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Abstract 

Unlike other diversity-based approaches, N-variant sys-

tems thwart attacks without requiring secrets. Instead, 

they use redundancy (to require an attacker to 

simultaneously compromise multiple variants with the 

same input) and tailored diversity (to make it impossi-

ble to compromise all the variants with the same input 

for given attack classes). In this work, we develop a 

method for using data diversity in N-variant systems to 

provide high-assurance arguments against a class of 

data corruption attacks. Data is transformed in the vari-

ants so identical concrete data values have different 

interpretations. In order to corrupt the data without 

detection, an attacker would need to alter the 

corresponding data in each variant in a different way 

while sending the same inputs to all variants. We 

demonstrate our approach with a case study using that 

thwarts attacks that corrupt UID values. 

 

1. Introduction 

Distributed computing relies upon networked services 

that are exposed to malicious adversaries. These adver-

saries, posing as legitimate clients, attack the services 

with which they interact, doing so by exploiting vulner-

abilities in the service software. Despite much effort, it 

has proven difficult to build services that do not 

contain security vulnerabilities.  

The N-variant systems approach makes use of 

redundancy, using an architecture that combines 

tailored program diversity and execution monitoring to 

provide strong security guarantees that do not rely on 

assumptions about keeping secrets. The transforma-

tions used to generate variants can be simple and the 

keys used to generate the variants can be openly pub-

lished. The N-variant architecture enables high-assur-

ance arguments to be made with respect to specific 

attack classes, regardless of the vulnerability exploited.  

A simple example is address space partitioning, in 

which a program P is replaced with two variants P0 and 

P1 (Figure 1). The variants are constructed to behave 

identically to P on normal inputs, but use disjoint 

memory regions: P0 uses addresses that start with a 0 

bit while addresses for P1 start with a 1 bit. All inputs 

are replicated and sent to both variants. A monitor 

observes both variants and reports an attack if their be-

haviors diverge. An attack that involves accessing a 

specific absolute memory address (e.g., typical format 

string, stack and heap smashing, and return-to-libc 

attacks) may be constructed to succeed against either 

P0 or P1, but if that same input is run on the other 

variant it is guaranteed produce a memory access error 

which will be detected by the monitor. Thus, an attack 

that relies on directly inserting an absolute address is 

impossible (assuming the framework replicates inputs 

correctly and the monitor observes both variants 

behavior with sufficient granularity) since the high bit 

cannot be 0 and 1 at the same time.  

Our earlier work introduced N-variant systems and 

demonstrated address space partitioning as well as 

another instance of the approach for defeating code 

injection by tagging instructions in different variants 

with different values and checking and removing the 

tags before execution [16]. Other researchers have 

developed other variations within similar frameworks: 

Bruschi et al. created a variation to thwart partial 

memory overwrites [9], and Franz created a variation 

using reverse stack ordering that provides probabilistic 

protection against certain relative memory corruption 

attacks [20]. All of these variations alter some low-

level, program-wide property such as the format of 
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 Figure 1. Two-variant address partitioning. 
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instructions or the address space.  

Such variations are promising for thwarting large 

general attack classes, but provide only a glimpse of 

the opportunity N-variant frameworks provide, namely, 

the ability to deploy any diversity technique, including 

low-entropy variations, in a way that provides high 

assurance security against a particular attack class.  

In this paper, we develop a general method for 

employing data diversity in N-variant frameworks. 

Data diversity is a general approach to software fault 

tolerance in which identical copies of a program are 

executed with different data, and their outputs are 

subject to a vote [1]. The different versions of the data 

are obtained from the original input by a process 

known as reexpression, and the reexpression function 

is chosen so that either the results of the program are 

unaffected or the effects of reexpression on the outputs 

can be reversed easily. In traditional data diversity, the 

goal of reexpression is to avoid the regions of the input 

space for which the program fails. Since these regions 

are unknown in general, traditional data diversity offers 

only probabilistic guarantees of tolerating software 

faults. Our work is focused on security against mal-

icious attacks, so instead of using a majority vote we 

interpret any divergence in behavior as a security 

violation. To achieve high assurance security 

properties, our goal is to find reexpression functions 

that are disjoint, so that any data corruption attack will 

be detected as a divergence. 

Unlike previous diversity techniques that are applied 

universally to a process’ address space, data diversity 

techniques depend on understanding the underlying 

semantics of program data.  The data and program must 

be transformed in a way that preserves the original 

program semantics while allowing the program to 

operate on a different concrete data representation. 

