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INTRODUCTION

Biogenic structures, such as tubes and burrows, are a
ubiquitous feature of aquatic environments. Tubes and
burrows are semi-permanent or permanent structures
that differ in size, appearance and composition accord-
ing to the feeding habits, mode of life, mobility, as well
as the size of infaunal species (Meadows 1991). Bur-
rows range in length from a few mm (meiofauna) to
several meters (large polychaetes and crustaceans).
They may have vertical or horizontal orientation, be
branched or straight, and have either simple or com-

plex structures (Griffis & Suchanek 1991, Ziebis et al.
1996, Dworschak 2001). 

The burrow environment is usually very distinct and
differs from other parts of the sediment (surface and
ambient anoxic sediment). Burrow walls are often rich in
organic matter of variable reactivity depending on its
origin, chemical composition, structure and age (Aller &
Aller 1986, Reichardt 1988, de Vaugelas & Buscail 1990).
The low diffusivity of burrow linings, when present,
reduces transport of solutes between the sediment and
the burrow lumen, while the usually intermittent pattern
of animal irrigation promotes very variable oxygen con-
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ditions in the burrows (Kristensen 1988, Ziebis et al.
1996, Furukawa 2001). The availability of labile organic
matter combined with steep chemical gradients and
narrow redox zonation has a significant impact on the
chemical and biological composition of the burrow
environment. Bacterial abundances have been shown to
be higher along burrow walls compared to either surface
or ambient sediment (Aller & Aller 1986, Branch &
Pringle 1987, Dworschak 2001). In addition, burrow walls
show increased heterotrophic activity by both aerobic
and anaerobic bacteria, resulting in increased rates 
of organic matter decomposition (Aller & Aller 1986,
Reichardt 1988, Gribsholt et al. 2003).

Thalassinidean ghost shrimps have been recognised
in recent years as one of the most effective bioturbating
groups of macrofaunal organisms, with significant im-
pacts on the benthic environment (Griffis & Suchanek
1991, Reise 2002). Pestarella tyrrhena is an important
bioturbator, commonly found in muddy and fine sandy
intertidal and shallow subtidal coastal sediments,
where it often creates dense monospecific populations.
It is a selective deposit feeder that constructs deep and
complex burrows, constantly digging new branches or
filling up existing ones (Dworschak 1987). P. tyrrhena
increases the organic matter content in the sediment
and benthic metabolism by incorporating organic de-
tritus, such as seagrass debris, in burrow chambers
(Dworschak 1987, 2001, Papaspyrou et al. 2004). In ad-
dition, it has been proposed that P. tyrrhena consoli-
dates the burrow walls with mucus (Dworschak 1983,
1998). However, detailed studies have not been made
on the effect of P. tyrrhena on the distribution and com-
position of organic matter associated with the burrow,
or its effects on the sediment microbial community.

The aims of this study were to investigate the abiotic
and biotic burrow environment of Pestarella tyrrhena
and to determine how sediment properties along
burrow walls differ from the surroundings. For this
purpose, we collected seasonal samples from burrow
walls, surface sediment and anoxic sediment, to deter-
mine particle size distribution, total organic carbon
(TOC) content and relative contributions of major
organic compounds (proteins, carbohydrates and
lipids), and phytopigments. In addition we studied the
bacterial communities in burrow walls and the sur-
rounding sediment by measuring bacterial abundance
and obtaining molecular fingerprints of the bacterial
community based on 16S rRNA gene sequences. 

MATERIALS AND METHODS

Study site. Sample collection was conducted in a
small (0.26 km2) intertidal-shallow subtidal sandflat
at Vravrona Bay, Aegean Sea, Greece (37° 56’ N,

24° 01’ E). The coast is lined by salt marshes and a sea-
sonal stream discharges near the head of the bay. The
tidal amplitude in the area ranges from 10 to 30 cm and
the largest part of the flat is exposed to the air during
spring low tides. The sediment in the sandflat consists
mainly of moderately sorted medium to fine sand with
a median particle size of 0.2 mm and organic matter
content of 2.2%. The macrophyte vegetation is charac-
terised by scattered occurrence of the seagrass
Cymodocea nodosa. Dead leaves of another seagrass,
Posidonia oceanica, are continuously transported into
the area from deeper waters. Mean salinity in the area
ranges from 20 to 39‰ during the year and water
temperature from 11 to 29°C.

