
Security Toolbox for Detecting Novel and
Sophisticated Android Malware∗

Benjamin Holland, Tom Deering, Suresh Kothari
Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa 50010, Email: {bholland, tdeering, kothari}@iastate.edu
Jon Mathews, Nikhil Ranade

EnSoft Corp. Email: {jmathews, nikhil}@ensoftcorp.com

Abstract—This paper presents a demo of our Security
Toolbox to detect novel malware in Android apps. This Toolbox
is developed through our recent research project funded by the
DARPA Automated Program Analysis for Cybersecurity (APAC)
project. The adversarial challenge ("Red") teams in the DARPA
APAC program are tasked with designing sophisticated malware
to test the bounds of malware detection technology being
developed by the research and development ("Blue") teams. Our
research group, a Blue team in the DARPA APAC program,
proposed a “human-in-the-loop program analysis” approach
to detect malware given the source or Java bytecode for an
Android app. Our malware detection apparatus consists of
two components: a general-purpose program analysis platform
called Atlas, and a Security Toolbox built on the Atlas platform.
This paper describes the major design goals, the Toolbox
components to achieve the goals, and the workflow for auditing
Android apps. The accompanying video illustrates features of
the Toolbox through a live audit.

Video: http://youtu.be/WhcoAX3HiNU

I. INTRODUCTION

Searching for novel malware can be like looking for a needle
in the haystack, but without knowing what a needle is or
having ever seen one. In 2010 we learned of Stuxnet [1], a
targeted nation-state level attack against an Iranian nuclear
research site. The attack was only detected, some speculate
intentionally, when it began to utilize noisy traditional attack
vectors such as USB malware propagation. Recently we have
seen a proliferation of high-level logic bugs in SSL [2], [3]
and even a recently discovered 25-year-old logic bug in the
Bash shell [4]. While most would agree that these bugs were
honest mistakes, a few have speculated that some may have
been added with malicious intent [5]. Since we have no way
to determine intent by examining code a security analyst must
consider software bugs as potential malice. In either case
the consequences can be catastrophic. When the stakes are
high, the current practices for malware detection are far from
adequate. The DARPA APAC program aims at creating new
techniques and tools to detect sophisticated Android malware
capable of causing serious damage in a Department of Defense
scenario.

*This material is based on research sponsored by DARPA under agreement
number FA8750-12-2-0126. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

USAF Colonel John Boyd described the OODA loop as
an iterative decision cycle of observe, orient, decide, and act.
Boyd developed this framework as a way to explain the unan-
ticipated, superior agility of US fighter pilots in aerial combat
situations. The paradigm of OODA loops applies equally well
to the APAC context. To detect malware, our tools must be
able to outmaneuver the capabilities of adversaries who will
continue to develop new varieties of Android malware. Our
Security Toolbox for Android is designed to utilize best-in-
class automation and iteration techniques to maximize the odds
of emerging victorious from this confrontation. We completed
Phase I of the DARPA APAC program as the top performing
Blue team.

II. DESIGN GOALS

A. Minimizing Human Effort

Goal: Minimize the human effort for (a) cross-verifying
automatically detected malware, (b) performing what-if ex-
periments to hypothesize, refine, and postulate application-
specific malware that is not on the radar of automated malware
detection.

We incorporate a Query-Model-Refine (QMR) program
analysis platform, called Atlas [6], [7], developed by EnSoft;
it provides the tool mechanics necessary for our human-in-the-
loop detection of malware. We use a heterogeneous, attributed,
directed graph data structure as an abstraction to represent
the essential aspects of the program’s syntax and semantics
(structure, control flow, and data flow), which are required
to reason about software. Atlas constructs this graph from
a set of software projects provided by the user. Atlas offers
an expressive query language for users to write composable
analyzers. Analyzers compute results in the form of subgraphs
relevant to the query (evidence), which can be visualized.
Based on the evidence, users can issue further queries, possibly
involving information beyond specific program artifacts (e.g.,
looking for a specific URL). The above iteration continues
until the user is satisfied with the analysis. The Security
Toolbox includes analyzers using the Atlas query language.
These analyzers incorporate Android semantics and they can
be invoked programmatically or through interactive “Smart
Views,” described in Section IV-E.

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.235

733

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.235

733

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.235

733

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.235

733

B. Incorporating Android Semantics

Goal: Incorporate rich and complex semantics that Android
provides to facilitate development of mobile apps.

