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Abstract. Security protocols are critical for protecting modern communication
infrastructures and are therefore subject to thorough analysis. However practical
implementations of these protocols lack the same level of attention and thus may
be more exposed to attacks. This paper discusses security assurance provided
by security-typed languages when implementing cryptographic protocols. Our
results are based on a case study using Jif, a Java-based security-typed language,
for implementing a non-trivial cryptographic protocol that allows playing online
poker without a trusted third party. The case study deploys the largest program
written in a security-typed language to date and identifies insights ranging from
security guarantees to useful patterns of secure programming.

1 Introduction

Networked commerce, health, and military applications critically depend on underlying
security protocols. Malicious attacks on these systems target vulnerabilities of two ba-
sic kinds—vulnerabilities of protocols and vulnerabilities of protocol implementations.
Although the first kind of vulnerabilities is dangerous, the descriptions of security pro-
tocols are often open to public and are subject to thorough analysis by security experts.
As a result, discovering and exploiting protocol-level weaknesses is significantly more
daunting than attacking flaws in protocol implementations (cf. the need for a paradigm
shift in cryptology [4]). This is also confirmed by CERT® incident reports where most
of exploited flaws come from inadequate implementations. In the context of protocols,
recent discoveries of multiple vulnerabilities in different implementations of the well
studied SSL/TLS protocols [1] uncover insecure implementations that can be exploited
to allow a remote attacker to execute arbitrary code.

To defend against implementation-level attacks, modern security technology relies
on common principles for building secure software [47], including prudent techniques
for deploying cryptographic software [23]. Moreover, since the paradigm shift in cryp-
tology, much work has been done on timing, cache, power-consumption, and other
implementation-level attacks. Nevertheless, the resulting principles and techniques are
somewhat ad-hoc; they provide no end-to-end guarantees that systems preserve the con-
fidentiality of secret data. For example, these principles and techniques provide little
help in preventing an accidental leak of a secret key to a public field, or revealing a
secret bid in an online auction before all participants have committed their bids. These
are examples of undesired information flows that compromise confidentiality.
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Security-typed languages have emerged over the past decade as an attractive ap-
proach to preventing insecure information flows (see [39] for a survey). These lan-
guages allow labeling sensitive data with security levels (naturally extending conven-
tional types to security types). Security type systems regulate flows between data at
different security levels, providing tight control over information flow.

Recent developments [33, 5, 37] raise hope for the possibility of regulating the prop-
agation of sensitive information by security type systems in realistic languages. Fur-
thermore, compilers for these languages such as Jif [36] (based on Java) and Flow-
Caml [45] (based on Caml) have been developed. Nevertheless, “despite this large
body of literature and considerable, ongoing attention from the research community,
information-flow based enforcement mechanisms have not been widely (or even nar-
rowly!) used” [48].

The challenge is whether security-typed languages scale up to real systems. In par-
ticular:

– How helpful are security types for identifying potential insecurities in security-
critical code?

– How laborious is the process of security typing? Does it force unnecessary restric-
tions on code?

– Is the security assurance provided by security types transparent enough?
– What is the general balance of benefits and drawbacks when using security-typed

languages?

Addressing these challenges seems impossible without practical experience in de-
ploying security-typed languages. Motivated by this, we have performed an in-depth
case study of securing an implementation of a non-trivial cryptographic protocol in the
security-typed language Jif. To the best of our knowledge, this implementation is the
largest program written in a security-typed language so far.

The focus of the case study is a protocol for online poker without a trusted third
party (also known as mental poker [44]). This protocol has direct application in e-
gambling, but it is also generally interesting because its security goals are similar to
those of many other protocols. These goals include confidentiality in an environment of
mutual distrust (in the absence of a trusted third party), auditability, fairness, and detec-
tion of cheating with high probability. This gives us a range of security properties that
are useful in security-critical applications. For example, in online voting, it is important
that every vote remains confidential yet the result (such as the number of votes for each
candidate) becomes known to the public after the election is over. Besides confidential-
ity, a form of auditability is a desired security property here—it should be possible to
recount the results. Another example with similar goals is an online auction protocol
with mutual distrust. Participants reveal their secret bids only when the bidding phase
has been completed. That the participants cannot alter their bids in the verification phase
is also a form of auditability.

It is worth mentioning that the threat model adopted in this paper does not include
covert channels that are due to probabilistic, timing, power-consumption, and cache
behavior. Neither integrity nor availability issues are treated in our setting. While these
restrictions are inherited from Jif’s threat model, they are not fundamental to security-
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typed languages. Indeed, there are such languages capable of treating various covert
channels [3, 41], as well as integrity [25, 49] and availability [51].

The case study has been conducted in three steps. First, we have implemented a
baseline implementation in a conventional programming language (Java). Second, we
have lifted this implementation to Jif. Finally, we have distributed the Jif implementa-
tion in order to simulate a realistic scenario where players run their parts of the protocol
on their respective machines.

The case study has resulted in a range of insights into the challenges above (whose
summary we defer to the conclusion). Further, the case study has suggested the need
for richer mechanisms of information release (currently lacking not only in Jif but in
most available information flow analyses). Additionally, we have developed patterns for
secure programming that help streamline the process of security typing. Furthermore,
we have uncovered some vulnerabilities and problems in Jif that lead to interesting
directions for improvements.

The rest of the paper is organized as follows. Section 2 provides some background
about the protocol for mental poker and the Jif language. Section 3 discusses the three
different implementations. The lessons learned from the case study are reported in Sec-
tion 4. Section 5 presents some programming patterns that have emerged from our expe-
rience in security-typed programming. Section 6 comments on related work. Section 7
concludes the paper.

2 Background

This section contains necessary background on protocols for mental poker and an in-
troduction to security-typed languages and Jif.

Mental poker In the popular card game of poker players with fully or partially con-
cealed cards make wagers into a central pot. After several rounds of betting the pot is
awarded to the remaining player or players with the best combination of cards. Mental
poker is a well-known problem in cryptography on how to “play a fair game of poker
[. . . ] over the phone” [44] or how to play poker without a trusted third party (TTP). This
problem continues to attract researchers and many solutions have been proposed [22,
12, 13, 29, 28, 43, 8, 6].

Crépeau has outlined some objectives for mental poker [12], summarized as follows:

1. Uniqueness of cards: every card must appear exactly once—either in the deck or in
the hand of one player. This property can only be broken as a result of detectable
cheating.

2. Uniform distribution of cards: the hand of each player must be possible with equal
probability and must depend on decisions made by every player.