Pestarella tyrrhena is the most abundant large bio-
turbator in the intertidal and shallow subtidal area and
shows a mean yearly population density of 63 ± 9 ind.
m–2, and a maximum of 144 ind. m–2 (Thessalou-Legaki
1987). It occurs in the middle part of the sandflat,
avoiding both the wave-exposed seaward front and
the muddier inshore salt marsh fringe that is charac-
terised by large salinity variations (Thessalou-Legaki
1987). The diversity and abundance of other benthic
macrofauna are generally low (A. Nicolaidou &
M. Thessalou-Legaki unpubl. data).

Sediment sampling. Sediment samples were col-
lected at low tide in November 2001, and January, April
and August 2002. Samples were collected from 3 differ-
ent compartments associated with Pestarella tyrrhena
burrows using a stainless steel spatula: burrow walls,
anoxic subsurface sediment adjacent to the burrows
(referred to as ‘ambient’) and the sediment surface.
Undisturbed surface sediment was retrieved to a depth
of 1 to 2 mm. Burrow wall and ambient sediment were
sampled from 5 to 20 cm below the surface after expos-
ing burrows by digging. The burrow wall, defined as
the layer with a clearly visible difference in colour and
texture from adjacent sediment, corresponding to a
radial distance of 1 to 2 mm, was recovered first. Sub-
sequently, the surrounding ambient sediment was
collected at the same depth, but away from the burrow.
Sediment material was collected from at least 5 differ-
ent burrows, pooled together and analysed in triplicate,
with the exception of bacterial abundance and parti-
culate iron pool analyses which were performed on
samples from individual burrows (see later).

Samples for determination of the sediment physico-
chemical characteristics were stored in acid-washed
Eppendorf tubes (10% HCl overnight, rinsed with
Milli-Q water) and kept on ice until return to the labo-
ratory, where they were immediately frozen at –80°C
and subsequently freeze-dried. Samples for bacterial
DNA extraction were collected in sterile Eppendorf
tubes using a sterile stainless-steel spatula, kept on ice
and stored at –80°C until analysis.
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Samples for determination of bacterial abundance
were taken in January and August 2002. Approximately
300 mg sediment from a single burrow was transferred
to a pre-weighed sterile Eppendorf tube containing 1 ml
filtered (0.2 µm filter) 2% glutaraldehyde in seawater
and stored at 4°C until analysis. Sediment samples for
measurement of particulate iron pools were taken from
sediment cores collected in January 2002 using 8 cm
(internal diameter) plexiglas tubes. The cores were kept
in a water tank with oxygenated water at in situ tem-
perature and transported to the laboratory. Cores were
split in 2 to expose individual burrows and samples
were collected as described earlier.

Granulometry. Grain size analysis of sediment was
carried out according to Buchanan (1984). Sediment
subsamples were also examined for wet density
(weight of a known volume) and water content (weight
loss after drying at 105°C for 6 h).

Organic content. Sediment organic matter (loss-on-
ignition; LOI) was determined as the weight loss after
combustion of dried sediment at 520°C for 6 h. TOC
was measured by the wet oxidation technique (Nelson
& Sommers 1975). Particulate organic nitrogen (PON)
content was analysed using a Carlo Erba EA1108 CHN
Elemental Analyser according to Kristensen & Ander-
sen (1987).

Biopolymers. Protein content (PRT) was determined
according to Rice (1982) and expressed as bovine
serum albumin equivalents. Carbohydrates (CHO)
were measured according to Gerchakov & Hatcher
(1972) and expressed as glucose equivalents. Total
lipid content (LPD) was determined after extraction by
direct elution with chloroform-methanol (Bligh & Dyer
1959, Marsh & Weinstein, 1966) and reported as tri-
palmitine equivalents. Proteins, carbohydrates and
lipids were converted to carbon equivalents using con-
version factors of 0.49, 0.40, 0.75 g C g–1 respectively,
based on the corresponding standard compounds used
(Pusceddu et al. 1999). The biopolymeric fraction (BPL)
was defined as the sum of carbohydrate, protein and
lipid carbon. Combusted sediment (520°C, 6 h) from
each sediment type was used as blank samples. 