Different data diversity techniques could be employed 

for different types of program data. As an example of 

our technique, we develop a variation that diversifies 

user IDs to thwart a class of data corruption attacks 

where user identification data is corrupted to gain root 

privileges or masquerade as an arbitrary user.  

The primary contribution of this paper is the 

development of a method for designing, implementing, 

and reasoning about N-variant systems that employ 

data diversity. Section 2 presents a model for data 

variation and explains how previous work on N-variant 

systems fits into our model. Section 3 demonstrates our 

approach using a data diversification that thwarts 

attacks that target corrupting UID values. Section 4 

reports on a case study implementation of our tech-

nique for the Apache web server. Section 5 discusses 

general lessons learned from our experience designing 

and implementing the UID variation. We present 

related work (which, surprisingly, extends to the 18
th

 

century) in Section 6 and conclude in Section 7.  

 

2. Model 

In previous work, we reasoned about N-variant systems 

by considering the sequence of program states in each 

variant [16]. Obtaining the desired detection and 

correctness properties required establishing two 

properties:  

1. Normal equivalence: When executing on normal 

(non-malicious) inputs, the variants remain in seman-

tically equivalent states. To establish normal equiva-

lence, a canonicalization function is used to map the 

states of all variants onto a canonical state. (For the 

address partitioning example, the canonicalization 

function maps the address spaces into the same space.) 

2. Detection – when executing on abnormal (attack) 

inputs, the variants diverge in a way that is detectable 

by the monitor. Typically, this occurs when one of the 

variants enters an alarm state. (For the address 

partitioning example, the detection property occurs 

when an attack injects an absolute address, which 

causes one of the variants to segmentation fault.) 

This model provides a general framework for reasoning 

about N-variant systems, but does not provide much 

insight for designing or reasoning about how to use 

data diversity effectively. The difficulty is this model 

relies on reasoning about the entire program state.  

 

2.1 Interpreters Model 

To reason about data diversity variations, we prefer a 

model that allows us to reason more directly about how 

data transformations preserve the necessary normal 

equivalence and detection properties. We consider an 

application as being composed of a series of 

interpreters, typically organized hierarchically. Each 

interpreter processes a particular type of data. For 

example, a web application depends on interpreters for 

handling the network protocol, the HTTP protocol, 

interpreting scripts that implement application logic, 

executing database queries, accessing operating system 

services, and executing machine instructions. 

To carry out a successful attack an attacker needs to 

break through several layers of interpretation and con-

trol inputs to a specific target interpreter. For example, 

if the malicious payload consists of x86 machine 

instructions, the targeted interpreter is the machine 

hardware itself. If the attack payload opens a shell 

(e.g., by executing /bin/sh on Unix systems), then 

one targeted interpreter might be the filesystem. A 

single exploit may target many different interpreters. 
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The reason why an attacker is able to send malicious 

data to a targeted interpreter is that higher-level inter-

preters contain vulnerabilities. Software is often 

deployed with many residual faults, some of which turn 

out to be severe security vulnerabilities.  

Figure 2 illustrates an N-variant system with two 

variants using different interpreters for some data type, 

but otherwise implementing the same program. The 

attacker is constrained to use the same communication 

channel as regular user input (External Input), and will 

attempt to craft input that compromises the application. 

This external input, including its embedded malicious 

payload, will be interpreted by a series of interpreters 

in the application, abstracted in the figure by a single 

interpreter, App Interpreter. By exploiting a path 

through App Interpreter containing a vulnerability, the 

embedded malicious data reaches the target interpreter.  

In general, diversity techniques attempt to thwart 

attacks by changing the interfaces between interpreters. 

If an attacker does not know this interface, the attacker 

will have difficultly guessing an input that has the 

desired effect on the target interpreter.  

With data diversity, the variations are created by 

using different data reexpression functions. If there is a 

large space of possible reexpression functions and 

associated secrets, it may be possible to provide a high 

degree of security with a single variant. To inject 

specific malicious data, the attacker needs to know the 

particular inverse reexpression function that is used. 

This configuration corresponds to the use of synthetic 

diversity techniques such as address space [8][42] and 

instruction set randomization for disrupting attacks [6] 

[25][28]. Security arguments for such techniques are 

based on the claim that it is difficult for an attacker to 

guess the randomization key. In practice, keeping 

randomization keys secret has proven difficult, as 

demonstrated by attacks on address space 

randomization [37] and instruction set randomization 

[38] techniques that exploit the limited actual entropy 

available for randomizations and probing opportunities.  

