
Security through Redundant Data Diversity

Anh Nguyen-Tuong, David Evans, John C. Knight, Benjamin Cox, Jack W. Davidson

University of Virginia, Department of Computer Science

{nguyen | evans | knight | btc4w | davidson}@cs.virginia.edu

Abstract

Unlike other diversity-based approaches, N-variant sys-

tems thwart attacks without requiring secrets. Instead,

they use redundancy (to require an attacker to

simultaneously compromise multiple variants with the

same input) and tailored diversity (to make it impossi-

ble to compromise all the variants with the same input

for given attack classes). In this work, we develop a

method for using data diversity in N-variant systems to

provide high-assurance arguments against a class of

data corruption attacks. Data is transformed in the vari-

ants so identical concrete data values have different

interpretations. In order to corrupt the data without

detection, an attacker would need to alter the

corresponding data in each variant in a different way

while sending the same inputs to all variants. We

demonstrate our approach with a case study using that

thwarts attacks that corrupt UID values.

1. Introduction

Distributed computing relies upon networked services

that are exposed to malicious adversaries. These adver-

saries, posing as legitimate clients, attack the services

with which they interact, doing so by exploiting vulner-

abilities in the service software. Despite much effort, it

has proven difficult to build services that do not

contain security vulnerabilities.

The N-variant systems approach makes use of

redundancy, using an architecture that combines

tailored program diversity and execution monitoring to

provide strong security guarantees that do not rely on

assumptions about keeping secrets. The transforma-

tions used to generate variants can be simple and the

keys used to generate the variants can be openly pub-

lished. The N-variant architecture enables high-assur-

ance arguments to be made with respect to specific

attack classes, regardless of the vulnerability exploited.

A simple example is address space partitioning, in

which a program P is replaced with two variants P0 and

P1 (Figure 1). The variants are constructed to behave

identically to P on normal inputs, but use disjoint

memory regions: P0 uses addresses that start with a 0

bit while addresses for P1 start with a 1 bit. All inputs

are replicated and sent to both variants. A monitor

observes both variants and reports an attack if their be-

haviors diverge. An attack that involves accessing a

specific absolute memory address (e.g., typical format

string, stack and heap smashing, and return-to-libc

attacks) may be constructed to succeed against either

P0 or P1, but if that same input is run on the other

variant it is guaranteed produce a memory access error

which will be detected by the monitor. Thus, an attack

that relies on directly inserting an absolute address is

impossible (assuming the framework replicates inputs

correctly and the monitor observes both variants

behavior with sufficient granularity) since the high bit

cannot be 0 and 1 at the same time.

Our earlier work introduced N-variant systems and

demonstrated address space partitioning as well as

another instance of the approach for defeating code

injection by tagging instructions in different variants

with different values and checking and removing the

tags before execution [16]. Other researchers have

developed other variations within similar frameworks:

Bruschi et al. created a variation to thwart partial

memory overwrites [9], and Franz created a variation

using reverse stack ordering that provides probabilistic

protection against certain relative memory corruption

attacks [20]. All of these variations alter some low-

level, program-wide property such as the format of

0

1

Monitor

Untrusted Input (from client)

Output

 Figure 1. Two-variant address partitioning.

In the 38
th

 IEEE/IFPF International Conference on Dependable Systems and Networks,

Dependable Computing and Communications Symposium. Anchorage, June 2008.

 2

instructions or the address space.

Such variations are promising for thwarting large

general attack classes, but provide only a glimpse of

the opportunity N-variant frameworks provide, namely,

the ability to deploy any diversity technique, including

low-entropy variations, in a way that provides high

assurance security against a particular attack class.

In this paper, we develop a general method for

employing data diversity in N-variant frameworks.

Data diversity is a general approach to software fault

tolerance in which identical copies of a program are

executed with different data, and their outputs are

subject to a vote [1]. The different versions of the data

are obtained from the original input by a process

known as reexpression, and the reexpression function

is chosen so that either the results of the program are

unaffected or the effects of reexpression on the outputs

can be reversed easily. In traditional data diversity, the

goal of reexpression is to avoid the regions of the input

space for which the program fails. Since these regions

are unknown in general, traditional data diversity offers

only probabilistic guarantees of tolerating software

faults. Our work is focused on security against mal-

icious attacks, so instead of using a majority vote we

interpret any divergence in behavior as a security

violation. To achieve high assurance security

properties, our goal is to find reexpression functions

that are disjoint, so that any data corruption attack will

be detected as a divergence.

Unlike previous diversity techniques that are applied

universally to a process’ address space, data diversity

techniques depend on understanding the underlying

semantics of program data. The data and program must

be transformed in a way that preserves the original

program semantics while allowing the program to

operate on a different concrete data representation.

Different data diversity techniques could be employed

for different types of program data. As an example of

our technique, we develop a variation that diversifies

user IDs to thwart a class of data corruption attacks

where user identification data is corrupted to gain root

privileges or masquerade as an arbitrary user.

