Goeckel, and D. Towsley, "Opportunistic relaying for secrecy communications: Cooperative jamming vs. relay chatting," IEEE Trans. Wireless Commun., vol. 10, no. 6, pp. 1725-1729, Jun. 2011.
[18] I. Krikidis, J. Thompson, and S. Mclaughlin, "Relay selection for secure cooperative networks with jamming," IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5003-5011, Oct. 2009.
[19] N. E. Zou and H. J. Li, "Effect of feedback delay on secure cooperative networks with joint relay and jammer selection," IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 415-418, Aug. 2013.
[20] H. M. Wang, F. Liu, and M. C. Yang, "Joint cooperative beamforming, jamming, and power allocation to secure AF relay systems," IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4893-4898, Oct. 2015.
[21] C Wang and H. M. Wang, "Robust joint beamforming and jamming for secure AF networks: Low-complexity design," IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2192-2198, May 2015
[22] C. Wang, H. M. Wang, and X. G. Xia, "Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks," IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 589-605, Feb. 2015.
[23] Y. Zou, X. Wang, and W. Shen, "Optimal relay selection for physical-layer security in cooperative wireless networks," IEEE J. Sel. Areas Commun., vol. 31, no. 10, pp. 2099-2111, Oct. 2013.
[24] Y. Zou, X. Wang, W. Shen, and L. Hanzo, "Security versus reliability analysis of opportunistic relaying," IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2653-2661, Jul. 2014.
[25] J. H. Mo, M. X. Tao, Y. Liu, and R. Wang, "Secure beamforming for MIMO two-way communications with an untrusted relay," IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2185-2199, May 2014.
[26] Z. Ding, M. Xu, J. Lu, and F. Liu, "Improving wireless security for bidirectional communication scenarios," IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2842-2848, Jul. 2012.
[27] J. C. Chen, R. Q. Zhang, L. Y. Song, Z. Han, and B. L. Jiao, "Joint relay and jammer selection for secure two-way relay networks," IEEE Trans. Inf. Forensics Security, vol. 7, no. 1, pp. 310-320, Feb. 2012.
[28] H. M. Wang, M. Luo, Q. Yin, and X. G. Xia, "Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks," IEEE Trans. Inf. Forensics Security, vol. 8, no. 12, pp. 2007-2020, Dec. 2013.
[29] H. Hui, A. Lee, G. Li, and J. Liang, "Secure relay and jammer selection for physical layer security," IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1147-1151, Aug. 2015.
[30] D. Ibrahim, E. Hassan, and S. EI-Dolil, "Relay and jammer selection schemes for improving physical layer security in two-way cooperative networks," Comput. Security, vol. 50, pp. 47-59, May 2015.
[31] P. N. Son and H. Y. Kong, "Exat outage proability of two-way decode-and-forward scheme with opportunistic relay selection under physical layer security," Wireless Pers. Commun., vol. 77, no. 4, pp. 2889-2917, Mar. 2014.
[32] G. Wang, F. Gao, W. Chen, and C. Tellambura, "Channel estimation and training design for two-way relay networks in time-selective fading environment," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 26812691, Aug. 2011.
[33] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, Oct. 1948.
[34] Y. Zou, Y. D. Yao, and B. Zheng, "An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks," IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5438-5445, Oct. 2010.

Xiaojin Ding (M'16) received the M.S. degree in electrical engineering in 2007 from Southeast University, Nanjing, China, in 2007, where he is currently working toward the Ph.D. degree with the National Mobile Communication Research Laboratory.

His research interests include cognitive radio, cooperative communications, and wireless security.

Tiecheng Song (M'12) received the Ph.D. degree in communication and information systems from Southeast University, Nanjing, China, in 2006.

He is a Full Professor with the Southeast University. His general research interests include cognitive radio and communications theory.

Yulong Zou (SM'13) received the B.Eng. degree in information engineering from Nanjing University of Posts and Telecommunications (NUPT), Nanjing, China, in July 2006; the first Ph.D. degree in electrical engineering from Stevens Institute of Technology, Hoboken, NJ, USA, in May 2012; and the second Ph.D. degree in signal and information processing from NUPT, Nanjing, China, in July 2012.

He is a Full Professor and a Doctoral Supervisor with NUPT. His research interests include a wide range of topics in wireless communications and signal processing, including cooperative communications, cognitive radio, wireless security, and energy-efficient communications.

Dr. Zou received the Ninth IEEE Communications Society Asia-Pacific Best Young Researcher Award in 2014 and coreceived the Best Paper Award at the 80th IEEE Vehicular Technology Conference in 2014. He is currently an Editor of IEEE Communications Surveys \& Tutorials, IET Communications, and China Communications. In addition, he has acted as a Technical Program Committee for various IEEE sponsored conferences, e.g., IEEE ICC/GLOBECOM/WCNC/VTC/ICCC, etc.

Xiaoshu Chen received the M.S. degree in information engineering from Southeast University, Nanjing, China.

He is a Full Professor with Southeast University. His general research interests include communications theory and vehicle area networks.

Lajos Hanzo (F'08) received the D.Sc. degree in electronics in 1976 and the Doctorate degree in 1983.

In 2016, he was admitted to the Hungarian Academy of Science, Budapest, Hungary. During his 40-year career in telecommunications, he has held various research and academic posts in Hungary, Germany, and the U.K. Since 1986, he has been with the School of Electronics and Computer Science, University of Southampton, U.K., where he holds the Chair in telecommunications. He has successfully supervised 111 Ph. D. students, co-authored 20 John Wiley/IEEE Press books on mobile radio communications, totalling in excess of 10000 pages, published $1600+$ research contributions on IEEE Xplore, acted both as Technical Program Committee member and General Chair of IEEE conferences, presented keynote lectures, and received a number of distinctions. Currently he is directing a 60 -strong academic research team, working on a range of research projects in the field of wireless multimedia communications sponsored by industry; the Engineering and Physical Sciences Research Council (EPSRC), U.K.; and the European Research Council's Advanced Fellow Grant. He is an enthusiastic supporter of industrial and academic liaison, and he offers a range of industrial courses. He has $25000+$ citations and an H-index of 60. For further information on research in progress and associated publications, see http://www-mobile.ecs.soton.ac.uk.

Dr. Hanzo is also a Governor of the IEEE Vehicular Technology Society. During 2008-2012, he was the Editor-in-Chief of the IEEE Press and a Chaired Professor with Tsinghua University, Beijing, China. In 2009, he received an honorary doctorate award by the Technical University of Budapest and in 2015, from the University of Edinburgh, Edinburgh, U.K., as well as the Royal Society's Wolfson Research Merit Award. He is a Fellow of the Royal Academy of Engineering, The Institution of Engineering and Technology, and EURASIP.

QUERIES

Q1. Author: Please provide expansion for acronyms "MIMO". If required. 717
Q2. Author: Please provide page range for Ref. [7]. 718
Q3. Author: Please provide the year in which "Xiaoshu Chen" received the M.S degree.
719
Q4. Author: Please provide the subject in which "Lajos Hanzo" received his Doctorate degree. Also provide the institutional 720 details form where he received both his degrees.721

Security-Reliability Tradeoff Analysis of Artificial Noise Aided Two-Way Opportunistic Relay Selection

Xiaojin Ding, Student Member, IEEE, Tiecheng Song, Member, IEEE, Yulong Zou, Senior Member, IEEE, Xiaoshu Chen, and Lajos Hanzo, Fellow, IEEE

Abstract

In this paper, we investigate the physical-layer security of cooperative communications relying on multiple two-way relays using the decode-and-forward (DF) protocol in the presence of an eavesdropper, where the eavesdropper appears to tap the transmissions of both the source and of the relay. The design tradeoff to be resolved is that the throughput is improved by invoking two-way relaying, but the secrecy of wireless transmissions may be degraded, since the eavesdropper may overhear the signals transmitted by both the source and relay nodes. We conceive an artificial noise aided two-way opportunistic relay selection (ANaTWORS) scheme for enhancing the security of the pair of source nodes communicating with the assistance of multiple two-way relays. Furthermore, we analyze both the outage probability and intercept probability of the proposed ANaTWORS scheme, where the security and reliability are characterized in terms of the intercept probability and the security outage probability. For comparison, we also provide the security-reliability tradeoff (SRT) analysis of both the traditional direct transmission and of the one-way relaying schemes. It is shown that the proposed ANaTWORS scheme outperforms both the conventional direct transmission, as well as the one-way relay methods in terms of its SRT. More specifically, in the low main-user-to-eavesdropper ratio (MUER) region, the proposed ANaTWORS scheme is capable of guaranteeing secure transmissions, whereas no SRT gain is achieved by conventional one-way relaying. In fact, the one-way relaying scheme may even be inferior to the traditional direct transmission scheme in terms of its SRT.

Index Terms-Artificial noise, opportunistic relay selection, physical-layer security, security-reliability tradeoff (SRT), two-way relay.