The N-variant framework obviates the need for 

secrets and high entropy. The reexpression functions 

are designed so that any concrete data that is valid for 

one variant is invalid for the other. The target 

interpreters are not designed to attempt to distinguish 

between malicious and normal data directly. Instead, 

they rely on the fact that the same malicious data will 

be sent to both target interpreters, whereas normal 

application data will have been reexpressed.  

As shown in Figure 2, each variant has a different 

reexpression function (R0, R1), and hence will operate 

on different data. Trusted data embedded in P is 

transformed using these functions in the corresponding 

variants. To preserve program semantics, the target 

interpreters are preceded by the corresponding inverse 

reexpression functions, R
-1

0 and R
-1

1. This establishes a 

different data interpretation between the application 

and target interpreters. 

 

2.2 Normal Equivalence 

Consider a data variation for a target type T and a given 

program P. To establish the normal equivalence 

property for each variant Pi we need to show:                                   

(1) All trusted data of type T used by P is trans-

formed using the reexpression function Ri. 

(2) All instructions in Pi that operate on T values 

directly (that is, without sending them to the 

target interpreter) are transformed to preserve 

the original semantics when operating on 

reexpressed data. 

In addition, we need to show the reexpression function 

and its inverse are indeed inverses: 

(3) ∀x: T, R
-1

i(Ri(T)) ≡ T. (inverse property) 
 

Showing the necessary inverse property holds is usually 

straightforward since the reexpression function is 

designed to have this property. 

Establishing the first two properties requires 

reasoning about a program transformation (and possib-

ly also about transformation of other external data as 

seen in Section 3.4). Transforming trusted program 

data requires identifying the constant data of the target 

type in P, and applying Ri to it to produce Pi. If the 

target data type is well defined, this should be fairly 

straightforward. Preserving the semantics is a more 

challenging problem. At worst, the inverse reex-

pression function can be embedded in the program to 

preserve the semantics of the original code.  

2.3 Detection 

The detection property states that if one variant is 

 
Figure 2. N-Variant Systems with Data Diversity. 
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compromised, the other must be in a state that indicates 

an attack. This requires that any injected data of the 

target type will be detected when the target interpreters 

compare their input data. This is achieved if the inverse 

reexpression functions are disjoint:  

∀x: R
-1

0(x) ≠ R
-1

1 (x) (disjointedness property).  

Hence, any time an identical value is sent to both 

interpreters an alarm is raised, since the inverted values 

must be different. 

Detection is only guaranteed by this property if all 

transformations that the application interpreter 

performs on input data are identical in the two variants. 

Otherwise, an attacker may be able to craft an input Z 

that is transformed by P0 into Z′ and P1 into Z′′ (where 

Z′ ≠ Z′′) before it is sent to the target interpreter.  

The detection property also requires that an attack 

must inject complete values of the targeted type. For 

example, address space partitioning provides protection 

only against attacks that inject complete addresses. It is 

vulnerable to an attack that can corrupt just the three 

low-order bytes of an address, leaving the high-order 

byte unchanged. The extended version of address space 

partitioning is (probabilistically) resilient to a byte-

overwriting attack since the low order bytes will also 

differ between variants.  

 

2.4 Examples 

Table 1 summarizes four variations using our model. 

The first three variations were developed in previous 

papers; we introduce the fourth variation in the next 

section. For the previous variations, the target type is 

broad: for the first two, it is all addresses, and for 

instruction set tagging it is all instructions. Hence, 

creating the variations to satisfy the needed normal 

equivalence property is fairly straightforward and 

requires no analysis of the program. 

 

3. UID Data Variation 

We now examine a data diversification designed to 

thwart attacks that corrupt user ID data. This is a type 

of non-control data attack as described by Chen et al. in 

which an attacker corrupts a data value that causes the 

original program to execute maliciously [12].  

We focus on the corruption of user and group 

identification data (UID/GID), although data diversity 

techniques could be designed to provide protection 

against other data attacks. In the rest of the paper, we 

use the term UID to denote both UID and GID values.  

To test the idea of data variation, we implemented a 

UID variation on the Apache web server [2]. A com-

mon pattern for servers is to drop their privileges when 

handling client requests. However, there will be 

instances when accessing critical system resources that 

require the escalation of privileges to the root account. 

If an attacker can corrupt the UID value used to drop or 

escalate privileges, then the attacker can masquerade as 

root (or any other user) in the system. Chen et al. 

describe one example of such an attack [12]. 