Microphytobenthos. Chlorophyll a (chl a) and phaeo-
pigments (phaeo) were determined by the acetone
extraction method (Parsons et al. 1984). Five ml of 90%
acetone were added to about 0.5 g of sediment and left
overnight at 5°C. After shaking and centrifugation the
concentration was determined spectrophotometrically
at 665 and 750 nm before and after addition of one
drop of 10% HCl (Parsons et al. 1984). Chloroplastic
pigment equivalents (CPE) were calculated as the sum
of chl a and phaeo concentrations. In order to estimate
the microphytobenthic carbon, chl a concentrations
were converted to carbon content using a conversion
factor of 40 (De Jonge 1980).

Particulate iron. Samples for particulate iron analy-
sis were analysed according to the colorimetric method
of Lovley & Phillips (1987). Briefly, 300 mg of sediment
was immediately transferred after collection to 5 ml of
0.5 M HCl and extracted for 30 min. Subsamples of
the extractant were added to Ferrozine for Fe(II) deter-
mination. Total reactive Fe was determined after
reduction of Fe(III) by hydroxylamine hydrochloride to
Fe(II) in a parallel sample and analysed with Ferrozine.
Reactive Fe(III) was defined as the difference between
total Fe and Fe(II) (Kostka & Luther 1994).

Bacterial counts. Total bacterial abundance was esti-
mated by the DAPI (4’6-diamidino-2-phenylindole)
counting method (Porter & Feig 1980) as adapted by
Andresen & Kristensen (2002).

Statistical analysis. Differences between sediment
types were tested by the non-parametric Kruskal-
Wallis test. In the case where analyses were performed
on pooled samples seasonal data were used as repli-
cates. Bacterial abundance was also tested for seasonal
differences. Spearman-rank correlation analysis was
performed to test for possible relationships between
investigated variables. 

DNA extraction. Sediment samples for DNA extrac-
tion were thawed and mixed thoroughly before extrac-
tion using enzymatic treatment and phenol extraction
method (Ausubel et al. 1995). Approximately 300 mg of
material were suspended in 180 µl of lysis buffer
(20 mM Tris, 2 mM EDTA, 1.2% Triton, pH 8.0 with
HCl) and vortexed for 2 min. Lysozyme was added at a
final concentration of 0.4 µg µl–1 and the suspension
was incubated at 37°C for 30 min. After the addition of
15 µl of Proteinase K solution and 200 µl AL-buffer
(Qiagen DNA Stool Kit), tubes were incubated at 65°C
for 30 min. DNA was purified by phase-separation with
a buffered solution (pH 7.9) of phenol:chloroform:
isoamylalcohol (25:24:1). After precipitation with ice-
cold isopropanol overnight at –20°C, the DNA was
washed in cold 70% ethanol, dried, redissolved in 30 µl
of Milli-Q water and stored at –80°C. Four replicate
tubes were used per sediment type and the extracted
DNA was then pooled. 

DNA was further purified using a Sepharose 4B col-
umn (Miller 2001). Briefly, Sepharose 4B was packed
by gravity in a 2.5 ml syringe to a final volume of 2 ml.
The column was equilibrated with 4 volumes of high
salt TE buffer (100 mM NaCl, 10 mM Tris, 1 mM EDTA;
pH 8.0 with HCl). Crude DNA extract were added to
the column followed by several additions of 0.2 ml high
salt TE buffer. The eluate was collected in 0.2 ml frac-
tions. The fractions giving PCR products were pooled
and frozen at –80°C.

PCR reaction. Each PCR reaction was performed in a
total volume of 20 µl. Reaction mixtures contained final
concentrations of 1 × PCR buffer (Amersham Pharma-
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cia Biotech); BSA 0.5 µg µl–1; deoxynucleoside tri-
phosphate solution (200 µM each); universal bacterial
primers; GC-341f (5’ CGC CCG CCG CGC CCC GCG
CCC GGC CCG CCG CCC CCG CCC CCC TAC
GGG AGG CAG CAG 3’) (Muyzer et al. 1993, Over-
mann & Tuschak 1997) and 907r (5’ CCG TCA ATT
CMT TTG AGT TT 3’) (Muyzer et al. 1993) [M=A/C]
(1 pmol µl–1 each); and 1 U of Taq DNA polymerase
(Amersham Pharmacia Biotech). DNA templates were
prepared by dilution of the purified DNA extracts by
1:100 in Milli-Q water. PCR was performed using the
touchdown PCR program of Schäfer & Muyzer (2001). 