3. Absence of TTP: players trust neither each other nor any third party.
4. Cheating detection with high probability: the probability that a player may cheat

without being detected must decrease fast (exponentially) with respect to some

2.1 Protocols for Mental Poker

.
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security parameter that the players must agree on before the game. Also, the amount
of work to accomplish the protocol should increase reasonably (polynomially) with
respect to this parameter.

5. Complete confidentiality of cards: no information about any card from the deck
may be obtained without the approval of every opponent. Also, no information
may be obtained from a player’s hand without his or her approval.

6. Minimal effect of coalitions: when more than two players are involved, some play-
ers could establish secret communication and exchange all their knowledge about
the game. Nonetheless they should not be able to learn more than what they can
deduce from the cards in their coalition.

7. Confidentiality of strategy: losing players may keep their cards secret at the end of
a game.

Although protocols that claim to achieve all these properties have been proposed [13,
29, 28], they are demanding to computation time and are unacceptable in practice [18,
24]. For our case study, we have adopted a protocol by Castellà-Roca et al. [8] that
achieves these properties (with the exception of the last one) and is practical in terms of
computational requirements.

Castellà-Roca et al. TTP-free protocol In this protocol all players cooperate in shuf-
fling, so that no player coalition can force a particular outcome. Every player generates
a random permutation of the card deck and keeps it secret; the player then commits
this permutation using a bit commitment protocol. The shuffled deck is formed by the
composition of all players’ permutations.

Turning a physical card face down corresponds to encryption. Shuffling a card cor-
responds to a mathematical operation over the card’s representation. The protocol uses
an additive and multiplicative homomorphic cryptosystem, such as [17], to shuffle a
deck of cards and maintain the privacy of the cards. The outcome of permuting an en-
crypted card and decrypting it is the same as if the card had been permuted without
prior encryption.

When the game is over, the players reveal their encryption keys and permutations for
validation. Requiring the disclosure of players’ strategies after the game is a limitation
of this protocol. On the other hand, it raises an interesting security goal of preventing
hand revelation earlier in the game.

Secure information flow Information flow from object x to object y occurs whenever
the value of y is affected by the value of x. Explicit flows are results of assignment
statements (e.g., y=x), I/O statements, and value returns by functions. The flow in these
cases is caused by the operation explicitly; whether the operation is reached during
execution does not necessarily depend on the value of x. By contrast, implicit flows [16]
occur whenever x affects y through control flow, i.e., the execution of a statement that
updates y depends on x. For example, in the fragment y = 1; if (x == 0) y = 0,
the if statement causes an implicit flow from variable x to y.

2.2 Security-Typed Languages and Jif

.

.
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The problem of information flow is relevant for se-
curity if, for instance, x stores sensitive information and
y is a public system output. In this case, the control
of how sensitive information propagates in the program
is crucial for protecting confidentiality. Generally, pro-
gram data can be associated with security levels, which
constitute a security lattice [15]. The higher the security
level is located in the lattice the more sensitive informa-
tion is associated with this level. Figure 1 presents two
examples of lattices: a two-element lattice with high and low levels corresponding to
secret and public information; and a four-element lattice with a public element ⊥, a
top secret element �, and two mutually incomparable intermediate elements �1 and �2.
Information flow is considered secure if the level of the flow target is higher than (or
the same as) the level of the flow origin.

Decentralized label model The decentralized label model (DLM) [34] is a security
model in which principals express their privacy concerns via labels. Principals in DLM
(e.g., users, groups, and roles) may own, update, and release information. Labels are
used to guarantee confidentiality. Every label consists of a set of policies that express
privacy requirements. A privacy policy has two parts: an owner and a set of readers; and
is written in the form owner:readers. By definition, an owner is implicitly contained in
its readers set. A principal is allowed to read data if and only if it is contained in the
reader sets of all policies of the label attached to the data.

Jif Jif [33, 36] is an extension of the Java language with DLM labels. In Jif, methods
can be granted authority to act for some set of principals. Authority regulates the ability
of a method to declassify (or downgrade) the data: weaken or remove a policy in a label.
This is possible if a policy is owned by a principal that is a part of the process authority.

An example of a label written in Jif syntax is {Alice:Bob,Carol;}. This label
contains a single policy in which Alice is the owner; and Alice, Bob, and Carol are
the readers. The label {Bob:Alice;Alice:Carol;} contains two policies. In this label
Alice is the only principal present among readers of both policies. Hence, only Alice
can read the data.

Variable types in Jif are composed of two parts: a regular Java type, such as boolean,
and a security label, indicating how the value stored in this variable may propagate. For
instance, the type boolean{Alice:Bob} represents a boolean that Alice owns and Alice
and Bob can read. The bottom security level corresponding to public data has label {}
(with the empty list of policies).

int {Alice:} x;

int {} y = 1;

...

if (x == 0) y = 0;

In security-typed languages implicit flows are often
controlled by the program-counter label (pc). This label
tracks dependencies of the program counter. Recall an
example given earlier (displayed in Listing 1) with some
variable definitions. Here, the pc in the branch of the if

statement captures the dependency on x and, thus, has label {Alice:}. The assignment
statement is rejected by the compiler because the variable y is less secure than the pc.

.

.

Fig. 1. Examples of lattices

Listing 1. Implicit flow
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Method declarations and constraints Method declarations in Jif may be annotated with
two optional labels, called begin-label and end-label. Begin-label is a lower bound on
the side effects of a method. That is, Jif prevents calling a method if pc at the invocation
point is higher than the begin-label of the method being invoked. By default, if no begin-
label is specified, it is assumed that the method has no side effects and can be called
regardless of pc of the caller (i.e., from any context). A method’s end-label carries
information about how much can be learned by observing if the method terminates
normally or raises an exception. After the method invocation, pc of the caller is affected
by the end-label of the method that has been called.

Arguments and return values can also be labeled with their security levels. An ex-
ample of a method declaration is:
public boolean{Alice:Bob} validate{Alice:}(String{} s, int{} hash):{Alice:}

In this example, the function validate takes two arguments both of which are of the
bottom security level. The return value has label {Alice:Bob}. Both the begin- and
end-labels are {Alice:}.