 

3.1 N-Variant Framework 

Before describing our variation strategy and its imple-

mentation, we review the existing N-variant framework 

prototype [16]. Our implementation is a Linux kernel 

modified to execute the variants using system call 

boundaries for both synchronization and monitoring 

purposes. To run a program as an N-variant system, the 

variant executables are created. Then, a script is used 

to launch the N-variant system with the selected 

variants, e.g., nvexec prog1 prog2.  

We updated kernel data structures to keep track of 

variant processes and implemented wrappers around 

system calls. System calls are used as synchronization 

points: once one variant makes a system call, it will not 

proceed until all other variants make the same system 

call. We wrap input system calls so that the actual input 

operation is only performed once and the same data is 

sent to all variants.  

This removes most sources of non-determinism 

since each variant receives the same result for system 

calls. However, our implementation does not yet handle 

issues involving scheduling divergences that can be 

caused by signals and threading [16]. For example, if a 

Variation Target Type Reexpression Functions Inverse Functions 

Address Space 

Partitioning [16] 
Address 

R0(a) = a 

R1(a) = a + 0x80000000 

R-1
0(a) = a 

R-1
1(a) = a – 0x80000000 

Extended Address Space  

Partitioning [9] 
Address 

R0(a) = a 

R1(a) = a + 0x80000000 + offset 

R-1
0(a) = a 

R-1
1(a) = a – 0x80000000 – offset 

Instruction Set  

Tagging [16] 
Instruction 

R0(inst)= 0 || inst 

R1(inst)= 1 || inst 

R-1
0(0 || inst) = inst 

R-1
1(1 || inst) = inst  

UID Variation (this paper) UID 
R0(u)= u 

R1(u)= u ⊕ 0x7FFFFFFF 

R-1
0(u)= u 

R-1
1(u)= u ⊕ 0x7FFFFFFF 

Table 1. Reexpression Functions. 
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signal is delivered to variants at different points in their 

execution, their behaviors may diverge. This leads to a 

false attack detection. Bruschi et. al. have developed a 

different implementation of a similar redundant execu-

tion framework that provides some steps towards 

simultaneous signal delivery [9].  

The wrappers also act as monitors and check for 

divergent behavior by making sure that all system calls 

receive equivalent arguments before allowing the actual 

system call to proceed.  For output related system calls, 

we also check that the variants are making equivalent 

system calls, and issue the actual call only once.  

 

3.2 Reexpression Functions 

To defend against this attack class, we adopted a reex-

pression function that is resilient to partial data value 

corruptions.  For P0, the reexpression function (and its 

inverse) is the identity function.  Hence, UID = 0 corre-

sponds to root as normal. For P1, we use:  

R1(u) = u ⊕ 0x7FFFFFFF  

R
-1

1(u) = u ⊕ 0x7FFFFFFF 

Hence, 0x7FFFFFFF represents root. The reexpression 

functions satisfy both the inverse property (the XORs 

cancel out) and the disjointedness property (flipping 

bits always changes the value).  

This reexpression function is susceptible to a high 

bit overwrite, since the high bit is not flipped. Ideally 

we would have used a reexpression function that flips 

all bits in the data value (XOR with 0xFFFFFFFF). 

This causes some implementation difficulties.  

Although the UID datatype is normally unsigned.  The 

kernel internally treats negative UID values as special 

cases so flipping the high bit (sign) would cause  

difficulties.  

Although individual bit attacks are certainly 

possible in theory, the lowest level of granularity 

reported for partial memory overwriting attacks under a 

remote attacker threat model is at the byte-level so we 

do not consider this a likely threat. While bit flips have 

been reported for other threat models, e.g., the heat 

lamp attack on the Java virtual machine [3], no known 

realistic attack allows an attacker to reliably target a 

specific bit to flip. 

 

3.3 Applying Reexpression Functions 

To create the variants we must transform the program 

to incorporate our reexpression function. Since the 

reexpression function for P0 is the identity function, the 

original program can be used unchanged for the first 

variant. To create the second variant, we perform a 

source-to-source program transformation. For our case 

study, the transformation was done manually, but in a 

way that could be readily automated (as discussed in 

Section 5). To apply the transformations, our 

transformer must be able to determine which values in 

a program are UID values. For a well-typed C program, 

all values used as UIDs are typed uid_t, and the 

uid_t type is never used to hold non-UID values.  

For the second variant, we need to establish the first 

two properties required for normal equivalence from 

Section 2.2: (1) all UID values in P1 must be trans-

formed using R1; and (2) all instructions in P1 that 

operate directly on UID values must be transformed to 

preserve the original semantics when operating on re-

expressed values. 