DGGE analysis. PCR products were loaded directly
onto the DGGE (Denaturing Gradient Gel Elec-
trophoresis) gel. Gels were run at 200 V for 5 h in 1 ×
TAE with a 35 to 70% denaturating gradient of
formamide and urea, using the DCode Universal
Mutation detection System (Bio Rad). DNA bands were
visualised with ethidium bromide.

The band patterns on the gels were analysed using
specially written software. The individual lanes of the
DGGE gels were digitised and the background sub-
tracted using the ‘rolling disk’ algorithm (Sternberg
1983). The major peaks were identified manually and a
difference matrix was produced using the Dice algo-
rithm. Clustering was performed using UPGMA (un-
weighted pair group means with arithmetic averages). 

RESULTS

Sediment characteristics

Burrow walls had a smooth texture due to tightly
compacted muddy sediment and showed a red-
brownish colour. Seagrass debris was seen incorpo-
rated into the burrow wall. Surface sediment, on the
other hand, was light brown while the ambient sedi-
ment was in most cases dark grey to black.

Burrow walls had a lower density than surface and
ambient sediment, the latter 2 showing similar values
(Table 1). In all cases the sediment was characterised
as fine sand, showing, however, a lower median grain-

size diameter in the burrow wall (p < 0.05). In addition,
burrow wall sediment was poorly sorted, having a sig-
nificantly higher silt and clay fraction (19%), compared
to surface and ambient sediment (1%) (p < 0.05), which
both showed medium sorting. 

Yearly mean values of organic content (LOI) in the
burrow wall were 3.8 to 4.1 times higher than surface
and ambient sediment (p < 0.05) (Table 1). TOC showed
the same pattern as LOI. Yearly mean burrow wall
TOC was approx. 6 times higher (18.4 mg g–1), than
that of surface sediment or ambient sediment (3.11 mg
g–1 and 3.51 mg g–1 respectively) (p < 0.05) (Fig. 1).
TOC showed a significant correlation with all bio-
polymeric compounds and number of bacteria but not
with phytopigments (Table 2). The C:N ratio of the bur-
row wall was intermediate to those of surface and
ambient sediment (Table 1).

Microphytobenthic biomass

Chl a content showed a higher yearly mean value in
the burrow wall (3.70 µg g–1) than surface sediment
(2.70 µg g–1) or ambient sediment (0.60 µg g–1),
although this was statistically significant only with the

latter (p < 0.05) due to the large sea-
sonal variations observed. Chl a was
higher in surface sediment than in
burrow walls in August and lower in
January and April, while the 2 sites
were similar in the previous November
(Fig. 2). Mean phaeo content were
highest in the burrow wall (8.10 µg g–1)
(p < 0.05), while much lower values
were observed for surface and ambient
sediment (0.85 and 0.60 µg g–1 respec-
tively). 

184

Table 1. Sediment characteristics for surface sediment, burrow wall and ambient
sediment from burrows of Pestarella tyrrhena. Md = median grain size diameter,
LOI = organic content as loss-on-ignition, C:N = particulate organic carbon to
particulate organic nitrogen ratio. Values reported are yearly means ± SE (n = 4)

Sediment Wet density Md Silt & clay Sorting LOI C:N
(g cm–3) (µm) (%) (%) (mol:mol)

Surface 1.84 ± 0.01 171 ± 2 0.8 ± 0.3 Medium 1.7 ± 0.2 20 ± 2
Burrow wall 1.44 ± 0.08 147 ± 4 19.2 ± 0.50 Poor 6.3 ± 1.0 25 ± 2
Ambient 1.84 ± 0.02 173 ± 4 1.2 ± 0.1 Medium 1.6 ± 0.1 30 ± 4

Fig. 1. Seasonal variation in total organic carbon content
(mg [g dw]–1) of surface sediment, burrow wall, and ambient
sediment associated with burrows of Pestarella tyrrhena
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The highest yearly mean ratio of chl a to CPE, indicat-
ing fresher material, was found for surface sediment
(64%), with a maximum in August (87%) (Fig. 2). Bur-
row walls, on the other hand, showed the lowest ratios
(33%), while ambient sediment was intermediate. Over-
all, microphytobenthic carbon accounted for only a small
fraction of TOC in all sediment types. Surface
sediment had the highest yearly mean contribution

(3.6%), showing a maximum of 7.9% in
August 2002, while burrow wall and
ambient sediment had a mean of 0.7 to
0.8% (Fig. 3).

