Sediment Studies in the Assabet River, Central Massachusetts, 2003

By Marc J. Zimmerman and Jason R. Sorenson

Part 1 Sediment Distribution and Chemistry in Six Impoundments in the Assabet River, Central Massachusetts

Part 2 Phosphorus Dynamics in a Wastewater-Dominated Impoundment, Hudson, Massachusetts

In cooperation with the Massachusetts Department of Environmental Protection and the U.S. Environmental Protection Agency

Scientific Investigations Report 2005-5131

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

U.S. Geological Survey, Reston, Virginia: 2005

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Zimmerman, M.J., and Sorenson, J.R., 2005, Sediment studies in the Assabet River, central Massachusetts, 2003: U.S. Geological Survey Scientific Investigations Report 2005-5131, 87 p.

Contents

Abstract	1
The Assabet River and its Sediments	2
Part 1. Sediment Distribution and Chemistry in Six Impoundments in the Assabet	
River, Central Massachusetts	
Study Design	5
Mapping of Bathymetry and Sediment Thickness	5
Selection of Sediment-Sampling Sites	5
Collection of Sediment Cores	5
Sample Preparation	7
Analytical Methods	7
Quality Assurance and Quality Control	12
Sediment Thickness and Bathymetric Maps	13
Sediment Chemistry of the Assabet River Impoundments	21
Elemental Analyses	21
Phosphorus	21
Toxic Trace Elements	27
Reactive Sulfide	28
Organic Analyses	28
Volatile Organic Compounds and Organochlorine Pesticides	29
Polycyclic Aromatic Hydrocarbons	29
Polychlorinated Biphenyls	29
Extractable Petroleum Hydrocarbons	34
Potential for Adverse Biological Effects	34
Sediment Distribution and Chemistry—Possible Implications for Sediment	
Management	39
Part 2. Phosphorus Dynamics in a Wastewater-Dominated Impoundment,	
Hudson, Massachusetts	
Introduction	
Site Selection and Sample Collection	
Reconnaissance and Site Selection	
Field Measurements and Collection of Phosphorus and Chloride Samples	
Quality Control	
Field Study of Phosphorus Dynamics	
Site-Specific Profiles	
Changes in Phosphorus Storage	
Mass Balance (Chloride:Total Phosphorus)	
Phosphorus Dynamics in the Hudson Impoundment	
Summary	
Acknowledgments	
References	51

Figures

1.	Ma	p showing the Assabet River Basin in central Massachusetts	3
2–8.	Pho	otographs showing:	
	2.	A probe being used to collect data for a map of sediment thickness and extent	t6
	3.	A piston corer being prepared for collection of a sediment core	6
	4.	A Teflon piston being used to extrude core into a polycarbonate tube	7
	5.	An extruded core	8
	6.	A sample being collected for volatile organic compound analysis	8
	7.	A sample being collected for polychlorinated biphenyl and pesticide analyses	9
	8.	A sample being prepared for metal analysis	9
9–14.	Ма	ps showing:	
	9.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Aluminum City impoundment in Northborough, 2003	14
	10.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Allen Street impoundment in Northborough, 2003	15
	11.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Route 85 impoundment in Hudson, 2003	16
	12.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Gleasondale impoundment in Stow, 2003	17
	13.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Ben Smith impoundment in Maynard, 2003	19
	14.	Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Powdermill impoundment in Maynard and Acton, 2003	20
15, 16.	Gra	aphs showing:	
ŗ	15.	Total polycyclic aromatic hydrocarbon concentrations in core samples from six impoundments in the Assabet River, 2003	30
	16.	Concentrations of selected polychlorinated biphenyl Aroclors detected in core samples from six impoundments in the Assabet River, 2003	
17.	Ma	p showing Hudson impoundment with sampling sites for phosphorus-	
		ease dynamics study, July to September 2003	43
18.		otograph showing platform attached to pushpoint sampler in preparation	-
		pore-water sampling	44

19.	Chart showing A, Total and orthophosphorus and dissolved oxygen water-
	column profiles at five stations in the Hudson impoundment, July to
	September 2003. Depth is given as vertical distance from sediment surface to
	water surface. B, Rainfall and changes in estimated total phosphorus storage
	in the Hudson impoundment, July to September 200346

Tables

1.	Identifiers and depths for samples collected in six impoundments in the Assabet River, Massachusetts	10
2.	Sediment-quality guidelines for freshwater organisms, human contact, and Massachusetts landfill reuse	22
3.	Concentrations of phosphorus, in percent, in bulk sediment samples from six impoundments in the Assabet River Basin, 2003	23
4.	Mean and median concentrations of trace metals in New England stream sediments	25
5.	Summary statistics of total bulk phosphorus concentrations in sediment samples from six impoundments in the Assabet River Basin, 2003	26
6.	Median and mean values for total polycyclic aromatic hydrocarbon concentrations detected in sediment samples from six impoundments in the Assabet River Basin, 2003	29
7.	Concentrations of polychlorinated biphenyl Aroclors in sediment samples from six impoundments in the Assabet River Basin, 2003	31
8.	Concentrations of extractable petroleum hydrocarbons in sediment samples from six impoundments in the the Assabet River Basin, 2003	35
9.	Incidence of toxicity, in percent, and mean MPP values calculated from Probable Effect Concentration quotients for sediment samples from the six impoundments in the Assabet River Basin, 2003	38
10.	Selected characteristics of six impoundments in the Assabet River Basin	40
11.	Mean and median total phosphorus and orthophosphorus concentrations, in milligrams per liter, of all samples in the water column or pore water at each sampling station in the Hudson impoundment, July to September 2003	44
12.	Estimated phosphorus storage in the Hudson, Massachusetts, impoundment sections, July to September 2003	48
13.	Ratios of chloride to total phosphorus at the inflow and outflow of the Hudson impoundment, July to September 2003	49
14.	Concentrations of selected metals in sediment samples from six impoundments in the Assabet River Basin, 2003	55
15.	Results of all elemental analyses performed by SGS Canada, Inc., Mineral Services, Toronto, Ontario, Canada, of sediment samples from six impoundments in the Assabet River Basin, 2003	60
16.	Concentrations of polycyclic aromatic hydrocarbons detected in sediment sampless from six impoundments in the Assabet River Basin, 2003	
17.	Water-quality data collected during study of phosphorus dynamics in the Hudson impoundment, 2003	82

