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ABSTRACT 

A major challenge for geomorphologists is to scale up small-magnitude processes to produce 

landscape form, yet existing approaches have been found to be severely limited. New ways to 

scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of 

sediment connectivity as a framework for understanding processes involved in sediment 

transfer across multiple scales. We propose that the concept of sediment connectivity can be 

used to explain the connected transfer of sediment from a source to a sink in a catchment, and 

movement of sediment between different zones within a catchment: over hillslopes, between 

hillslopes and channels, and within channels. Using fluvial systems as an example we explore 

four scenarios of sediment- connectivity which represent end-members of behaviour from fully 

linked to fully unlinked hydrological and sediment connectivity. Sediment-travel distance – when 

combined with an entrainment parameter reflecting the frequency-magnitude response of the 

system – maps onto these end-members, providing a coherent conceptual model for the 

upscaling of erosion predictions. This conceptual model could be readily expanded to other 

process domains to provide a more comprehensive underpinning of landscape-evolution 

models. Thus, further research on the controls and dynamics of travel distances under different 

modes of transport is fundamental. 

 

 

KEY WORDS 

Sediment connectivity; sediment-travel distance; hydrological connectivity; landscape form; 

frequency-magnitude. 
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INTRODUCTION 

Sediment connectivity is the connected transfer of sediment from a source to a sink in a system 

via sediment detachment and sediment transport, controlled by how the sediment moves 

between all geomorphic zones in a landscape. In catchment systems, which are the primary 

focus of this paper, these movements are on hillslopes, between hillslopes and channels and 

within channels. Erosion, sediment transport and deposition occur at the grain scale, to produce 

landscape features at scales several orders of magnitude larger (Cooper et al., 2012). A major 

challenge in geomorphology is reconciling the disparity between erosion rates measured at 

small spatial scales with rates of denudation at larger spatial scales. Scaling up erosion rates to 

estimate landscape change is difficult because: there are problems with using linear 

extrapolation of erosion rates; understanding the continuum of sediment sources, processes of 

transfer and possibilities for deposition within catchments; and the uncertainty in the impact of 

changing climate and land use on sediment-transfer processes. Despite excellent progress 

developed from a systems-based understanding of catchment process it is timely to explore 

moving to use a complex-systems approach to conceptualize the continuum of sediment 

transfer. An approach is required that resolves both the flaws of the sediment delivery approach 

that monitors one point in a catchment (usually the outlet), and scale dependence of erosional 

processes. Any new approach must also be able to explain how small-scale measurements of 

erosion result in broad-scale geomorphic patterns and processes. 

 

With a focus on hydrological and catchment systems we build on recent advances in 

understanding hydrological connectivity to refine and highlight novel was of thinking about 

sediment transfer at the catchment scale. Secondly, we make explicit links between the 

concepts that underpin hydrological connectivity with implications that arise from the 

development of transport-distance approaches to understanding sediment movement. Thirdly, 

we provide an integrated approach to guide future research into sediment connectivity. 

Integrating the concept of sediment-transport distances within a sediment connectivity 

framework provides a means of addressing the non-linearity of erosional processes within 

spatially and temporally variable environments, in order to understand the net interplay of 

system characteristics and erosional processes on observed sediment yield across multiple 

spatial and temporal scales. The sediment-connectivity framework presented provides a means 

by which to investigate the interplay of erosional processes (detachment, transport and 

deposition) that are spatially and temporally variable, and are characterized by different 

frequency-magnitude distributions, and how these affect system processes and landscape 
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development at broader spatial and temporal scales. The approach presented reconciles the 

observed disparity between erosion rates measured at small spatial scales with rates of 

denudation at larger spatial scales and will enable us to understand better the sensitivity of a 

catchment to external forces such as climate change, tectonics and anthropic disturbances.  

 

EXISTING CONCEPTS OF SEDIMENT CONNECTIVITY IN CATCHMENT SYSTEMS: A 

CRITIQUE 

 

Background 

Sediment connectivity arises through the transfer of material between two zones and occurs via 

transport vectors (e.g. water, wind, glaciers, gravity, animals) that move these materials over a 

range of spatial and temporal scales (Peters et al., 2008). Each zone contains two parts: the 

morphologic system (the landforms) and the cascading system (the energy and materials 

flowing through that zone) (Chorley, 1971; Schumm, 1981). A major limitation of previous 

discussions of ‘connectivity’ is an unclear definition of the meaning of the term within the context 

in which it is used (Bracken et al., 2013). In a geomorphic system, connectivity may occur 

through the physical contact between two zones, through the transfer of material between 

zones, or both (Jain and Tandon, 2010). Thus, we perceive coupling (based on the morphologic 

system at certain locations) and sediment connectivity (founded on the continuum of the 

cascading system) to be different and encourage researchers to use the terms more precisely. 

 

The concept of sediment connectivity can be used to explain the continuity of sediment transfer 

from a source to a sink in a catchment, and movement of sediment between different zones 

within a catchment: over hillslopes, between hillslopes and channels, and within channels.  

Sediment connectivity  is based on the interplay of structural components (morphology) and 

process components (flow of energy/transport vectors and materials) that determine the long-

term behaviour of the sediment flux which is manifest as a change in landform (Preston and 

Schmidt, 2003; Turnbull et al., 2008; Bracken et al., 2013). Thus, sediment connectivity is 

dependent not on individual processes, but on all aspects of the geomorphic system that control 

sediment flux – processes of detachment, entrainment and transport – but also the emergent 

characteristics of sediment deposition and sediment residence times (Preston and Schmidt, 

2003; Sandercock and Hooke, 2011). Once there is a source of readily entrainable sediment, 

transport depends on the spatial configuration of connections between sediment source areas,  

the energy of key sediment-transport vectors and the relationship to morphology. Therefore, the 
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spatial and temporal distributions of energy-transfer pathways and resulting continuity of 

transport vectors in combination with sediment availability are critical in determining sediment 

connectivity. A further, yet critical, point to make is that sediment detachment and transport 

processes are size selective. For example, previous research has uncovered an inverse 

relationship between particle size and sediment-transport distances (Wainwright and Thornes, 

1991; Parsons et al., 1993; Hassan et al., 1992; Ferguson et al., 1996; Oostwoud Wijdenes and 

Ergenzinger, 1998). The significant implication of this previous research is that sediment travels 

in more disconnected ways than the flows that transport them.  