For the first property, we identify all UID constants 

using the C data type, and replace these values with the 

result of applying R1 to them. In some situations, 

constants are used implicitly.  For example, an if state-

ment such as if(!getuid()) contains an implied 

comparison to the constant 0. The statement is replaced 

with if(getuid()==0). This is to have the UID 

constant explicitly stated, after which the constant 

value is transformed.  

The second property requires modifying code that 

manipulates UID values. We assume that only assign-

ment and comparison operations are applied to UID 

values. Programs do not typically perform other 

operations on UID values, but if a program uses other 

operations on UID values additional transformations 

would be needed. Handling assignments and equality 

comparisons requires no code changes; if the operation 

involves a constant value, it was already transformed 

by the data transformation. Inequality comparisons 

must be logically reversed, however, to preserve the 

original semantics on transformed values (where all 

bits except the high bit have been flipped).  

 

3.4 Support for External Data 

Our data variation requires that all trusted data used by 

the variants is transformed using the reexpression func-

tion. Otherwise, untransformed data will have the 

wrong representation when it reaches the target inter-

preter. The transformations in the previous section 

transform data in the program itself, but many servers 

also rely on external data such as configuration files for 

their proper operations. For example, Apache uses UID 

values in the /etc/passwd and /etc/group files.  

We thus needed to develop a mechanism for the two 

variants to receive varied data originating from trusted 

external sources. One approach would be to apply the 

reexpression functions as data is read from external 

sources. This seems risky, however, since an attacker 

may be able to corrupt data by using this same path.   

The alternative is to provide two versions of the trusted 
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files and extend the framework to support file variants 

for the program variants. This approach is more 

general, and opens other interesting possibilities based 

on diversity of data in configuration files. 

To enable this, we created the notion of unshared 

files. Previously, all files were shared since all variants 

operated on identical data. I/O system calls were per-

formed once and the result was passed to all variants. 

Now, when the variants make a request to open an 

unshared file, the kernel opens a different file for each 

variant that contains data specific to that variant. For 

example, when both variants request that 

/etc/passwd be opened, P0 will actually open 

/etc/passwd-0 and P1 will open /etc/passwd-1. 

The diversified password files are identical except the 

UID values are transformed using the appropriate 

reexpression function. When the variants then perform 

an operation such as a read on an unshared file, each 

will do it on its separate file, while shared files will 

behave the same as before, having one variant perform 

the system call and giving all variants the same result. 

We modified the kernel so that each variant keeps 

its own file table data structure where information 

about the processes’ open files resides. We keep this 

data-structure synchronized between the variants so 

that the n
th

 slot in P0’s data structure corresponds to the 

n
th

 slot in P1’s data structure. When a file is opened, the 

kernel creates an entry for that file in each variants’ file 

table. If the file being opened is shared (the normal 

case), the kernel marks the bit in the shared files data-

structure to indicate it, otherwise it will clear that bit. 

When subsequent system calls are made that use a file 

descriptor, the kernel accesses the shared files bitmap 

and determine if the files are shared or unshared. If 

they are shared, the kernel will have P0 perform the 

system call and give the result to all variants. If the file 

is unshared, each variant will perform the system call 

reading or writing data to their own diversified file. 

When the files are closed the kernel will clear the entry 

in all variants’ file tables. 

 

3.5 System Calls 

The kernel calls that take UID parameters are the target 

interface for the data variation. Hence, the implementa-

tions of these calls should incorporate the inverse data 

transformation. We also use the system calls to check 

that the variants have not diverged. They should 

operate identically on the same data (after it has been 

transformed using the appropriate inverse reexpression 

function). 

We modified the wrappers of all system calls that 

involve UID parameters. For calls that take UID 

parameters such as long setuid(uid_t), the 

wrapper applies the inverse reexpression function. It 

also checks that the same actual (post-inverse transfor-

mation) values are passed into the call by all variants. 

For the system calls that return a UID value such as 

uid_t getuid(), the wrapper applies the re-ex-

pression transformation on the result (which is trusted), 

giving each variant its own varied UID value.  

We are also concerned with attacks where a UID 

value is corrupted in a way that leads to other behaviors 

before one of the system calls involves a UID 

parameter directly. Ideally, the monitor would observe 

and check the variants to be in normally equivalent 

states after each transition. This is impractical, so our 

current implementation approximates this by observing 

the system call made by the variants and ensures that 

they are equivalent. To ensure detection, we transform 

the program to expose UID uses to the monitor with 

newly created system calls. This ensures that the 

monitor observes any UID divergence before the cor-

rupted UID value is used.  