Conversion Factors, Datums, Water-Quality Information and Abbreviations

Multiply	Ву	To obtain
centimeter (cm)	0.3937	inch (in.)
cubic meter (m ³)	35.31	cubic foot (ft ³)
cubic meter (m ³)	1.308	cubic yard (yd ³)
inch (in.)	2.54	centimeter (cm)
inch (in.) kilogram (kg)	25.4 2.2046	millimeter (mm) pound, avoirdupois (lb)
kilometer (km)	0.6214	mile (mi)
liter (L)	61.02	cubic inch (in ³)
meter (m)	3.281	foot (ft)
meter (m)	1.094	yard (yd)
microgram (µg)	3.53 x 10 ⁻⁸	ounce, avoirdupois (oz)
milligram (mg)	3.53 x 10 ⁻⁵	ounce, avoirdupois (oz)
milliliter (mL)	0.06102	cubic inch (in ³)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

```
°F=(1.8×°C)+32
```

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25°C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (μ g/L).

As	arsenic	PCB	polychlorinated biphenyl
Cd	cadmium	PEC	probable effect concentration
Cr	chromium	PEL	probable effect level
Cu	copper	PVC	polyvinyl chloride
DO	dissolved oxygen	RL	reporting level
EPH	extractable petroleum hydrocarbon	TEL	threshold effect level
GC	gas chromatography	TIN	triangular irregular network
GIS	geographic information system	TMDL	total maximum daily load
MS	mass spectrometry	TPH	total petroleum hydrocarbon
Ni	nickel	USEPA	U.S. Environmental Protection Agency
PAH	polycyclic aromatic hydrocarbon	VOC	volatile organic compound
Pb	lead	Zn	zinc

Sediment Studies in the Assabet River, Central Massachusetts, 2003

By Marc J. Zimmerman and Jason R. Sorenson

Abstract

From its headwaters in Westborough, Massachusetts, to its confluence with the Sudbury River, the 53-kilometer-long Assabet River passes through a series of small towns and mixed land-use areas. Along the way, wastewater-treatment plants release nutrient-rich effluents that contribute to the eutrophic state of this waterway. This condition is most obvious where the river is impounded by a series of dams that have sequestered large amounts of sediment and support rooted and floating macrophytes and epiphytic algae. The water in parts of these impoundments may also have low concentrations of dissolved oxygen, another symptom of eutrophication.

All of the impoundments had relatively shallow maximum water depths, which ranged from approximately 2.4 to 3.4 meters, and all had extensive shallow areas. Sediment volumes estimated for the six impoundments ranged from approximately 380 cubic meters in the Aluminum City impoundment to 580,000 cubic meters in the Ben Smith impoundment. The other impoundments had sediment volumes of 120,000 cubic meters (Powdermill), 67,000 cubic meters (Gleasondale), 55,000 cubic meters (Hudson), and 42,000 cubic meters (Allen Street).

The principal objective of this study was the determination of sediment volume, extent, and chemistry, in particular, the characterization of toxic inorganic and organic chemicals in the sediments. To determine the bulk-sediment chemicalconstituent concentrations, more than one hundred sediment cores were collected in pairs from the six impoundments. One core from each pair was sampled for inorganic constituents and the other for organic constituents. Most of the cores analyzed for inorganics were sectioned to provide information on the vertical distribution of analytes; a subset of the cores analyzed for organics was also sectioned. Approximately 200 samples were analyzed for inorganic constituents and 100 for organics; more than 10 percent were quality-control replicate or blank samples.

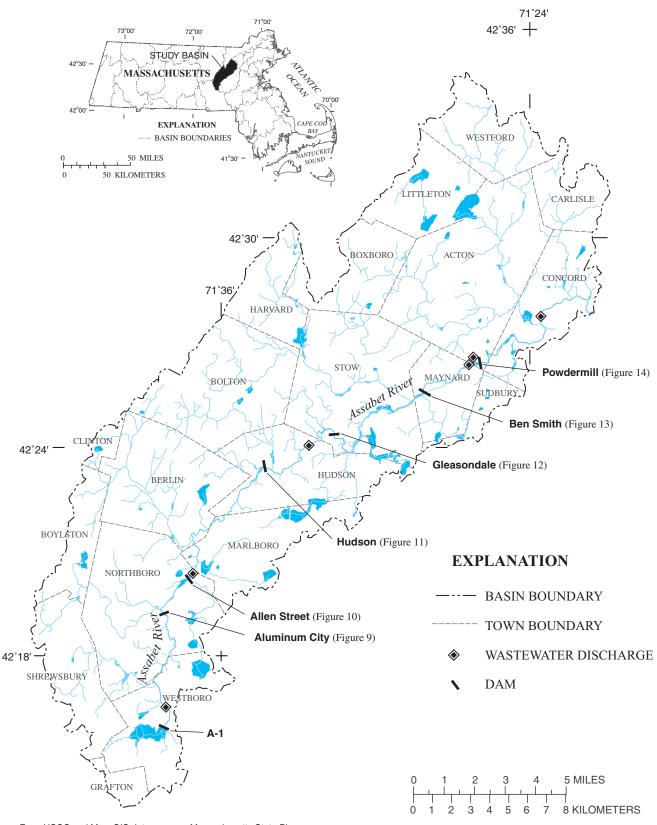
Maximum bulk-sediment phosphorus concentrations in surface samples from the impoundments increased along a downstream gradient, with the exception of samples from the last impoundment, where the concentrations decreased. In addition, the highest phosphorus concentrations were generally in the surface samples; this finding may prove helpful if surface dredging is selected as a means to control phosphorus release from sediments. There is no known relation, however, between bulk-sediment concentration of phosphorus and the concentrations of phosphorus available to biota.

