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ABSTRACT 

Sediment denitrification potential from two sites in the Elizabeth River 

estuary was studied over a nine-month period using the acetylene blockage 

method. Rates of microbial processes in this environment are of interest 

because of the high concentration of toxics present in some parts of the 

system. Highest rates were found in the highly polluted Southern Branch of 

the Elizabeth River with nitrate amended sediment ranging from 2-262 nmol 

N20/h per 20ml of sediment and exhibiting maximal rates during spring and 
fall. Rates in the Main Stem of the Elizabeth River were lower, with less 

than 1-85 nmol N20/h/20ml in nitrate amended sediment, and maxima in 

late fall. Unamended sediment from the Southern Branch denitrified in 

spring (2-131 nmol N20/h/20ml) and fall (1-124 nmol N20/h/20ml) only. 

Main Stem unamended sediment denitrified only minimally in the spring. 

Sediment denitrification potential was independent of temperature and 

dissolved oxygen in the water column. Comparison of phytoplankton abun

dance values and potential denitrification rates suggest that denitrification 

potential may be stimulated by phytoplankton bloom senescence. Com

parison to other published studies shows sediment denitrification potential 

in the ;Elizabeth River to be within the range of values reported for other 

environments. 

INTRODUCTION 

Denitrification may serve as a mechanism for removal of excess nitrate in 

eutrophic aquatic environments. Generally denitrification rates are seen to be 

nitrate limited (Gordon et al.1986; King and Nedwell, 1985; Oremland et al.1984), 

so that in a eutrophic environment denitrification would be expected to increase. 

However, the presence of toxics could inhibit microbial processes in the sediment, 

including denitrification. 

Pseudomonas andAlcaligenes species are considered the major contributors to 

denitrification in aquatic sediments. In addition, strains of Bacillus, Corynebac
terium, Micrococcus, Achromobacter, and Nitrosomonas denitrify, indicating a wide 

diversity in bacterial denitrifiers (Knowles, 1982; Payne, 1973). Since denitrifica

tion is carried out by many sediment bacteria, it may be viewed as an indicator of 

the status of the sediment microbial population. 

The Elizabeth River is an interesting environment for the study of microbial 

processes in a heavily industrialized region. Contamination from heavy metals and 

other toxic compounds such as polynuclear aromatics poses a serious problem to 

this estuary, and it is considered to be a system under stress (V.S.W.C.B. Gen. Inf. 
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Bull #557, 1984). The multitude of industries surrounding the river include 

shipbuilding, naval operations, waste treatment plants, coal facilities, chemical 

facilities, and power generating plants. The effects of such contamination and 
industrial activities on microbial processes in this system have not been assessed. 

In this study we determined denitrification potentials at two sites in the 

Elizabeth River over a nine-month time period using the acetylene blockage 

method. To our knowledge this is the first such study in the Elizabeth River estuary. 

In order to determine factors controlling sediment denitrification potential, rates 

were compared to temperature, and dissolved oxygen in the water column. In 

addition, denitrification potentials at one site were compared to phytoplankton 

abundance in the water column. 

METHODS 

Sites and Sampling 

Estuarine sediment was obtained from two sites in the Elizabeth River (Figure 

1). Sediment was collected using a Ponar Grab (Wildco Instruments) and placed 

in sterile glass jars for transportation back to the laboratory. Water depth was 

between 0.9-1.8 m. One site was in the upper reaches of the Elizabeth River 

Southern Branch, adjacent to a nitrate fertilizer plant. This was an organic rich 

sediment. In a previous study, water column nitrate at the site was measured at 6.1 

µM (Alden et al. 1988). Sediment from the second site was taken from the lower 

reaches of the Elizabeth River in the Main Stem, behind the docks of Norfolk 

International Terminal. The sediment from this site had patchy areas with relative

ly high sand content. Water column nitrate at this site was 0.5 µM (Alden et al. 
1988). 