Jif methods may contain a list of constraints prefixed by the keyword where. Two
kinds of constraints are useful for our purposes: (i) authority(p1 , . . . , pn), listing prin-
cipals that this method is authorized to act for, and (ii) caller(p1 , . . . , pn), listing prin-
cipals whose authority the caller of the method is required to possess in order to run this
method. We return to some security implications of these constraints in Section 5.4.

public class IntegerLeak {

private int {Alice:} secret;

public int{Alice:} div(int{} a) {

return a/secret;

}

}

Exceptions In contrast to Java, Jif disal-
lows unchecked runtime exceptions. Con-
sider the program (which is rejected by
the Jif compiler) in Listing 2. If variable
secret is zero, ArithemeticException

is thrown by the method div. Observing
whether this exception takes place would
expose some information about the value of secret.

class X[label L] {

private int {L} p;

public int{L} getP() {return this.p;}
public void setP{L} (int {L} n) {

this.p = n;

}

}

Parameterized classes Jif classes and in-
terfaces can be parameterized over labels
and principals. This is useful for build-
ing reusable data structures. For instance,
instead of writing two separate Player

classes for Alice and Bob, which would
only differentiate in the labels of the cor-
responding variables, one can write a single class Player[P] parameterized over prin-
cipal variable P. Later in the instantiation, this parameter is replaced by the actual prin-
cipal (e.g., Alice or Bob).

Listing 3 displays an example of a Jif class parameterized over label L. This la-
bel is used in the declaration of class fields, such as p, and methods, such as getP()

and setP(). An example of how this class can be instantiated with label {Alice:} is
X[{Alice:}]{Alice:} x = new X[{Alice:}](). Note the two labels that appear in
the declaration of the variable x. The first one is a parameter of the class, while the
second is the label of the referring variable.

.

.

.

Listing 2. Flow via exception

Listing 3. Parameterized class
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Array labels Being mutable data containers, arrays have two labels: one for the ele-
ments of an array, and the other for the array itself and its length. A single label for
arrays would allow laundering attacks (i.e., code that exploits a vulnerability in a pro-
tection mechanism in order to leak more information than intended). Assume that arrays
only had a single label. A variable indeck of type int[]{} with a single label {} could
be assigned to a variable hand typed int[]{Alice:}. Then it would be safe to assign a
variable cardvalue labeled {Alice:} to an element of array hand. However, this value
would become visible through the variable indeck. This provides an illustration of a
laundering attack.

An example array declaration is int{Alice:}[]{} hand. This array denotes Alice’s
hand of cards. The length of the array has the bottom label ({}); indeed, it is publicly
known how many cards a player has. In contrast, the values of the actual cards are secret
for others. Therefore, the elements of the array are labeled as {Alice:}.

Declassification Many secrets have their lifetimes, after which they are not secrets
anymore. Controlled information release or declassification is an important aspect of
security-typed languages. It is safe to move data to a higher position in the security lat-
tice. However, declassification relabels program variables so that the resulting label can
be less restrictive than the original. Declassification in Jif is expressed via declassify

statements. The process is required to have sufficient authority to declassify data. For
example, to declassify a variable x of type int{Alice:} to int{} a process is re-
quired to have the authority of Alice. An example of a declassification statement is
y = declassify(x,{}). Here, the declassify statement returns the value of x rela-
beled to {}, which is assigned to y.

3 Implementation

This section discusses the three different implementations we have developed [2]. The
baseline implementation is in Java, the two remaining ones are in Jif. For both Jif im-
plementations we assume the presence of two principals Alice and Bob (without loss of
generality we assume two players).

One motivation for an implementation in Java is to set a baseline implementation that
would have been produced by ordinary Java programmers. Another reason is that de-
bugging Jif programs often becomes burdensome. The baseline implementation follows
Castellà-Roca et al.’s protocol for two players (Alice and Bob). It can be straightfor-
wardly extended to multiple players. In this implementation, we have developed the
main functional part of the program. A player is represented by a class Player. This
class contains the player’s data (such as the name, the hand of cards, cryptographic
keys, and the game log) and methods that implement initialization, card drawing, and
ending protocols. These methods are called by the game coordination routines.

3.1 Java Baseline Implementation

.

.
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{Bob:}{Alice:}

{Alice:;Bob:}

{ }

The second implementation lifts the Java version to Jif
(as realized by the current distribution Jif 1.1.1). Fol-
lowing the security objectives, we have adopted the
security lattice in Figure 2. The sensitive information
of the players carries the labels {Alice:} and {Bob:}.
The data passed between the players is downgraded to
the bottom level ({}).

Lifting Java programs to Jif involves the follow-
ing steps: (i) writing signatures for necessary Java API
classes, (ii) changing some of the classes to Jif ana-
logues, (iii) parameterizing classes over labels and principals, (iv) assigning labels to
class fields, (v) assigning begin- and end-labels to functions and arguments, (vi) han-
dling runtime exceptions, and (vii) writing helper functions for declassification of large
data structures. Note that, there is no linear dependency in performing these steps—the
process of lifting may (and is likely to) consist of a number of iterations and repetitive
refactoring. Below we discuss these steps in detail.

Writing signatures To compile against existing Java API classes, the Jif implementation
needs Jif signatures for these classes. Although writing signatures is a relatively simple
task compared to Jif programs, this should be done with care. It is possible to misuse
this feature (see Section 4.4 on problems and vulnerabilities related to signatures).

Changing to Jif analogues Writing class signatures for Java classes can be avoided if
there is a Jif analogue providing the same functionality. For example, the Jif implemen-
tation uses jif.util.ArrayList instead of java.util.Vector. The former is written
completely in Jif, which makes its usage both safer and more convenient.

Parameterizing classes Class parameterization is heavily used by the Jif implemen-
tation. Most of the classes are parameterized over an invariant label L, which stands
for the security level of the information stored in instances of these classes. The main
class of the implementation Player[principal P, label L] is parameterized over
the player principal P, and the label of the output channel L. Therefore, in this class the
label {P:;L} corresponds to the high label and {L} to the low one.

Assigning labels to class fields It is important to identify which variables contain sen-
sitive information and how restrictive their labels should be. It is sometimes convenient
to use high labels for low data, for example, when a low variable is only used in a high
context.

Assigning labels to functions and arguments Recall that begin- and end-labels in method
declarations are related to side effects in the program: in this implementation we iden-
tify side effects in Jif programs by the following events: (i) assignment to a non-final
member variable, (ii) assignment to a mutable data structure such as an array or a class,
and (iii) calling a method with side effects.

3.2 Jif Implementation

.

.

.

.

.