 

The relationship between sediment connectivity and sediment stores 

Early work within a systems-based framework placed an emphasis on the distribution of 

sediment stores and sinks, which both reflect and influence the routes, travel distances and 

pathways of sediment transport within catchments (Brunsden and Thornes, 1979; Meade, 1982; 

Phillips, 1992; Harvey, 2002). Furthermore, it addressed the patterns of stores and sinks as 

advanced in Schumm’s (1977;1981) model of the fluvial system, based on idealized zones of 

sediment production, transfer and deposition. In Schumm’s model the general picture was that 

hillslopes form a supply of sediment, which is fed to the stream network, where it is picked up 

and transported downstream until it is deposited within the basin (Schumm, 1981). Yet the 

morphological system consists of both the geometry of the landscape (topography, internal 

structure) and the properties of the sediment (density, size distribution, armouring). In this way a 

distinction can be made between sediment sources (e.g. hillslopes or in-channel sediment 

stores) and transport pathways. In principle, any slope, and any place where water flows, is 

potentially a transport pathway (and the same holds for any location controlled by other 

transport vectors such as wind or glaciers).  There has been a long understanding that sediment 

transfer is influenced by the nature, extent and location of sediment stores, but also the 

topography, climate, channel pattern, vegetation, land use and soil properties (e.g. Roehl, 

1962). What is missing from this early research is an understanding of which stores of sediment 

and which routes of transport operate under different environmental conditions. These factors 

have only been implicitly included in past research. 

 

Schumm’s (1977;1981) landscape model divided catchments into production, transfer and 

deposition zones. Schumm acknowledged that this was a simplistic representation of the 

landscape and noted that sediments are eroded, transported and stored in each of the zones, 

but proposed that a single process is usually dominant in each. The landforms and energy and 
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material moving through that zone are interrelated over space, and through time, by the spatial 

structure and frequency-magnitude spectra of dominant processes. One of the fundamental 

aspects of Schumm’s model is that it implies that landscape development occurs in neatly 

compartmentalized zones.  However, subsequent studies of sediment-travel distance suggest 

that all parts of the landscape are potentially involved in sediment production, transfer and 

storage (Wainwright et al., 2001; Parsons et al., 2006), and thus there is more of a continuum of 

these zones than a set of discrete entities.  

 

Boundaries between landscape zones are critical in influencing sediment transfer (Armstrong, 

1987; Brierley et al. 2006; Harvey 2012). Storage of sediment is often focussed at boundaries 

between zones within catchments, such as between hillslopes and rivers, river junctions and at 

larger scales between mountain belts and more lowland areas (e.g. Croke et al., 2013), 

reflecting the disconnected behaviour of sediment transfers and affecting subsequent paths of 

movements. Disconnections over longer timescales emphasise the effect of persistent 

blockages, effectively preserving sediment in areas of storage (Harvey, 2012). Understanding 

the rôle of sediment stores in a systems-based framework led to the notion of coupling between 

hillslopes and channels.  

 

Harvey (2012) used the terms coupling and connectivity interchangeably, viewing coupling 

within fluvial systems as the fundamental property that affects the down-system transmission of 

sediment. Hooke (2003:79) referred to sediment connectivity as “the physical linkage of 

sediment through the channel system, which is the transfer of sediment from one zone or 

location to another and the potential for a specific particle to move through the system”. 

Because these definitions are based on the mechanisms by which sediment is detached and 

transported, they are limited to the process of coupling between landscape units (sensu Harvey, 

2012), and sediment transport within channels (sensu Hooke, 2003) and thus are limited in their 

broader applicability. Faulkner (2008) bases her definition on links between specific sources and 

sink areas and thus focuses on understanding the connected transfer of sediment within a 

narrow range of environmental conditions and geomorphic systems noting process-domain 

interactions at the relatively small scale. These approaches are typically focussed on 

understanding behaviour at specific points in the landscape, rather than on providing an overall 

framework for linking behaviour at multiple scales in the landscape.  Hence the systems-based 

analysis of landscapes and coupling is based on analyzing the character and behaviour of 

landscape compartments, how they fit together (their assemblage and pattern) and the 
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movement of sediment between them, which provides a platform to interpret the operation of 

geomorphic processes in any given system (e.g. Lane and Richards 1997; Harvey 2002; 

Michaelides and Wainwright 2002; Hooke 2003). This point is illustrated by Brierley et al. (2006) 

who proposed that understanding the connectivity between landscape compartments was 

pivotal to explaining spatial relationships, and hence the behaviour of biophysical fluxes and 

associated trajectories of adjustment (Figure 1).  