The primary contribution of this paper is the

development of a method for designing, implementing,

and reasoning about N-variant systems that employ

data diversity. Section 2 presents a model for data

variation and explains how previous work on N-variant

systems fits into our model. Section 3 demonstrates our

approach using a data diversification that thwarts

attacks that target corrupting UID values. Section 4

reports on a case study implementation of our tech-

nique for the Apache web server. Section 5 discusses

general lessons learned from our experience designing

and implementing the UID variation. We present

related work (which, surprisingly, extends to the 18
th

century) in Section 6 and conclude in Section 7.

2. Model

In previous work, we reasoned about N-variant systems

by considering the sequence of program states in each

variant [16]. Obtaining the desired detection and

correctness properties required establishing two

properties:

1. Normal equivalence: When executing on normal

(non-malicious) inputs, the variants remain in seman-

tically equivalent states. To establish normal equiva-

lence, a canonicalization function is used to map the

states of all variants onto a canonical state. (For the

address partitioning example, the canonicalization

function maps the address spaces into the same space.)

2. Detection – when executing on abnormal (attack)

inputs, the variants diverge in a way that is detectable

by the monitor. Typically, this occurs when one of the

variants enters an alarm state. (For the address

partitioning example, the detection property occurs

when an attack injects an absolute address, which

causes one of the variants to segmentation fault.)

This model provides a general framework for reasoning

about N-variant systems, but does not provide much

insight for designing or reasoning about how to use

data diversity effectively. The difficulty is this model

relies on reasoning about the entire program state.

2.1 Interpreters Model

To reason about data diversity variations, we prefer a

model that allows us to reason more directly about how

data transformations preserve the necessary normal

equivalence and detection properties. We consider an

application as being composed of a series of

interpreters, typically organized hierarchically. Each

interpreter processes a particular type of data. For

example, a web application depends on interpreters for

handling the network protocol, the HTTP protocol,

interpreting scripts that implement application logic,

executing database queries, accessing operating system

services, and executing machine instructions.

To carry out a successful attack an attacker needs to

break through several layers of interpretation and con-

trol inputs to a specific target interpreter. For example,

if the malicious payload consists of x86 machine

instructions, the targeted interpreter is the machine

hardware itself. If the attack payload opens a shell

(e.g., by executing /bin/sh on Unix systems), then

one targeted interpreter might be the filesystem. A

single exploit may target many different interpreters.

 3

The reason why an attacker is able to send malicious

data to a targeted interpreter is that higher-level inter-

preters contain vulnerabilities. Software is often

deployed with many residual faults, some of which turn

out to be severe security vulnerabilities.

Figure 2 illustrates an N-variant system with two

variants using different interpreters for some data type,

but otherwise implementing the same program. The

attacker is constrained to use the same communication

channel as regular user input (External Input), and will

attempt to craft input that compromises the application.

This external input, including its embedded malicious

payload, will be interpreted by a series of interpreters

in the application, abstracted in the figure by a single

interpreter, App Interpreter. By exploiting a path

through App Interpreter containing a vulnerability, the

embedded malicious data reaches the target interpreter.

In general, diversity techniques attempt to thwart

attacks by changing the interfaces between interpreters.

If an attacker does not know this interface, the attacker

will have difficultly guessing an input that has the

desired effect on the target interpreter.

With data diversity, the variations are created by

using different data reexpression functions. If there is a

large space of possible reexpression functions and

associated secrets, it may be possible to provide a high

degree of security with a single variant. To inject

specific malicious data, the attacker needs to know the

particular inverse reexpression function that is used.

This configuration corresponds to the use of synthetic

diversity techniques such as address space [8][42] and

instruction set randomization for disrupting attacks [6]

[25][28]. Security arguments for such techniques are

based on the claim that it is difficult for an attacker to

guess the randomization key. In practice, keeping

randomization keys secret has proven difficult, as

demonstrated by attacks on address space

randomization [37] and instruction set randomization

[38] techniques that exploit the limited actual entropy

available for randomizations and probing opportunities.

The N-variant framework obviates the need for

secrets and high entropy. The reexpression functions

are designed so that any concrete data that is valid for

one variant is invalid for the other. The target

interpreters are not designed to attempt to distinguish

between malicious and normal data directly. Instead,

they rely on the fact that the same malicious data will

be sent to both target interpreters, whereas normal

application data will have been reexpressed.

As shown in Figure 2, each variant has a different

reexpression function (R0, R1), and hence will operate

on different data. Trusted data embedded in P is

transformed using these functions in the corresponding

variants. To preserve program semantics, the target

interpreters are preceded by the corresponding inverse

reexpression functions, R
-1

0 and R
-1

1. This establishes a

different data interpretation between the application

and target interpreters.

2.2 Normal Equivalence

Consider a data variation for a target type T and a given

program P. To establish the normal equivalence

property for each variant Pi we need to show:

(1) All trusted data of type T used by P is trans-

formed using the reexpression function Ri.

(2) All instructions in Pi that operate on T values

directly (that is, without sending them to the

target interpreter) are transformed to preserve

the original semantics when operating on

reexpressed data.

In addition, we need to show the reexpression function

and its inverse are indeed inverses:

(3) ∀x: T, R
-1

i(Ri(T)) ≡ T. (inverse property)

Showing the necessary inverse property holds is usually

straightforward since the reexpression function is

designed to have this property.