To address the semantics of Android, the Security Toolbox
incorporates the permission mapping between Android APIs
and the permissions each API requires. The Toolbox also
incorporates semantics of fundamental Android components
such as Activities, Services, Content providers, and Broadcast
receivers1, as well as Android specific XML resources2.

We have developed new algorithms to automatically sum-
marize all the Android APIs. This is work in progress and
when completed we will incorporate these summaries in our
Toolbox and also make them available to others in a portable
format.

C. Evolution and User-friendly Design

Goal: Develop a detection tool that is evolution-friendly and
highly usable.

We have a decoupled architecture to achieve this goal. The
malware detection capability is decoupled and built on top of
the program analysis platform (Atlas). The underlying design
philosophy is similar to platforms like Matlab or Mathematica
with domain-specific toolboxes built on top of general-purpose
machinery. The low-level static analysis resides inside Atlas,
and the malware detection capability resides inside the Tool-
box as analyzers using Atlas queries. Refining and extending
the existing detection capabilities as well as creating entirely
new capabilities is relatively easy because it can all be done
through query-enabled analyzers. Since creating a complete
list of malware properties is unrealistic, it is imperative that
it be relatively simple to expand the cookbook of ready-made
properties through the use of adversarial thinking.

III. USE CASES FOR THE SECURITY TOOLBOX

The Toolbox is useful for nearly any Android malware
detection task, with three main use cases described as follows:

• Automated detection of Android malware that has a
clearly defined specification

• Production of evidence to support conclusions of auto-
mated analysis

• Enabling the human to perform what-if experiments to
hypothesize and detect new malware that cannot be
detected automatically because its pattern or specification
is not known a priori

IV. COMPONENTS

The Security Toolbox is logically separated into several
components as detailed below.

1https://developer.android.com/guide/components/fundamentals.html
2https://developer.android.com/guide/topics/resources/providing-resources.

html

A. Permission Mapping

Android’s sensitive functionalities such as sending and
receiving text messages, accessing geo-location information,
or accessing user contacts are protected by runtime checks that
enforce whether or not an application has been granted per-
mission to invoke such functionalities. The Security Toolbox
leverages the permission mapping produced by the Toronto
PScout research group [8]. For each API version of Android,
we transform the PScout mapping to an XML file that
precisely represents the permission protected methods. The
Toolbox contains code for parsing an Application’s manifest,
and uses the XML file to automatically annotate the correct
API mapping onto the Atlas program graph. We have auto-
matically scraped and encoded into Java objects the Google
developer documentation for permissions, permission groups,
and protection levels to aid in developing analyzers. Addi-
tionally we have recovered mappings for Android permissions
to protection levels, and permissions to permission groups by
mining their relationships from the Android source3.

B. Indexers

The Atlas program graph provides much of the informa-
tion needed to analyze programs, but some information is a
conservative estimate. One example is type inference where
the dynamic dispatch edges may be conservatively resolved to
many potential targets. To address this problem, the Security
Toolbox implements a Rapid Type Analysis (RTA) [9] strategy
to exclude call edges to methods that should not be possible
at runtime based on observed constructor calls. The Type
Inference Indexer performs the RTA analysis and annotates
the edges in the program graph for use by other analyzers.
Since Android makes extensive use of XML for its user inter-
face, manifest, and other resources many important program
artifacts are missing in the Java program graph produced by
Atlas. The Security Toolbox provides indexers to annotate and
add missing program elements from these resources to the
Atlas program graph.

C. Analyzers

The Security Toolbox defines an Analyzer Interface that
encapsulates the logic for traversing a program graph to extract
an "envelope" (a subgraph that is either empty if the security
property is satisfied or non-empty containing the necessary
information to locate the violation of the security property).
Analyzers encapsulate their descriptions, assumptions, and
possible continuations to refine results or broaden a traversal.
For example, one possible continuation for a data flow based
taint analysis between a sensitive source and a sensitive sink
that produced a graph that is too large to interpret would
be to perform the same taint analysis with call, object, type,
and flow sensitivities enabled. Analyzers have been subdivided
into property, smell, confidentiality, integrity, and availability
analyzers. A property is something the analyst should be aware
of, but does not necessarily indicate malice, such as uses of