 

We suggest that geomorphology needs to move beyond putting ‘old wine in new bottles’ and 

think about sediment transfer in a new and more useful way. To improve our understanding of 

the scaling of sediment transfers, sediment connectivity needs to be developed as a concept 

that is broadly applicable across different types of terrestrial systems and environmental 

regimes in order to understand better how small-scale erosional processes connect to large-

scale observations of landform development and catchment-scale sediment export. It is critical 

that an alternative approach does not attempt to normalize erosion rates by area. Rather, area 

must be considered as a critical variable and be represented explicitly, or alternatively, the 

approach must be insensitive to area because the controls that would make area a variable are 

already included. We propose that sediment connectivity is defined as the integrated transfer of 

sediment across all possible sources to all potential sinks in a system over the continuum of 

detachment, transport and deposition, which is controlled by how the sediment moves between 

all geomorphic zones: on hillslopes, between hillslopes and channels and within channels. This 

definition of sediment connectivity is in agreement with Faulkner (2008), that sediment 

connectivity refers to the integrated status of a system within the catchment. Sediment 

connectivity can thus be considered within a nested hierarchy (Harvey, 2002), from local (within 

landforms), through zonal (sediment transfer between landforms such as hillslope-channel 

connexions), to the behaviour of the whole catchment with linkages along the sediment 

cascade. Temporal variability in the scale of connection at the catchment scale is related to the 

effectiveness of connectivity-enhancing (or reducing) features at smaller scales, their spatial 

configuration and frequency magnitude of processes that lead to their formation and the relative 

timing of their formation (Breirley et al., 2006; Fryirs et al., 2007).  

 

Existing conceptual frameworks of sediment connectivity  

There has been a shift from thinking about sediment transfer between different stores to a 

continuum-based approach trying to understand pathways, routes and scales of movement of 

sediment that has been directly influenced by the progressive development of the concept of 
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hydrological connectivity. Hydrological connectivity has been a dynamic area of research in the 

last decade and has resulted in a novel framework for understanding runoff and runon (Bracken 

and Croke, 2007; Ali and Roy, 2009). The developments in hydrological connectivity were 

driven partly by calls for new ways of thinking about runoff and hydrological process 

conceptualization in heterogeneous landscapes (McDonnell, 2003; Ambroise, 2004; McDonnell 

et al., 2007). Hydrological connexions via overland and subsurface flows have become 

conceptualized as a function of water volume (supplied by rainfall and runon, depleted by 

infiltration, evaporation, transpiration and transmission losses) and rate of transfer (a function of 

pathway, hillslope length and flow resistance) (Bracken et al., 2013).  These processes interact 

with flow resistance, varying as a function of flow depth, which establishes a feedback between 

rainfall, infiltration and flow routing which produces the nonlinearity seen in river hydrographs 

and scale-dependence of runoff coefficients (Wainwright and Bracken, 2011).   

 

An early proponent of the sediment-connectivity approach was Lexartza-Artza and Wainwright 

(2009; 2011). Their approach underlined that understanding the conditions for runoff generation 

and transmission in relation, for instance, to rainfall events, and the differences on these 

conditions according to temporal or spatial constrains, produces key information regarding the 

connectivity, and therefore, transfer of matter in the catchment, as will a careful study of 

pathways (Figure 1). A practical demonstration of this approach can be found in Wainwright et 

al. (2011). 

 

Fryirs et al. (2007) produced a conceptual model that could be used to assess the 

disconnectivity of catchment sediment cascades. Catchment disconnectivity is defined as the 

degree to which any limiting factor constrains the efficiency of sediment-transfer relationships 

(Fryirs et al., 2007). By examining the spatial and temporal disconnectivity of linkages, multiple 

component cascading systems can be modelled and the internal dynamics of sediment flux of a 

catchment be represented (Houben et al., 2009; Lexartza-Artza and Wainwright, 2011). Fryirs 

(2013) argued that analysis of the type and strength of spatial linkages allows the sediment flux 

to be quantified and modelled by assessing whether it is connected or disconnected over 

various timeframes. Where sediment flux becomes disconnected, a sediment sink is formed 

which acts to remove sediment from the cascade/conveyor belt for various lengths of time. A 

model of (dis)connectivity could be developed analogous to the operation of a series of switches 

that turn on or turn off (connect and disconnect) sediment sources in a catchment under 

different magnitude–frequency conditions (Fryirs, 2013). 

http://onlinelibrary.wiley.com/doi/10.1002/esp.3242/full#esp3242-bib-0051
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Houben (2008) focused on one aspect of buffers as used by Fryirs et al., (2007) and researched 

hillslope processes as the primary filter for resulting floodplain response in regard to land-use 

and climate change.  Thus Houben’s framework of sediment connectivity centred on the role of 

the hillslope in controlling the net delivery of sediment to streams and valley floors through the 

production of hillslope sediment, hillslope sedimentation, and on-hillslope connectivity. By 

applying the sediment-budget approach at the field scale, Houben (2008) deduced that the 

degree of on-hillslope connectivity is the key control of the long-term net delivery of slope-

derived sediments to valley floors rather than simply the extent of arable ground, erosivity or 

rates of sediment production when accounting for fragmented hillslopes in gently sloping 

landscapes. The sediment-budget approach was used as a way to sample the sediment transfer 

continuum, but does not consider the integrated transfer of sediment within a catchment. 

Houben’s approach is constrained by being routed in the systems framework and 

conceptualizing sediment transfer as individual movements between certain stores and hence 

does not consider the continuum of sources and stores and how sediment is transferred 

between them. 

 

More recently, Cavalli et al. (2013) implemented Fryirs’ framework using an index of 

hydrological connectivity (developed by Borselli et al., 2008) to assess spatial sediment 

connectivity in two small catchments in the Italian Alps. Heckmann and Schwanghart (2013) 

present a second application of the framework. They applied mathematical graph theory to 

explore the network structure of coarse sediment pathways in a central alpine catchment. 

Analysis of the spatial distribution, composition and frequency of sediment cascades was shown 

to yield information on the relative importance of geomorphic processes and their interaction. 

However, recognition of processes is arbitrary and subjective and depends on circumstance, 

such as: location, observer's goal, perception, conceptualisation and methods used (Schumm, 

1991). These approaches tend to measure catchment characteristics and attributes which are 

then extrapolated, interpolated and accumulated to infer process. It is this inferring of processes 

which remains a major limitation. 