Fig. 2. Security lattice for Jif im-
plementation
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{L}{Alice:}

{Alice:;L}

{ }
(a) Lattice in distributed
implementation

BinderPlayer 1 Player 2

Input 1

Output 1 Input 2

Output 2

(b) Distributed implementation architecture

Fig. 3. Distributed implementation

Catching/throwing runtime exceptions Because unchecked exceptions may lead to in-
formation leaks, Jif requires runtime exceptions to be handled. Our Jif implementation
uses the following disciplines:

– Declare and throw: an exception is declared in the method header and the respon-
sibility to handle it is passed to the caller. However, this exception still has to be
handled by the caller; moreover, its origin becomes obscured for the caller since it
may be thrown at different points in the method.

– Avoiding exceptions: Jif compiler has a simple, yet useful, dataflow analysis that
may detect if a local variable is null at a particular program point.

– Catch and ignore: there are two scenarios when a programmer might want to ignore
an exception:
• there are sufficient guarantees in the code that the exception may not be thrown,

and
• the programmer deliberately hides the presence of the exception.

– Catch and handle: exception may be handled, and a custom application exception
is thrown by the method that contains information about the error.

The ArgCheck pattern (Section 5.1) describes how NullPointerExceptions caused by
method arguments can be handled.

Modularizing declassification See the Declassifier pattern in Section 5.2.

The third implementation has been developed to provide a “real-world” application of
Jif. In this implementation players run as different processes and standard input/output
is used as a communication medium.

Figure 3(a) displays the security lattice for one of the players (Alice). Here L is
the label of the run-time environment. Sensitive variables in the program are labeled
by {Alice:;L}. System outputs have the label {L}. The lattice for the other player’s
process is similar.

Figure 3(b) illustrates how the distribution works: two player processes communi-
cate through a binding process so that I/O pipes of both processes are connected to that
process.

3.3 Distributed Jif Implementation

.

.
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The introduction of distribution to the Jif implementation involves these steps: (i)
changing the logic of the coordinating process to take care of the distribution, (ii) writ-
ing helper classes for serialization of objects into strings and visa versa (strings can be
easily exchanged by the processes), and (iii) writing a synchronization program that
interconnects two processes via pipes.

4 Evaluation

This section reports on lessons we have learned from this case study. We compare the
three implementations, evaluate security assurance provided by the security-typed im-
plementations, discuss the role of declassification, and report some problems we have
uncovered in Jif.

Java vs. Jif implementation Lifting Java programs to Jif is not straightforward. Sec-
tion 5 presents useful programming patterns we have developed over the process of
lifting. The Jif implementation is a result of successive refactoring iterations over the
initial Java version. The main impact is caused by the security label annotations of
program variables. These labels propagate further into the begin- and end-labels of the
methods. Following this propagation, we have rewritten Java methods in such a way
that the Jif version either repairs a discovered flow or declares it explicitly either via a
declassification statement or via a method header. This technique increases assurance
that the program protects the confidentiality of sensitive variables.

Explicit declassification helps specifying exactly which data is downgraded, who
authorizes downgrading, and where in code it is downgraded. Thanks to declassifica-
tion statements, intended leaks in the program are reduced to declassification points in
the code. A detailed discussion of the declassification points in our implementation is
presented later in this section.

Jif has helped uncover some insecurities in the Java implementation. Although it
is not obvious how these particular insecurities can be exploited, they still represent
potential vulnerabilities. One of the interesting insecurities we have discovered in the
Java implementation is due to exceptions occurring at high security levels. Listing 4
illustrates this insecurity:

public class ExceptionLeak[label L] {

private int{} readInput{}() { ... }

public void exceptionLeak{}() throws Exception{

while (true) {

int{} x = readInput();

6 highMethod(x);

}

}

private int{L} highDenominator;

private int{L} highCounter;

private int{L}[]{L} highArray;

12 private void highMethod{}(int{} x)

throws ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException {

highArray[highCounter++] = x/highDenominator;

}

}

4.1 Comparison of the Three Implementations

.

Listing 4. Example of leaks via exceptions
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Here, any of exceptions ArrayIndexOutOfBoundsException, ArithmeticException,
or NullPointerException can be thrown in a high context reflecting problems in the
high variables highDenominator, highArray, and highCounter. Therefore, the caller
of highMethod on line 6 obtains information not only about the successful termination
of the method but also details on what kind of exception has occurred and, in more com-
plicated scenarios, the stack trace back to the origin of the exception! The SuccessFlag
pattern (Section 5.5) describes how one can prevent such leaks.

Jif vs. distributed Jif implementation While the second implementation reveals im-
portant security issues, the third one is more interesting from a practical point of view.
From this perspective, the second implementation may be considered as an intermedi-
ate step toward the final distributed version. The second and third implementations have
both been developed in Jif. Most of the code from the second implementation is reused
in the third. Thus, the third implementation benefits from the security guarantees that
are achieved in the second version and, in addition, is a simple, yet fully functional,
example of a distributed program written in a security-typed language.

Because the distributed Jif implementation encompasses the features of the inter-
mediate Jif implementation, the rest of the discussion refers to the distributed Jif imple-
mentation as the Jif implementation, unless specified otherwise.

Recall from Section 2 the security objectives provided by the underlying protocol: (1)
uniqueness of cards, (2) uniform distribution of cards, (3) absence of TTP, (4) cheating
detection with high probability, (5) complete confidentiality of cards, and (6) minimal
effect of coalitions. Although these objectives are addressed by protocol design, our
goal is to ensure that the protocol implementation may not violate these objectives. Let
us discuss how these objectives are addressed by the Jif implementation.

The first and the second properties rely on the random number generators, supported
by Java API. The third property (absence of TTP), which is crucial to the protocol, is
not broken by our implementation. Indeed, the implementation does not introduce a
TTP as there are only two principals—the players. Cheating detection is supported in
our implementation via logging the messages that players exchange. In the verification
phase of the game this log is used to check if either of the players has cheated. Note that
the sixth objective does not apply to a two-player implementation. For a multi-player
extension, control over the propagation of sensitive information (as provided by the
security-type system) is essential for minimizing the effect of coalitions.

The most interesting objective is the fifth one (complete confidentiality of cards).
It is for this objective that we capitalize on using security types. Tight control of con-
fidentiality is guaranteed by assigning high-security labels to the following program
variables:

– instance of the cryptosystem that stores the secret key for homomorphic encryption;
– signature key used for signing messages;
– player’s hand: decrypted values of the player’s cards; and

4.2 Security Assurance

.
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GR POINT WHAT WHO WHERE WHEN

I
1 Public key for

signature
Anyone Initialization Before game start, before seal is open

2 Public security param Player Initialization Before game start, before seal is open

II

3 Message signature Player Sending msg Any time
4–7 Protocol init data Player Initialization Before game start, before seal is open
8–10 Encrypted permuted

card
Player Card drawing During game, before seal is open

III
11 Decryption flag Player Card drawing During game, before seal is open,

after player obtains card

IV

12 Player’s secret
encryption key

Player Verification After game end, after seal is open

13–14 Player’s secret
permutation

Player Verification After game end, after seal is open

Table 1. Declassification points

Labeling these variables as high restricts the flow of sensitive data to public outputs.
Jif’s type system prevents unintended flows of sensitive information unless otherwise
specified by declassify statements. This reduces the manual security analysis of the
system down to inspection and justification of declassify statements in code. This is
the subject of the following section.