Potentially toxic metals, including arsenic, cadmium, chromium, copper, nickel, lead, and zinc were frequently measured at concentrations that exceeded U.S. Environmental Protection Agency sediment-quality guidelines for the protection of aquatic life and that occasionally exceeded Massachusetts Department of Environmental Protection guidelines governing landfill disposal (reuse). Due to the effects of matrix interference and sample dilution on laboratory analyses, neither pesticides nor volatile organic compounds were detected at any sites. However, samples collected in other studies from nearby streams indicated the possibility that pesticides might have been detected in the impoundments if not for these analytical problems. Although polychlorinated biphenyl concentrations, as individual Aroclors, generally exceeded published U.S. Environmental Protection Agency guideline concentrations for potential effects on aquatic life, the U.S. Environmental Protection Agency guideline concentrations for human contact or the Massachusetts guidelines for landfill reuse were rarely exceeded. Concentrations of polycyclic aromatic hydrocarbons, both individually and total, frequently were greater than guideline concentrations. Concentrations of total extractable petroleum hydrocarbons did not exceed Massachusetts guideline concentrations in any samples.

When the sediment analytes from surface samples are considered together to compare their potential toxicity to aquatic organisms, it is clear that sediment exposure is likely to have harmful effects. By most measures, samples from the first and last impoundments in the sequence had the poorest sediment quality with respect to the degree and the frequency with which guideline concentrations were exceeded.

A consortium of towns along the river has investigated a range of options aimed at controlling concentrations of nutrients, phosphorus in particular, released from wastewatertreatment plants into the river and its impoundments. The second part of this study examined the changes in phosphorus concentrations in surface and pore waters in one impoundment during a 2-month period. The results were used to determine whether the sediments could release sufficient amounts of phosphorus to render ineffective decreased phosphorus releases from treatment plants. Knowledge of sediment characteristics and chemistry will allow local water managers to choose among the sediment-management options that may be considered for the Assabet River: decreasing concentrations of phosphorus released from treatment plants, partial or complete dredging, dam removal or modification, phosphorus sequestration by chemical treatment, and making no changes.

To investigate the dynamics of phosphorus concentrations in the impoundment in Hudson, Massachusetts, water samples were collected weekly at five locations. In addition to ortho- and total phosphorus, some samples were analyzed for chloride, which served as a conservative tracer for waters released from upstream wastewater-treatment plants. At each location, data were collected to provide water-column profiles of temperature, dissolved oxygen, and specific conductance.


In the study of phosphorus dynamics in the impoundment in Hudson, Massachusetts, phosphorus concentrations varied over time, primarily in bed-sediment samples, at the offchannel sampling locations where the water column was stratified. These variations, including some substantial increases in phosphorus concentrations in pore-water samples, however, did not appear to lead to increases in phosphorus exported from the impoundment. This observation suggests that most of the phosphorus released from the sediments was recycled internally in the impoundment.

Although net phosphorus storage did vary, it did not generally increase with time as total phosphorus entered the water column from sediments in stagnant areas in the Hudson impoundment. Physical and redox processes seem to control phosphorus release from sediments to the water column. These findings and the results of other studies indicate that the amount of phosphorus released from sediments over a yearly cycle was relatively small compared to the amount of phosphorus entering the system from upstream wastewatertreatment plants.

The Assabet River and its Sediments

The 53-km-long Assabet River is impounded by a series of dams as it flows northeastward from its source at the A1 impoundment in Westborough through the towns of Northborough, Marlborough, Hudson, Stow, Maynard, and Acton (fig. 1). Along the way, municipal wastewater-treatment plants in Westborough, Marlborough, Hudson, and Maynard discharge nutrient-rich effluent to the river.

Historically, the Assabet River Basin was characterized by small towns with centers along or near the river. Much of the surrounding land was forested or farmed. Dams impounding reaches of the Assabet River served to power the mills that constituted the economic bases for the towns along the river. Modern industries have also substantially contributed to the area's economic development. Water- and sedimentquality characteristics of the Assabet River reflect this history. The area has become more suburban over time with a rapid increase in the number of single-family homes, roads, and commercial developments. Rapid development in this area of Massachusetts has strained the basin's water resources by diminishing flow and affecting water quality.

From USGS and MassGIS data sources, Massachusetts State Plane Coordinate System, Mainland Zone.

In spite of the Assabet River's diversity of wildlife, popularity for recreational activities, and recent designation as part of a Wild and Scenic River basin, it is a highly eutrophic system, primarily because of nutrient enrichment from the effluents of wastewater-treatment plants. The extent of eutrophication is evident in the impounded reaches, which support substantial growth of rooted and floating macrophytes.