I. INTRODUCTION

COOPERATIVE relaying has attracted substantial research interests from both the academic and industrial community, since it is capable of mitigating both the shadowing

[^1]and fast-fading effects of wireless channels. There are two popular relaying protocols, namely the amplify-and-forward (AF) [1], [2] as well as the decode-and-forward (DF) [3], [4]. In the case of AF relaying, the selected relay multiplies its received signals by a gain factor and then forward them to the destination [1], [2]. By contrast, the DF relay decodes its received signals and then the selected relay forward its decoded signal to the destination [3], [4]. Additionally, in [5], both AF and DF relaying schemes are investigated. In general, closer to the source, DF relaying has a high probability of successful decoding and flawless retransmission from the relay to the destination from a reduced distance [6]. By contrast, close to the destination the DF relay has just as bad reception as the destination itself, hence it often inflicts error propagation. Fortunately in the vicinity of the destination AF relying tends to outperform DF relaying [6]. Additionally, [7] also shows that adaptive DF outperforms AF in terms of its frame error rate (FER).

At the time of writing this paper, physical-layer security [8], [9] in cooperative relay networks is receiving a growing research attention as benefit of its capability of protecting wireless communications against eavesdropping attacks. In [10] and [11], the physical-layer security of MIMO-aided relaying networks has been explored, demonstrating that the secrecy capacity can indeed be improved by using MIMO-aided relays. Additionally, Tekin and Yener [12] proposed the cooperative jamming philosophy, and studied the attainable secrecy rate with the objective of improving the physical-layer security. As a further development, Long et al. [13] investigated cooperative jamming schemes in bidirectional secrecy communications. In [14] and [15], beamforming techniques have been investigated and significant wireless secrecy capability improvements were demonstrated with the aid of beamforming techniques. Additionally, the impact of antenna selection on secure two-way relaying communications has been analyzed in [16].

As a design alternative, relay selection schemes may also be used for improving the physical-layer security of wireless communications. One-way relaying has been analyzed in [17][24]. Specifically, hybrid relaying and jamming schemes are explored in [17]-[22]. In [17]-[19], joint AF relaying and jammer selection schemes have been investigated. Additionally, hybrid cooperative beamforming and cooperative jamming have been proposed in [20] and [21]. In [22], joint DF relaying and cooperative jamming schemes have been investigated. Moreover, in [23], the AF- and DF-based optimal relay selection schemes have been proposed. The associated intercept probabilities have also been analyzed in the context of both AF- and DFbased one-way relaying schemes, where an eavesdropper is only
capable of wiretapping the transmissions of the relays. By contrast, in [24], an eavesdropper was tapping the transmissions of both the source and of the relays. Moreover, the securityreliability tradeoff (SRT) has been explored in the context of the proposed opportunistic relay selection scheme in the high main-user-to-eavesdropper ratio (MUER) region, where the MUER is defined as the ratio of the average channel gain of the main links (spanning from the source to the destination) to that of the wiretap links (spanning from the source to the eavesdropper). Additionally, two-way relaying has been explored in [25]-[31]. Specifically, Mo et al. [25] investigated two-way AF relaying schemes relying on either two slots or three slots demonstrated that the three-slot scheme performs better than the two-slot scheme, when the transmitted source powers approach zero. In [26], DF relaying has been invoked for improving the wireless security of bidirectional communications, where a relay is invoked for transmitting artificial noise in order to perturb the eavesdropper's reception both in the first and in the second transmission slot. In [27], joint relay and jammer selection of two-way relay networks have been proposed. In [28], Wang et al. explored hybrid cooperative beamforming and jamming of two-way relay networks. In [29], secure relay and jammer selection was conceived for the physical-layer security improvement of a wireless network having multiple intermediate nodes and eavesdroppers, where the links between the source and the eavesdropper are not considered. In [30], three different categories of relay and jammer selection have been considered, where the channel coefficients between the legitimate nodes and the eavesdroppers are used both for relay selection and for jammer selection. In [31], a wireless network consisting of two source nodes is considered and multiple DF relay nodes are involved in the presence of a single eavesdropper. The outage probability (OP) has been analyzed for the two-way DF scheme relying on three transmission slots.

Motivated by the above considerations, we investigate a wireless network supporting a pair of source nodes with the aid of N two-way DF relays in the presence of an eavesdropper. In contrast to [17]-[24], we explore a two-way relaying aided wireless network. Furthermore, we propose an artificial noise aided twoway opportunistic relay selection (ANaTWORS) scheme, and analyze the SRT of the wireless network investigated. Due to the channel state information (CSI) estimation error, it is impossible to guarantee that no interference is received at the relay nodes, caused by the specially designed artificial noise. Moreover, the impact of the artificial noise both on the relays and on the eavesdropper is characterized, which will be taken into account when evaluating the wireless SRT of the proposed ANaTWORS scheme. Against this background, the main contributions of this paper are summarized as follows.

First, we propose an ANaTWORS scheme for protecting the ongoing transmissions against eavesdropping. To be specific, in the first time slot, S_{1} transmits its signals to the relays, and S_{2} transmits artificial noise in order to protect the signals transmitted by S_{1} against eavesdropping. Similarly to the first time slot, S_{2} transmits its signals to the relays in the second time slot under the protection of artificial noise transmitted by S_{1}. In

Fig. 1. Wireless network consisting of a pair of source S_{1}, S_{2}, and N relays in the presence of an eavesdropper E.
the third time slot, the relay forward the encoded signals to S_{1} and S_{2}.

Second, we present the mathematical SRT analysis of the proposed ANaTWORS scheme in the presence of artificial noise imposed both on the relays and on the eavesdropper for transmission over Rayleigh fading channels. Moreover, we assume that the teletraffic of S_{1} and S_{2} is different. Closed-form expressions are obtained both for the OP and for the intercept probability (IP) of both S_{1} and S_{2}.

Finally, it is shown that as the impact of artificial noise on the main link is reduced and on the wiretap link is increased, the SRT of the proposed ANaTWORS scheme is improved. Furthermore, our performance evaluations reveal that the proposed ANaOTWRS scheme consistently outperforms both the traditional direct transmission regime and the one-way transmission scheme [24] in terms of its SRT.

The organization of this paper is as follows. In Section II, we briefly characterize the physical-layer security of a two-way wireless network. In Section III, the SRT analysis of the conventional direct transmission scheme as well as of the proposed ANaOTWRS scheme communicating over a Rayleigh channel is carried out. Our performance evaluations are detailed in Section IV. Finally, in Section V, we conclude the paper.

II. System Model and Relay Selection

A. System Model

As shown in Fig. 1, we consider a wireless network consisting of a pair of source nodes, denoted by S_{1} and S_{2}, plus N two-way DF relays, denoted by $R_{i}, i \in\{1, \ldots, N\}$, which communicate in the presence of an eavesdropper E, where E is assumed to be within the coverage area of S_{1}, S_{2}, and R_{i}. All nodes are equipped with a single antenna. We assume that there is no direct link between S_{1} and S_{2} due to the path loss. Furthermore, in the spirit of [21], both the main and the wiretap links are modeled by Rayleigh fading channels, where the main and wiretap links are represented by the solid and dashed lines in Fig. 1, respectively. Let $h_{s_{1} i}, h_{s_{2} i}, h_{s_{1} e}$, and $h_{s_{2} e}, i \in\{1, \ldots, N\}$, represent the $S_{1}-R_{i}, S_{2}-R_{i}, S_{1}-E$,
and $S_{2}-E$ channel gains, respectively. We assume that the channel coefficients $h_{s_{1} i}, h_{s_{2} i}, h_{s_{1} e}$, and $h_{s_{2} e}$ are mutually independent zero-mean complex Gaussian random variables (RVs) with variances of $\sigma_{s_{1} i}^{2}, \sigma_{s_{2} i}^{2}, \sigma_{s_{1} e}^{2}$, and $\sigma_{s_{2} e}^{2}$, respectively. Moreover, we assume that the $S_{1}-R_{i}$ and $S_{2}-R_{i}$ links are reciprocal, i.e., we have, $h_{s_{1} i}=h_{i s_{1}}$ and $h_{s_{2} i}=h_{i s_{2}}$. For simplicity, we assume $\sigma_{s_{1} i}^{2}=\alpha_{s_{1} i} \sigma_{m}^{2}, \sigma_{s_{2} i}^{2}=\alpha_{s_{2} i} \sigma_{m}^{2}, \sigma_{s_{1} e}^{2}=\alpha_{s_{1} e} \sigma_{e}^{2}$, and $\sigma_{s_{2} e}^{2}=\alpha_{s_{2} e} \sigma_{e}^{2}$, where σ_{m}^{2} and σ_{e}^{2} represent the average channel gains of the main links and of the wiretap links, respectively. Moreover, let $\lambda_{m e}=\sigma_{m}^{2} / \sigma_{e}^{2}$, which is referred to as the MUER.

The thermal noise of any node is modeled as a complex Gaussian random variable with a zero mean and a variance of N_{0}, denoted by $n_{s_{1}}, n_{s_{2}}, n_{i}$, and n_{e}, respectively. Following [31], the operation of the two-way DF scheme relying on opportunistic relay selection is split into three time slots. We assume that the nodes in the network are synchronized with each other. In the first time slot, S_{1} transmits its signal, denoted by $x_{s_{1}}$ to the relays, and then S_{2} transmits the artificial noise $\omega_{s_{2}}$ simultaneously. In the second time slot, S_{2} transmits its signal $x_{s_{2}}$ to the relays and S_{1} transmits artificial noise simultaneously. In the third time slot, the selected relay forward the signal x_{r} to both S_{1} and S_{2}, where we have $x_{r}=x_{s_{1}} \oplus x_{s_{2}}$, and \oplus denotes the XOR operation. Furthermore, the proposed relay selection can be coordinated by relying on a distributed pattern (governed by a timer). Without loss of generality, we assume $E\left[\left|x_{s_{j}}\right|^{2}\right]=1$, $E\left[\left|\omega_{s_{j}}\right|^{2}\right]=N_{0}, j=1,2$.