Label assignment reduces possibilities for information leaks to the program points
where declassifications occur. Declassification is possible if the running process has
enough authority to relabel the data. The ability to grant a class or a method authority
is useful but also a potentially dangerous feature since this authority may be misused
for inappropriate declassification of confidential information. The Jif implementation
grants the authority of the player to the following two functions: (i) function that re-
turns the public key of the player and (ii) function that coordinates the game process.

There are 14 declassification points in the main class of the Jif implementation. For
each declassification Table 1 states what is declassified, who declassifies data, where in
the program, and when declassification may occur (the last column uses the notion of
seal defined in group IV below). These aspects correspond to dimensions of informa-
tion release [42]. Accordingly, the declassification points can be naturally grouped as
follows.

I Declassification of naturally public data (points 1–2). Functions for generating sig-
nature keys return KeyPair data structure. It contains both a private and a public
component and, as a whole, is labeled as high. In order to return the public key,
a separate high copy of the key has to be obtained and declassified. Similarly, the

4.3 Authority and Declassification
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public parameter of the homomorphic cryptosystem is extracted from an instance
of the cryptosystem. Again, we obtain a high copy of this parameter and declassify
it separately. These declassifications are safe, since they affect neither the sensitive
part of the key nor the secret parameter of the cryptosystem.

II Declassification following signatures and encryptions in the underlying protocol
(points 3–10). This is the largest group of declassification points. The first such
point is related to the digital signature of the messages. Because computation of
the signature involves a private key, the result gets tainted by the high label of the
private key and becomes high. Here we rely on the cryptographic properties of the
calculated signature and assume it is safe to declassify the computed result. The
obtained declassified signature is attached to the message.
The rest of the declassifications in this group are applied to encrypted values created
in the context with a high pc label. The motivation for these declassifications is
similar to the one for signatures. These declassifications are safe as far as we trust
the underlying cryptographic protocol.

III Declassification of the success flag in finishCardDraw() (point 11). See the Suc-
cessFlag pattern (Section 5.5) for motivation and details.

IV Declassification of sensitive information for verification (points 12–14): After a
game completes, the protocol requires players to exchange their private keys and
secret permutations in order to verify the fairness of each other. This is a common
scenario for security protocols that rely on bit commitment. It is important that
these functions are not used earlier than they are supposed to, i.e., it is important
when information is downgraded. Jif’s declassification mechanism is not powerful
enough to support such temporal properties. Therefore, we introduce a so called
seal, a boolean flag that changes its value at most once after initialization. The
seal is initialized in the constructor of the Player class. Its integrity is checked in
the methods that implement game protocols. The seal is opened once the sensitive
information that it protects is released. This is done in the methods that declassify
the keys and secret permutation. Next time there is a call to a method that assumes
the seal’s integrity, a runtime exception is thrown indicating that this call violates
the security properties of the protocol. That is, one is not allowed to declassify
data prematurely. Implementation details of the seal technique are presented in the
section on patterns.

The artifact of four different categories of declassification (with independent reasons
for justifying each of them) opens up the question of an adequate treatment of the mul-
tifaceted nature of declassification. In particular, there is need for enforcing temporal
information release policies. This provides a basis for our future work (cf. Section 7).

Many of the insights we have gathered in the case study are not Jif-specific. However, as
Jif is the most ambitious security-typed language to date, it is useful to highlight some
vulnerabilities and problems discovered in the Jif compiler.

4.4 Jif’s Vulnerabilities and Problems
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Signature misuse Jif uses existing Java libraries by means of class signatures. A sig-
nature is a file with Jif-style method declarations. Jif programs are type-checked against
these headers, but pre-compiled Java binaries are used at runtime. An example of where
we use Java API with Jif signatures is DSA signature scheme, which has internal ran-
dom values that need to remain secret.

However, a flow can be easily introduced if labels declared in the method header do
not correspond to the code in the library. An example of such a weakness is a signature
of System.arraycopy function from the current Jif distribution.
public static native void arraycopy(Object{dst} src, int{dst} src_position, Object dst,

int{dst} dst_position, int{dst} length)

throws (IndexOutOfBoundsException, ArrayStoreException, NullPointerException);

This method has no begin-label, which implies the absence of side effects. However,
the copy of an array in the memory is an obvious side effect that should be reflected in
the begin-label of the method. Listing 5 is an example of how this weakness can be
exploited.
public class TestLeak[label L] {

private int{L}[] secret;

private int{}[] output;

public void leak() {

try { System.arraycopy(secret, 0, output, 0, secret.length);

} catch (Exception ignored) { }

}

}

In this example, function leak() calls System.arraycopy to copy data from the high
array secret into the low array output. Nevertheless, this code is accepted by the Jif
compiler since it trusts the provided method signature.

class X {

public native int {this} getP();

public native void setP{this}(int{this}n);

}

Parameterized signatures Recall class
X from Section 2.2 with label annota-
tions erased to obtain a Java class. List-
ing 6 is an example of a vulnerable sig-
nature that can be written for such class.
Here, {this} is a label of the current instance. This signature is exposed to the
attack similar to the array-laundering attack from Section 2.2. However, this at-
tack can be prevented by parameterizing the signature as it is shown in Listing 7.

class X[label L]{

public native int {L} getP();

public native void setP{L}(int{L} n);

}

Generally, a class should be param-
eterized if a variable of that class can
be modified after the instantiation. While
such flows are captured in pure Jif pro-
grams by the type system, they are not
prevented in class signatures. It is the author of a signature who is responsible for its
correctness.

Relabeling mutable data containers Assume there is an array x of type int{}[]{}

which we want to relabel to type int{Alice:}[]{Alice:}. The assignment statement

.

.

.