During the summer and early fall of 2003, the U.S. Geological Survey (USGS), in cooperation with the Massachusetts Department of Environmental Protection (MDEP) and the U.S. Environmental Protection Agency (USEPA), mapped the extent and studied the chemical properties of sediments in six impoundments in the Assabet River Basin. The USGS also studied the dynamics of phosphorus release from sediments in a wastewater-dominated impoundment in Hudson, Massachusetts. This impoundment was one of the original six impoundments.

This two-part report provides the results of the assessment of the sediment extent and chemistry in the six impoundments in the Assabet River and describes the results of the study of the dynamics of phosphorus release. Obtaining data to determine whether there is a relation between the distribution of phosphorus in the sediments and the concentrations of phosphorus in the water column was a link between the two parts of this study.

Sediment was sampled from the following six impoundments along the Assabet River:

- 1. Route 20, also known as Aluminum City impoundment (Northborough, built in 1925);
- 2. Allen Street impoundment (Northborough, built in 1900);

- 3. Hudson (Washington Street) impoundment (Hudson, built in 1860), the site of the phosphorus dynamics study;
- 4. Gleasondale impoundment (Stow, built in 1924);
- 5. Ben Smith impoundment (Maynard, built in 1870); and
- 6. Powdermill impoundment (Maynard/Acton, built in 1921).

The interpretations of bulk-sediment chemistry data in this report include results of analyses for volatile organic compounds (VOCs), polycyclic (or polynuclear) aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides, extractable petroleum hydrocarbons (EPH), reactive sulfide, and a selected group of metals and other elements, including phosphorus. The concentrations of these chemical constituents in the sediments are compared to standards for the disposal of dredged hazardous materials; for human contact; and for potential effects, including toxicity, on aquatic organisms.

The sediment-chemistry data are intended to provide managers and environmental regulators with information required to make informed choices of the best means for improving sediment and surface-water quality in the Assabet River Basin. Possible sediment-management options available to water-resource managers considering river restoration include: (1) reducing concentrations of phosphorus released from treatment plants; (2) dredging sediments (partial or total removal); (3) chemical treatment of sediments to prevent phosphorus release; (4) removal or structural modification of dams; and (5) making no changes.

Part 1. Sediment Distribution and Chemistry in Six Impoundments in the Assabet River, Central Massachusetts

Study Design

To determine the extent and volume of sediments and to create maps for sampling-site selection, the impoundment bathymetry and sediment thickness for the six impoundments affected by wastewater effluent on the Assabet River were delineated by manual probing. Representative physical and chemical properties of the sediment behind each dam were determined from sediment core samples collected at randomly selected sites. Samples were analyzed at laboratories in Massachusetts, Rhode Island, and Ontario, Canada.

Mapping of Bathymetry and Sediment Thickness

Data on water depth and soft-sediment thickness were collected by probing manually with an extendible stainlesssteel rod in the reaches behind the six dams (fig. 2). A total of 682 manual water-depth and sediment-thickness soundings were taken in the six impoundments: 34 at Aluminum City dam, 140 at Allen Street, 142 at Hudson, 91 at Gleasondale, 183 at Ben Smith, and 92 at Powdermill.

A Trimble TSC1 GPS unit was used to record depthsounding coordinates. The Trimble positional data were differentially corrected before being imported as point coverages into the geographic information system (GIS) ArcInfo (ESRI, 2002). Impoundment outlines were created from orthophotos with a resolution of 1:5000 (1/2 meter). An ARC Macro Language script positioned the point coverage of the depth soundings in the coverage of the river outlines, and a triangular irregular network (TIN) data set (a type of spatial coverage) was generated to create preliminary contours of the impoundment bathymetry.


Selection of Sediment-Sampling Sites

Fifty-seven primary sampling sites and 57 matching alternate sampling sites were chosen by using a random-selection subroutine within ARC/INFO GIS software (Scott, 1990). The number and distribution of sediment-sampling sites among the impoundments were determined by the relative size of each impoundment, by the locations of depositional environments, and by the locations of possible contamination source areas. On the basis of past experience with sediment sampling and input from stakeholders, the sampling network was designed to collect a sufficient number of samples to represent the potential sediment variability within the study area.

Collection of Sediment Cores

To achieve the project objectives of physically and chemically characterizing the bed sediments behind the 6 Assabet River impoundments, more than 100 sediment cores were collected from the 57 sampling sites. The two cores taken from each site were considered to be equally representative of the sediment at that site; one core was reserved for analysis of organic chemical constituents, and the other for analysis of inorganic constituents. At each site, field crews retrieved the longest possible soft-sediment core.

The randomly selected sites were identified in the field with a GPS unit. If cores could not be retrieved at the primary site, an alternate site was used. All coring was done from a flat-bottomed john boat equipped with a four-stroke outboard motor. All cores were retrieved with a piston corer (Aquatic Research Instruments, Hope, Idaho).

Figure 2. A probe is used to collect data for a map of sediment thickness and extent.