Furthermore, we also assume that S_{1} and S_{2} have to convey different-rate traffic, denoted by $R_{s_{1}}$ and $R_{s_{2}}$, respectively. For comparison, the one-way relaying scheme (ORS) of [24] can be simply extended to a two-way scenario relying on four time slots. To be specific, S_{1} transmits its signals to the relays in the first time slot, S_{2} transmits its signals to the relays in the second time slot, and the selected relay forward the decoded signals to S_{2} and S_{1} in the third time slot and the fourth time slot, respectively.

B. Two-Way Relaying Scheme

In this section, we first consider the physical-layer security of the two-way relaying scheme. We then propose our ANaTWORS arrangement.

1) S_{1} and S_{2} Transmit: In the first time slot, S_{1} transmits its signal to the relays under the protection of artificial noise transmitted by S_{2}. For the sake of a fair power consumption comparison with both the direct transmission and the ORS schemes, the total transmit power of S_{1} and S_{2} is constrained to P_{s}, thus the transmit powers of S_{1} and S_{2} are denoted by $P_{s} / 2$. As mentioned above, it is impossible to guarantee that the artificial noise perfectly lies in the null space of the $S_{1}-R_{i}$ channels, due to the ubiquitous CSI estimation error, hence leading to a certain interference received at R_{i}. The impact of the artificial noise on R_{i} is quantified by α. The signals received at R_{i} transmitted by S_{1} can be expressed as

$$
\begin{equation*}
y_{s_{1} i}=h_{s_{1} i} \sqrt{P_{s} / 2} x_{s_{1}}+h_{s_{2} i} \sqrt{\alpha P_{s} / 2} \omega_{s_{2}}+n_{i} . \tag{1}
\end{equation*}
$$

From (1), the achievable rate of the $S_{1}-R_{i}$ link can be expressed as

$$
\begin{equation*}
C_{s_{1} i}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{1} i}\right|^{2} \gamma_{s}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}\right) \tag{2}
\end{equation*}
$$

where the factor $1 / 3$ arises from the fact that three orthogonal 233 time slots are required for completing the signal transmission 234 from S_{1} to S_{2} via R_{i}.

Naturally, the artificial noise is specially designed to interfere with the eavesdropper. However, its perturbation imposed on the eavesdropper may be imperfect due to CSI estimation errors, which is characterized by β. Hence, the signals received at E from S_{1} can be expressed as

$$
\begin{equation*}
y_{s_{1} e}=h_{s_{1} e} \sqrt{P_{s} / 2} x_{s_{1}}+h_{s_{2} e} \sqrt{\beta P_{s} / 2} \omega_{s_{2}}+n_{e} \tag{3}
\end{equation*}
$$

From (3), the achievable rate of the $S_{1}-E$ link can be formulated as

$$
\begin{equation*}
C_{s_{1} e}^{s}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{1} e}\right|^{2} \gamma_{s}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}\right) \tag{4}
\end{equation*}
$$

In the second time slot, S_{2} transmits its signals to the relay nodes, and S_{1} simultaneously transmits artificial noise. Similarly, the signals received at R_{i} transmitted by S_{2} can be expressed as

$$
\begin{equation*}
y_{s_{2} i}=h_{s_{2} i} \sqrt{P_{s} / 2} x_{s_{2}}+h_{s_{1} i} \sqrt{\alpha P_{s} / 2} \omega_{s_{1}}+n_{i} \tag{5}
\end{equation*}
$$

Using (5), the achievable rate of the $S_{2}-R_{i}$ link is given by

$$
\begin{equation*}
C_{s_{2} i}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{2} i}\right|^{2} \gamma_{s}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}\right) . \tag{6}
\end{equation*}
$$

Similarly, the signals received at E from S_{2} can be represented as

$$
\begin{equation*}
y_{s_{2} e}=h_{s_{2} e} \sqrt{P_{s} / 2} x_{s_{2}}+h_{s_{1} e} \sqrt{\beta P_{s} / 2} \omega_{s_{1}}+n_{e} \tag{7}
\end{equation*}
$$

while the achievable rate of the $S_{2}-E$ link is

$$
\begin{equation*}
C_{s_{2} e}^{s}=\frac{1}{3} \log _{2}\left(1+\frac{\left|h_{s_{2} e}\right|^{2} \gamma_{s}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}\right) \tag{8}
\end{equation*}
$$

2) Decoding Set: In this section, we analyze the successful decoding set of the wireless network portrayed in Fig. 1. As shown in [24], the resultant successful decoding set of the ORS scheme is given by Ω, where $\Omega=\left\{\phi, D_{1}, D_{2}, \ldots, D_{n}, \ldots, D_{2^{N}-1}\right\}, \phi$ denotes the empty set and Φ_{n} represents the nth nonempty subset of the N relays, $n \in\left\{1,2, \ldots, 2^{N}-1\right\}$. The successful decoding sets of the relays defined as those that are capable of successfully decoding $x_{s_{1}}$ and $x_{s_{2}}$ are denoted by Ω_{1} and Ω_{2}, respectively. Consequently, the set of the relays that successfully decode both $x_{s_{1}}$ and $x_{s_{2}}$ is denoted by Ψ, which is formulated as $\Psi=\left\{\phi, \Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}, \ldots, \Phi_{2^{N}-1}\right\}$, where we have $\Psi=\Omega_{1} \cap \Omega_{2}$.

For example, the decoding sets of Ω_{j} and Ψ have been shown as Table I, where we have $N=3$ and $j \in\{1,2\}$.:

TABLE I
Decoding Sets of Ω_{j} And Ψ, When $N=3$ AND When $j \in\{1,2\}$

Ω_{j}	Elements	Ψ	Elements
ϕ	ϕ	ϕ	
D_{1}	$\left\{R_{1}\right\}$	Φ_{1}	ϕ
D_{2}	$\left\{R_{2}\right\}$	Φ_{2}	$\phi,\left\{R_{1}\right\}$
D_{3}	$\left\{R_{3}\right\}$	Φ_{3}	$\phi,\left\{R_{2}\right\}$
D_{4}	$\left\{R_{1}, R_{2}\right\}$	Φ_{4}	$\phi,\left\{R_{3}\right\}$
D_{5}	$\left\{R_{2}, R_{3}\right\}$	Φ_{5}	$\phi,\left\{R_{1}\right\},\left\{R_{2}\right\},\left\{R_{1}, R_{2}\right\}$
D_{6}	$\left\{R_{1}, R_{3}\right\}$	Φ_{6}	$\phi,\left\{R_{2}\right\},\left\{R_{3}\right\},\left\{R_{2}, R_{3}\right\}$
D_{7}	$\left\{R_{1}, R_{2}, R_{3}\right\}$	Φ_{7}	$\phi,\left\{R_{1}\right\},\left\{R_{3}\right\},\left\{R_{1}, R_{3}\right\}$

$$
\begin{equation*}
C_{s_{1} i}<R_{s_{1}} \text { or } C_{s_{2} i}<R_{s_{2}}, i \in\{1,2, \ldots, N\} \tag{9}
\end{equation*}
$$

while the event of $\Phi=\Phi_{n}$ can be expressed as

$$
\begin{align*}
& C_{s_{1} i}>R_{s_{1}} \text { and } C_{s_{2} i}>R_{s_{2}}, i \in \Phi_{n} \\
& C_{s_{1} j}<R_{s_{1}} \text { or } C_{s_{2} j}<R_{s_{2}}, j \in \bar{\Phi}_{n} \tag{10}
\end{align*}
$$

269 where $\bar{\Phi}_{n}$ represents the complementary set of Φ_{n}.
3) Relay Transmits: Without loss of generality, here we as-

The source S_{1} may invoke successive interference cancelation (SIC), thus, (18) can be written as

$$
\begin{equation*}
y_{s_{1}}(i)=h_{i s_{1}} \sqrt{P_{s}} x_{s_{2}}+n_{s_{1}} \tag{12}
\end{equation*}
$$

Similarly, S_{2} can also invoke SIC, thus the signals received at S_{2} from R_{i} can be written as

$$
\begin{equation*}
y_{s_{2}}(i)=h_{i s_{2}} \sqrt{P_{s}} x_{s_{1}}+n_{s_{2}} \tag{14}
\end{equation*}
$$

The signals received at E from R_{i} can be written as

$$
\begin{equation*}
y_{i e}=h_{i e} \sqrt{P_{s}} x_{r}+n_{e}=h_{i e} \sqrt{P_{s}}\left(x_{s_{1}} \oplus x_{s_{2}}\right)+n_{e} \tag{16}
\end{equation*}
$$

4) An Optimal Two-Way Relay Selection Criterion: In 282 this section, we present the relay selection criterion of the

ANaTWORS scheme, which can be given by

$$
\begin{align*}
o & =\arg \max _{i \in \Phi_{n}}\left[\min \left(C_{i s_{1}}(i), C_{i s_{2}}(i)\right)\right] \\
& =\arg \max _{i \in \Phi_{n}}\left[\min \left(\left|h_{i s_{1}}\right|^{2},\left|h_{i s_{2}}\right|^{2}\right)\right] \tag{17}
\end{align*}
$$

where o denotes the selected optimal relay. Moreover, from a 284 more practical point of view, the CSIs $\left|h_{i s_{1}}\right|^{2}$ and $\left|h_{i s_{2}}\right|^{2}$ can be 285 estimated in practical wireless communications, using channel 286 estimation schemes [32].
5) Condition of Intercept Event: In the $\Phi=\phi$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}, when $C_{s_{1} e}^{s}>R_{s_{1}}$.