Establishing the first two properties requires

reasoning about a program transformation (and possib-

ly also about transformation of other external data as

seen in Section 3.4). Transforming trusted program

data requires identifying the constant data of the target

type in P, and applying Ri to it to produce Pi. If the

target data type is well defined, this should be fairly

straightforward. Preserving the semantics is a more

challenging problem. At worst, the inverse reex-

pression function can be embedded in the program to

preserve the semantics of the original code.

2.3 Detection

The detection property states that if one variant is

Figure 2. N-Variant Systems with Data Diversity.

 4

compromised, the other must be in a state that indicates

an attack. This requires that any injected data of the

target type will be detected when the target interpreters

compare their input data. This is achieved if the inverse

reexpression functions are disjoint:

∀x: R
-1

0(x) ≠ R
-1

1 (x) (disjointedness property).

Hence, any time an identical value is sent to both

interpreters an alarm is raised, since the inverted values

must be different.

Detection is only guaranteed by this property if all

transformations that the application interpreter

performs on input data are identical in the two variants.

Otherwise, an attacker may be able to craft an input Z

that is transformed by P0 into Z′ and P1 into Z′′ (where

Z′ ≠ Z′′) before it is sent to the target interpreter.

The detection property also requires that an attack

must inject complete values of the targeted type. For

example, address space partitioning provides protection

only against attacks that inject complete addresses. It is

vulnerable to an attack that can corrupt just the three

low-order bytes of an address, leaving the high-order

byte unchanged. The extended version of address space

partitioning is (probabilistically) resilient to a byte-

overwriting attack since the low order bytes will also

differ between variants.

2.4 Examples

Table 1 summarizes four variations using our model.

The first three variations were developed in previous

papers; we introduce the fourth variation in the next

section. For the previous variations, the target type is

broad: for the first two, it is all addresses, and for

instruction set tagging it is all instructions. Hence,

creating the variations to satisfy the needed normal

equivalence property is fairly straightforward and

requires no analysis of the program.

3. UID Data Variation

We now examine a data diversification designed to

thwart attacks that corrupt user ID data. This is a type

of non-control data attack as described by Chen et al. in

which an attacker corrupts a data value that causes the

original program to execute maliciously [12].

We focus on the corruption of user and group

identification data (UID/GID), although data diversity

techniques could be designed to provide protection

against other data attacks. In the rest of the paper, we

use the term UID to denote both UID and GID values.

To test the idea of data variation, we implemented a

UID variation on the Apache web server [2]. A com-

mon pattern for servers is to drop their privileges when

handling client requests. However, there will be

instances when accessing critical system resources that

require the escalation of privileges to the root account.

If an attacker can corrupt the UID value used to drop or

escalate privileges, then the attacker can masquerade as

root (or any other user) in the system. Chen et al.

describe one example of such an attack [12].

3.1 N-Variant Framework

Before describing our variation strategy and its imple-

mentation, we review the existing N-variant framework

prototype [16]. Our implementation is a Linux kernel

modified to execute the variants using system call

boundaries for both synchronization and monitoring

purposes. To run a program as an N-variant system, the

variant executables are created. Then, a script is used

to launch the N-variant system with the selected

variants, e.g., nvexec prog1 prog2.

We updated kernel data structures to keep track of

variant processes and implemented wrappers around

system calls. System calls are used as synchronization

points: once one variant makes a system call, it will not

proceed until all other variants make the same system

call. We wrap input system calls so that the actual input

operation is only performed once and the same data is

sent to all variants.

This removes most sources of non-determinism

since each variant receives the same result for system

calls. However, our implementation does not yet handle

issues involving scheduling divergences that can be

caused by signals and threading [16]. For example, if a

Variation Target Type Reexpression Functions Inverse Functions

Address Space

Partitioning [16]
Address

R0(a) = a

R1(a) = a + 0x80000000

R-1
0(a) = a

R-1
1(a) = a – 0x80000000

Extended Address Space

Partitioning [9]
Address

R0(a) = a

R1(a) = a + 0x80000000 + offset

R-1
0(a) = a

R-1
1(a) = a – 0x80000000 – offset

Instruction Set

Tagging [16]
Instruction

R0(inst)= 0 || inst

R1(inst)= 1 || inst

R-1
0(0 || inst) = inst

R-1
1(1 || inst) = inst

UID Variation (this paper) UID
R0(u)= u

R1(u)= u ⊕ 0x7FFFFFFF

R-1
0(u)= u

R-1
1(u)= u ⊕ 0x7FFFFFFF

Table 1. Reexpression Functions.

 5

signal is delivered to variants at different points in their

execution, their behaviors may diverge. This leads to a

false attack detection. Bruschi et. al. have developed a

different implementation of a similar redundant execu-

tion framework that provides some steps towards

simultaneous signal delivery [9].

The wrappers also act as monitors and check for

divergent behavior by making sure that all system calls

receive equivalent arguments before allowing the actual

system call to proceed. For output related system calls,

we also check that the variants are making equivalent

system calls, and issue the actual call only once.

3.2 Reexpression Functions

To defend against this attack class, we adopted a reex-

pression function that is resilient to partial data value

corruptions. For P0, the reexpression function (and its

inverse) is the identity function. Hence, UID = 0 corre-

sponds to root as normal. For P1, we use:

R1(u) = u ⊕ 0x7FFFFFFF

R
-1

1(u) = u ⊕ 0x7FFFFFFF

Hence, 0x7FFFFFFF represents root. The reexpression

functions satisfy both the inverse property (the XORs

cancel out) and the disjointedness property (flipping

bits always changes the value).