In the laboratory, the sediment was homogenized and diluted with surface water 

samples ( 4:1, sediment:water, vol:vol) from each respective site. The slurry was 

then dispensed in 20 ml portions (graduated cylinder) into sterile 125 ml Erlen

meyer flasks which were then sealed with rubber stoppers and gassed with N2 for 

5 min to obtain anaerobic conditions. Duplicate flasks were prepared for each 

condition. Acetylene (Union Carbide) was added through the rubber stoppers. 

( which had wells cored out of the top 2/3 portion) by injection to the heads pace gas 

using a 20 ml syringe (Stylex) for a final concentration of 10% (Taylor, 1983). In 

the last two experiments acetylene was freshly generated in a separate flask by the 

reaction of calcium carbide and water and added as above. Nitrate additions in the 

form ofKN03 (10 mM solution) were made by injection into the slurry to obtain a 

100 µ M concentration in each flask. Sediments were incubated within 3 hours of 
collection in an incubator-shaker set at 100 rpm and U>°C. Incubation time 

(time= 0) began with the addition of potassium nitrate ( executed immediately after 

addition of acetylene) in nitrate amended flasks, or, in flasks with ambient nitrate 

concentrations immediately after addition of acetylene. 

For phytoplankton determination, two composite water samples of 15 liters 

each were taken above and below the pycnocline, using an intake hose and 
shipboard pump, at a mid-channel station in the Southern Branch, monthly from 
February through December 1989 (Figure 1). A 500 ml water sample was then 

taken from each composite sample and preserved with Lugols solution for 

phytoplankton analysis. A settling and siphoning procedure followed to obtain a 
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Chesapeake Bay 

Hampton Roads 

FIGURE 1. Location of sediment sampling sites for the denitrification assay, collection station for 

~lankton analysis, and major tributaries. 
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20 ml concentrate that was transferred to a settling chamber for examination with 

an inverted plankton microscope. The entire sample was scanned at 125x for counts 

of larger net species. A random field and minimum count basis was used at 315x 

for microplankton and 500x for nanoplankton to obtain an 85% accuracy estimate 

for these two categories. Mean values of replicate samples were used for the final 

counts. 

Temperature, Salinity, and Dissolved Oxygen Measurements 

Measurements of temperature, salinity, and dissolved oxygen (D .0.) were made 

at the sites before or following collection. Temperature and salinity readings were 

taken with a YSI S-C-T Meter (model 33) and D.O. readings using a YSI Oxygen 

Monitor (model 54A) fitted with a Clarke electrode. Both surface and bottom 

readings were taken for each measurement. Surface readings were taken with the 

probe immediately below the water surface and bottom readings with the probe 

directly above the bottom.· This was achieved by pulling the probe up 5-8 cm after 

contact with the bottom. Only bottom readings were analyzed. 

Denitrification Measurements and Calculations 

Nitrous oxide determinations were made using the acetylene blockage method 

(Dodds and Jones, 1987; Gordon et al. 1986; Jorgensen, 1986, King and Nedwell, 

1985). Corrections for N20 in solution were made by injecting a representative 

amount of N20 to the gas phase of a flask with deactivated sediment ( autoclaved 

and corrected for water loss) and monitoring the subsequent decrease in heads pace 

nitrous oxide. Headspace nitrous oxide concentrations were measured using a 

Varian 3600 gas chromatograph fitted with a 
63

Ni electron-capture detector. 

Samples of the gas phase (0.1 ml) were injected into a 1.84m Porapak Q column 

set at 60°C using a 0.5ml Glaspak syringe (Becton and Dickinson). Detector 

temperature was at 300°C and injector temperature at 250°C. The carrier gas (95% 
argon 5% methane) was set at a flow rate of 30 mVmin. A valve allowed for 

acetylene venting to prevent damage to the detector. 

Nitrous oxide concentration in the headspace gas was measured over time, and 

rates were calculated using linear regression analysis. Standards were prepared by 
dilution of 1 % N20 into flasks purged with N2. The smallest concentration was 

prepared by serial dilution in the same manner as above. Two experiments were 

carried out in which second nitrate additions or glucose (injected as solution) were 

made to sediments in which denitrification had slowed or stopped. 