Listing 5. Leakage via invalid method signature

Listing 6. Vulnerable signature for class

Listing 7. Correct signature for class
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int{Alice:}[]{Alice:} y = x is rejected by the Jif type system as it is exposed to
the laundering attack similar to the one described in Section 2.2. A possible solution is
to create a separate copy of an array, upgrading elements one-by-one.
int{Alice:}[]{Alice:} x = new int[y.length];

for (int i = 0; i < y.length, i++) y[i] = x[i];

Similar code has to be written if one wants to relabel an instance of some parame-
terized class. Declassification is another example of relabeling, so the same argument
applies when there is need to downgrade an array or a class instance. As a consequence,
the programmer is forced to write relabeling (and declassification) code for every com-
plex data structure that is used at different security levels. In our Jif implementation, we
resolve this problem with the Declassifier pattern (Section 5.2).

Missing Java features Although Jif includes a large subset of Java, some useful fea-
tures of Java, such as inner classes and super calls, are missing. The lack of inner
classes and super calls have not proven a substantial obstacle. Most important in the
context of this case study is the lack of support for serializability for parameterized
classes. As a result, serialization routines used in the distributed implementation need
to be written manually for every class.

As discussed in Section 4, enriching Java code with security types is not straightfor-
ward. To help streamline this process we have developed patterns for secure program-
ming in Jif. These patterns help resolve insecurities in baseline code in a uniform and
transparent fashion. Appendix A presents examples and code listings for each pattern
sketched below.

This pattern suggests raising IllegalArgumentException if an argument provided to a
method is null. This exception type is more informative than NullPointerException.
Also, because an exception is raised, Jif’s built-in NullPointerException analysis en-
sures that NullPointerException no longer needs to be handled for this argument,
which results in transparent code for the rest of the method.

Because arrays and parameterized classes are mutable data containers they cannot be
completely declassified with a single declassify statement. Each field of such a class
or element of an array needs to be relabeled separately. This pattern uses a single class
Declassifier that contains static declassification and upgrade methods for every data
type used in the program. This class is parameterized over a principal P whose author-
ity is used for declassification and a label L to which the data is downgraded. Thus,
declassification methods in this class accept arguments of the level {P:;L} and return
low copies of them relabeled to {L}. Similarly, upgrade routines return high copies of
their arguments relabeled from {L} to {P:;L}.

5 Programming Patterns

5.1 ArgCheck: Checking Arguments in Jif

5.2 Declassifier: Declassification of Large Data Structures

.
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In this pattern, the class Declassifier has no authority, and all declassification
methods in the class require the caller to have the authority of P to declassify data.
One can also imagine an alternative version of this class which combines encryption
and declassification transparently for the caller. Then, the caller of the method receives
an encrypted (and declassified) value without having the authority necessary for de-
classification. We can assume that this kind of declassification is safe as the caller of
the method receives an encrypted value. While helpful, this scenario is not used in our
implementation since it is the player who owns, encrypts, and declassifies the data.

Some declassifications in a program may be avoided if the code is rearranged so that
low operations (such as input) precede operations that affect the pc label.

Jif’s authority clause in method declarations can be easily misused. This clause grants
the authority of a principal opening up possibilities for declassification by any caller.
Often, it is safer to use a caller clause. This avoids granting authority and prevents the
method from being called when the calling process does not have the required authority.

This pattern prevents the propagation of exceptions thrown at a high security level to
callers at a lower level. A caller is still notified about the failure; however, no detailed
data, such as the call stack, is passed to the caller. Instead, the high code that can gener-
ate an exception is enclosed by a try...catch block; a boolean flag tracks whether the
try block has terminated with an exception. This variable is then declassified immedi-
ately after the try...catch block; a low exception is thrown depending on the flag’s
value.

Sealing is used to enforce temporal properties such as preventing secret-key declassifi-
cation from happening earlier in the game. Unlike the other patterns, this is a combina-
tion of conventional programming techniques and security features of Jif.

The class has two parameters: the owning principal P and the label L. This label
stands for the lowest security level at which the seal is visible. The value of the seal
is stored in the boolean variable open, which is only accessible to the owner P. The
caller constraint in the class constructor requires that the calling process should have
the authority of P. Initially, the value of the variable open is false. It may only change
to true in the method unseal(). Similar to the constructor, this method has the caller

constraint. This prevents calling unseal() from program contexts that do not have the
authority of the seal’s owner. Note that the actual validation occurs at run-time.

The method isOpen() returns the value of the seal. It grants the authority of the
owning principal to the process in order to declassify the current value to the visible
level L. The method assertIntegrity() is similar to isOpen() and is a suggested way
of checking whether the seal has been opened.

5.3 EffectOrder: Ordering Effects

5.4 ReqAuth: Requiring Authority vs. Granting it

5.5 SuccessFlag: Declassification of a Success Flag

5.6 Seal: Seal Class
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This pattern shows how the signature of a class that generates encryption keys can be
specified to avoid declassifying public keys (declassification group I in Section 4). This
signature is parameterized over two labels corresponding to the labels of public and
private keys. Then, method headers can be written in such a way that getPublic()
returns a low value and getPrivate() returns a high one. Thus, declassification is
avoided. This, however, does not eliminate the flow but makes it invisible to Jif.

Although the theoretical area of information flow security is rather mature [21, 19, 38,
39], there is little evidence for the scalability of information flow controls in practice.
Below we discuss some latest progress in this area.

On the security assurance side, this work fits into a recent classification of declassi-
fication [42] that, however, considers only information release policies (not declassifi-
cation mechanisms). Nevertheless, the what, who, where, and when columns of Table 1
correspond to the dimensions of declassification from [42].

A related recent development that investigates the practical use of declassification
policies is Li and Zdancewic’s work on web scripting languages. With the target of
enforcing relaxed noninterference [30] they develop a type system for web program-
ming [31]. To what extent this language addresses challenges for practical security has
not so far been reported, however.

Giambiagi and Dam have investigated how admissibility justifies the security of a
simple payment protocol [14]. In subsequent work [20], they separate protocol spec-
ification from its implementation such that implementation is guaranteed to reveal no
more information than the specification of a protocol. The implementation language,
however, is rather distant from a realistic language like Jif. Recently, Chong and My-
ers have considered temporal release policies in the context of an ML-like language [9,
10]. Their noninterference “until” policies are intended to guarantee that secrets are
released after a certain statically-enforceable condition becomes true. This approach,
however, abstracts away from how the release conditions are enforced. An intriguing
direction for future work is exploring the sealing technique further in order to enforce
conditional release policies similar to admissibility and noninterference “until.”

Heldal et al. [26, 27] show how UML can be integrated with Jif in order to introduce
declassification early in the design process. This line of work is promising for modu-
larizing declassification and can lead to a way of combining declassification-free Java
code with security-critical Jif code in such a way that declassification statements agree
with declassification at the modeling level.