This reexpression function is susceptible to a high

bit overwrite, since the high bit is not flipped. Ideally

we would have used a reexpression function that flips

all bits in the data value (XOR with 0xFFFFFFFF).

This causes some implementation difficulties.

Although the UID datatype is normally unsigned. The

kernel internally treats negative UID values as special

cases so flipping the high bit (sign) would cause

difficulties.

Although individual bit attacks are certainly

possible in theory, the lowest level of granularity

reported for partial memory overwriting attacks under a

remote attacker threat model is at the byte-level so we

do not consider this a likely threat. While bit flips have

been reported for other threat models, e.g., the heat

lamp attack on the Java virtual machine [3], no known

realistic attack allows an attacker to reliably target a

specific bit to flip.

3.3 Applying Reexpression Functions

To create the variants we must transform the program

to incorporate our reexpression function. Since the

reexpression function for P0 is the identity function, the

original program can be used unchanged for the first

variant. To create the second variant, we perform a

source-to-source program transformation. For our case

study, the transformation was done manually, but in a

way that could be readily automated (as discussed in

Section 5). To apply the transformations, our

transformer must be able to determine which values in

a program are UID values. For a well-typed C program,

all values used as UIDs are typed uid_t, and the

uid_t type is never used to hold non-UID values.

For the second variant, we need to establish the first

two properties required for normal equivalence from

Section 2.2: (1) all UID values in P1 must be trans-

formed using R1; and (2) all instructions in P1 that

operate directly on UID values must be transformed to

preserve the original semantics when operating on re-

expressed values.

For the first property, we identify all UID constants

using the C data type, and replace these values with the

result of applying R1 to them. In some situations,

constants are used implicitly. For example, an if state-

ment such as if(!getuid()) contains an implied

comparison to the constant 0. The statement is replaced

with if(getuid()==0). This is to have the UID

constant explicitly stated, after which the constant

value is transformed.

The second property requires modifying code that

manipulates UID values. We assume that only assign-

ment and comparison operations are applied to UID

values. Programs do not typically perform other

operations on UID values, but if a program uses other

operations on UID values additional transformations

would be needed. Handling assignments and equality

comparisons requires no code changes; if the operation

involves a constant value, it was already transformed

by the data transformation. Inequality comparisons

must be logically reversed, however, to preserve the

original semantics on transformed values (where all

bits except the high bit have been flipped).

3.4 Support for External Data

Our data variation requires that all trusted data used by

the variants is transformed using the reexpression func-

tion. Otherwise, untransformed data will have the

wrong representation when it reaches the target inter-

preter. The transformations in the previous section

transform data in the program itself, but many servers

also rely on external data such as configuration files for

their proper operations. For example, Apache uses UID

values in the /etc/passwd and /etc/group files.

We thus needed to develop a mechanism for the two

variants to receive varied data originating from trusted

external sources. One approach would be to apply the

reexpression functions as data is read from external

sources. This seems risky, however, since an attacker

may be able to corrupt data by using this same path.

The alternative is to provide two versions of the trusted

 6

files and extend the framework to support file variants

for the program variants. This approach is more

general, and opens other interesting possibilities based

on diversity of data in configuration files.

To enable this, we created the notion of unshared

files. Previously, all files were shared since all variants

operated on identical data. I/O system calls were per-

formed once and the result was passed to all variants.

Now, when the variants make a request to open an

unshared file, the kernel opens a different file for each

variant that contains data specific to that variant. For

example, when both variants request that

/etc/passwd be opened, P0 will actually open

/etc/passwd-0 and P1 will open /etc/passwd-1.

The diversified password files are identical except the

UID values are transformed using the appropriate

reexpression function. When the variants then perform

an operation such as a read on an unshared file, each

will do it on its separate file, while shared files will

behave the same as before, having one variant perform

the system call and giving all variants the same result.

We modified the kernel so that each variant keeps

its own file table data structure where information

about the processes’ open files resides. We keep this

data-structure synchronized between the variants so

that the n
th

 slot in P0’s data structure corresponds to the

n
th

 slot in P1’s data structure. When a file is opened, the

kernel creates an entry for that file in each variants’ file

table. If the file being opened is shared (the normal

case), the kernel marks the bit in the shared files data-

structure to indicate it, otherwise it will clear that bit.

When subsequent system calls are made that use a file

descriptor, the kernel accesses the shared files bitmap

and determine if the files are shared or unshared. If

they are shared, the kernel will have P0 perform the

system call and give the result to all variants. If the file

is unshared, each variant will perform the system call

reading or writing data to their own diversified file.

When the files are closed the kernel will clear the entry

in all variants’ file tables.

3.5 System Calls

The kernel calls that take UID parameters are the target

interface for the data variation. Hence, the implementa-

tions of these calls should incorporate the inverse data

transformation. We also use the system calls to check

that the variants have not diverged. They should

operate identically on the same data (after it has been

transformed using the appropriate inverse reexpression

function).