In the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}>R_{s_{1}}$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}.

In the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}<R_{s_{1}}$ scenario, if $C_{s_{2} e}^{s}<R_{s_{2}}$, an eavesdropper cannot successfully wiretap the signal transmitted by S_{1}. If $C_{s_{2} e}^{s}>R_{s_{2}}$, the signal received at E can be rewritten as

$$
\begin{equation*}
y_{o e}=h_{o e} \sqrt{P_{s}} x_{s_{1}}+n_{e} \tag{18}
\end{equation*}
$$

The achievable rate of the $R_{o}-E$ link can be formulated as

$$
\begin{equation*}
C_{o e}=\frac{1}{3} \log _{2}\left(1+\left|h_{o e}\right|^{2} \gamma_{s}\right) \tag{19}
\end{equation*}
$$

Clearly, in the $\Phi=\Phi_{n}$ and $C_{s_{1} e}^{s}<R_{s_{1}}$ case, an eavesdropper can only successfully wiretap the signal transmitted by S_{1} when $C_{s_{2} e}^{s}>R_{s_{2}}$ and $C_{o e}>R_{s_{1}}$.

Similarly, we can formulate the condition of an eavesdropper successfully wiretapping the signal transmitted by S_{2} as

In the $\Phi=\phi$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{2}, provided that $C_{s_{2} e}^{s}>R_{s_{2}}$.

In the $\Phi=\Phi_{n}$ and $C_{s_{2} e}^{s}>R_{s_{2}}$ scenario, an eavesdropper can successfully wiretap the signal transmitted by S_{2}.

In the $\Phi=\Phi_{n}, C_{s_{2} e}^{s}<R_{s_{2}}, C_{s_{1} e}^{s}>R_{s_{1}}$, and $C_{o e}>R_{s_{2}}$ case, an eavesdropper can successfully wiretap the signal transmitted by S_{1}.

III. SECURITY-RELIABILITY TRADEOFF ANALYSIS

Over Rayleigh Fading Channels

In this section, we analyze both the OP and IP of the proposed ANaTWORS schemes over Rayleigh fading channels.

A. SRT Analysis of the Proposed ANaTWORS Scheme

1) SRT Analysis of S_{1} : In the ANaTWORS scheme, a relay will only be chosen from the set Φ_{n}. With the aid of Shannon [33] and the law of total probability [34], the OP of the $S_{1} \rightarrow S_{2}$ link relying on the ANaTWORS scheme can be formulated as

$$
\begin{align*}
P_{\text {out }-s_{1}}^{\text {single }}= & \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\Phi_{n}\right) \tag{20}
\end{align*}
$$

In the case of $\Phi=\phi$, no relay is chosen for forwarding the signals, which leads to $C_{o s_{2}}=0$ for $\Phi=\phi$. Thus, (20) can be

321 rewritten as

$$
\begin{equation*}
P_{\text {out_ } s_{1}}^{\text {single }}=\operatorname{Pr}(\Phi=\phi)+\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{2}}<R_{s_{1}}, \Phi=\Phi_{n}\right) \tag{21}
\end{equation*}
$$

Based on (9) and (10), (21) can be expressed as

$$
\begin{align*}
P_{\text {out }_{-1}}^{\text {single }}= & \prod_{i=1}^{N}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& +\sum_{n=1}^{2^{N}-1}\left(\prod _ { i \in \Phi _ { n } } \left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} j}\right|^{2}}{\alpha\left|h_{s_{2} j}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} j}\right|^{2}}{\alpha\left|h_{s_{1} j}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \left.\times \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)\right) \tag{22}
\end{align*}
$$

323 where we have $\Delta_{1}=\left(2^{3 \cdot R_{s_{1}}}-1\right) / \gamma_{s}$, and $\Delta_{2}=$ $324\left(2^{3 \cdot R_{s_{2}}}-1\right) / \gamma_{s}$.
325 Based on Appendix A, $\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\left.\alpha\left|h_{s_{2}}\right|\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)$ can be 326 expressed as

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)=\frac{\sigma_{s_{1} i}^{2}}{\Delta_{1} \alpha \gamma_{s} \sigma_{s_{2} i}^{2}+\sigma_{s_{1} i}^{2}} \exp \left(-\frac{2 \Delta_{1}}{\sigma_{s_{1} i}^{2}}\right) . \tag{23}
\end{equation*}
$$

327 According to Appendix $\left.\mathrm{B}, \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)\right)$ can be 328 expressed as

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)=\sum_{i \in \Phi_{n}}\left(\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right. \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1} \\
& \times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \\
& -\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right. \\
& \times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1}
\end{aligned}
$$

$$
\begin{align*}
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \\
& +\sum_{m=1}^{2^{\mid \Phi n} \mid-1}-1 \\
& \times(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1} \tag{24}\\
& \left.\left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right)\right) .
\end{align*}
$$

Substituting (23) and (24) into (22), $P_{\text {out_s }_{1}}^{\text {single }}$ can be obtained.
In our ANaTWORS scheme, an eavesdropper can overhear 331 the signals transmitted by S_{1}, S_{2}, and R_{i}. Using the law of total 332 probability [34] and the definition of an intercept event, we can 333 express the IP of the $S_{1} \rightarrow E$ link as

$$
\begin{align*}
P_{\text {int }-s_{1}}^{\text {single }}= & \operatorname{Pr}\left(C_{s_{1} e}^{s}>R_{s_{1}}, D=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{1} e}^{s}>R_{s_{1}}, \Phi=\Phi_{n}\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{1} e}^{s}<R_{s_{1}}, C_{s_{2} e}^{s}>R_{s_{2}}, C_{o e}>R_{s_{1}}, \Phi=\Phi_{n}\right) \tag{25}
\end{align*}
$$

Using (4), (8), and (19), (25) can be expressed as
$+\sum_{n=1}^{2^{N}-1}\left[\prod_{i \in \Phi_{n}}\left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right.$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right)$
$\times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right)$
$\left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right]$
$+\sum_{n=1}^{2^{N}-1}\left[\prod_{i \in \Phi_{n}}\left(\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right.\right.$

336

$$
\begin{align*}
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \prod_{j \in \bar{\Phi}_{n}}\left(1-\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}>\Delta_{1}\right)\right. \\
& \left.\times \operatorname{Pr}\left(\frac{\left|h_{s_{2} i}\right|^{2}}{\alpha\left|h_{s_{1} i}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)\right) \\
& \times \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
& \left.\times \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)\right] . \tag{26}
\end{align*}
$$

According to Appendix C,

$$
\operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)
$$

338 can obtained as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
& \quad=\left(1-\frac{\Delta_{2} \gamma_{s} \beta \sigma_{s_{2} e}^{2}}{\Delta_{2} \gamma_{s} \beta \sigma_{s_{1} e}^{2}+\sigma_{s_{2} e}^{2}}\right) \exp \left(-\frac{2 \Delta_{2}}{\sigma_{s_{2} e}^{2}}\right) \tag{27}
\end{align*}
$$

According to Appendix $\mathrm{D}, \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)$ can be formu340 lated as

$$
\begin{align*}
& \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta_{1}\right)=\sum_{i \in D_{n}}\left[\left(1+\sum_{m=1}^{2^{\left|D_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\right.\right. \\
& \left.\quad\left(\frac{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right) \\
& \left.\quad \times \exp \left(-\frac{\Delta_{1}}{\sigma_{i e}^{2}}\right)\right] . \tag{28}
\end{align*}
$$

341 Substituting (27) and (28) into (26), $P_{\text {int } S_{1}}^{\text {single }}$ can be obtained.
342 2) SRT Analysis of S_{2} : Similarly to S_{1}, the OP of S_{2} can be 343 expressed as

$$
\begin{equation*}
P_{\text {out_s } s_{2}}^{\text {single }}=\operatorname{Pr}(\Phi=\phi)+\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{o s_{1}}<R_{s_{2}}, \Phi=\Phi_{n}\right) \tag{29}
\end{equation*}
$$

Meanwhile, the IP of S_{2} can be shown to obey

$$
\begin{align*}
P_{\text {int }-s_{2}}^{\text {single }}= & \operatorname{Pr}\left(C_{s_{2} e}^{s}>R_{s_{2}}, D=\phi\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{2} e}^{s}>R_{s_{2}}, \Phi=\Phi_{n}\right) \\
& +\sum_{n=1}^{2^{N}-1} \operatorname{Pr}\left(C_{s_{2} e}^{s}<R_{s_{2}}, C_{s_{1} e}^{s}>R_{s_{1}}, C_{o e}>R_{s_{2}}, \Phi=\Phi_{n}\right) . \tag{30}
\end{align*}
$$