3https://github.com/EnSoftCorp/android-essentials-toolbox

734734734734

1 Q declaresEdges = universe.edgesTaggedWithAny(Edge.DECLARES
).retainEdges();

2 Q callEdges = universe.edgesTaggedWithAny(Edge.CALL).
retainEdges();

3 Q overridesEdges = universe.edgesTaggedWithAny(Edge.
OVERRIDES).retainEdges();

4 Q abortBroadcast = methodSelect("BroadcastReceiver", "
abortBroadcast").union(methodSelect("PendingResult", "
abortBroadcast"));

5 abortBroadcast = abortBroadcast.union(overridesEdges.
reverse(abortBroadcast));

6 Q onReceive = methodSelect("BroadcastReceiver", "onReceive"
);

7 onReceive = onReceive.union(overridesEdges.reverse(
onReceive));

8 Q highPriorityTypes = context.nodesTaggedWithAny(
AndroidManifest.MANIFEST_HIGH_PRIORITY.toString());

9 Q highPriorityOnReceive = onReceive.intersection(
declaresEdges.forward(highPriorityTypes));

10 Q highPriorityBroadcastBlockers = callEdges.between(
highPriorityOnReceive, abortBroadcast);

Listing 1: Analyzer queries to find high priority broadcast blockers

native code. A smell is a heuristic similar to a property that
indicates a stronger suspicion, which demands a justification
such as using Java reflection to invoke a private API. The
confidentiality, integrity, and availability (CIA) analyzers de-
tect violations of CIA properties using taint analysis of sources
and sinks, modification operations on sensitive mutables, and
loop detection of expensive resources respectively.

Listing 1 shows the queries an analyzer could use to detect
high priority broadcast blockers, which could be used to inter-
cept and block SMS messages on an Android device. Lines (1-
3) select DECLARES, CALL, and OVERRIDES subgraphs;
(4-5) selects abortBroadcast methods including overridden
methods; (6-7) selects BroadcastReciever onReceive methods
including overridden methods; (8) selects classes registered
with a high priority in the Android manifest; (9) selects high
priority onReceive methods; (10) selects CALL graphs that
have an edge between the high priority onReceive methods
and abortBroadcast methods.

D. Dashboard

The Dashboard (shown in Figure 1) is an interface for au-
tomating the execution and managing results of the Toolbox’s
automated analyzers. The Dashboard accounts for analyzer
dependencies to enable the highest amount of parallel com-
putation while running a multitude of analyzers. As results
are computed, they are presented to the analyst in the work
item queue on the right of the Dashboard. Results can be
filtered by category and marked as reviewed. Optionally an
analyst can make additional notes on a work item. Since
work items correspond to subgraphs of the program graph,
they can be named and even colored to help identify separate
program subsystems. Program artifacts can be manually added
or removed from a work item based on the colors given to
program artifacts.

E. Smart Views

Smart Views are developed from the observation that there
are several graph traversal queries that analysts use over and
over again during audits, such as forward and reverse control

Figure 1: Security Toolbox Dashboard Interface

Figure 2: Smart View showing reverse data flow into Android XML resources
from selected field

and data flows, or discovering the declarative structures and
instantiations of an object. To speed up such tasks, a graph
for each of these queries can be automatically generated in
response to mouse selection events on relevant source code or
existing graph components. Smart Views can be customized
for particular Android-specific analysis tasks, such as showing
user interface XML button event callbacks.

Figure 2 shows a customized Smart View showing a reverse
data flow program slice that includes program artifacts in the
Android XML resources. The graph got generated when the
user clicked on the "destination" field in the source window
to inspect its value.

V. WORKFLOW

The workflow of an audit follows a comprehension-driven
model of an iterative Observe-Orient-Decide-Act (OODA)
decision loop. An audit starts by running the Dashboard, which
produces evidence for the human analyst to inspect. This
information helps the analyst observe program behaviors and
orient that information within the context of the application.
Aided by this information, the analyst can prioritize his
exploratory hypotheses to discover malice. To aid in testing a
hypothesis, Smart Views are used to quickly follow control and
data flows or perform a targeted analysis such as a symbolic
analysis, Android Intent resolution, or matching exception
throw and catch sites. Confirming a hypothesis either results
in the discovery of malware or results in more hypotheses to

735735735735

explore, which begins the process anew. If a hypothesis set
becomes depleted an audit is halted, and audits of remaining
applications are reprioritized. Finally, after the discovery of
malware, the Security Toolbox is adapted by writing new
analyzers to raise the bar for future automated analysis.