 

Summary 

 
Geomorphologists have fully embraced the systems-based understanding of catchment 

processes and developed an excellent understanding of sediment sources, transfer processes 
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and sediment sinks in catchments. Research has been fruitful at determining relationships 

between sediment characteristics and sediment transport distances. Yet we continue to infer 

processes and do not consider the continuum of sources and stores and how sediment is 

transferred between them. If we remain bounded by established practices and existing ways of 

approaching sediment transfer we may not be able to exploit the full potential of the concept of 

sediment connectivity. Hence a novel framework is required that can integrate:  i) the frequency-

magnitude distributions of sediment detachment, transport and deposition processes with ii) 

spatial and temporal feedbacks between sediment detachment and transport processes; and iii) 

mechanisms of sediment detachment and transport. 

 

A NEW SEDIMENT-CONNECTIVITY FRAMEWORK FOR UNDERSTANDING SEDIMENT 

TRANSFER ACROSS MULTIPLE SCALES 

 

Here, we present a new sediment-connectivity framework to show the relationships among 

sediment detachment and transport, and key emergent behaviour of the geomorphic system: 

frequency-magnitude distributions of sediment detachment and transport processes and the 

temporal and spatial sequencing of sediment detachment and transport processes (i.e. explicit 

consideration of spatiotemporal heterogeneity of process and form in geomorphic systems) 

(Figure 2). Three key elements of this framework are: 

1. Frequency-magnitude distributions of sediment detachment, transport and deposition 

processes. 

2. Spatial and temporal feedbacks between sediment detachment and transport processes. 

3. Mechanisms of sediment detachment and transport. 

Of particular importance in this sediment-connectivity framework is the characteristics of the 

relationships between these three key elements. This framework emphasizes the co-

dependency (relationships and feedbacks) of each of the three elements. For example, the 

frequency-magnitude distributions of sediment-detachment processes and transport processes 

will be partially controlled by the extent to which they are driven. Although systems may be 

hydrologically dominated, other processes are also involved in sediment transfer, such as mass 

movement, glacial or aeolian processes. Such processes have characteristically different 

recurrence intervals. The extent to which the effects of sediment detachment and transport will 

propagate through a system yielding sediment connectivity at broader spatial scales will depend 
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largely on the temporal and spatial sequencing of sediment-detachment and transport 

processes. The effect of spatial scale in this sediment-connectivity framework is inherent 

through its effect on mechanisms of sediment detachment and transport, controls on frequency-

magnitude distributions and in particular, through spatial and temporal sequencing of 

detachment and transport processes which becomes increasingly heterogeneous with increases 

in spatial scale.  

 

Frequency-magnitude distributions of sediment detachment and transport processes 

Wolman and Miller (1960) introduced the frequency-magnitude concept of geomorphic events. 

They proposed that the magnitude of force applied by a geomorphic process can be measured 

in terms of the relative amount of work done on a landscape, and that it is not only the 

magnitude of the force applied by the geomorphic process that is important, but also the 

frequency with which that force is applied. Thus, the frequency-magnitude distributions of 

geomorphic events will change with spatial scale, which therefore represents a means of 

estimating the temporal scale over which sediment connectivity should be gauged at a specific 

spatial scale.  However, the frequency-magnitude distribution of a specific process at a certain 

spatial scale is not independent of other processes. For example, mechanisms of sediment 

transport, such as high-magnitude débris flows that entrain sediment stored within the channel 

network and thus continue to grow in size, will have a given return interval that is dependent in 

part on the return intervals of detachment processes that provide a supply of sediment available 

for transport (Carson and Kirkby, 1972; Bovis and Jakob, 1999). The redistribution, 

accumulation and storage of sediment at short timescales, and often over relatively short 

transport distances, facilitates sediment connectivity at much broader spatial and temporal 

scales. Therefore, sediment connectivity at broader spatial scales may be a function of 

sediment accumulation during higher frequency and lower magnitude events. When the 

dominant processes of sediment entrainment and transport operating at a given frequency-

magnitude distribution is a consequence of a supply of sediment available for transport from 

processes with a different frequency-magnitude distribution, sediment connectivity at a given 

temporal scale will depend upon the time elapsed since previous events (see Figure 3; Wolman 

and Miller, 1960). Thus, the sequencing of events operating over different frequency-magnitude 

spectra can be important (Beven, 1982; Richards, 1999). Furthermore, position within a 

catchment is important as sediment-transport events on slopes and in rivers have markedly 

different frequency and magnitude distributions (Ergenzinger, 1992). Sediment connectivity at 
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larger spatial and temporal scales results from the spatial interaction of sediment pathways and 

the corresponding process domains (Becht et al., 2005; Wichmann et al., 2009), each of which 

has its own frequency-magnitude spectrum, but are not always independent of each other. 

Thus, the critical challenge is to identify the intersecting process regimes, that are all 

interrelated, but all work to their own frequency and magnitude distributions (see Crozier, 1999), 

in order to determine the spatial and temporal scales over which sediment connectivity should 

be gauged.  

 

Sediment connectivity requires a unifying conceptual framework that deals explicitly with the 

confounding effects of spatial and temporal variability in system structure and process, over 

wide-ranging environmental régimes. A major challenge to the concept of sediment connectivity 

is gauging the temporal scale over which sediment connectivity should be assessed, i.e. what 

constitutes a relevant event?  If, for example, the temporal scale of analysis is considerably 

greater than the frequency of key processes (i.e. a timescale that is sufficiently long to 

encompass sediment cascades in which all components of a catchment will be connected) then 

sediment connectivity will be perceived to be exceptionally high. Alternatively, if the temporal 

scale over which sediment connectivity is evaluated is less than the frequency at which key 

sediment-transport related processes within the study domain operate, then sediment 

connectivity will be perceived to be lower. Defining the temporal scale of an ‘event’ is clearly 

dependent on the process in question. One straightforward definition is that “events should be 

characterized by a process intensity higher than the mean, and preceded and followed by a 

steady phase” (Starkel, 1999: 22). Although such a definition might not always work, for 

instance for a period of drought that then has a flow event that is smaller than some long-term 

mean, but is still important for sediment transfer. Hence using the term ‘running mean’ in 

Starkel’s definition may be more precise. 