Clearly, $P_{\text {out }-s_{2}}^{\text {single }}$ and $P_{\text {int_s } s_{2}}^{\text {single }}$ can be obtained similarly to $P_{\text {out } s_{1}}^{\text {single }}$ and $P_{\text {int } S_{1}}^{\text {single }}$.
3) SRT analysis of S_{1} and S_{2} : The IP and OP of the pair 347 of sources is defined as the average IP and OP of S_{1} and $S_{2}, \quad 348$ respectively:

$$
\begin{equation*}
P_{\mathrm{int}}^{\text {single }}=\frac{P_{\mathrm{int}-s_{1}}^{\text {single }}+P_{\mathrm{int}-s_{2}}^{\text {single }}}{2} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{out}}^{\text {single }}=\frac{P_{\mathrm{out}-s_{1}}^{\text {single }}+P_{\mathrm{out}-s_{2}}^{\text {single }}}{2} . \tag{32}
\end{equation*}
$$

IV. Performance Evaluation

For comparison, the SRT analysis of the conventional direct transmission scheme operating without relays is also provided. The total IP and OP of S_{1} and S_{2} with the traditional direct transmission scheme is defined as

$$
\begin{equation*}
P_{\mathrm{int}}^{\mathrm{direct}}=\frac{P_{\mathrm{int}_{-s_{1}}}^{\mathrm{direct}}+P_{\mathrm{int}-s_{2}}^{\mathrm{direct}}}{2} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{out}}^{\mathrm{direct}}=\frac{P_{\mathrm{out}-s_{1}}^{\mathrm{dirrect}}+P_{\mathrm{out}-s_{2}}^{\mathrm{direct}}}{2} \tag{34}
\end{equation*}
$$

 are given by $P_{\text {int }_{-} 1_{1}}^{\text {dirct }_{1}}=\exp \left(-\frac{\Lambda_{1}}{\sigma_{s_{1} e}^{2}}\right), \quad P_{\text {int }_{-} s_{2}}^{\text {direct }_{2}}=\exp \left(-\frac{\Lambda_{2}}{\sigma_{s_{2} e}^{2}}\right)$, $P_{\text {out } s_{1}}^{\text {direct }}=1-\exp \left(-\frac{\Lambda_{1}}{\sigma_{s_{1} s_{2}}^{2}}\right)$, and $P_{\text {out } s_{2}}^{\text {direct }}=1-\exp \left(-\frac{\Lambda_{2}}{\sigma_{s_{2} s_{2}}^{2}}\right)$, respectively. Moreover, we have $\Lambda_{1}=\left(2^{2 R_{s_{1}}}-1\right) / \gamma_{s}$ and $\Lambda_{2}=$ $\left(2^{2 R_{s_{2}}}-1\right) / \gamma_{s}$. Noting that $\sigma_{s_{2} s_{1}}^{2}, \sigma_{s_{1} e}^{2}$, and $\sigma_{s_{2} e}^{2}$ are the expected values of the RVs $\left|h_{s_{2} s_{1}}\right|^{2},\left|h_{s_{1} e}\right|^{2}$, and $\left|h_{s_{2} e}\right|^{2}$, respectively.

In this section, we present both our numerical and simulation results for the traditional direct transmission, as well as for the ORS [24] and for the ANaTWORS schemes in terms of their SRTs. Moreover, the analytic IP versus OP results of the direct transmission and ANaTWORS schemes are obtained by plotting (33), (34), (31), and (32), respectively. It is pointed that the IP versus OP results of the ORS scheme are calculated from (27) and (19) of [24], where α is rewritten as $\left(2^{4 R_{d}}-1\right) / \gamma_{s}$. Throughout this performance evaluation, we assumed $\alpha_{s_{1} i}=$ $\alpha_{s_{2} i}=\alpha_{s_{1} e}=\alpha_{s_{2} e}=\alpha_{s_{1} s_{2}}=1$.

We first consider the effect of different MUERs. Fig. 2 depicts the SRTs of both the direct transmission, of the ORS [24] and of the ANaTWORS schemes for different MUERs. Both the numerical and simulation results characterizing the SRT of the ANaTWORS scheme are provided in this figure. Observe from Fig. 2 that as the MUER decreases, all the IPs of the direct transmission, of the ORS and of the ANaTWORS schemes are increased, which can be explained by observing that upon decreasing the MUER, an eavesdropper can achieve a higher achievable rate. Moreover, Fig. 2 also illustrates that the proposed ANaTWORS scheme generally has a lower IP than the traditional direct transmission and ORS regime for $M U E R=3 \mathrm{~dB}$ and $M U E R=0 \mathrm{~dB}$. Additionally, the difference between the analytic and simulated IP versus OP curves

Fig. 2. IP versus OP of the direct transmission, ORS, and ANaTWORS schemes for different MUERs $\lambda_{m e}$ and for $N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 3. IP versus OP of the direct transmission, ORS and ANaTWORS schemes for different number of relays associated with an MUER of $\lambda_{m e}=$ 0 dB , which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).
of the ANaTWORS scheme is negligible, demonstrating the accuracy of our SRT analysis.

In Fig. 3, we show the IP verus OP performance of both the direct transmission, as well as of the ORS and of the ANaTWORS scheme for different number of relays N. We can observe from Fig. 3 that as the number of relays N increases from $N=4$ to 8 , the IP of all schemes is reduced at a specific OP, which means that increasing the number of relays improves the security versus reliability tradeoff of wireless transmissions. Additionally, Fig. 3 also demonstrates that IP versus OP performance of the proposed ANaTWORS scheme is better than that of the direct transmission and of the ORS schemes for all the N values considered.

Fig. 4. IP versus OP of the direct transmission, ORS, OSJ-MMISR, and ANaTWORS schemes for different α and β associated with an MUER of $\lambda_{m e}=0 \mathrm{~dB}, N=8$, which were calculated from [24, (33), (34) and [27]], $[(24),(19)]$, and (31) and (32).

Fig. 4 illustrates the IP versus OP of both the direct transmission, as well as of the ORS, of the optimal selection with jamming with max-min instantaneous secrecy rate (OSJMMISR) [30] and of the ANaTWORS schemes for different self-interference and interference factors, where $(\beta, \alpha)=$ $(0.95,0.06)$ and $(\beta, \alpha)=(0.99,0.02)$ are considered. Observe from Fig. 4 that as the artificial noise parameters of $(0.95,0.06)$ are changed to $(0.99,0.02)$, the IP versus OP performance of the ANaTWORS scheme improves. Furthermore, Fig. 4 also illustrates that the proposed ANaTWORS scheme outperforms the direct transmission, the ORS and the OSJ-MMISR schemes in terms of its IP versus OP tradeoff for both the $(\beta, \alpha)=(0.95,0.06)$ and $(\beta, \alpha)=(0.99,0.02)$ cases, since the CSI of the eavesdropper links cannot be readily acquired, the CSIs of the wiretap links are not taken into account in the proposed ANaTWORS scheme. For the sake of a fair comparison, the CSIs of the wiretap links in the OSJ-MMISR scheme [30] are not considered either.

Fig. 5 shows the IP versus OP of the direct transmission, of the ORS and of the ANaTWORS schemes for different tele-traffic ratios of S_{1} and S_{2}, namely, for $R_{s_{1}} / R_{s_{2}}=0.5, R_{s_{1}} / R_{s_{2}}=1$, and $R_{s_{1}} / R_{s_{2}}=2$. Observe from Fig. 5 that the ANaTWORS scheme performs best for $R_{s_{1}} / R_{s_{2}}=1$. Moreover, the difference remains modest for asymmetric traffic ratios of both $R_{s_{1}} / R_{s_{2}}=0.5$ and $R_{s_{1}} / R_{s_{2}}=2$. This is due to the fact that for a fixed power allocation case, some of the power will be wasted, when the instantaneous channel gain is sufficiently high and the traffic demand is low. Additionally, no beneficial reliability improvement is achieved, despite degrading the security. This is interesting, hence we will adopt an adaptive power allocation scheme for improving the security of wireless transmissions in our future research. Finally, Fig. 5 also illustrates that the proposed ANaTWORS scheme performs better than the direct transmission and ORS schemes for all three traffic-ratios considered.

Fig. 5. IP versus OP of the direct transmission, ORS and ANaTWORS schemes for different traffic associated with an MUER of $\lambda_{m e}=0 \mathrm{~dB}, N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 6. IP x OP of the direct transmission, ORS and ANaTWORS schemes with $\lambda_{m e}=0 \mathrm{~dB}$ and $N=8$, which were calculated from [24, (33), (34) and [27]], [(24), (19)], and (31) and (32).

Fig. 6 illustrates the (IP x OP) product of the direct transmission, of the ORS, and of the ANaTWORS schemes for different SNRs. Observe from Fig. 6 that upon increasing the SNR, all the schemes can exhibit an (IP x OP) peak, but the maximum (IP x OP) product of the proposed ANaTWORS scheme is smallest of the three schemes, which demonstrates its superiority.