Biochemical composition of organic
matter

The 3 sediment types always had sig-
nificant differences in protein, carbo-
hydrate, and lipid content, with yearly
mean being highest at the burrow wall
(p < 0.05) (Fig. 4). Sediment protein con-
tent in the burrow wall was 4.2 and

6.5 times higher than ambient sediment and surface sed-
iment respectively, while for carbohydrates a 11-fold in-
crease was observed at the burrow wall compared to the
2 other sediment types. Burrow wall lipid content was 4.0
and 4.9 times higher than surface and ambient sediment
respectively. The contribution of the various biopolymers
to TOC was different in the 3 sediment types. Carbohy-
drates were the most abundant type in the burrows
(25%), followed by proteins (19%) and lipids (3%), while
proteins were most important both in the surface (18%)
and the ambient (25%), whereas lipids made only a
small contribution (Fig. 3). Thus, the total identified frac-
tion (PRT+ CHO+LPD) of TOC was highest in the bur-
row wall (47%), followed by ambient sediment (40%)
and lowest for surface sediment (36%) (Fig. 3).

Particulate iron

The total extracted particulate iron pool showed
2-fold and 3-fold higher concentration in the burrow

185

Table 2. Spearman-rank correlation analysis among variables analysed. TOC =
total organic carbon, PRT = protein, CHO = carbohydrate, LPD = lipid, Chl a =
chlorophyll a, Phaeo = phaeopigments. Number of observations: n = 12 with
the exception of bacteria where n = 6. Significant values reported as: *p < 0.05, 

**p < 0.01

TOC PRT CHO LPD Chl a Phaeo Bacteria

TOC –
PRT 0.699* –
CHO 0.762** 0.755** –
LPD 0.678* 0.545 0.895** –
Chl a 0.398 0.237 0.594* 0.727** –
Phaeo 0.524 0.615* 0.846** 0.902** 0.790** –
Bacteria 0.828* 0.942** 0.942** 0.657 0.314 0.600 –

Fig. 2. (a) Seasonal variation in chlorophyll a content
(µg [g dw]–1) and (b) chlorophyll a to total chloroplastic pig-
ments (CPE) (%) of surface sediment, burrow wall, and ambi-
ent sediment associated with burrows of Pestarella tyrrhena

Fig. 3. Yearly mean relative contribution (%) of proteins (PRT),
carbohydrates (CHO), lipids (LPD) and microphytobenthic
chlorophyll a (MPB) carbon to total organic carbon (TOC) of
surface sediment, burrow wall, and ambient sediment asso-
ciated with burrows of Pestarella tyrrhena (mean + SE, n = 4)
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wall compared to the ambient and surface sediment
respectively (p < 0.05) (Fig. 5). Fe(III) constituted 62%
of the total iron pool in the burrows, 33% in the surface
sediment, while only small amounts of Fe(III) were
found in the ambient sediment (5%). 

Bacterial abundance

Mean bacterial abundances based on DAPI counts
were 1 order of magnitude higher in the burrow wall
(4.0 × 109 cells cm–3) than in both surface (4.5 × 108 cells
cm–3) and ambient sediment (4.8 × 108 cells cm–3) (p <
0.01) (Fig. 6). Bacterial abundance was affected by the
season, being higher in summer than in winter; how-
ever, this was statistically confirmed only for surface
and burrow wall sediment (p < 0.05).

Bacterial diversity

Visual inspection of DGGE profiles showed marked
changes in the number and position of the bands,
suggesting seasonal changes and effects of location
(Fig. 7). Cluster analysis of the band patterns showed 2
distinct groupings; the anoxic ambient sediment sam-
ples showing the highest similarity (65%) and the bur-
row wall sediment samples grouped together with a
similarity of 45%. These 2 groups joined together at a
similarity of 30%. Surface sediment samples were
more variable, suggesting significant bacterial com-
munity changes during the course of the year at the
sediment-water(air) interface.