 

Changes in sediment connectivity take place over different timescales depending on the nature 

of exchange and timescales of sediment storage (Brierley et al., 2006). Vegetation has the 

potential to decrease channel erosion and sediment transport by increasing channel roughness 

and bed resistance (Graf, 1979, 1983; Sandercock and Hooke, 2011). In-stream disconnectivity 

of sediment transfer has been likened to a “jerky conveyor belt” (Ferguson, 1981: 91). In the 

intervening periods between infrequent and high-magnitude events, higher frequency and 

smaller magnitude events will continue to liberate sediments from hillslopes or channel banks, 

but, the rate at which sediment will be generated will be in part biotically controlled, since the 
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stabilising effect of vegetation will continue to reduce the magnitude of sediment generation, 

until a particularly high structural threshold is breached (Figure 4). 

 

An alternative approach to address issues relating to spatial and temporal scales is to define the 

appropriate timescale according to the frequency-magnitude distribution of dominant processes 

operating at a given spatial scale, which, because of the aforementioned cross-scale 

dependencies in geomorphic processes will account implicitly for other relevant processes 

operating at higher frequencies.   

For extremes of the frequency-magnitude spectrum, infrequent, high magnitude events affect 

sediment connectivity in three ways (Figure 5): 

1. Energy input to the system causes sediment detachment and sediment transport, with 

the system becoming fully connected during the episodic event (Jain and Tandon, 2010), 

following which sediment connectivity returns to baseline levels. 

2. Energy input to the system causes sediment detachment, but inadequate energy for 

sediment transport causes a long-term reduction in sediment connectivity as detached 

sediment impedes transport pathways. 

3. The event removes landscape features such as floodplains, thereby allowing a much 

stronger subsequent connectivity between hilllslopes and channels. 

 

Spatial and temporal feedbacks between sediment-detachment and transport processes 

A fundamental limitation of the frequency-magnitude concept in geomorphology is that it 

focusses on processes as causes of forms, thus neglecting the role of landforms as controls of 

processes (Richards, 1999). However, the importance of two-way feedbacks between 

morphology and processes are well recognized in geomorphology (Richards, 1999; Turnbull et 

al., 2008, 2012; Mueller et al., 2013). These feedbacks – which affect erosional processes, the 

energy of transport vectors, sediment transport and morphology – have implications for 

sediment connectivity and thus catchment sediment yields. These feedbacks may be both 

positive and negative.  

Débris flows are one example of sediment connectivity where positive feedbacks over a 

relatively short (event) timescale occur. Large-scale experiments have shown that entrainment 

of material is accompanied by increased flow momentum and speed if large positive pore 

pressures develop in wet bed sediments, since this facilitates progressive scour of the bed and 
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reduces basal friction, thus initiating a positive feedback that results in an increase in the speed, 

mass and momentum of the debris flow (Iverson et al., 2010). Thus, under these conditions, 

sediment connectivity has a two-phase positive feedback: 1. a positive feedback associated with 

slope failure, and 2. a positive feedback associated with débris-flow propagation (Figure 6).  

Negative feedbacks between sediment detachment and sediment transport may also occur, 

potentially impeding sediment connectivity over both short and long timescales. Here, we draw 

upon two examples; landslide dams and alluvial fans. In the mountainous regions, rockslide-

dammed lakes may persist for over 10,000 years before infill or dam failure (Korup, 2002; Korup 

et al., 2006), at which point the potential for hydrological and sediment connectivity will resume. 

Similarly, the Ama Dablam Rock Avalanche created a landslide dam in Nepal Himalaya in 1979, 

which, when breached initiated a debris flow that aggraded the valley floor by 3 m (Korup, 

2003). Other examples include that of a lake created by the Costantino landslide in the middle 

reaches of the Buonamico basin in Italy, in 1973 (Ergenzinger, 1992) and the Bairaman 

landslide dam in Papua New Guinea (King et al., 1989). Thus, mass movements of sediment 

can break hydrological and sediment connectivity, for both long and short (several decades to 

millennia) durations, followed by a sudden spike in connectivity when a catastrophic threshold is 

reached. In some instances dams caused by landslides can relocate river channels through 

diversion or seepage, potentially forming high-energy breach channels (Korup et al, 2006), thus 

altering dramatically the characteristics of flow pathways which will in turn affect hydrologically 

driven sediment connectivity.  In the case of débris flows, small débris flows occur commonly 

when the hillsopes that are close to the angle of response (thus, a structural threshold) become 

saturated with water and fail (Iverson, 1997). Larger debris flows may result from multiple small 

slope failures that subsequently coalesce (Iverson, 1997). In the case of alluvial fans, aggrading 

alluvial fans may act as a buffer within the system, by trapping and storing coarse sediment, 

thus disconnecting the lowland drainage from major sources of sediment supply upslope of the 

alluvial fan (Harvey, 1996) and reducing sediment connectivity within the upland-lowland 

system. Increases in sediment storage and aggradation will continue to increase the capacity of 

the alluvial fan to reduce sediment connectivity in a negative feedback. If, on the other hand, 

alluvial fans become entrenched (for example due to base level change or climate), sediment 

connectivity may be re-established throughout the system, thus disrupting the negative 

feedback. Hence hydrological connectivity and sediment connectivity are different. What is 

important is how we deal with this difference: an approach is needed that harmonizes sediment 

and hydrological connectivity. 
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Mechanisms of sediment detachment and transport: implications for sediment flux 

Sediment flux is defined as the solid volume of sediment particles crossing a surface per unit 

time, per unit width. From a transport-distance perspective, sediment flux at a point is the 

integral of the detached material from upslope that moves at least the distance between the 

point of detachment and the point of measurement (Einstein, 1950; Wainwright et al., 2001; 

Parsons et al., 2004; Furbish et al., 2012). Sediment-detachment and sediment-transport 

mechanisms can be ordered along a spectrum depending on the degree of hydrological control. 