Upon arrival at a sampling location, the field crew anchored and braced the boat to provide a stable work platform against any existing wind or current. Driving steel rods into the sediment allowed the crew to approximate the maximum possible core length and to mark the sampling station. Polycarbonate plastic tubing was cut to the expected core length and secured to the core head with the piston in a ready position at the foot of the plastic core barrel (fig. 3). Polyvinyl chloride (PVC) pipe of 1-in. inner diameter was driven into the sediment to allow measurement of the total drive depth. The corer equipped with an extension rod was positioned at the sediment surface adjacent to the PVC pipe, and aligning marks were put on both the extension rod and the PVC pipe. One crew member held the piston cable in place, while the second manually drove the core barrel into the sediment until stopped by initial refusal. A 5-lb slide hammer was then used to drive the core barrel farther into the sediment until final

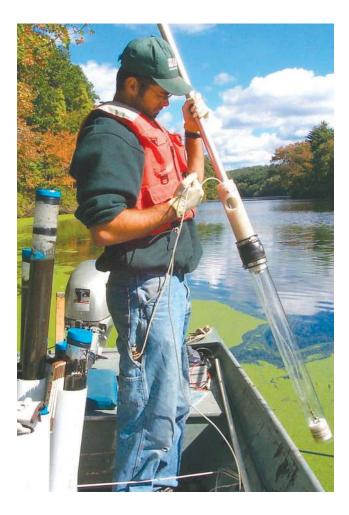


Figure 3. A piston corer is prepared for collection of a sediment core.

refusal; with the corer and the PVC pipe in this configuration, the distance between the previously aligned marks on the aluminum extension rod and the stationary PVC pipe represented the total drive depth. The difference between the total drive depth and the water depth provided the drive depth in the sediment and a way to determine the extent of compaction. The core was extracted with gloved hands and capped at both ends with native-water-rinsed polypropylene caps. To minimize any losses from the core sampler, the end cap was secured to the core tube before the end of the tube broke the surface of the water. On the boat, top and bottom polypropylene end caps were secured to the core with vinyl tape and the core was labeled. The second core was obtained in the same manner from a position less than 1 m from the first site. Cores were secured upright in a cooler and kept cool with ice for transportation to the USGS MA–RI Water Science Center office.

Sample Preparation

At the MA-RI Water Science Center laboratory, cores were placed in 55-gal plastic barrels filled with ice. Cores were extruded with a Teflon piston into a clean, half-section of a 4-in. diameter, 8-ft polycarbonate tube (figs. 4 and 5). The core lengths and lithological data were recorded and photographs were taken. Then, a 5-mL sample for VOC analysis was collected with a syringe (fig. 6). The remainder of the core was put into a precleaned 25-L Teflon bag which was massaged to thoroughly homogenize the core. A corner of the bag was then cut and samples were extruded into labeled glass jars for analysis (fig. 7); some of the cores designated for organiccompound analyses were sectioned into thirds before homogenizing to provide some information about variability with depth. Cores collected for elemental analysis were split into as many as five sections to determine depth variability (table 1). Each section was put into a pre-cleaned 1.5-L Teflon bag and thoroughly homogenized before extrusion into a labeled plastic Whirl-Pak bag for analysis (fig. 8). All samples were stored at 4°C until transport to their respective laboratories. Grainsize samples were extruded into Whirl-Pak bags and frozen for possible analysis at a later date.

Analytical Methods

Laboratory analyses included VOCs, PAHs, PCBs, organochlorine pesticides, EPH, reactive sulfide, and metals. The analyte list was chosen to correspond with analytes listed in regulations guiding the disposal of sediments.

SGS Canada, Inc., Minerals Services (formerly XRAL Laboratories), of Toronto, Ontario, analyzed sediment samples for 32 elements (mainly metals) by using inductively coupled plasma-emission spectrometry, after the samples were digested by aqua regia. Each element analyzed by this method has its own reporting level (RL).

The USEPA Region I laboratory in Chelmsford, MA, analyzed sediment samples for VOCs by using standard gas chromatography/mass spectrometry (GC/MS) techniques (U.S. Environmental Protection Agency, 1996a). The methodology can quantify the concentrations of 70 compounds in soils or sediments. The USEPA laboratory also analyzed sediment samples for PAHs (U.S. Environmental Protection Agency, 2000). The analytical method, which uses GC with mass selective detector, measures concentrations of 16 PAH compounds. Nominally, project RLs for PAHs were 0.0017 mg/kg. In practice, organic interferences required sample dilutions of up to 100 times with actual RLs as high as 0.620 mg/kg.

Figure 4. A Teflon piston is used to extrude core into a polycarbonate tube.

Figure 5. An extruded core.

Figure 6. A sample is collected for volatile organic compound analysis.

Figure 7. A sample is collected for polychlorinated biphenyl and pesticide analyses.

Figure 8. A sample is prepared for metal analysis.

Table 1. Identifiers and depths for samples collected in six impoundments in the Assabet River, Massachusetts.

[Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Field ID: core identifier. Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. in., inches]