DISCUSSION

Burrow wall characteristics

Pestarella tyrrhena burrows  in Vravrona Bay are
plastered with a smooth red/brown layer, consisting of
compacted sediment with a much finer grain composi-
tion than ambient sediment, as has been reported pre-
viously from other thalassinidean burrows (Dobbs &
Guckert 1988, de Vaugelas & Buscail 1990, Over 1990).
This suggests that P. tyrrhena is capable of sorting sedi-
ment grains; selected fine particles are incorporated
into the burrow wall to stabilise the structure, resulting
in a lower grain- size homogeneity along burrow walls.
Even though particle size selectivity by P. tyrrhena has
not been studied extensively, such a mechanism during
feeding is known for other thalassinidean shrimps with
a similar mode of life (Pinn et al. 1998, Stamhuis et al.
1998). Fine particles may also be transported from the
overlying water into the burrow during irrigation,
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Fig. 4. Yearly mean protein (PRT), carbohydrate (CHO) and
lipid (LPD) content (mg [g dw]–1) of surface sediment, burrow
wall, and ambient sediment associated with burrows of 

Pestarella tyrrhena (mean + SE, n = 4)

Fig. 5. Particulate Fe pools in surface sediment, burrow wall,
and ambient sediment associated with burrows of Pestarella 

tyrrhena in January 2002 (mean + SE, n = 3 to 4)

Fig. 6. Bacterial abundance in surface sediment, burrow wall,
and ambient sediment associated with burrows of Pestarella 

tyrrhena (mean + SE, n = 3)
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where they stick to the burrow wall (Dobbs & Guckert
1988, Kristensen 1988). 

A number of previous investigations have not detected
any difference between organic matter in burrow walls
of thalassinidean shrimps and surrounding sediment
(Dworschak 1983, Bird et al. 2000) while others, in accor-
dance with our results, have found significant enrich-
ments (de Vaugelas & Buscail 1990, Dworschak 2001).
Based on Pestarella tyrrhena burrow dimensions deter-
mined from in situ studies (Panaritou 1995, Dworschak
2001, P. C. Dworschak pers. comm.) and our TOC mea-
surements, and assuming an equal distribution of or-
ganic carbon along the burrow walls (1 mm thickness),
we estimate that for the mean population density at
Vravrona Bay (63 ind. m–2; Thessalou-Legaki 1987) be-
tween 2 and 10% of the total sedimentary TOC in a
given area (depending on burrow length) is located
along the burrow walls.

Higher concentrations of trace metals along burrow
walls, such as we observed here for iron, have been
reported previously (Aller et al. 1983, Aller & Aller
1986, Over 1990, Gribsholt et al. 2003). This increase
may be attributed to a higher proportion of clay parti-
cles, allowing for sorption of iron oxides and/or organ-
ics (Aller & Aller 1986, Over 1990). In addition, the
elevated iron concentration may result from Fe(II) dif-

fusing horizontally from ambient anoxic sediment and
subsequent precipitation in the oxic zone of the burrow
wall (Aller & Aller 1986, Over 1990). 

Sources of burrow wall organic matter

Organic matter derived from microalgae (i.e. phyto-
plankton and microphytobenthos) may constitute the
main food source for deposit feeders in coastal envi-
ronments (MacIntyre et al. 1996). The content of chl a
in the burrows of Pestarella tyrrhena was similar to or
slightly higher than that in surface sediment, as previ-
ously reported for other burrowing shrimps (Dobbs &
Guckert 1988, Kinoshita et al. 2003). One source of
chl a in the burrows could be phytoplankton from the
overlying water or resuspended microphytobenthic
biomass translocated into the burrows by irrigation.
Assuming an irrigation rate estimate of 5.8 l d–1 ind.–1

(Papaspyrou et al. 2004), a mean annual water column
chl a concentration of 4.8 µg l–1 at Vravrona Bay (S.
Papaspyrou et al. unpubl. data) and ignoring degrada-
tion, a maximum of 53% of the chl a in the burrow wall
could be attributed to daily transport of microalgae
from the overlying water if all chl a is retained during
water passage. Another source of chl a in the burrows
could be microphytobenthos buried into the sediment
due to sediment reworking, which constantly buries
and re-exposes diatoms at the surface. A high ben-
thic microalgal biomass (mainly diatoms) has been ob-
served in the presence of bioturbating infauna even at
a depth of 25 cm (Branch & Pringle 1987, Andresen &
Kristensen 2002, Katrak & Bird 2003). However, the
overall low contribution (Fig. 4) and the non-significant
relationship of autotrophic carbon to TOC (Table 2) for
the sediment of Vravrona Bay, indicates that the domi-
nant organic matter sources are other than microalgae. 