As sediment detachment changes from not being hydrologically to being hydrologically 

controlled, sediment detachment by water-driven processes increases, and similarly, as 

transport varies from being not hydrologically to hydrologically controlled, the travel distance will 

increase.  For example, detachment by raindrop impact is a relatively inefficient process.  Long 

et al. (2014) have estimated that only 2-4 % of raindrop-impact momentum is transferred to 

movement as splash.  As shallow, surface flows start to occur, the effects of rainfall and flow 

energy initially combine (Parsons et al., 1993), but then as the flow depth increases the energy 

reaching the bed from raindrop impact exponentially decreases (Torri et al., 1987) so by then, 

flow detachment dominates (Parsons et al,. 2004).  Because flow transport in turbulent flows is 

a far more efficient detachment and transport mechanism than detachment and transport by 

splash or by interrill flows (which fall typically in the laminar or transitional régimes), both 

detachment and transport distance (and thus flux) increase by one or more orders of magnitude 

once such flows are established (Hassan et al., 1992; Parsons et al, 2004;2008; Wainwright et 

al., 2001, 2008a). The end-members of the degree of hydrological control on sediment 

detachment and transport processes thus control a phase space in terms of detachment (D) and 

transport distance () which define the overall sediment flux (qs) as a series of isolines (Figure 

7).  

 

The four end-members of this phase space correspond to the following detachment and 

transport conditions: 

i. Sediment detachment and sediment transport are hydrologically controlled;  

ii. Sediment detachment is hydrologically controlled; sediment transport is not hydrologically 

controlled; 

iii. Sediment detachment is not hydrologically controlled; sediment transport is hydrologically 

controlled; 

iv. Neither sediment detachment nor sediment transport is hydrologically controlled. 
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Further detail and examples of these four end-members of the sediment detachment-transport 

phase space are as follows: 

 

i. Sediment detachment and sediment transport are hydrologically controlled 

Sediment detachment often occurs as a result of hydrological processes, for example 

detachment by rainsplash, or by hydrologically connected flow (Bryan 2000). Once there is a 

source of readily entrainable sediment, sediment connectivity depends on the spatial nature of 

connections between sediment source areas and the ability of runoff to transport the sediment. 

Once sediment is entrained it is transported by flow (overland or in-stream), with sediment-

transport distances inversely related to particle size (Parsons et al., 1993; Wainwright and 

Thornes, 1991; Hassan et al. 1992; Hubbell and Sayre, 1964).  Following the detachment of 

sediment, hydrologically connected flow provides a transport vector to connect areas of 

entrainable sediment (e.g. Hooke 2003; 2007). Thus, in this region of the phase space, 

hydrological connectivity provides a strong basis upon which to understand sediment-transport 

connectivity, in particular the transport of fine sediment which has longer sediment-transport 

distances (Parsons et al., 1998;2004;2008). This linkage is true at multiple scales and points in 

a catchment. For example Govers (1992) proposed that the sediment transport in rill flow could 

be predicted in terms of slope, discharge and material characteristics alone, without any further 

knowledge of rill geometry. For interrill areas, Malam Issa et al. (2006) found that at the field 

scale the soil particles detached by splash were notably coarser than those transported by 

wash, suggesting a transport-limited erosion process at the field scale. Experimental data have 

also shown that the soil-detachment rate decreases as the runoff depth increases, indicating 

that the detachment power of the raindrops is partially dispersed by the water layer (Torri et al., 

1987). Therefore in situations where the process of sediment detachment and sediment 

transport is driven by hydrological connectivity, sediment connectivity (including sources, 

pathway, sink and connections) is likely to be able to be identifiable from observations of runoff 

source areas and hydrologically connected flows. Modelling studies have demonstrated that the 

majority of sediment inputs occur from hydrologically connected areas close to the channel 

network during moderate sized rainstorms that occur relatively frequently (Reid et al., 2007).  

Thus, the spatial and temporal patterns of sediment connectivity change as a function of 

landscape and rainfall-runoff event characteristics (Medeiros et al., 2012).  

 

ii: Sediment detachment is hydrologically controlled; sediment transport is not 

hydrologically controlled 
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Under certain conditions sediment detachment may be hydrologically controlled, while sediment 

transport may be driven by other processes, such as mass movement or aeolian processes. For 

example, surface runoff or snowmelt may increase pore-water pressure/slope weight to initiate 

Coulomb slope failure. Intensive monitoring at a site in Oregon has revealed that hydrologically 

connected subsurface stormflow through a shallow bedrock zone can increase pore pressure, 

triggering landslides, in some instances, even in non-convergent topography (Montgomery et 

al., 2009). In this example, hydrological processes, via vertical and horizontal hydrological 

connectivity, are an important driver of sediment detachment (Duvert et al., 2011). The sediment 

detached during slope failure may then trigger débris flows (Iverson, 1997) which, in 

mountainous catchments, strongly control sediment-transfer patterns. Alternatively, detached 

sediment may be (selectively) transported by wind which is similarly not driven by hydrological 

connectivity. Thus, in this region of the phase space, hydrological processes can only help us to 

understand sediment detachment processes, not sediment transport, and thus, knowledge of 

both hydrological controls on sediment detachment and knowledge of non-hydrological controls 

on sediment transport is required to understand sediment connectivity.  

 

iii: Sediment detachment is not hydrologically controlled; sediment transport is 

hydrologically controlled 

In rapidly incising environments, mass movements are major agents of sediment transport. 