Table 2 summarizes the newly created system calls. 

The uid_value(uid_t) function passes the UID 

value to the kernel which compares the values across 

the variants and ensures they have equivalent meanings 

(i.e., they are identical after applying the appropriate 

inverse reexpression functions). The function returns 

the same value that was passed in. An example where 

this is used is in getpwname(uid_t): 

pw = getpwname(uid); 

 becomes 

pw = getpwname(uid_valueuid_valueuid_valueuid_value(uid)); 

The cond_chk(bool) function checks a condition 

code, which UID values may directly or indirectly 

affect. It is passed in the result of a conditional 

expression and ensures that both variants take the same 

path. For example, (pw == NULL) would be replaced 

by (cond_chkcond_chkcond_chkcond_chk(pw == NULL)). 

Function Signature Description 
uid_t uid_value(uid_t) Compares parameter 

value (across 

variants) and returns 

passed value. 
bool cond_chk(bool) Checks conditional 

value given between 

variants is the same.  
bool cc_eq(uid_t, uid_t) 
bool cc_neq(uid_t, uid_t) 
bool cc_lt(uid_t, uid_t) 
bool cc_leq(uid_t, uid_t) 
bool cc_gt(uid_t, uid_t) 
bool cc_geq(uid_t, uid_t) 

Compares 

parameters and 

returns the truth 

value for 

comparison. 

Table 2. Detection System Calls. 
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The other system calls are used when directly 

comparing two UID values (=, ≠, <. ≤, >, ≥). They 

could be written using the cond_chk call, but 

providing these additional calls offers two advantages: 

(1) it reduces the number of system calls needed to 

perform the check since both UID values are checked 

with one system call, and (2) the variants’ instruction 

streams remain identical, while if the comparison were 

done in user space, P1’s operators would need to get 

switched (≤ becomes ≥) due to the data variation. For 

example, (uid == VARIANT_ROOT) is replaced by  

(cc_eqcc_eqcc_eqcc_eq(uid, VARIANT_ROOT)). 

 

4. Apache Case Study 

To evaluate our variation, we conducted a case study 

on the Apache web server. To create Apache variants 

we needed to make a total of 73 changes to the source 

code. Fifteen of the changes involved applying the 

reexpression function to constant UID values in the 

source code. We needed 16 changes to introduce the 

new system calls to expose single UID value usages to 

the monitor, 22 changes to expose conditional state-

ments that compared UID values, and 20 changes to 

check conditional statements. 

Constructing variants by hand is tedious and error 

prone. Without any automation, this variation would 

not likely be practical. There are two main parts of this 

transformation. First, identifying the variables that 

contain UID values. If the programmer uses the uid_t 

and gid_t data types strictly, then it would only 

require identifying which constant values were 

assigned or compared to those variables and changing 

them according to the variation. If the programmer did 

not use uid_t data type to declare the variables, they 

could be inferred using dataflow analysis by seeing 

which variables stored the result of functions returning 

a known uid value (e.g., getuid) or were passed as a 

parameter to a function expecting a user id (e.g., 

setuid). Several static analysis tools, including Splint 

[31], are available that already do this analysis. Using 

this simple analysis technique would have identified all 

instances of UIDs in the Apache Web Server. 

Once all the UID values were identified and 

changed accordingly, we exposed the uses of UID 

variables to the monitor using the newly developed 

system calls (Table 2). 

Apache only had one complicating factor. If Apache 

encountered an error related to the UID, it would write 

an error message including the UID to a log file. If 

these output statements were left unmodified, it would 

result in a divergence since the UID values are 

different. However, modifying the statements so P1 

converts the UID value would open a potential security 

vulnerability. We worked around this problem simply 

by removing the user id value from the log output. 

Table 3 summarizes our performance results. We 

measured the throughput and latency of our system 

using WebBench 5.0 [41], a web server benchmark that 

serves a variety of static web page requests. We ran 

two sets of experiments measuring the performance of 

our Apache server under unsaturated and saturated load 

conditions. For the first set of experiments, we used a 

single client machine running one WebBench client 

engine. For the load experiments, we saturated our 

server using 3 clients each running five WebBench 

clients connected to the same networks switch as the 

server. In both sets, a single 1.4 GHz Pentium 4 server 

machine with 384 MB RAM ran Fedora Core 5 (2.6.16 

kernel) using 4 different configurations.   