Infaunal mucous secretions have been suggested as
a source of organic enrichment of burrow walls (Aller
et al. 1983, Kristensen et al. 1985). Dworschak (1983,
1998) suggested that Pestarella tyrrhena lines vertical
sections and roofs of the burrow with a mixture of fine-
grained material and secreted mucus. In general, the
presence or absence of a lining in thalassinidean
shrimp burrows is determined to a large extent by
the habitat and sediment characteristics (i.e. sediment
grain size). Thus, in sandy sediments, a mucus lining is
necessary to support the easily collapsing walls of the
burrow, whereas this is not usually the case in cohesive
muddy sediments (for a review see Dworschak 1983). 

Organic enrichment of the burrow wall may also be
the result of seagrass detritus accumulation along the
burrow wall. Posidonia oceanica detritus, transported
from adjacent subtidal areas, are abundant on the
intertidal flat of Vravrona Bay. The detritus drifts by
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Fig. 7. Clustering by unweighted pair group means with
arithmetic averages (UPGMA) of the band patterns obtained
by denaturant gradient gel electrophoresis (DGGE) analysis
of samples taken around Pestarella tyrrhena burrows. The
amount of amplified product obtained for surface sediment
from April 2002 was too small to detect the individual bands.
Major bands were identified manually from densitometric
traces (not shown). The band patterns shown are generated 

from the original traces after background subtraction



Aquat Microb Ecol 38: 181–190, 2005

wave and current action and occasionally, creates
large wrack beds on the shore. Drifting seagrass debris
is also trapped in the funnel-shaped burrow openings
and may fall passively into the galleries or become
buried at the surface under sediment ejected from
the mound opening (Dworschak 2001, Papaspyrou et
al. 2004). This material, together with older detritus
already deposited in the sediment and selected by the
shrimp, can be seen incorporated into the burrow wall
or in burrow chambers, where it is allowed to decom-
pose creating organic hot spots. 

Our values for biopolymeric compounds in the sedi-
ment, particularly in the burrow walls, were among the
highest reported in the literature (Pusceddu et al. 1999,
their Table 2). However, the generally low chl a to CPE
and protein to carbohydrate ratio (PRT:CHO = 0.6),
as well as the dominance of carbohydrates for the bur-
row wall of Pestarella tyrrhena at Vravrona Bay, are
characteristic of highly oligotrophic or detritic environ-
ments (Danovaro et al. 1994, Danovaro 1996, Pusceddu
et al. 1999) and indicate the presence of large amounts of
aged detritus of relatively low nutritional quality derived
from e.g. seagrasses. Dobbs & Guckert (1988) also found
a low chl a to CPE ratio in the burrow wall of Callianassa
trilobata, which was attributed to the incorporation of
vascular plant debris into the burrow lining. 

Only a small fraction of Posidonia oceanica detritus is
directly available to benthic consumers for consump-
tion, due to a low nitrogen content and a high content
of refractory compounds, such as structural carbo-
hydrates (Velimirov 1987, Danovaro 1996, Pusceddu et
al. 1999). The rapid deposition combined with the low
nutritional quality of incorporated detritus suggests
that the sediment, and the burrow environment in
particular, act as an organic matter sink (‘detrital trap’)
(de Vaugelas & Buscail 1990, Pusceddu et al. 1999,
Kinoshita et al. 2003) where the fraction of primary
production not directly available to the detritus food-
chain accumulates. It therefore appears that organic
nitrogen (i.e. protein) is the major limiting element for
deposit feeders (Tenore et al. 1984), and that they need
to employ other mechanisms to obtain the needed
nitrogen. Gardening of bacteria has been proposed as
a way to overcome this limitation. Many deposit feed-
ing thalassinidean shrimps, like Pestarella tyrrhena,
store seagrass detritus in burrow chambers and
burrow walls to decompose (Griffis & Suchanek 1991,
Ziebis et al. 1996, Dworschak 2001), most likely in
order to feed on the nitrogen-rich microorganisms
(bacteria and meiofauna) growing on this material.
These animals typically show ‘wall-grazing’ behav-
iour, where sediment is removed from the burrow wall,
sorted and part of it (including the microorganisms)
ingested, while the remaining is either ejected from the
burrow or incorporated again into the wall. 