V. CONCLUSION

In this paper, we proposed an ANaTWORS scheme for a wireless network consisting of the pair of source nodes S_{1} and S_{2}, and multiple two-way relays $R_{i}, i \in\{1,2, \ldots, N\}$, communicating in the presence of an eavesdropper. We analyzed the SRT performance of both the ANaTWORS and of the traditional direct transmission schemes. Moreover, due to the presence of CSI estimation errors, it was impossible to guarantee that the
specially designed artificial noise was projected onto the null space of R_{i}, hence resulting in a certain amount of interference imposed on the relays. Hence, the self-interference and the interference factors were taken into account for characterizing the wireless SRTs of the proposed ANaTWORS, where the security and reliability are quantified in terms of the IP and OP, respectively. It was also illustrated that the ANaTWORS scheme outperforms both the conventional direct transmission and the ORS schemes in terms of its (IP x OP) product. Furthermore, as the number of relays increases, the SRT of the ANaTWORS scheme improves.

Here, we only explored the allocation of a fixed power to the source nodes and relays nodes. In our future work, we will adopt an adaptive power allocation scheme in this scenario. Specifically, the power can be dynamically allocated according to the near instantaneous channel gain and the traffic demands of users.

Appendix A

Upon introducing the notation of $X_{1}=\left|h_{s_{1} i}\right|^{2}$ and $X_{2}=$ $\left|h_{s_{2} i}\right|^{2}$, noting that RVs $\left|h_{s_{1} i}\right|^{2}$ and $\left|h_{s_{2} i}\right|^{2}$ are exponentially distributed and independent of each other. Thus, the probability density functions (PDFs) of X_{1} and X_{2} are $f_{X_{1}}\left(x_{1}\right)=$ $\frac{1}{\sigma_{s_{1} i}^{2}} \exp \left(-\frac{x_{1}}{\sigma_{s_{1} i}^{2}}\right)$ and $f_{X_{2}}\left(x_{2}\right)=\frac{1}{\sigma_{s_{2} i}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} i}^{2}}\right)$, respectively. Hence, $\operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}<\Delta_{1}\right)$ can be expressed as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} i}\right|^{2}}{\alpha\left|h_{s_{2} i}\right|^{2} \gamma_{s}+2}<\Delta_{1}\right) \\
& =\operatorname{Pr}\left[x_{1}<\left(x_{2} \alpha \gamma_{s} \Delta_{1}+2 \Delta_{1}\right)\right] \\
& =\int_{0}^{\infty} \frac{1}{\sigma_{s_{2} i}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} i}^{2}}\right)\left(1-\exp \left(-\frac{2 \Delta_{1}+\Delta_{1} \alpha \gamma_{s} x_{2}}{\sigma_{s_{1} i}^{2}}\right)\right) d x_{2} \\
& =1-\frac{\sigma_{s_{1 i}}^{2}}{\Delta_{1} \alpha \gamma_{s} \sigma_{s_{2} i}^{2}+\sigma_{s_{1} i}^{2}} \exp \left(-\frac{2 \Delta_{1}}{\sigma_{s_{1} i}^{2}}\right) \tag{A.1}
\end{align*}
$$

where $\sigma_{s_{1} i}^{2}$ and $\sigma_{s_{2} i}^{2}$ are the expected values of $\mathrm{RVs}\left|h_{s_{1} i}\right|^{2}$ and 474 $\left|h_{s_{2} i}\right|^{2}$, respectively.

Appendix B

Using the law of total probability [34], the term 477 $\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)$ can be rewritten as

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right) \\
= & \sum_{i \in \Phi_{n}} \operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
= & \sum_{i \in \Phi_{n}}\left[\operatorname { P r } \left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right.\right. \\
& \left.<\left|h_{i s_{1}}\right|^{2},\left|h_{i s_{1}}\right|^{2}<\left|h_{i s_{2}}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.\left.<\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{2}}\right|^{2}<\left|h_{i s_{1}}\right|^{2}\right)\right] \tag{B.1}
\end{align*}
$$

Denoting

$\Upsilon_{0}=\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\left|h_{i s_{1}}\right|^{2}\right.$,

$$
\left.\left|h_{i s_{1}}\right|^{2}<\left|h_{i s_{2}}\right|^{2}\right)
$$

481
and
$\Upsilon_{1}=\operatorname{Pr}\left(\left|h_{i s_{2}}\right|^{2}<\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\left|h_{i s_{2}}\right|^{2}\right.$,

$$
\left.\left|h_{i s_{2}}\right|^{2}<\left|h_{i s_{1}}\right|^{2}\right), \operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)
$$

482 yields

$$
\begin{equation*}
\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)=\sum_{i \in \Phi_{n}}\left(\Upsilon_{0}+\Upsilon_{1}\right) \tag{B.2}
\end{equation*}
$$

$$
\begin{align*}
\Upsilon_{0} & =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\int_{0}^{y} f_{V}(v) d v\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<y\right)\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{0}^{x} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)\right) d y\right) d x \tag{B.3}
\end{align*}
$$

Noting that RVs $\left|h_{j s_{1}}\right|^{2}$ and $\left|h_{j s_{2}}\right|^{2}$ are exponentially distributed and independent of each other, based on [18], we have $\operatorname{Pr}\left(X_{j}<y\right)=1-\exp \left(-\frac{y}{\sigma_{j s_{2}}^{2}}-\frac{y}{\sigma_{j s_{1}}^{2}}\right)$. Thus, $\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)$ can be expanded as

$$
\begin{align*}
& \quad \prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)=\prod_{j \in \Phi_{n}-\{i\}}\left(1-\exp \left(-\frac{y}{\sigma_{j s_{2}}^{2}}-\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right) \\
& =1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right] \tag{B.4}
\end{align*}
$$

494
where $A_{n}(m)$ represents the mth nonempty subset of $\Phi_{n}-\{i\}$, and $\left|A_{n}(m)\right|$ denotes the cardinality of the subset $A_{n}(m) \cdot \sigma_{j s_{1}}^{2}$ and $\sigma_{j s_{2}}^{2}$ are the expected values of $\mathrm{RVs}\left|h_{j s_{1}}\right|^{2}$ and $\left|h_{j s_{2}}\right|^{2}$, 497 respectively.

Substituting (B.4) into (B.3) yields

$$
\begin{aligned}
\Upsilon_{0}= & \int_{0}^{\Delta_{1}} \frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\int_{0}^{x} \frac{1}{\sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{1}}^{2}}\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
& \left.\left.\times\left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right]\right) d y\right) d x
\end{aligned}
$$

$$
=1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)-\frac{\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}\right)\right)
$$

$$
+\sum_{m=1}^{2^{\mid \Phi n} \mid-1}-1 \quad(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}
$$

$$
\times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)
$$

$$
-\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right.
$$

$$
\times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1}
$$

$$
\begin{equation*}
\left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \tag{B.5}
\end{equation*}
$$

where $\left|\Phi_{n}\right|$ denotes the cardinality of the set Φ_{n}.
Now Υ_{1} can be rewritten as

$$
\begin{align*}
\Upsilon_{1} & =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\int_{0}^{x} f_{V}(v) d v\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<x\right)\right) d y\right) d x \\
& =\int_{0}^{\Delta_{1}} f_{X}(x)\left(\int_{x}^{\infty} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<x\right)\right) d y\right) d x \tag{B.6}
\end{align*}
$$

Similarly to (B.4), $\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<x\right)$ can be expressed 501 as

$$
\begin{equation*}
\times \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right] \tag{B.7}
\end{equation*}
$$

$$
\begin{align*}
\Upsilon_{1}= & \int_{0}^{\Delta_{1}}\left(\frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\int_{x}^{\infty} \frac{1}{\sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{1}}^{2}}\right) d y\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
& \left.\left.\times\left[-\sum_{j \in A_{n}(m)}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right]\right)\right) d x \\
= & \int_{0}^{\Delta_{1}}\left(\frac{1}{\sigma_{i s_{2}}^{2}} \exp \left(-\frac{x}{\sigma_{i s_{2}}^{2}}\right)\left(\exp \left(-\frac{x}{\sigma_{i s_{1}}^{2}}\right)\right)\right. \\
& \times\left(1+\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \exp \right. \\
= & \frac{\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}\right)\right) \\
& \left.\left.\left.+\sum_{j \in A_{n}(m)}^{2^{|\Phi n|-1}-1}\left(\frac{x}{\sigma_{j s_{2}}^{2}}+\frac{x}{\sigma_{j s_{1}}^{2}}\right)\right]\right)\right) d x \\
& (-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\right. \\
& \left.\left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)\right)^{-1} \\
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right) \tag{B.8}
\end{align*}
$$

Using (B.5) and (B.8), $\Upsilon_{0}+\Upsilon_{1}$ can be expressed as

$$
\begin{aligned}
& \Upsilon_{0}+\Upsilon_{1}=1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right) \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1} \\
& \times\left(1-\exp \left(-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \\
& -\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((-1)^{\left|A_{n}(m)\right|}\left(\sigma_{i s_{1}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1}\right. \\
& \times\left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1} \\
& \left.\times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}\left((- 1) ^ { | A _ { n } (m) | } \left(\sigma_{i s_{2}}^{2} \sum_{j \in A_{n}(m)}\right.\right. \\
& \left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+\frac{\sigma_{i s_{2}}^{2}}{\sigma_{i s_{1}}^{2}}+1\right)^{-1} \\
& \times\left(1-\exp \left(-\sum_{j \in A_{n}(m)}\left(\frac{\Delta_{1}}{\sigma_{j s_{2}}^{2}}+\frac{\Delta_{1}}{\sigma_{j s_{1}}^{2}}\right)-\frac{\Delta_{1}}{\sigma_{i s_{1}}^{2}}-\frac{\Delta_{1}}{\sigma_{i s_{2}}^{2}}\right)\right) \tag{B.9}
\end{align*}
$$

Substituting (B.9) into (B.2), $\operatorname{Pr}\left(\left|h_{o s_{2}}\right|^{2}<\Delta_{1}\right)$ can be 506 obtained.