Configuration 1 is the baseline configuration: un-

modified apache running on our kernel. Note that in 

general an unmodified program running under our 

modified kernel incurs practically no overhead. The 

only overhead would be the addition of an extra check 

(an if statement to determine if a process is participa-

ting in N-variant system) per system call.  

Configuration 2 shows the overhead of the UID 

code transformations made to Apache. In our experi-

ments, it was negligible; this is unsurprising since most 

of the UID operations are done when the server initial-

izes. The additional overhead is one system call per 

request to compare two UID values.  

Configuration 3 is a 2-variant system where the two 

variants differ in the address spaces with the kernel 

configured to support unshared files. This configura-

tion provides a baseline case when running two variants 

and can be used to measure the overhead of any 

Configuration 1 2 3 4 

Description 
Unmodified 

Apache 

Transformed 

Apache 

2-Variant 

Address Space  

2-Variant 

UID 

Throughput (KB/s) 1010 973 887 877 
Unsaturated 

Latency (ms) 5.81 5.81 6.56 6.65 

Throughput (KB/s) 5420 5372 2369 2262 
Saturated 

Latency (ms) 16.32 16.24 37.36 38.49 

Table 3. Performance Results. 
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additional variations. For the unloaded server, this 

resulted in a throughput decrease of 12.2% and a 

latency increase of 12.9% from the baseline 

configuration. For the loaded server, throughput 

decreases by 56% while latency increases by 129%.  

Since the N-variant system executes all computation 

twice, but all I/O system calls only once, the overhead 

incurred reflects the cost of duplicating computation, as 

well as the checking done by the wrappers. The 

overhead measured for the unloaded server is fairly 

low, since the process is primarily I/O bound. For the 

loaded server, the process becomes more compute-

bound, and the approximate halving of throughput 

reflects the redundant computation required from 

running 2 variants. 

Configuration 4 is a 2-variant system running the 

UID variation described in Section 4. We present 

overhead relative to Configuration 3 to measure the 

added overhead of our variation. For the unloaded 

server, throughput decreased by 1%, while latency 

increased by 1.4%. For the loaded server, throughput 

decreased by 4.5%, while latency increased by 3%.  

These results are encouraging in that although the 

overall overhead is high because of the redundant 

computation, additional variations may be performed at 

relatively low cost. This opens up the practical 

possibility of combining variations to achieve broader 

coverage of attack classes. However, variation 

composition must be done carefully to ensure that 

variations still satisfy the required normal equivalence 

properties when they are composed [16]. 

In general, our results indicate that for I/O bound 

services, N-variant systems with the UID variation can 

be done with performance overhead that would be 

acceptable for many deployments. For CPU-bound 

services, the overhead of our approach is high since all 

computations need to be performed twice. Multi-

processors may alleviate some of the problem (in cases 

where there is not enough load to keep the other 

processors busy normally) [20].  

 

5. Discussion 

Designing data variations for non-control data attacks 

is more difficult than we had anticipated. In particular, 

applications such as Apache rely on external config-

uration files such as /etc/passwd and /etc/group 

to map user names to UIDs. We wanted to avoid 

embedding the reexpression functions directly inside 

the web server itself since this would have opened up a 

potential path by which an attacker could bypass 

detection by reusing the reexpression functions. Our 

solution was to provide support for the concept of 

unshared files, in which the variants read from their 

respective reexpressed files (e.g., /etc/passwd-0 for 

variant 0 and /etc/passwd-1 for variant 1). Although 

we have not yet explored other applications of un-

shared files, they provide other exciting opportunities 

for diversity. For example, web server variants could 

be run with different directory structures and different 

configuration files to thwart attacks on file paths.  

For detection, we defined new system calls to 

synchronize and check for the validity of UID values at 

the point of use. This design choice was motivated by 

our desire to make strong arguments regarding (nearly) 

immediate detection of corrupted UID values. Another 

possibility is to rely on the already existing monitoring 

mechanism for checking divergence at system call 

boundaries at the cost of detection precision. From our 

performance results, the costs of these extra system 

calls appear to be minor. 

Varying UIDs as a reexpression strategy required 

making strong assumption about their uses being 

limited to assignments and comparisons. This assump-

tion turns out to be warranted for a simple data type 

like UIDs, but UIDs are only one type of security 

critical data identified by Chen et al. [12]. Our next 

step is to investigate data variations for other types of 

security-critical data such as configuration data and 

decision-making data. In the general case, data opera-

tions can be much more complex, e.g., functions that 

manipulate strings such as regular expression matchers. 