Jif/split [49, 50] performs systematic partitioning of Jif programs into distributed
components. Unfortunately, Jif/split does not support parameterized classes (due to
compatibility issues with Java’s serialization) which would be an obstacle for splitting
our Jif implementation of the protocol.

As for the largest implementations in security-typed languages reported so far, we
are aware of a battleship game protocol implemented in Jif/split [49, 50] and an evalu-
ation of an earlier version of Jif on a library of cryptographic primitives [46]. However,

5.7 KeySignature: Signature for Key Generation

6 Related Work
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these implementations are relatively light (500 and 800 lines of code, respectively, vs.
4500 lines in this study).

7 Conclusion

As a proof of concept, we have implemented a non-trivial cryptographic protocol in a
security-typed language. The implementation has resulted in the largest program writ-
ten in a security-typed language to date. The case study has given useful evidence on
challenges for practical information flow security (cf. Section 1). We discuss insights
into these challenges in turn:

– How helpful are security types for identifying potential insecurities in security-
critical code?
We have found security types useful for preventing explicit and implicit insecure
flows. We have also uncovered insecurities in the baseline implementation due to
liberal handling of exceptions and mutable data structures (cf. Section 4.1 and 4.4).

– How laborious is the process of security typing? Does it force unnecessary restric-
tions on code?
All three implementations have been coded by a graduate student (the first au-
thor). The baseline implementation consumed around 60 man-hours of develop-
ment work. The Jif implementation and distributed Jif implementation consumed
150 and 80 man-hours respectively, excluding the time to learn Jif. The case study
indicates that although lifting Java code to Jif takes some experience to master,
the security-typed result is not significantly distant from the original code. Further-
more, we have developed patterns for secure programming (cf. Section 5) to make
programming with security types clearer and more convenient.

– Is the security assurance provided by security types transparent enough?
This is the territory of the most interesting findings. Jif’s mechanism for declassi-
fication has proven to be useful for localizing information release to certain well-
marked parts of the program (declassify points). The case study, however, sug-
gests that there are various reasons for declassifying at different points. Not only
does one need to control what information is released, by whom and where in the
system, but also when it is safe to release information (cf. Section 4.3). For example,
the declassification of the result of encryption (as in the card shuffling phase) and
the declassification of the secret key (as in the commitment verification phase) have
distinct reasons and hence need to be protected in distinct ways. One disadvantage
of Jif (as many other information release mechanisms [20, 40, 35, 32, 30]) is that its
treatment of declassification disregards the multifaceted nature of declassification.

– What is the general balance of benefits and drawbacks when using security-typed
languages?
Apart from the (dis)advantages we have already discussed, modularity (due to the
compositionality of the type system) and selective type annotation (due to security
type inference) have proven particularly helpful. On the other hand, debugging tools
and extensive documentation currently lack for security-typed languages, which
forces programmers to debug code in baseline implementations written in conven-
tional languages. Another unaddressed issue is the connection between high-level
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security policies for information release and declassification statements in the code.
One can argue that manual inspection of declassification points can, in some cases,
be acceptable but, generally, there is need for expressing security policies in high-
level languages (perhaps modeling languages) ensuring that these policies are en-
forced in code. For recent steps in this direction, see [26, 27, 7].

Future work The case study has strongly suggested that existing information release
mechanisms need further improvement. A lesson we have learned is that different kinds
of declassifications need to be treated differently.

In order to alleviate this problem, we plan to generalize the seal-like data construc-
tion to represent declassification that may only happen once a certain condition has
been satisfied (as, e.g., the mental poker protocol has reached its verification phase, or
all bids are placed in an online auction protocol). This would lead to enforcing stronger
(and more intuitive) security guarantees statically.

At the next level of ambition, we intend to connect language-based declassification
to security assurance that is provided with respect to information release policies. For
example, it remains to be seen how this approach can be connected to conditional re-
lease policies such as admissibility [14, 20] and noninterference “until” policies [9, 10].
A long-term goal is to provide a toolbox of declassification mechanisms for each of the
what, who, where, and when axes of information release [42].

Another strand of worthwhile future work is improving Jif’s shortcomings (cf.
Section 4.4). We plan to explore automated refactoring techniques for pattern design
(e.g., [11]) in order to facilitate program transformations that result in security typed
programs. Another interesting problem is connected to relabeling mutable data struc-
tures. We believe it can be improved by introducing an operation that would combine
declassification and object cloning so that a relabeled separate copy of an object would
be created. This would prevent laundering attacks via object aliases. Also, this would
make programming in Jif easier because traversing mutable data structures for the
sole purpose of declassification would no longer be needed. A structured way of do-
ing this is by defining a Jif interface Declassifiable that would allow an operation
declassifyAndClone to be performed on the classes that implement the interface.

Although the case study is the largest of the kind, it is not large enough to be an
example of real production code. In order to investigate additional subtleties that come
with such code, we plan to run a student project to extend the case study to a fully
fledged application for mobile devices.
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We describe further details on some programming patterns that one may find useful
when programming in Jif, or lifting Java programs to Jif. A brief summary of these
patterns appears in Section 5.

The obligation to handle runtime exceptions in Jif can easily make code more clunky
than necessary. Consider, for example, a Java function:
public boolean validate(byte [] p, Matrix mx) {

if (!mx.validate(p)) return false;
}

If the argument mx is null, NullPointerException is thrown. Straightforward porting
of this function may lead to the following Jif code:
public boolean validate{L}(byte{L}[]{L}p, Matrix[L]{L} mx):{L} throws NullPointerException{

if (!mx.validate(p)) return false;
}

This code declares the exception in the method header. Listing 8 illustrates how the
above function can be modified so that IllegalArgumentException is thrown when-
ever an argument is null. Due to Jif’s NullPointerException analysis it is not neces-
sary to handle NullPointerException for mx.
public boolean validate{L}(byte{L}[]{L} p, Matrix[L]{L} mx):{L}

throws IllegalArgumentException {

if (mx == null) throw new IllegalArgumentException();

if (!mx.validate(p)) return false;
}

This pattern achieves more transparent code as all arguments are checked in advance
before they are used; also, the type of a declared exception is more specific to the error.