RESULTS 

Southern Branch Station 

Temperature readings ranged from 11°-16°C in April and December to 32°C 

in late July. Dissolved oxygen levels were lowest in August (2.9 ppm) and highest 

in April and December (7.0, 8.9 ppm, respectively). Denitrification rates were 

independent of temperature (r = -0.22) and oxygen (r = 0.43) in the overlying 

water. Figure 2 shows a typical result of the denitrification assay. 

Potential rates exhibited maxima in spring and in autumn (Figure 3). Un

amended sediments denitrified in late spring (131 nmol N20/h per 20ml sediment) 

and early autumn (124 nmol N20/h/20ml), with lower rates than amended sedi

ments, except on Sept. 27 when ambient and amended sediments denitrified at 

approximately equal rates. The maxima for amended sediments, in nmol N20/h 
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FIGURE 2. Results of a typical denitrification assay (week 26) from (CIRCLE) the Southern Branch 

and (SQUARE) Main Stem nitrate amended sediment. KN03 (0.2 ml, 10 mM solution) was added to 

20 ml sediment. Results represent mean of duplicate flasks incubated at 26°C. 

per 20ml sediment, were 262 on May 24, 117 on Sept. 27, 107 on Oct. 11, and 159 

on Dec. 6. The rates ranged from 1-131 nmol N20/h/20ml in unamended sediment 

and 2-262 nmol N20/h/20ml in amended sediment. Sediments in which denitrifica

tion had slowed or stopped resumed denitrification following a second addition of 

nitrate. Sediments receiving glucose did not respond. 

The dominant contributor to phytoplankton biomass in this region was the 

diatoms (Bacillariophyceae). Data showing diatom abundance and denitrification 

potential are represented in Figure 4. 

Main Stem Station 
Temperature and D.O. readings for this site were similar to the Southern 

Branch station, though for two dates (6/14, 7/12) D.O. readings are not available 

due to equipment failure. Denitrification rates in Main Stem sediment do not 

correlate to water column temperature (r = -0.13) or D.O. (r = -0.08). 
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Rate (nmol/h/20ml) 
300--------------------------------------
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FIGURE 3. Variation in rates of nitrous oxide production during the study period starting with week 
1 (March 19) in the Southern Branch. Legend is as follows: (CIRCLE) flasks with ambient nitrate 

concentrations, (SQUARE) flasks with added nitrate. 

The overall potential rates for Main Stem sediment were lower than those for 
the Southern Branch. Only nitrate amended sediments denitrified (Figure 5), 
except on May 11 when unamended sediment produced N20 at a minimal rate. 

The sediment had a gradual increase in denitrification potential with the progres

sion of summer, then a relatively marked increase during autumn. The maxima for 
this site occurred in early fall (85 nmol N20/h per 20ml sediment on Sept. 27, 77 

nmol N20/h/20ml on Oct. 11) and early December (58 nmol N20/h/20ml on Dec. 

6). Potential rates (amended sediment only) ranged from less than 1-85 nmol 

N20/h/20ml. As in Southern Branch sediment, subsequent addition of glucose had 

no effect, whereas addition of nitrate caused the sediment to resume denitrification. 

The sediment did not denitrify on May 24, even with added nitrate. 
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FIGURE 4. Denitrification potential in Southern Branch sediment (line) and Bacillariophyceae 
numbers (bars), for (a) sediment with ambient nitrate levels, and (b) sediment with added nitrate. 

DISCUSSION 

Overall the rates for the Southern Branch were greater than those for the Main 

Stem, with much variability of potential denitrification rates during the study 

period. In contrast to Gordon et al. 1986, rates did not show the expected variability 

with respect to seasonal changes. This is consistent with the findings of other 

studies (Anderson, 1977; Caveri and Phelps, 19n). The rates did not increase with 

increasing water temperatures and decreasing levels of dissolved oxygen as ex

pected. The Southern Branch even exhibited high potential rates during low 

temperatures and high D.O. levels (May 24, Oct. 11, Dec. 6; D.O. and temperature 

data not shown). The maxima in spring and fall both occurred at intermediate levels 

(18-2.S°C, 5-6 ppm D.O.) Rates for both Southern Branch and Main Stem sedi

ment were usually nitrate limited, the exception occurring on Sept. 27 (Southern 

Branch), when amended and unamended sediments denitrified at nearly equal 

rates, indicating saturation of the system. 
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FIGURE 5. Variation in rates of nitrous oxide production in nitrate amended Main Stem sediment, 

starting with week 1 (March 19). Sediment with ambient nitrate levels denitrified only minimally in 

the spring (not shown). 