We modified the wrappers of all system calls that

involve UID parameters. For calls that take UID

parameters such as long setuid(uid_t), the

wrapper applies the inverse reexpression function. It

also checks that the same actual (post-inverse transfor-

mation) values are passed into the call by all variants.

For the system calls that return a UID value such as

uid_t getuid(), the wrapper applies the re-ex-

pression transformation on the result (which is trusted),

giving each variant its own varied UID value.

We are also concerned with attacks where a UID

value is corrupted in a way that leads to other behaviors

before one of the system calls involves a UID

parameter directly. Ideally, the monitor would observe

and check the variants to be in normally equivalent

states after each transition. This is impractical, so our

current implementation approximates this by observing

the system call made by the variants and ensures that

they are equivalent. To ensure detection, we transform

the program to expose UID uses to the monitor with

newly created system calls. This ensures that the

monitor observes any UID divergence before the cor-

rupted UID value is used.

Table 2 summarizes the newly created system calls.

The uid_value(uid_t) function passes the UID

value to the kernel which compares the values across

the variants and ensures they have equivalent meanings

(i.e., they are identical after applying the appropriate

inverse reexpression functions). The function returns

the same value that was passed in. An example where

this is used is in getpwname(uid_t):

pw = getpwname(uid);

 becomes

pw = getpwname(uid_valueuid_valueuid_valueuid_value(uid));

The cond_chk(bool) function checks a condition

code, which UID values may directly or indirectly

affect. It is passed in the result of a conditional

expression and ensures that both variants take the same

path. For example, (pw == NULL) would be replaced

by (cond_chkcond_chkcond_chkcond_chk(pw == NULL)).

Function Signature Description
uid_t uid_value(uid_t) Compares parameter

value (across

variants) and returns

passed value.
bool cond_chk(bool) Checks conditional

value given between

variants is the same.
bool cc_eq(uid_t, uid_t)
bool cc_neq(uid_t, uid_t)
bool cc_lt(uid_t, uid_t)
bool cc_leq(uid_t, uid_t)
bool cc_gt(uid_t, uid_t)
bool cc_geq(uid_t, uid_t)

Compares

parameters and

returns the truth

value for

comparison.

Table 2. Detection System Calls.

 7

The other system calls are used when directly

comparing two UID values (=, ≠, <. ≤, >, ≥). They

could be written using the cond_chk call, but

providing these additional calls offers two advantages:

(1) it reduces the number of system calls needed to

perform the check since both UID values are checked

with one system call, and (2) the variants’ instruction

streams remain identical, while if the comparison were

done in user space, P1’s operators would need to get

switched (≤ becomes ≥) due to the data variation. For

example, (uid == VARIANT_ROOT) is replaced by

(cc_eqcc_eqcc_eqcc_eq(uid, VARIANT_ROOT)).

4. Apache Case Study

To evaluate our variation, we conducted a case study

on the Apache web server. To create Apache variants

we needed to make a total of 73 changes to the source

code. Fifteen of the changes involved applying the

reexpression function to constant UID values in the

source code. We needed 16 changes to introduce the

new system calls to expose single UID value usages to

the monitor, 22 changes to expose conditional state-

ments that compared UID values, and 20 changes to

check conditional statements.

Constructing variants by hand is tedious and error

prone. Without any automation, this variation would

not likely be practical. There are two main parts of this

transformation. First, identifying the variables that

contain UID values. If the programmer uses the uid_t

and gid_t data types strictly, then it would only

require identifying which constant values were

assigned or compared to those variables and changing

them according to the variation. If the programmer did

not use uid_t data type to declare the variables, they

could be inferred using dataflow analysis by seeing

which variables stored the result of functions returning

a known uid value (e.g., getuid) or were passed as a

parameter to a function expecting a user id (e.g.,

setuid). Several static analysis tools, including Splint

[31], are available that already do this analysis. Using

this simple analysis technique would have identified all

instances of UIDs in the Apache Web Server.

Once all the UID values were identified and

changed accordingly, we exposed the uses of UID

variables to the monitor using the newly developed

system calls (Table 2).

Apache only had one complicating factor. If Apache

encountered an error related to the UID, it would write

an error message including the UID to a log file. If

these output statements were left unmodified, it would

result in a divergence since the UID values are

different. However, modifying the statements so P1

converts the UID value would open a potential security

vulnerability. We worked around this problem simply

by removing the user id value from the log output.

Table 3 summarizes our performance results. We

measured the throughput and latency of our system

using WebBench 5.0 [41], a web server benchmark that

serves a variety of static web page requests. We ran

two sets of experiments measuring the performance of

our Apache server under unsaturated and saturated load

conditions. For the first set of experiments, we used a

single client machine running one WebBench client

engine. For the load experiments, we saturated our

server using 3 clients each running five WebBench

clients connected to the same networks switch as the

server. In both sets, a single 1.4 GHz Pentium 4 server

machine with 384 MB RAM ran Fedora Core 5 (2.6.16

kernel) using 4 different configurations.

Configuration 1 is the baseline configuration: un-

modified apache running on our kernel. Note that in

general an unmodified program running under our

modified kernel incurs practically no overhead. The

only overhead would be the addition of an extra check

(an if statement to determine if a process is participa-

ting in N-variant system) per system call.