More complex data types pose more challenges in 

diversification while preserving semantics, but also 

opportunities to thwart larger attack classes. If data 

types are properly encapsulated, perhaps via C++ 

classes, we could safely maintain program semantics 

while varying data representations provided the class 

interface did not leak internal implementation details.  

 

6. Related Work 

The first use of data diversity of which we are aware 

was by British Astronomer Royal, Nevil Maskelyne, 

who employed data diversity techniques using human 

computers to improve the reliability of astronomical 

tables published in the 1767 Nautical Almanac 

[17][23]. For the lunar tables, Maskelyne would assign 

one (human) computer the task of calculating the 

moon’s position at noon for each day of the month, and 

another computer (known as the anticomputer) the task 

of calculating the moon’s position at midnight. A third 

person known as a comparer was responsible for 

merging and checking the computers’ results.  

We discussed the most closely related recent work 

on N-variant systems in the introduction. Next, we 

consider other defenses suggested by the interpreter 

model, and other work on redundant execution. 
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Other Defenses. An orthogonal strategy is to eliminate 

vulnerabilities altogether so that malicious data cannot 

reach the target interpreter. An example of this strategy 

is to use type-safe languages to eliminate memory 

vulnerabilities or using point defenses against specific 

vulnerabilities [14][18][36]. Another strategy is to seek 

ways to distinguish trusted and untrusted data. An 

example would be taint analysis techniques to track the 

flow of information from untrusted sources and prevent 

their use in security-critical functions [24][33][34][43].  

Diversity Techniques. Numerous diversity techniques 

have been proposed for increasing the difficulty of 

exploiting vulnerabilities, including randomizing in-

structions [6][28], memory layout [8][42], compiler 

layout [1][19], encrypting pointers [15][40], and opera-

ting system interface [13]. Unlike the N-variant 

systems approach, all of these works rely on attackers’ 

inability to guess a secret key for security. 

Redundant Computation. N-version programming 

[4][11][26] (from which we adopted the name N-

variant systems) uses multiple independent teams to 

produce the software intended to implement the same 

requirements.  It is based on design diversity, in the 

hope of avoiding common faults between versions. 

However, Knight and Leveson have shown experi-

mentally that even separate teams are likely to make 

similar mistakes [29]. Furthermore, N-version pro-

gramming is resource-intensive, and thus typically 

applied to critical systems only. Littlewood et. al 

present a recent overview of design and data diversity, 

and their application to security [32].  

For popular servers, such as web servers, multiple 

implementations of the same protocol may be avail-

able. The HACQIT project [27][35] deployed two web 

servers (IIS running on Windows and Apache on 

Linux) and checked HTTP status code to indicate 

divergence. Totel, Majorczyk and Mé extended this 

idea and compared the actual web page responses of 

the servers [39]. The challenge in this approach is to 

distinguish benign differences in the output arising 

because of design difference in the servers or host 

specific properties, from differences that indicate an 

attack. Gao, Reiter and Song correlate system calls 

between web servers to identify attacks [21][22]. Of 

these, the first two approaches would not have detected 

a UID exploit provided the attack did not perturb the 

output web pages. Gao et al.’s system may potentially 

detect such an attack if it results in sufficiently non-

correlated system calls. In contrast, using our approach 

we can make strong guarantees about detecting all 

attacks in a particular attack class. 

Berger and Zorn proposed a redundant execution 

framework with multiple replicas each with a different 

randomized layout of objects within the heap to 

provide probabilistic memory safety [7]. Their repli-

cation framework only handles processes whose I/O is 

through standard in/out, and only a limited number of 

system calls are caught to ensure all replicas see the 

same values. Their goals were to enhance reliability 

and availability, rather than to detect and resist attacks. 

An extension would be to combine the fine-grained 

monitoring capabilities of N-variant systems with 

probabilistic variations such as theirs.  

  

7. Conclusion 

The N-variant systems approach to security holds the 

promise for building systems whose security properties 

with respect to particular attack classes can be assured 

with high confidence. Furthermore, these properties 

can be achieved without relying on secrets, and using 

low-entropy transformations.  

In this paper, we developed a general approach to 

data diversity for N-variant systems and demonstrated 

this approach with a data variation for combating 

attacks that involve corruption of UID values. 

Although this particular problem can be more easily 

combated in other ways, the approach described is 

promising in demonstrating how low-entropy data 

diversity can be used to provide high assurance security 

against particular attack classes. In future work we plan 

to investigate the addition and composition of further 

data diversity techniques. 
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