Map ID	Field ID	Sample ID	Sample depth (in.)	Map ID	Field ID	Sample ID	Sample deptl (in.)
	A	luminum City			Huds	son—Continued	
AC1	AC4	5	0–16.3	H13—Con	tinued		
AC2	AC2	7A	0-6.7			14DQ	23.6-31.5
		7B	6.7-13.4			14E	31.5-38.6
		7C	13.4-20.1			14E	31.5-38.6
AC3	AC3	6A	0-7.1			14EQ	31.5-38.6
		6B	7.1–14.2	H14	H3	10A	0-9.1
		6C	14.2-21.3			10B	9.1-18.1
AC4	AC1	8A	0-7.9	H15	H7	15A	0-7.9
		8B	7.9–15.7			15B	7.9–15.7
		8C	15.7-23.2			15C	15.7-23.6
		Allen Street				15D	23.6-30.7
AS5	AS1	1A	0–7.9		(Gleasondale	
155	ASI	1B	11.8–19.7		C10	244	0.75
		1D 1C	19.7–27.6	G16	G10	34A 34B	0–7.5 7.5–15.0
		1D	27.6–35.4			34D 34C	15.0-22.8
AS6	AS3	3A	0-7.9	017			
150	105	3B	7.9–15.7	G17	G2	39A 39B	0–5.9 7.9–15.7
		3D 3C	15.7–22.4				
AS7	AS2	2A	0–7.9			39C	15.7-23.6
-107	A92	2B	7.9–15.7	C 10		39D	23.6-32.7
		2D 2C	15.7–23.6	G18	G5	35A	0-7.9
		20 2D	23.6–30.7			35B	11.4–19.3
458	AS4	4A	0-7.9			35C	22.8-30.7
120	A54	4B	9.8–17.7			35D	34.3-42.1
		4C	20.5–28.3	C 10	011	35E	45.7–53.5
		4D	34.6-42.5	G19	G11	40A	0-7.9
		4E	48.8–56.7			40B	17.3-25.2
			+0.0-30.7			40C	34.6-42.5
		Hudson				40CQ	34.6-42.5
H9	H1	9	0-10.2			40D	52.0-59.8
H10	H4	12Å	0-7.1		C1	40E	69.3–77.2
		12B	7.1-14.2	G20	G1	36A	0-7.9
		12C	14.2-22.0			36AQ	0-7.9
		12D	22.0-30.7			36B	7.9–15.7
		12E	30.7–39.4			36C	15.7-23.6
H11	H5	13A	0–7.9			36D	23.6-31.5
		13B	7.9–13.8		~-	36E	31.5–39.4
		13C	13.8–19.3	G21	G7	44	0-7.1
		13D	19.3–26.4	G22	G8	41A	0-8.3
H12	H2	11A	0-8.7			41B	8.3-16.5
		11B	8.7–17.3	C 22	<u>C1</u>	41C	16.5-24.4
H13	H6	14A	0–7.9	G23	G4	37A	0-8.7
		14AQ	0-7.9			37B	8.7-16.9
		14B	7.9–15.7			37C	16.9-25.2
		14BQ	7.9–15.7	C 24	01	37D	25.2-33.5
		14C	15.7–23.6	G24	G6	42A	0-7.9
		14CQ	15.7–23.6	C25	010	42B	11.8–19.7
		14D	10.7 20.0	G25	G12	45	0-7.1

Table 1. Identifiers and depths for samples collected in six impoundments in the Assabet River, Massachusetts.— Continued

[Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Field ID: core identifier. Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. in., inches]

MapID	Field ID	Sample ID	Sample depth (in.)	MapID	Field ID	Sample ID	Sample depth (in.)
	Gleaso	ndale—Continued			Ben S	mith—Continued	
G26	G9	38A	0-8.7	BS37	BS10	29A	0-7.9
		38B	8.7-16.9			29B	7.9–17.7
		38C	16.9-25.5			29C	15.7-24.0
G27	G3	43	0–9.8	BS38	BS11	26A	0-7.9
		Ben Smith				26B	7.9–15.7
						26C	15.7-23.6
BS28	BS1	16A	0-4.7			26D	23.6-31.5
		16B	4.7-9.4			26E	31.5-40.6
BS29	BS6	18A	0-5.9	BS39	BS13	25A	0-6.7
		18B	5.9-11.8			25B	6.7-13.0
		18C	11.8-18.1	BS40	BS12	24A	0-7.9
BS30	BS2	17A	0-6.3			24B	7.9–15.7
		17B	6.3-13.0			24C	15.7-23.2
		17C	13.0-19.7	BS41	BS14	28A	0-8.7
		17D	19.7-26.0			28AQ	0-8.7
		17E	26.0-34.6			28B	8.7–17.3
BS31	BS7	19A	0–9.4			28BQ	8.7–17.3
		19AQ	0–9.4	BS42	BS16	33A	0–7.5
		19B	9.4-18.9	2012	2010	33B	7.5–15.0
		19BQ	9.4-18.9	BS43	BS17	30A	0–7.1
		19C	18.9-28.7	2010	2017	30B	7.1–14.2
		19CQ	18.9-28.7			30C	14.2–21.3
		19D	28.7-36.6			30D	21.3–28.3
		19DQ	28.7-36.6			30E	28.3–35.4
		19E	36.6-44.5	BS44	BS15	31A	0–12.6
		19EQ	36.6-44.5	Dorr	0015	31B	12.6–22.4
BS32	BS8	20A	0-7.9	BS45	BS18	31D 32A	0–7.9
		20B	16.5-24.4	D015	0010	32B	7.9–15.7
		20C	33.1-40.9				1.9 10.1
		20D	45.7-57.5			Powdermill	
		20E	66.1-74.0	P46	P1	48	0-10.2
BS33	BS3	21A	0-7.9			48Q	0-10.2
		21B	7.9–15.7	P47	P3	49	0–5.5
		21C	15.7-23.6	P48	P2	46A	0–7.9
		21D	23.6-31.5			46B	7.9–15.7
		21E	31.5-39.4			46C	15.7-20.9
BS34	BS4	22A	0–7.9	P49	P4	47	0-8.3
		22B	7.9–15.7	P50	P5	52A	0–7.9
		22C	15.7-23.2			52B	9.8-17.7
BS35	BS9	23A	0–7.9			52C	19.3–27.2
		23B	7.9–15.4			52CQ	19.3-27.2
		23C	15.4-22.0			52D	28.7-36.6
BS36	BS5	27A	0–7.1			52E	38.2–46.1
	27B	18–35	<i></i>	P51	P8	55A	0-8.7
		27C	13.8-20.5		-	55AQ	0-8.7
		270 27D	20.5-27.2			55B	8.7–17.3
						55C	17.3–25.6

Table 1. Identifiers and depths for samples collected in six impoundments in the Assabet River, Massachusetts.—Continued

[**Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Field ID:** core identifier. **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. in., inches]