Configuration 2 shows the overhead of the UID

code transformations made to Apache. In our experi-

ments, it was negligible; this is unsurprising since most

of the UID operations are done when the server initial-

izes. The additional overhead is one system call per

request to compare two UID values.

Configuration 3 is a 2-variant system where the two

variants differ in the address spaces with the kernel

configured to support unshared files. This configura-

tion provides a baseline case when running two variants

and can be used to measure the overhead of any

Configuration 1 2 3 4

Description
Unmodified

Apache

Transformed

Apache

2-Variant

Address Space

2-Variant

UID

Throughput (KB/s) 1010 973 887 877
Unsaturated

Latency (ms) 5.81 5.81 6.56 6.65

Throughput (KB/s) 5420 5372 2369 2262
Saturated

Latency (ms) 16.32 16.24 37.36 38.49

Table 3. Performance Results.

 8

additional variations. For the unloaded server, this

resulted in a throughput decrease of 12.2% and a

latency increase of 12.9% from the baseline

configuration. For the loaded server, throughput

decreases by 56% while latency increases by 129%.

Since the N-variant system executes all computation

twice, but all I/O system calls only once, the overhead

incurred reflects the cost of duplicating computation, as

well as the checking done by the wrappers. The

overhead measured for the unloaded server is fairly

low, since the process is primarily I/O bound. For the

loaded server, the process becomes more compute-

bound, and the approximate halving of throughput

reflects the redundant computation required from

running 2 variants.

Configuration 4 is a 2-variant system running the

UID variation described in Section 4. We present

overhead relative to Configuration 3 to measure the

added overhead of our variation. For the unloaded

server, throughput decreased by 1%, while latency

increased by 1.4%. For the loaded server, throughput

decreased by 4.5%, while latency increased by 3%.

These results are encouraging in that although the

overall overhead is high because of the redundant

computation, additional variations may be performed at

relatively low cost. This opens up the practical

possibility of combining variations to achieve broader

coverage of attack classes. However, variation

composition must be done carefully to ensure that

variations still satisfy the required normal equivalence

properties when they are composed [16].

In general, our results indicate that for I/O bound

services, N-variant systems with the UID variation can

be done with performance overhead that would be

acceptable for many deployments. For CPU-bound

services, the overhead of our approach is high since all

computations need to be performed twice. Multi-

processors may alleviate some of the problem (in cases

where there is not enough load to keep the other

processors busy normally) [20].

5. Discussion

Designing data variations for non-control data attacks

is more difficult than we had anticipated. In particular,

applications such as Apache rely on external config-

uration files such as /etc/passwd and /etc/group

to map user names to UIDs. We wanted to avoid

embedding the reexpression functions directly inside

the web server itself since this would have opened up a

potential path by which an attacker could bypass

detection by reusing the reexpression functions. Our

solution was to provide support for the concept of

unshared files, in which the variants read from their

respective reexpressed files (e.g., /etc/passwd-0 for

variant 0 and /etc/passwd-1 for variant 1). Although

we have not yet explored other applications of un-

shared files, they provide other exciting opportunities

for diversity. For example, web server variants could

be run with different directory structures and different

configuration files to thwart attacks on file paths.

For detection, we defined new system calls to

synchronize and check for the validity of UID values at

the point of use. This design choice was motivated by

our desire to make strong arguments regarding (nearly)

immediate detection of corrupted UID values. Another

possibility is to rely on the already existing monitoring

mechanism for checking divergence at system call

boundaries at the cost of detection precision. From our

performance results, the costs of these extra system

calls appear to be minor.

Varying UIDs as a reexpression strategy required

making strong assumption about their uses being

limited to assignments and comparisons. This assump-

tion turns out to be warranted for a simple data type

like UIDs, but UIDs are only one type of security

critical data identified by Chen et al. [12]. Our next

step is to investigate data variations for other types of

security-critical data such as configuration data and

decision-making data. In the general case, data opera-

tions can be much more complex, e.g., functions that

manipulate strings such as regular expression matchers.

More complex data types pose more challenges in

diversification while preserving semantics, but also

opportunities to thwart larger attack classes. If data

types are properly encapsulated, perhaps via C++

classes, we could safely maintain program semantics

while varying data representations provided the class

interface did not leak internal implementation details.

6. Related Work

The first use of data diversity of which we are aware

was by British Astronomer Royal, Nevil Maskelyne,

who employed data diversity techniques using human

computers to improve the reliability of astronomical

tables published in the 1767 Nautical Almanac

[17][23]. For the lunar tables, Maskelyne would assign

one (human) computer the task of calculating the

moon’s position at noon for each day of the month, and

another computer (known as the anticomputer) the task

of calculating the moon’s position at midnight. A third

person known as a comparer was responsible for

merging and checking the computers’ results.

We discussed the most closely related recent work

on N-variant systems in the introduction. Next, we

consider other defenses suggested by the interpreter

model, and other work on redundant execution.

 9

Other Defenses. An orthogonal strategy is to eliminate

vulnerabilities altogether so that malicious data cannot

reach the target interpreter. An example of this strategy

is to use type-safe languages to eliminate memory

vulnerabilities or using point defenses against specific

vulnerabilities [14][18][36]. Another strategy is to seek

ways to distinguish trusted and untrusted data. An

example would be taint analysis techniques to track the

flow of information from untrusted sources and prevent

their use in security-critical functions [24][33][34][43].