VI. EVALUATION

By the end of Phase I of the DARPA APAC project, our
team audited 77 Android applications developed by the Red
team, of which 62 contained novel malware able to evade
current automatic detection techniques. DARPA employed a
control team to use current state of the art tools to audit the
apps along side Blue team performers. Our process correctly
classified 66 (85.7%) apps as malicious or benign, found
unintended malicious behaviours in 6 (7.8%) apps, and missed
malware in only 5 (6.5%) of the apps consistently beating the
control team. We completed Phase I as the top performing
Blue team.

VII. RELATED WORK

A number of tools and techniques have been developed for
detecting malware in Android apps including some based on
static analysis [10], [11], [12], [13], [14], [15] and those based
on dynamic analysis [16], [17]. These automated detection
methods fall into two general categories: 1) signature-based
and 2) machine learning-based. Signature-based approaches
can be easily evaded by bytecode-level transformation attacks.
Learning based approaches extract features from application
syntax, rather than program semantics, and are also subject to
evasion.

Berkeley [18] was the first to mine a mapping between
Android permissions and the corresponding permission pro-
tected APIs using a dynamic analysis approach to randomly
call APIs. Toronto later improved on Berkeley’s incomplete
mapping with a quicker, less involved, static analysis approach
that mined complete public and private API mappings from
the Android source code [8]. Our Toolbox incorporates the
Toronto mapping.

VIII. CONCLUSION

Our novel human-in-loop approach to detect Android mal-
ware minimizes human effort by allowing the human to use
the evidence produced by the machine to focus their effort
on further machine-assisted reasoning. This affords greater
opportunity to detect malware that is not on the radar of
an automated analyzer; the what-if experimentation capability
provided by the machine enables the user to posit attacker
intentions, hypothesize about the attacker’s modus operandi
and tailor queries to detect sophisticated malware. Thus, our
approach increases automation, reduces human effort and
error, and provides valuable machine assistance to detect novel
and sophisticated malware.

This demo paper describes the Security Toolbox that im-
plements our novel approach. The accompanying video shows

a live audit that brings out various features of the Toolbox
including the Dashboard (to run and manage automated ana-
lyzers), Permission Usage View (to list permissions and where
they are used in the app), and Smart Views (to facilitate what-
if experiments). We acknowledge the valuable feedback from
our reviewers of this paper. Several components of the Security
Toolbox are being open sourced under the MIT License at
https://github.com/EnSoftCorp.

REFERENCES

[1] R. Langner, “To kill a centrifuge,” The Langner Group,
http://www.langner.com/en/wp-content/uploads/2013/11/To-kill-a-
centrifuge.pdf, Tech. Rep., nov 2013.

[2] “Cve-2014-0160.” [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160

[3] “Cve-2014-1266.” [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-1266

[4] “Cve-2014-6271.” [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6271

[5] “Heartbleed conspiracy theories.” [Online].
Available: http://www.businesscomputingworld.co.uk/
openssl-heartbleed-criminal-and-government-conspiracy-theories/

[6] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas: A new way
to explore software, build analysis tools,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014.

[7] “Atlas video demo.” [Online]. Available: https://www.youtube.com/
watch?v=cZOWlJ-IO0k

[8] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[9] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++
virtual function calls,” in Proceedings of the 11th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’96. New York, NY, USA: ACM, 1996,
pp. 324–341. [Online]. Available: http://doi.acm.org/10.1145/236337.
236371

[10] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated Se-
curity Certification of Android Applications,” Department of Computer
Science, University of Maryland, College Park, Tech. Rep., 2009.

[11] É. Payet and F. Spoto, “Static analysis of android programs,” Information
and Software Technology, vol. 54, no. 11, pp. 1192–1201, 2012.

[12] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on. IEEE, 2012, pp. 62–69.

[13] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution.” IEEE, 2012.

[14] R. Fedler, J. Schutte, and M. Kulicke, “On the effectiveness of malware
protection on android,” Fraunhofer AISEC, Tech. Rep., 2013.

[15] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Proc. of International
Conference on Security and Privacy in Communication Networks (Se-
cureComm), 2013.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones.” in OSDI, vol. 10, 2010.

[17] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” in Proceedings of the 6th European Workshop on System
Security (EUROSEC), Prague, Czech Republic, April 2013.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

736736736736