The rates from Southern Branch sediment were similar to those reported by 
Oremland et al. 1984 in San Francisco Bay sediment. In nitrate amended sediments 

the potential rates were 32-190 nmol N20/h/20ml (San Francisco Bay) and 2-262 
nmol N20/h/20ml (Southern Branch). For sediments with ambient nitrate con

centrations having undergone comparable treatments, the rates were 5-80 nmol 

N20/h/20ml (San Francisco Bay) and 1-131 nmol N20/h/20ml (Southern Branch). 

The potential rates from the study by Gordon et al. in Everglades peat sediment 

were comparable to the rates from Main Stem sediment ( nitrate amended) 

reported in this study. The rates were 12-60 nmol N20/h/20ml (Everglades peat) 

and 1-85 nmol N20/h/20ml (Main Stem). Rates reported for marl sediment in the 

Everglades, with rates ranging 36-396 nmol N20/h/20ml, surpassed those of the 

eutrophic Southern Branch (2-262 nmol N20/h/20ml). 

Gordon et al. ( 1986) reported increased denitrification rates when water levels 

receded and a periphyton mat came to rest on the sediment. This was suggested 
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to be due to input of organic material from the deposition of the cyanobacterial 

mat. We suspected therefore that the productivity of phytoplankton, which con

stitute the major autotrophic component of the Elizabeth River (O'Reilly and 

Marshall 1988), could influence the denitrification potential of the sediment. 

The spring and fall maxima of both amended and unamended sediments appear 

between peaks in phytoplankton abundance in the Southern Branch region (Figure 

4). A possible explanation for this effect is low availability of nitrate during bloom 

periods. Another possibility is that as the phytoplankton blooms recede and 

particulate organic matter is deposited on the sediment, N mineralization and 

nitrification in combination contribute to increasing sediment nitrate levels, thus 

increasing denitrification potential. 

Denitrification potential is also dependent on the activities of other nitrate

utilizing biochemical pathways. Studies have found that denitrification competes 

with nitrate ammonification ( dissimilatory reduction) and nitrate assimilation, 

which deplete nitrate levels (Jorgensen, 1986; Rher and Klemme 1989; Wyer and 

Hill, 1984). Studies on marine sediments indicate that nitrate ammonification is 
maximal in late summer when denitrifying processes are minimal (Jorgensen, 1986), 

and that equal reduction of nitrate to ammonium and nitrous oxide may occur (King 

and Nedwell, 1985). These competing pathways may have a small effect on 

denitrification potential with elevated nitrate levels, but they become significant 

competitors in nitrate limiting conditions. Low denitrification potentials observed 

during the summer in this study may therefore reflect successful competition for 

available nitrate by other nitrate utilizing pathways. 

In Main Stem sediment, the overall diminished rates ( compared to the Southern 

Branch) could be attributed to the generally lower nutrient content of the station 

and the higher flushing characteristics of this area. This site also displayed patchy 

areas of extremely sandy sediment, possibly explaining the absence of denitrifica

tion activity on May 24. 

In summary, Southern Branch spring and fall maxima in denitrification potential 

appear to correspond with the decline of phytoplankton blooms in the water 

column. These data suggest an interaction between denitrification potential at this 

site and phytoplankton production. Comparison of rates to other environments in 

the Everglades National Park and in San Francisco Bay indicates that sediment 

denitrification potential in this stressed water system is within the range of reported 

values for both polluted and pristine environments. Denitrification potential in the 

sediments is, therefore, maintained in the presence of toxics in the sediment. 

Further studies are needed in order to determine the effect of contamination in this 

estuary on other microbial processes and the general influence of phytoplankton 

productivity on sediment denitrification rates and potential in estuarine systems. 
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