Appendix C

Let X_{1} and X_{2} denote $\left|h_{s_{1} e}\right|^{2}$ and $\left|h_{s_{2}}\right|^{2}$, respectively. Noting that RVs $\left|h_{s_{1} e}\right|^{2}$ and $\left|h_{s_{2} e}\right|^{2}$ are exponen- 510 tially distributed and independent of each other with the 511 means of $\sigma_{s_{1} e}^{2}$ and $\sigma_{s_{2} e}^{2}$, respectively. Hence, the PDFs of 512 X_{1} and X_{2} are $f_{X_{1}}\left(x_{1}\right)=\frac{1}{\sigma_{s_{1} e}^{2}} \exp \left(-\frac{x_{1}}{\sigma_{s_{1} e}^{2}}\right)$ and $f_{X_{2}}\left(x_{2}\right)=513$ $\frac{1}{\sigma_{s_{2} e}^{2}} \exp \left(-\frac{x_{2}}{\sigma_{s_{2} e}^{2}}\right)$, respectively. Due to X_{1} and X_{2} are independent of each other, thus $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$. $\operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right)$ can be obtained as

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{\left|h_{s_{1} e}\right|^{2}}{\beta\left|h_{s_{2} e}\right|^{2} \gamma_{s}+2}<\Delta_{1}, \frac{\left|h_{s_{2} e}\right|^{2}}{\beta\left|h_{s_{1} e}\right|^{2} \gamma_{s}+2}>\Delta_{2}\right) \\
= & \int_{2 \Delta_{2}}^{\infty} \int_{0}^{\left(x_{2}-2 \Delta_{2}\right) / \Delta_{2} \beta \gamma_{s}} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
= & \int_{2 \Delta_{2}}^{\infty} f_{X_{2}}\left(x_{2}\right)\left(\int_{0}^{\left(x_{2}-2 \Delta_{2}\right) / \Delta_{2} \beta \gamma_{s}} f_{X_{1}}\left(x_{1}\right) d x_{1}\right) d x_{2} \\
= & \left(1-\frac{\Delta_{2} \gamma_{s} \beta \sigma_{s_{2} e}^{2}}{\Delta_{2} \gamma_{s} \beta \sigma_{s_{1} e}^{2}+\sigma_{s_{2} e}^{2}}\right) \exp \left(-\frac{2 \Delta_{2}}{\sigma_{s_{2} e}^{2}}\right) . \tag{C.1}
\end{align*}
$$

Appendix D
Using the law of total probability [34], $\operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right)$ can 518 be written as

$$
\begin{align*}
& \operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right) \\
= & \sum_{i \in \Phi_{n}} \operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}, \max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
= & \sum_{i \in \Phi_{n}} \operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}\right) \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)\right. \\
& \left.<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) . \tag{D.1}
\end{align*}
$$

We Denote $X_{j}=\min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right), Y=\min \left(\left|h_{i s_{2}}\right|^{2}, \quad 520\right.$ $\left|h_{i s_{1}}\right|^{2}$), and $V \max _{j \in \Phi_{n}-\{i\}} X_{j}$. As mentioned above, RVs 521
$\left|h_{j s_{1}}\right|^{2}, \quad\left|h_{j s_{2}}\right|^{2}, \quad\left|h_{i s_{1}}\right|^{2}, \quad$ and $\quad\left|h_{i s_{2}}\right|^{2}$ are exponentially 523 distributed and independent of each other. Thus, Pr $524 \quad\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right)$ 525 can be rewritten as

$$
\begin{align*}
& \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\int_{0}^{y} f_{V}(v) d v\right) d y \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} X_{j}<y\right)\right) d y \\
& =\int_{0}^{\infty} f_{Y}(y)\left(\prod_{j \in \Phi_{n}-\{i\}} \operatorname{Pr}\left(X_{j}<y\right)\right) d y . \tag{D.2}
\end{align*}
$$

526 As mentioned above, $\operatorname{Pr}(Y<y)=1-\exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right)$, 527 the PDF of Y can be expressed as

$$
\begin{equation*}
f_{Y}(y)=\frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) . \tag{D.3}
\end{equation*}
$$

Substituting (B.4) and (D.3) into (D.2) yields

$$
\begin{align*}
& \operatorname{Pr}\left(\max _{j \in \Phi_{n}-\{i\}} \min \left(\left|h_{j s_{2}}\right|^{2},\left|h_{j s_{1}}\right|^{2}\right)<\min \left(\left|h_{i s_{2}}\right|^{2},\left|h_{i s_{1}}\right|^{2}\right)\right) \\
& =\int_{0}^{\infty} \frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) d y \\
& +\sum_{m=1}^{2^{\left|\Phi_{n}\right|-1}-1}(-1)^{\left|A_{n}(m)\right|} \frac{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}} \\
& \times \int_{0}^{\infty} \exp \left(-\frac{y}{\sigma_{i s_{2}}^{2}}-\frac{y}{\sigma_{i s_{1}}^{2}}\right) \exp \left[-\sum_{j \in A_{n}(m)}\left(\frac{y}{\sigma_{j s_{2}}^{2}}+\frac{y}{\sigma_{j s_{1}}^{2}}\right)\right] d y \\
& =1+\sum_{m=1}^{2^{|\Phi n|-1}-1}(-1)^{\left|A_{n}(m)\right|}\left(\frac{\sigma_{i s_{2}}^{2} \sigma_{i s_{1}}^{2}}{\sigma_{i s_{2}}^{2}+\sigma_{i s_{1}}^{2}} \sum_{j \in A_{n}(m)}\right. \\
& \left.\times\left(\frac{1}{\sigma_{j s_{2}}^{2}}+\frac{1}{\sigma_{j s_{1}}^{2}}\right)+1\right)^{-1} . \tag{D.4}
\end{align*}
$$

529 As $\left|h_{i e}\right|^{2}$ obeys exponential distribution, the PDF of $\left|h_{i e}\right|^{2}$ is 530 given by

$$
\begin{equation*}
\operatorname{Pr}\left(\left|h_{i e}\right|^{2}>\Delta_{1}\right)=\exp \left(-\frac{\Delta_{1}}{\sigma_{i e}^{2}}\right) \tag{D.5}
\end{equation*}
$$

531 where $\sigma_{i e}^{2}$ is the expected value of $\mathrm{RV}\left|h_{i e}\right|^{2}$.
$532 \quad$ Substituting (D.4) and (D.5) into (D.1), $\operatorname{Pr}\left(\left|h_{o e}\right|^{2}>\Delta\right.$) can 533