Bacterial abundance and community characteristics

As for other thalassinidean shrimp burrows (Aller et
al. 1983, Branch & Pringle 1987, Kinoshita et al. 2003),
bacterial abundance within burrow walls of Pestarella
tyrrhena was significantly higher than at the sediment
surface and in adjacent ambient sediment. This is in
agreement with Dworschak (2001), who, in addition,
found an even higher abundance of bacteria in cham-
bers with seagrass debris inside P. tyrrhena burrows
than along burrow walls. These results are indicative
of a gardening activity. However, little is actually
known on what exactly is consumed and utilised for
the animal nutrition during ‘wall-grazing’ by tha-
lassinidean shrimps like P. tyrrhena (Griffis &
Suchanek 1991). In addition, the role of gardening and
the significance of bacteria as a food source for deposit
feeding organisms in general are still a matter for dis-
cussion, since bacteria usually represent only a small
fraction of the available organic carbon and nitrogen in
sediments (Cammen 1980, Danovaro et al. 1994,
Danovaro 1996, Andresen & Kristensen 2002). 

The observed differences in the composition and
quality of organic matter (i.e. food availability), as well
as chemical character between burrow walls and sur-
rounding sediment were expected to affect not only
the abundance but also the composition of the bacter-
ial communities. Previous studies based on phospho-
lipid fatty acid compositions have found no or only
limited differences in bacterial composition between
burrow wall and surrounding sediment for thalassi-
nidean shrimps (Dobbs & Guckert 1988, Bird et al.
2000). Our results based on more sensitive DGGE pro-
files, on the other hand, show a clear distinction be-
tween molecular fingerprints of bacterial communities
from the different parts of Pestarella tyrrhena burrows.
Burrow wall and ambient sediment samples always
form 2 separate groups, indicating that seasonal differ-
ences are less important than location in determining
the bacterial community composition. In contrast, there
were large and distinct seasonal changes in the com-
munity of surface sediment from Vravrona Bay, reflect-
ing large variations in environmental conditions at
the sediment-water(air) interface (S. Papaspyrou et al.
unpubl. data). Similarly, Lucas et al. (2003) reported
that the bacterial composition along the burrow walls
of Nereis diversicolor is stable over time and markedly
different from the community at the sediment surface.
Even though microorganisms along burrow walls have
to adapt to the rapidly oscillating redox environment
due to the usually intermittent burrow ventilation
(Kristensen 1988, Ziebis et al. 1996, Furukawa 2001),
our results confirm the idea that infaunal burrows, and
ambient sediment, are stable environments over long-
term periods compared to surface sediment, which is
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continually disturbed by macrofaunal feeding, and
current or wave mediated action (Kristensen 1988). In
addition, our results indicate that the bacterial commu-
nity along burrow walls resembles that of the ambient
anoxic sediment more than that of the sediment sur-
face. The same has been observated for burrows of
N. diversicolor and Nereis virens (S. Papaspyrou et
al. unpubl. data). This supports previous suggestions
based on physicochemical properties of burrows that
(1) burrow walls should not be considered a simple
extension of the oxic sediment surface and (2) burrow
wall community structure should be significantly dif-
ferent regarding both the microbial ecology and dis-
tribution of functional groups (Kristensen et al. 1985,
Kristensen 1988, Furukawa 2001). 

Infaunal burrows are dynamic systems with intense
small-scale gradients that support the growth of
complex microbial assemblages. The physicochemical
properties of the burrows, their age and the irrigation
pattern are amongst the factors that have been shown
to affect the composition of the bacterial community
along the burrow walls in artificial experimental sys-
tems (Marinelli et al. 2002). Further studies are needed
to clarify the mechanisms by which Pestarella tyrrhena
bioturbation affects the bacterial community composi-
tion, which bacterial functional groups are favoured by
the burrow environment, and the possible role of bac-
teria in the recycling of aged detritus and P. tyrrhena
nutrition.
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