Diversity Techniques. Numerous diversity techniques

have been proposed for increasing the difficulty of

exploiting vulnerabilities, including randomizing in-

structions [6][28], memory layout [8][42], compiler

layout [1][19], encrypting pointers [15][40], and opera-

ting system interface [13]. Unlike the N-variant

systems approach, all of these works rely on attackers’

inability to guess a secret key for security.

Redundant Computation. N-version programming

[4][11][26] (from which we adopted the name N-

variant systems) uses multiple independent teams to

produce the software intended to implement the same

requirements. It is based on design diversity, in the

hope of avoiding common faults between versions.

However, Knight and Leveson have shown experi-

mentally that even separate teams are likely to make

similar mistakes [29]. Furthermore, N-version pro-

gramming is resource-intensive, and thus typically

applied to critical systems only. Littlewood et. al

present a recent overview of design and data diversity,

and their application to security [32].

For popular servers, such as web servers, multiple

implementations of the same protocol may be avail-

able. The HACQIT project [27][35] deployed two web

servers (IIS running on Windows and Apache on

Linux) and checked HTTP status code to indicate

divergence. Totel, Majorczyk and Mé extended this

idea and compared the actual web page responses of

the servers [39]. The challenge in this approach is to

distinguish benign differences in the output arising

because of design difference in the servers or host

specific properties, from differences that indicate an

attack. Gao, Reiter and Song correlate system calls

between web servers to identify attacks [21][22]. Of

these, the first two approaches would not have detected

a UID exploit provided the attack did not perturb the

output web pages. Gao et al.’s system may potentially

detect such an attack if it results in sufficiently non-

correlated system calls. In contrast, using our approach

we can make strong guarantees about detecting all

attacks in a particular attack class.

Berger and Zorn proposed a redundant execution

framework with multiple replicas each with a different

randomized layout of objects within the heap to

provide probabilistic memory safety [7]. Their repli-

cation framework only handles processes whose I/O is

through standard in/out, and only a limited number of

system calls are caught to ensure all replicas see the

same values. Their goals were to enhance reliability

and availability, rather than to detect and resist attacks.

An extension would be to combine the fine-grained

monitoring capabilities of N-variant systems with

probabilistic variations such as theirs.

7. Conclusion

The N-variant systems approach to security holds the

promise for building systems whose security properties

with respect to particular attack classes can be assured

with high confidence. Furthermore, these properties

can be achieved without relying on secrets, and using

low-entropy transformations.

In this paper, we developed a general approach to

data diversity for N-variant systems and demonstrated

this approach with a data variation for combating

attacks that involve corruption of UID values.

Although this particular problem can be more easily

combated in other ways, the approach described is

promising in demonstrating how low-entropy data

diversity can be used to provide high assurance security

against particular attack classes. In future work we plan

to investigate the addition and composition of further

data diversity techniques.

Acknowledgements

We gratefully acknowledge support from the National

Science Foundation through awards CNS-0524432 and

CNS-0627523.

References

[1] P. E. Amman and J. C. Knight. Data Diversity: an

Approach to Software Fault Tolerance. IEEE Trans.

On Computers, 37 (4), pp. 418-25, 1988.

[2] Apache Software Foundation. Apache HTTP Server

project. http://httpd.apache.org.

[3] A. Appel and S. Govindavajhala. Using Memory Errors

to Attack a Virtual Machine. IEEE Symp. On Security

and Privacy. 2003.

[4] A. Avizienis and L. Chen. On the Implementation of

N-version Programming for Software Fault-Tolerance

During Program Execution. International Computer

Software and Applications Conference. 1977.

[5] A. Baratloo, N. Singh, T. Tsai. Transparent Run-Time

Defense against Stack Smashing Attacks. USENIX

Technical Conference. 2000.

[6] E. Barrantes, D. Ackley, S. Forrest, T. Palmer, D.

Stefanovic, D. Zovi. Randomized Instruction Set

Emulation to Disrupt Binary Code Injection Attacks.

ACM Computer and Communications Security. 2003.

 10

[7] E. Berger and B. Zorn. DieHard: Probabilistic Memory

Safety for Unsafe Languages. Programming Language

Design and Implementation (PLDI). June 2006.

[8] S. Bhatkar, D. DuVarney, and R. Sekar. Efficient

Techniques for Comprehensive Protection from

Memory Error Exploits. Usenix Security. 2005.

[9] D. Bruschi, L. Cavallaro, and A. Lanzi. Diversified

Process Replicae for Defeating Memory Error Exploits.

3rd Intl. Workshop on Information Assurance. 2007.

[10] W. Cheng, Q. Zhao, B. Yu, S. Hiroshige. TaintTrace:

Efficient Flow Tracking with Dynamic Binary

Rewriting. Computers and Communications. 2006.

[11] L. Chen and Algirdas Avizienis. N-Version Program-

ming: A Fault Tolerance Approach to Reliability of

Software Operation. Fault Tolerant Computing

Symposium. 1978.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, R. K. Iyer.