REFERENCES

[1] Y. Zhao, R. Adve, and T. J. Lim, "Improving amplify-and-forward relay networks: Optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3114-3123, Aug. 2007.
[2] W. Liu and J. D. Li, "The maximum-SNR optimal weighting matrix for a class of amplify-and-forward MIMO relaying assisted orthogonal space time block coded transmission," IEEE Trans. Commun., vol. 63, no. 8, pp. 2864-2872, Aug. 2015.
[3] T. R. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, "Highperformance cooperative demodulation with decode-and-forward relays," IEEE Trans. Commun., vol. 55, no. 7, pp. 1427-1438, Jul. 2007.
[4] G. K. Young and N. C. Beaulieu, "SEP of decode-and-forward cooperative systems with relay selection in Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 1882-1894, May 2015.
[5] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behaviour," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[6] L. Wang and L. Hanzo, "Dispensing with channel estimation: Differentially modulated cooperative wireless communications," IEEE Commun. Surveys Tut., vol. 14, no. 3, pp. 836-857, Mar. 2012.
[7] M. Souryal and B. Vojcic, "Performance of amplify-and-forward and decode-and-forward relaying in Rayleigh fading with turbo codes," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2006.
[8] A. D. Wyner, "The wire-tap channel," Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355-1387, 1975.
[9] S. K. Leung-Yan-Cheong and M. E. Hellman, "The Gaussian wiretap channel," IEEE Trans. Inf. Theory, vol. IT-24, no. 4, pp. 451-456, Jul. 1978.
[10] J. Huang and A. L. Swindlehurst, "Cooperative jamming for secure communications in MIMO relay networks," IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4871-4884, Oct. 2011.
[11] A. Mukherjee and A. L. Swindlehurst, "Securing multi-antenna two-way relay channels with analog network coding against eavesdroppers," in Proc. IEEE 11th Int. Workshop Signal Process. Adv. Wireless Commun., Jun. 2010, pp. 1-5.
[12] E. Tekin and A. Yener, "The general Gaussian multiple access and twoway wire-tap channels: Achievable rates and cooperative jamming," IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2735-2751, Jun. 2008.
[13] H. Long, W. Xiang, J. Wang, Y. Y. Zhang, and W. B. Wang, "Cooperative jamming and power allocation with untrusty two-way relay nodes," IET Comтип., vol. 8, no. 13, pp. 2290-2297, Sep. 2014.
[14] A. Mukherjee and A. Swindlehurst, "Robust beamforming for security in MIMO wiretap channels with imperfect CSI," IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351-361, Jan. 2011.
[15] C. Jeong, I. Kim, and K. Dong, "Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system," IEEE Trans. Signal Process., vol. 60, no. 1, pp. 310-325 Jan. 2012.
[16] Z. Ding, M. Zheng, and P. Fan, "Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise," IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 2189-2203, Apr. 2014.
[17] Z. Ding, K. Leung, D. Goeckel, and D. Towsley, "Opportunistic relaying for secrecy communications: Cooperative jamming vs. relay chatting," IEEE Trans. Wireless Commun., vol. 10, no. 6, pp. 1725-1729, Jun. 2011.
[18] I. Krikidis, J. Thompson, and S. Mclaughlin, "Relay selection for secure cooperative networks with jamming," IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5003-5011, Oct. 2009.
[19] N. E. Zou and H. J. Li, "Effect of feedback delay on secure cooperative networks with joint relay and jammer selection," IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 415-418, Aug. 2013.
[20] H. M. Wang, F. Liu, and M. C. Yang, "Joint cooperative beamforming, jamming, and power allocation to secure AF relay systems," IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4893-4898, Oct. 2015.
[21] C Wang and H. M. Wang, "Robust joint beamforming and jamming for secure AF networks: Low-complexity design," IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2192-2198, May 2015.
[22] C. Wang, H. M. Wang, and X. G. Xia, "Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks," IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 589-605, Feb. 2015.
[23] Y. Zou, X. Wang, and W. Shen, "Optimal relay selection for physical-layer security in cooperative wireless networks," IEEE J. Sel. Areas Commun., vol. 31, no. 10, pp. 2099-2111, Oct. 2013.
[24] Y. Zou, X. Wang, W. Shen, and L. Hanzo, "Security versus reliability analysis of opportunistic relaying," IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2653-2661, Jul. 2014.
[25] J. H. Mo, M. X. Tao, Y. Liu, and R. Wang, "Secure beamforming for MIMO two-way communications with an untrusted relay," IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2185-2199, May 2014.
[26] Z. Ding, M. Xu, J. Lu, and F. Liu, "Improving wireless security for bidirectional communication scenarios," IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2842-2848, Jul. 2012.
[27] J. C. Chen, R. Q. Zhang, L. Y. Song, Z. Han, and B. L. Jiao, "Joint relay and jammer selection for secure two-way relay networks," IEEE Trans. Inf. Forensics Security, vol. 7, no. 1, pp. 310-320, Feb. 2012.
[28] H. M. Wang, M. Luo, Q. Yin, and X. G. Xia, "Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks," IEEE Trans. Inf. Forensics Security, vol. 8, no. 12, pp. 2007-2020, Dec. 2013.
[29] H. Hui, A. Lee, G. Li, and J. Liang, "Secure relay and jammer selection for physical layer security," IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1147-1151, Aug. 2015.
[30] D. Ibrahim, E. Hassan, and S. EI-Dolil, "Relay and jammer selection schemes for improving physical layer security in two-way cooperative networks," Comput. Security, vol. 50, pp. 47-59, May 2015.
[31] P. N. Son and H. Y. Kong, "Exat outage proability of two-way decode-and-forward scheme with opportunistic relay selection under physical layer security," Wireless Pers. Commun., vol. 77, no. 4, pp. 2889-2917, Mar. 2014.
[32] G. Wang, F. Gao, W. Chen, and C. Tellambura, "Channel estimation and training design for two-way relay networks in time-selective fading environment," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 26812691, Aug. 2011.
[33] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, Oct. 1948.
[34] Y. Zou, Y. D. Yao, and B. Zheng, "An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks," IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5438-5445, Oct. 2010.

Xiaojin Ding (M'16) received the M.S. degree in electrical engineering in 2007 from Southeast University, Nanjing, China, in 2007, where he is currently working toward the Ph.D. degree with the National Mobile Communication Research Laboratory.

His research interests include cognitive radio, cooperative communications, and wireless security.

Tiecheng Song (M'12) received the Ph.D. degree in communication and information systems from Southeast University, Nanjing, China, in 2006.

He is a Full Professor with the Southeast University. His general research interests include cognitive radio and communications theory.

Yulong Zou (SM'13) received the B.Eng. degree in information engineering from Nanjing University of Posts and Telecommunications (NUPT), Nanjing, China, in July 2006; the first Ph.D. degree in electrical engineering from Stevens Institute of Technology, Hoboken, NJ, USA, in May 2012; and the second Ph.D. degree in signal and information processing from NUPT, Nanjing, China, in July 2012.

He is a Full Professor and a Doctoral Supervisor with NUPT. His research interests include a wide range of topics in wireless communications and signal processing, including cooperative communications, cognitive radio, wireless security, and energy-efficient communications.

Dr. Zou received the Ninth IEEE Communications Society Asia-Pacific Best Young Researcher Award in 2014 and coreceived the Best Paper Award at the 80th IEEE Vehicular Technology Conference in 2014. He is currently an Editor of IEEE COMmunications Surveys \& Tutorials, IET Communications, and China Communications. In addition, he has acted as a Technical Program Committee for various IEEE sponsored conferences, e.g., IEEE ICC/GLOBECOM/WCNC/VTC/ICCC, etc.

Xiaoshu Chen received the M.S. degree in information engineering from Southeast University, Nanjing, China.

He is a Full Professor with Southeast University. His general research interests include communications theory and vehicle area networks.

Lajos Hanzo (F'08) received the D.Sc. degree in electronics in 1976 and the Doctorate degree in 1983.

In 2016, he was admitted to the Hungarian Academy of Science, Budapest, Hungary. During his 40-year career in telecommunications, he has held various research and academic posts in Hungary, Germany, and the U.K. Since 1986, he has been with the School of Electronics and Computer Science, University of Southampton, U.K., where he holds the Chair in telecommunications. He has successfully supervised $111 \mathrm{Ph} . \mathrm{D}$. students, co-authored 20 John Wiley/IEEE Press books on mobile radio communications, totalling in excess of 10000 pages, published $1600+$ research contributions on IEEE Xplore, acted both as Technical Program Committee member and General Chair of IEEE conferences, presented keynote lectures, and received a number of distinctions. Currently he is directing a 60 -strong academic research team, working on a range of research projects in the field of wireless multimedia communications sponsored by industry; the Engineering and Physical Sciences Research Council (EPSRC), U.K.; and the European Research Council's Advanced Fellow Grant. He is an enthusiastic supporter of industrial and academic liaison, and he offers a range of industrial courses. He has $25000+$ citations and an H-index of 60 . For further information on research in progress and associated publications, see http://www-mobile.ecs.soton.ac.uk.

Dr. Hanzo is also a Governor of the IEEE Vehicular Technology Society. During 2008-2012, he was the Editor-in-Chief of the IEEE Press and a Chaired Professor with Tsinghua University, Beijing, China. In 2009, he received an honorary doctorate award by the Technical University of Budapest and in 2015, from the University of Edinburgh, Edinburgh, U.K., as well as the Royal Society's Wolfson Research Merit Award. He is a Fellow of the Royal Academy of Engineering, The Institution of Engineering and Technology, and EURASIP.

Q1. Author: Please provide expansion for acronyms "MIMO". If required. 717
Q2. Author: Please provide page range for Ref. [7].718

Q3. Author: Please provide the year in which "Xiaoshu Chen" received the M.S degree. 719
Q4. Author: Please provide the subject in which "Lajos Hanzo" received his Doctorate degree. Also provide the institutional 720 details form where he received both his degrees.

[^0]: Manuscript received January 21, 2016; revised May 9, 2016 and July 22, 2016; accepted August 12, 2016. Date of publication; date of current version. This work was supported in part by the National Natural Science Foundation of China under Grant 61401223, Grant 61522109, Grant 61271207, and Grant 61372104; in part by the Natural Science Foundation of Jiangsu Province under Grant BK20140887 and Grant BK20150040; and in part by the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province under Grant 15KJA510003. The review of this paper was coordinated by Prof. M. C. Gursoy.
 X. Ding, T. Song, and X. Chen are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China (e-mail: dxj@seu.edu.cn; songtc@seu.edu.cn; xchen@seu.edu.cn).
 Y. Zou is with the School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China (e-mail: yulong.zou@njupt.edu.cn).
 L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

 Digital Object Identifier 10.1109/TVT.2016.2601112

[^1]: Manuscript received January 21, 2016; revised May 9, 2016 and July 22, 2016; accepted August 12, 2016. Date of publication; date of current version. This work was supported in part by the National Natural Science Foundation of China under Grant 61401223, Grant 61522109, Grant 61271207, and Grant 61372104; in part by the Natural Science Foundation of Jiangsu Province under Grant BK20140887 and Grant BK20150040; and in part by the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province under Grant 15KJA510003. The review of this paper was coordinated by Prof. M. C. Gursoy.
 X. Ding, T. Song, and X. Chen are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China (e-mail: dxj@seu.edu.cn; songtc@seu.edu.cn; xchen@seu.edu.cn).
 Y. Zou is with the School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China (e-mail: yulong.zou@njupt.edu.cn).
 L. Hanzo is with the Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

 Digital Object Identifier 10.1109/TVT.2016.2601112