While mass movements may be driven by hydrologically connected flow (outlined previously) 

mass movements are not exclusively driven by hydrologically connected flow. Mass movements 

may be initiated as bedrock landslides (e.g. Berger et al., 2011) or by tectonic activity (Dramis 

and Sorriso-Valvo, 1994). Material deposited in channels may subsequently be transported by 

fluvial processes. Different linkages control sediment transfer in a catchment: lateral linkages 

which drive the supply of sediment to the river channel (slope-channel, channel-floodplain); 

longitudinal linkages which drive the transfer of sediment through a system which denotes the 

ability of a river to transfer or accumulate sediment; and vertical linkages that link surface-

subsurface interactions of water, sediment and nutrients (Brierley et al. 2006). Linkages can be 

connected or disconnected over different timescales (Harvey, 2002; Fryirs et al., 2007). Thus, in 

this third region of the phase space, the concept of hydrological connectivity does not help us to 

understand the source of sediment available to transport, but it can help determine the sources, 

pathway, sink and connections for sediment connectivity. 

 

iv: Neither sediment detachment nor sediment transport is hydrologically controlled 
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There are some terrestrial systems (particularly those with low precipitation) when hydrology 

has little or no influence on sediment detachment and transport processes, and thus, has 

minimal influence on sediment connectivity. An example of this situation is when an anthropic 

disturbance of the soil surface may create a source of readily entrainable sediment, or sediment 

detachment caused by landslides resulting from an increase in shear stress created by loading, 

earthquakes or undercutting of slopes. This detached material may then form a débris flow or 

may be transported by wind. Sediment entrainment and transfer may occur simultaneously by 

landscape instability in mountainous regions. Other examples of processes that fall within this 

scenario are sediment transport occurring on resistance substrates such as limestone 

(Lesschen et al., 2009), on biological soil crusts (Belnap, 2006) and on other stable surfaces 

(stone pavement: Wainwright et al., 1995). Thus, in this region of the phase space, the 

important non-hydrological mechanisms of sediment detachment and transport need to be 

identified and process rates need to be quantified in order to understand sediment connectivity. 

 

By identifying where on the sediment detachment-transport phase space a terrestrial system 

resides (which is likely to be spatially and temporally heterogeneous), important information can 

be harnessed on mechanisms that regulate sediment connectivity. This information can guide 

investigators on whether or not information on other processes can be used as a proxy for 

sediment connectivity (for example, when information on hydrological connectivity can be 

readily used to characterize sediment connectivity, or when information landslides that result in 

debris flows alone can be used to characterize sediment connectivity). This framework 

highlights that without intimate understanding of the terrestrial system in question, and the 

dominance of different detachment and transport mechanisms and their magnitudes and 

sequencing through space and time, it is challenging to ascertain on what basis sediment 

connectivity should be addressed.  

 

Clearly, there are conditions (both sediment detachment and transport are hydrologically 

controlled) when hydrological connectivity can be used as a proxy for sediment connectivity, but 

there remains the questionable assumption that flow of a certain discharge has a specific 

capacity to transport sediment (Wainwright et al., 2008a). Notably, increasing sediment 

concentrations will alter the nature of flow, producing hyperconcentrated flow and ultimately 

débris flows (Iverson, 1997; Wainwright et al., 2008a; see also Beverage and Culbertson, 1964). 

Therefore, variations in hydrological connectivity within a catchment will give rise to different 

sediment sources, sediment transport characteristics and size selectivity of transport processes, 
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thereby confounding the utility of hydrological connectivity as a conceptual basis for sediment 

connectivity.  A further confounding factor is that sediment detachment driven by hydrological 

connectivity is very different conceptually from sediment detachment driven by other 

mechanisms, such as earthquake-induced landslides. Sediment detachment arising from 

hydrological connectivity will have a higher frequency and lower magnitude than mass 

movement events which have a lower frequency but higher magnitude. For a generally 

applicable conceptual framework of sediment connectivity, the inclusion of geomorphic 

processes such as rockfalls, landslides and debris flows that deviate from existing 

conceptualizations of sediment connectivity that are based on non-mountainous catchments is 

essential, especially if approaches used to gauge sediment connectivity are to be broadly 

applicable to varied environmental regimes, and those encompassing upland geomorphic 

systems (Heckman and Schwanhard, 2013). The varying spatial and temporal scales over 

which the drivers of geomorphic processes operate (i.e. climatic or tectonic), and their resulting 

effects, have a correspondingly wide range of frequency-magnitude spectra (Preston and 

Schmidt, 2003). For example, processes that generate and transfer sediment in uplands and on 

hillslopes operate with markedly different frequency/magnitudes than in-channel processes 

(Brierley et al., 2006).  

 

As the hydrological control of processes increases, the net flux also increases, recognizing the 

different aspects of hydrological control of the sediment-transfer processes. From a 

Langrangian perspective, individual sediment particles may sit in a relatively small area of this 

phase space until either a cumulative series of small transfers or a single major transfer allows 

forces that promote transport to overcome thresholds controlled either by the process domain or 

by the location of boundaries in the landscape. In relation to different landscape components, 

the grouping of different particles within the phase space defines the overall effectiveness of 

sediment connectivity between different landscape elements. The boundaries between different 

groupings will also be fluid, as a function of the frequency and magnitude of transporting events. 