MapID	Field ID	Sample ID	Sample depth (in.)
	Powde	ermill—Continued	
P51—Cont	tinued	·	
		55D	25.6-33.9
P52	P6	53A	0-7.9
		53B	15.4-19.3
		53C	26.8-34.6
		53D	42.1-50.0
		53DQ	42.1-50.0
		53E	57.5-65.4
P53	P9	54A	0-8.7
		54B	8.7-16.9
		54C	16.9-25.2
		54CQ	16.9-25.2
P54	P10	56A	0-7.9
		56B	7.9–15.7
		56BQ	7.9–15.7
		56C	15.7-23.6
P55	P11	51A	0-7.9
		51B	9.8-17.7
		51BQ	9.8-17.7
		51C	19.7-27.6
		51D	29.5-37.4
		51E	29.8-47.2
P56	P7	50A	0-7.9
		50AQ	0-7.9
		50B	15.4-23.2
		50C	30.7-38.6
		50D	46.1-53.9
		50E	61.4-69.3
P57	P12	57	0-10.6
		57Q	0-10.6

The EPH method, designed to assess exposure to petroleum hydrocarbons that may cause human health hazards (MDEP, 2002, 2004), measures the concentrations of aliphatic and aromatic hydrocarbons in soils or water by GC with a flame-ionization detector. Some of the petroleum products that this method may detect include kerosene, fuel oils #2, #4, and #6, diesel oil, jet fuel, and some lubricating oils. These are essentially the same compounds targeted by the USEPA's PAH analyses, but the EPH-method RLs are 0.5 mg/kg, which is higher than the 0.0017 mg/kg for the PAH analyses. New England Testing Laboratory, Providence, RI, performed the EPH analyses reported here.

The reactive sulfide method determines the amount of the highly corrosive and toxic vapor hydrogen sulfide which is released when sediment is placed in contact with acid. At present, Massachusetts has no regulatory standard, but the State's policy calls for lime stabilization of dredged sediments with reactive sulfide concentrations greater than 500 parts per million (500 mg/kg). New England Testing Laboratory used a standard procedure (U.S. Environmental Protection Agency, 1996b) with a reporting level of 5 mg/kg to analyze the sediments in this study for reactive sulfide.

Alpha Analytical, Inc., Westborough, MA, used capillarycolumn gas chromatography (U.S. Environmental Protection Agency, 1996c, d) to analyze sediment samples for PCBs and organochlorine pesticides. The RLs for PCBs (0.017 mg/kg) and organochlorine pesticides (0.0008 mg/kg) were also affected by sample dilutions that may have raised the RLs by a factor of as much as 100.

Quality Assurance and Quality Control

Several precautionary steps were taken to ensure that sediment-sample collection and processing did not introduce contamination to the samples. In the field, sediment cores were collected with freshly manufactured plastic sleeves that were rinsed with ambient water at the site before core collection. Cores were capped and sealed at both ends in the field and returned to the Water Science Center office in plastic containers for processing. The cores were extruded (fig. 4) onto a large-diameter plastic tube that had been cut in half lengthwise, thoroughly cleaned with methanol and hydrochloric acid, and rinsed with distilled water. All parts of the extrusion apparatus were washed and rinsed with distilled water before samples were collected from a fresh core. All samples were handled with fresh latex gloves that were always discarded between consecutive collections of samples and frequently during the processing of samples from a single core.

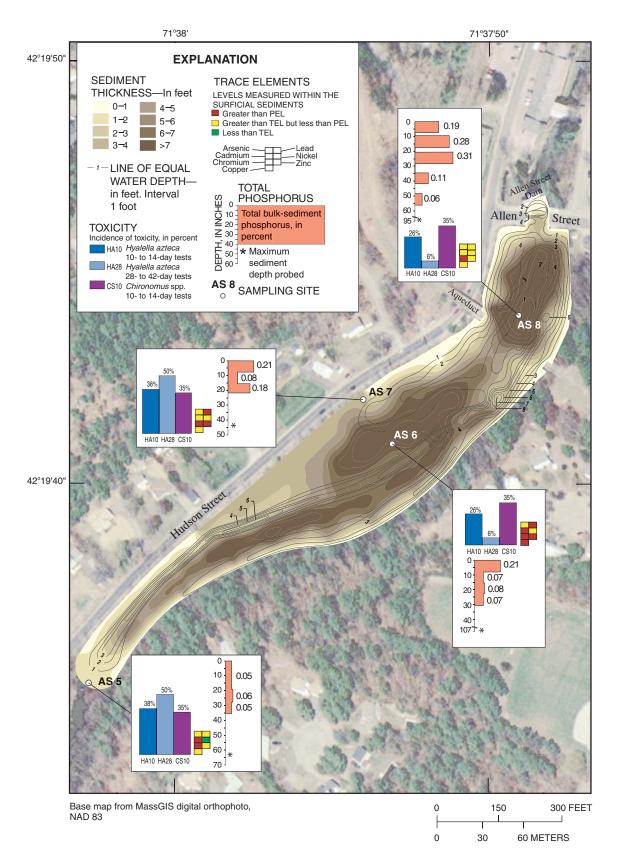
Reproducibility of the sample homogenization process was tested with replicate analyses of approximately 10 percent of the samples of each type. Relative Percent Difference (RPD) calculations based on the results for replicate sample pairs rarely exceeded the 50-percent limit. The single pair of PAH-analysis results that exceeded the 50-percent RPD limit was from environmental and quality-control samples that exhibited systematic differences. These two samples, however, were handled differently in the analytical laboratory (one sample was diluted, whereas the other was not), and the individual sample with low PAH concentrations also had low percent recoveries of surrogates that would account for the differences. Other RPDs exceeding the 50-percent limit were distributed randomly among impoundments and within samples. Of the exceedances for the six sample pairs that had RPD limit exceedances, four were represented by a single element (three pairs of measurements of molybdenum at concentrations close to its reporting level and one pair of measurements of chromium). The RPD values that exceeded the RPD limit in two sets of organic-compound samples are attributable to differences in sample dilution at the analytical laboratory. The replicate-sample results showed that the sampling process produced consistently representative data for this study.