A Programming Patterns

A.1 ArgCheck: Checking Arguments in Jif Functions
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Listing 8. Checking arguments in Jif functions



public class IntPair[label L] {

private int x, y;

public IntPair(int{L} _x, int{L} _y) {

this.x = _x; this.y = _y;

}

public int{L} getX() { return this.x; }

public int{L} getY() { return this.y; }

}

Consider the class IntPair in List-
ing 9. Listing 10 is an example
of a method in Declassifier that
downgrades an object of the type
IntPair[{P:;L}]{P:;L} to the type
IntPair[L]{L}. The first declassifica-
tion on line 2 downgrades the reference
to the object. Line 4 declassifies the
fields of the object a and constructs a new object at the low security level that has
the same value as a.

public static IntPair[L]{L} declassifyIntPair(IntPair[{P:;L}]{P:;L}a1) where caller(P) {

2 IntPair[{P:;L}] a = declassify(a1, {L});

if (a == null) return null;

4 return new IntPair[L](declassify(a.getX(),{L}), declassify(a.getY(),L));
}

A similar approach needs to be applied for upgrading a mutable object from one
security level to another. A disadvantage of this approach is that it requires the con-
structors of the relabeled classes to have all class fields as arguments. This is not always
desirable since the values of private variables, (e.g., the internal state of an object) are
not always supposed to be instantiated in constructors.

Some program statements in Jif may affect the pc label. If pc is high, low side effects
are not allowed without prior declassification. Sometimes, it is possible to avoid such
a declassification by ordering program statements so that low side effects precede the
statements that taint pc with a higher label. Consider an example where readData and
update functions are defined as follows:
public String{L} readData{L}():{L} { ... }

public void update{L;H}(String{L} x):{L;H} throws NullPointerException { ... }

Now, consider a code snippet where low input is interleaved with high update calls and
which is rejected by the compiler (unless pc is declassified before the second read).
1 String{L} a = readData(); // low side effect

2 update(a); // high statement, pc becomes high

3 String{L} b = readData(); // low side effect, rejected because pc is high

4 update(b); //

After the call to update function on line 2, pc becomes high, and the call to the func-
tion readData on line 3 is rejected. The revision below demonstrates how this can be
repaired by ensuring that the low function calls precede the high ones.
String{L} a = readData(); // low side effect

String{L} b = readData(); // low side effect, ok

update(a); // high statement effect, ok

update(b); // high statement effect, ok

A.2 Declassifier: Declassification of Large Data Structures

A.3 EffectOrder: Ordering Effects
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Listing 9. IntPair

Listing 10. Method



Consider examples of two functions that reveal the secret permutation of the player,
declassifying it to a lower label:
public byte{L}[]{L} revealPermutation{L}() where authority (P) { ... }

public byte{L}[]{L} revealPermutation{L}() where caller (P) { ... }

The first example grants the authority of the player to the method. This implies that the
method can be called from any context. Such a declaration is dangerous because secret
information can be easily leaked. In contrast, the second example grants no authority but
requires the caller to have necessary authority for declassification: calling this method
from a context where the calling process does not have the authority of the principal P
is rejected by the compiler.

Listing 4 in Section 4.1 is an example of code that needs to release information about
the termination of the method without leaking the details on why the method failed to
terminate normally. Listing 11 shows how one can use a boolean flag variable to track
the termination path of high methods.
1 public void foo{L}():{L} throws Exception where caller(P) {

2 boolean ok = false;

3 try { ... // code that can throw high exception

4 ok = true;

5 } catch (Exception ex) { ... } // handling high exception

6 if (declassify (!ok, {L})) { throw new Exception(); }

7 }

In this example, the boolean flag ok is initialized on line 2. High code that can gen-
erate exceptions is enclosed by a try ... catch statement, so that possible exceptions
are caught and handled on line 5. The assignment ok=true on line 4 may generate no
exception and is the last one within the try block. Line 6 declassifies the value of this
variable and, depending on this value, it may generate a low exception that will propa-
gate to the caller.

Listing 12 presents the structure of the seal class that is described in Section 5.6.
1 /* Seal belongs to a principal P, and is visible at the level L */

2 public class Seal[principal P, label L] authority(P) {

3 private boolean{P:;L} open; /*actual value of the seal */

4 /* require the principal to create this */

5 public Seal{P:;L}() where caller(P) { this.open = false; }

6 /* require the principal to unseal it */

7 public void unseal{P:;L}() where caller (P) { this.open = true; }

8 /* anyone at the level L can check it */

9 public boolean{this;L} isOpen():{L} where authority (P) {

10 return declassify (open, {this;L});

11 }

12 /* similar to previous */

13 public void assertIntegrity():{L} throws SecurityException {

A.4 ReqAuth: Requiring Authority vs. Granting it

A.5 SuccessFlag: Declassification of a Success Flag

A.6 Seal: Seal Class
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Listing 11. Declassification of success flag



14 if (this.isOpen()) throw new SecurityException();

15 }

16 }

Listing 13 shows how sealing is used. Line 1 declares a seal that belongs to Alice
and is observable by everyone. It is initialized in the method init(). The work()

method checks if the seal has been opened before it is called. The seal is opened in
revealSecret() method. If work() is called after the seal is opened, the exception
SecurityException is thrown.
1 private Seal[Alice,{}] seal; // declaration

2 public void init() where caller(Alice) { // initialization

this.seal = new Seal[Alice, {}]();

...

}

public void work() throws SecurityException, NullPointerException{

this.seal.assertIntegrity(); // check the integrity in the beginning of the method

...

}

public void revealSecret() where caller (Alice) throws NullPointerException{

this.seal.unseal();
... // declassification goes next

}

public final class KeyPair{

public KeyPair(PublicKey{this} publicKey,

PrivateKey{this} privateKey) {}

public native PublicKey{this} getPublic();

public native PrivateKey{this} getPrivate();

}

Listings 14 and 15 are two signatures for
Java’s java.security.KeyPair class.
The usage of the first one requires an
instance of the KeyPair class to be
high, because it contains a sensitive
private key. Declassification is applied
when information about the public key is
needed. This declassification is safe be-
cause the released information is naturally public.

public final class KeyPair[label L, label H]{

public KeyPair(PublicKey{L} publicKey,

PrivateKey{L;H} privateKey) {}

public native PublicKey{L} getPublic();

public native PrivateKey{L;H} getPrivate();

}

The declassification-free version is
parameterized over two labels—for the
private and public keys. In this case, a
parameterized signature avoids declas-
sification by labeling method headers
appropriately. Both of the approaches
are acceptable, providing a trade-off be-
tween explicit flow control and ele-
gance.

A.7 KeySignature: Signature for Key Generation
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Listing 12. Seal class

Listing 13. Usage of seal

Listing 14. Non-parameterized signature for
KeyPair

Listing 15. Parameterized signature for KeyPair
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