Non-Control-Data Attacks Are Realistic Threats.

USENIX Security. 2005.

[13] M. Chew and D. Song. Mitigating Buffer Overflows by

Operating System Randomization. Tech Report CMU-

CS-02-197. December 2002.

[14] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hart-

man. FormatGuard: Automatic Protection From printf

Format String Vulnerabilities. USENIX Security. 2001.

[15] C. Cowan, S. Beattie, J. Johansen, P. Wagle.

Pointguard: protecting pointers from buffer overflow

vulnerabilities. USENIX Security. 2003.

[16] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J.

Davidson, J. Knight, A. Nguyen-Tuong, J. Hiser. N-

Variant Systems: A Secretless Framework for Security

through Diversity. 15th USENIX Security. August 2006.

[17] M. Croarken. Tabulating the Heavens: Computing the

Nautical Alamanac in 18th-Century England. IEEE

Annals of the History of Computing. 2003.

[18] H. Etoh. GCC extension for protecting applications

from stack-smashing attacks. IBM. 2004.

http://www.trl.ibm.com/projects/security/ssp

[19] S. Forrest, A. Somayaji, D. Ackley. Building diverse

computer systems. 6th Workshop on Hot Topics in

Operating Systems. 1997.

[20] M. Franz. Understanding and Countering Insider

Threats in Software Development. UC Irvine Technical

Report ICS-TR-07-09. 2007.

[21] D. Gao, M. Reiter, D. Song. Behavioral Distance for

Intrusion Detection. Recent Advances Intrusion

Detection. 2005.

[22] D. Gao, M. K. Reiter, D. Song. Beyond Output Voting:

Detecting Compromised Replicas using Behavioral

Distance. Tech Report, CMU-CYLAB-06-019. 2006.

[23] D. A. Grier. When Computers Were Human.

Princeton University Press. 2005.

[24] V. Haldar, D. Chandra, M. Franz. Dynamic Taint

Propagation for Java. Annual Computer Security

Applications Conference. 2005.

[25] W. Hu, J. Hiser, D. Williams, A. Filipi, J. Davidson, D.

Evans, J. Knight, A. Nguyen-Tuong, J. Rowanhill.

Secure and Practical Defense Against Code-injection

Attacks Using Software Dynamic Translation. Virtual

Execution Environments. 2006.

[26] M. K. Joseph. Architectural Issues in Fault-Tolerant,

Secure Computing Systems. PhD Dissertation. UCLA.

1988.

[27] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt,

R. Maglich, J. Rowe. Learning Unknown Attacks – A

Start. Recent Advances Intrusion Detection. 2002.

[28] G. Kc, A. Keromytis, V. Prevelakis. Countering Code-

injection Attacks with Instruction Set Randomization.

ACM Computer and Communications Security. 2003.

[29] J. C. Knight and N. Leveson. An Experimental

Evaluation of the Assumption of Independence in

Multi-version Programming. IEEE Transactions on

Software Engineering, Vol 12, No 1. Jan 1986.

[30] B. Kuperman, C. Brodley, H. Ozdoganoglu, T.

Vijaykumar, A. Jalote. Detection and Prevention of

Stack Buffer Overflow Attacks. Comm. of the ACM,

Nov 2005.

[31] D. Larochelle and D. Evans. Statically Detecting

Likely Buffer Overflow Vulnerabilities. USENIX

Security. 2001.

[32] B. Littlewood, L. Strigini. Redundancy and Diversity

in Security. European Symp. on Research in Computer

Security. 2004.

[33] J. Newsome and D. Song. Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature

Generation of Exploits on Commodity Software.

Network and Distributed System Security. 2005.

[34] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,

D. Evans. Automatically Hardening Web Applications

Using Precise Tainting. 20th IFIP Information Security

Conference. 2005.

[35] J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich,

K. Levitt. The Design and Implementation of an

Intrusion Tolerant System. Foundations of Intrusion

Tolerant Systems (OASIS). 2003.

[36] M. Ringenburg and D. Grossman. Preventing Format-

String Attacks via Automatic and Efficient Dynamic

Checking. ACM Comp. Comm. Security. 2005.

[37] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,

D. Boneh. On the Effectiveness of Address-Space

Randomization. ACM Computer and Communications

Security. 2004.

[38] A. N. Sovarel, D. Evans, N. Paul. Where’s the FEEB?:

The Effectiveness of Instruction Set Randomization.

USENIX Security 2005.

[39] E. Totel, F. Majorczyk, L. Mé. COTS Diversity

Intrusion Detection and Application to Web Servers.

Recent Advances in Intrusion Detection. 2005.

[40] N. Tuck, B. Calder, and G. Varghese. Hardware and

Binary Modification Support for Code Pointer

Protection from Buffer Overflow. Intl. Symposium on

Microarchitecture. Dec 2004.

[41] VeriTest Corporation. WebBench 5.0.

http://www.veritest.com/benchmarks/webbench

[42] J. Xu, Z. Kalbarczyk, R. Iyer. Transparent Runtime

Randomization for Security. Symposium on Reliable

and Distributed Systems. 2003.

[43] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced

policy enforcement: a practical approach to defeat a

wide range of attacks. USENIX Security. 2006.