In this way, the concepts of hydrological connectivity, sediment connectivity, landscape position 

and event frequency and magnitude can all be interlinked in a way that provides a sound 

conceptual basis for the estimation of sediment-transport rates across different spatial and 

temporal scales. 
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Summary of sediment-connectivity framework 

This framework helps to identify relevant processes and variables for studying spatial and 

temporal dynamics of sediment detachment and transfer through geomorphic systems which 

together which together characterize sediment connectivity. It emphasizes the need to 

characterize the frequency-magnitude distributions of sediment detachment and transport 

processes and evaluate the extent to which they are temporally and spatially synchronized, 

identify critical feedbacks between detachment and transport within the system in question and 

investigate how these feedbacks evolve through space and time, and evaluate the where a 

system resides in the sediment detachment-transport phase space (Figure 7). Explicit 

consideration of these three elements of the sediment-connectivity framework is essential in any 

system in order to obtain a holistic understanding of sediment connectivity and mechanisms 

regulating the scaling of erosion rates. Without a framework such as this one, to organize 

relevant processes and effects of spatial and temporal heterogeneity in geomorphic systems 

identified in theories and empirical research, isolated knowledge acquired from isolated studies 

of diverse geomorphic processes operating in connected geomorphic systems is not likely to 

cumulate in a holistic understanding of how sediment detachment and transport processes yield 

spatially and temporally variable sediment connectivity.  

 

CONCLUSIONS 

 

In this paper we define sediment connectivity as the connected transfer of sediment from a 

source to a sink in a system via sediment detachment and sediment transport, which is 

controlled by how the sediment moves between all geomorphic zones: on hillslopes, between 

hillslopes and channels and within channels. Thus we perceive coupling and sediment 

connectivity to be different and encourage researchers to use the terms more accurately and 

precisely in their research. We argue that existing frameworks and experiments to determine 

sediment connectivity are not complete because they focus on disconnectivity and are 

dominated by the movement of sediment by water.  A significant gap in the existing approaches 

is that they have all been developed without consideration of the mechanisms of sediment 

detachment, transport mechanisms or transport capacity of processes.  

 

We propose a new framework for sediment connectivity which includes three key elements as 

follows: i) the frequency-magnitude distributions of sediment detachment and transport 

processes; ii) the spatial and temporal feedbacks between sediment-detachment and transport 
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processes; and iii) mechanisms of sediment detachment and transport. Of particular importance 

in this sediment connectivity framework are the characteristics of the relationships between 

these three key elements. Notably, these three elements have formed the basis of prior 

research in geomorphology, but this framework emphasizes the co-dependency (relationships 

and feedbacks) of each of the three elements. 

 

The end-members of the degree of hydrological control on sediment detachment and transport 

processes thus control a phase space in terms of detachment and transport distance, which 

defines the overall sediment flux. We presented four end-members of phase space of sediment 

connectivity which correspond to the following detachment and transport conditions: i) sediment 

detachment and sediment transport are hydrologically controlled; ii) sediment detachment is 

hydrologically controlled; sediment transport is not hydrologically controlled; iii) sediment 

detachment is not hydrologically controlled; sediment transport is hydrologically controlled; and 

iv) neither sediment detachment nor sediment transport is hydrologically controlled. 

 

Sediment entrainment and travel distance are demonstrated to map onto these end-members. 

Thus, the understanding of the changing dynamics of travel distance under a range of process 

domains, environmental conditions and over various timescales is likely to be the most fruitful 

route to produce robust approaches for upscaling estimates of erosion rates, and coupling our 

process understanding with the understanding of landform evolution. It would therefore seem 

imperative that novel field and modelling investigations are carried out to develop these ideas 

further, and provide the empirical basis for models that are robust across spatial and temporal 

scales appropriate to representing landscape evolution. 
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Figure 1: The conceptualization of connectivity applicable within catchment systems, adapted 

from Artza and Wainwright (2009).  
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Figure 1: The conceptualization of connectivity applicable within catchment systems, adapted 

from Artza and Wainwright (2009).  
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Figure 2. Sediment connectivity framework highlighting important linkages between three key 
elements: mechanisms of sediment detachment and transport, their frequency-magnitude 
distributions and their spatiotemporal variability and resulting spatial and temporal sequencing.   
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Figure 3. Conceptual figure showing the linkage between sediment accumulation and sediment 
connectivity, and the dependence of the latter on the sequence of previous events. Event (A) 
produces a significant amount of sediment connectivity because of the extensive sediment 
accumulation before its occurrence, but event (B), shortly afterwards is limited by the sediment 
supply.  Sediment connectivity is subsequently stronger when accumulation has again reached 
a suitable level, as in event (C). 
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Figure 4. Diagram showing the effect of a major, infrequent event followed by low magnitude, 
high frequency events, which tend to decrease in magnitude over time as vegetation stabilizes 
hillslopes and river banks, as well as removing water from sediment transport via transpiration.  
This pattern continues until another high magnitude event occurs, leading to some form of 
resetting of the system.   
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Figure 5. Conceptual examples of how infrequent, high-magnitude events affect sediment 
connectivity: (1) the system may experience a dramatic decrease in sediment connectivity when 
parts of the system become disconnected. For example, the formation of a landslide dam may 
disconnect uplands from lowlands, or channels may become dammed by coarse debris from 
tributaries thus disconnecting downstream from upstream reaches [e.g. Woolley, 1946]);  (2) the 
system may experience a pulse in sediment connectivity as sediment is mobilized and 
transported during high-energy events, after which sediment connectivity will return more or less 
to baseline conditions (depending on any structural modifications to the system); and (3) the 
system experiences much stronger subsequent connectivity for example as a result of the 
removal of a floodplain that previously disrupted hillslope-channel coupling.   
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Figure 6. Positive feedbacks producing sediment connectivity in débris flows over a relatively 
short (event) timescales. 
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Figure 7: Diagram showing how the degree of hydrological control on sediment detachment 
and transport processes can be combined into an integrated model for the scaling of sediment 
transport.  The numbers in the grey circles refer to the four end-members discussed in the text, 
and the grey dotted lines are isolines of sediment flux, defined as a function of detachment (D) 

and transport distance ().  This phase space in D and  describes the behaviour of individual 
particles, and by extension the behaviour of different landscape elements. Trajectories through 
this phase space will be controlled by the frequency and magnitude of different events as well 
as the form of the landscape and the presence of boundaries within it. 
 

 