Sediment Thickness and Bathymetric Maps

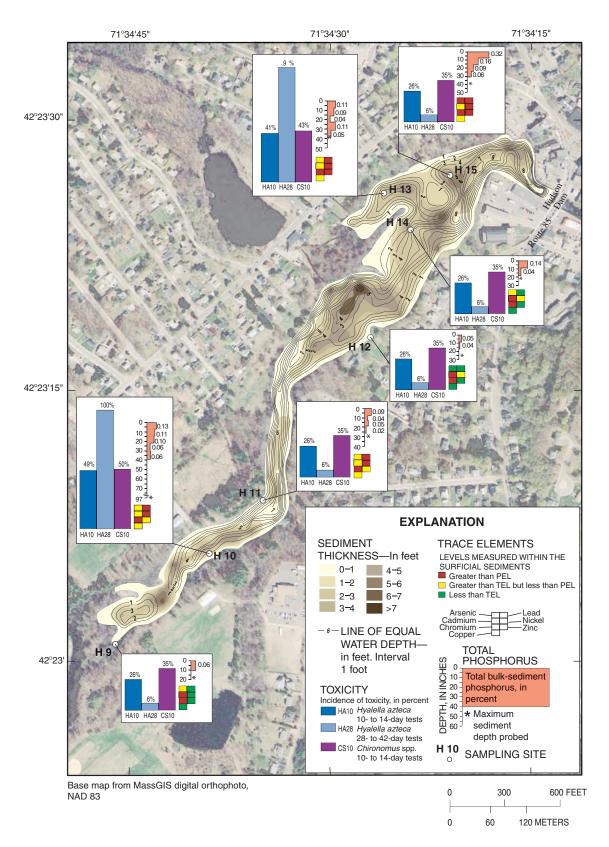
Although sediment-thickness data associated with the core sites were not used to create the sediment maps, data obtained by manual probing indicate the core sites where sediment thicknesses and water depths were greatest. Sedimentcore lengths were generally less than the lengths measured by manual probing because a thin, pointed metal rod can penetrate sediments farther than a 2 to 3-in.-diameter flat-edged, plastic tube.

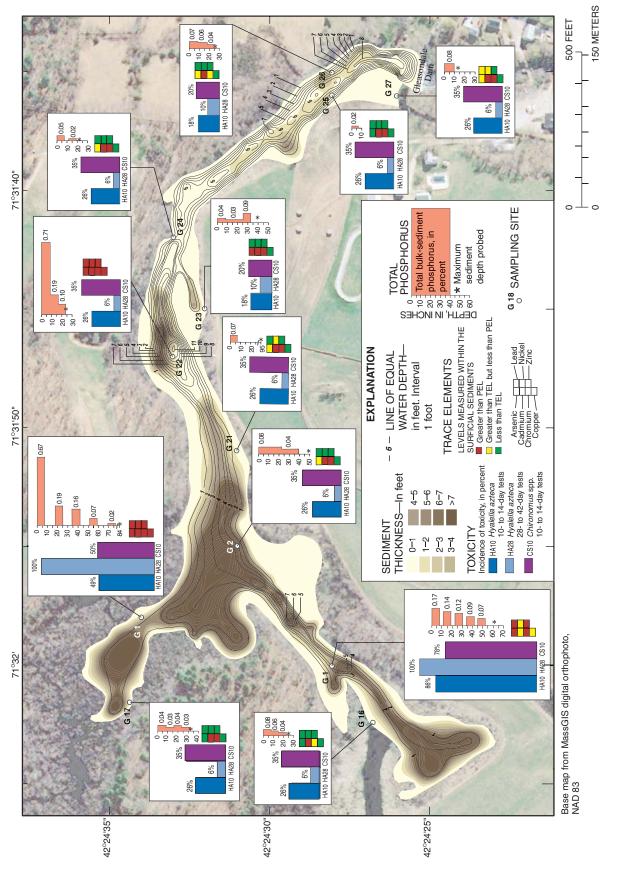

Data collected by manual probing were used to determine the water-depth contour lines on the bathymetric maps of the impoundments (figs. 9 to 14). The maximum water depth was least in the Aluminum City impoundment (3.9 ft) and greatest in the Gleasondale impoundment (11 ft). Water depths were not related to a fixed datum and could change with streamflow.

The Aluminum City impoundment (fig. 9) was found to be rock-bottomed (rip-rapped) near the dam and to have primarily rock and sand refusal in the upstream reach. Its thickest sediments were measured near the dam (core site AC4, 3.3 ft) and close to the farthest upstream core site (AC1, 2.4 ft). The greatest water depth measured at the time of sediment mapping was 3.9 ft.


The thickest sediment deposits in the Allen Street impoundment (fig. 10) were measured near core sites AS6 and AS8 (11 ft). Probe refusal at the Allen Street impoundment was caused by sand and gravel within the channels upstream of AS5 and the area immediately downstream from the Allen Street bridge. The wide depositional area of the impoundment generally had a refusal caused by fine sand, silt, and clay. A maximum water depth of 8.2 ft was measured above thin sediment deposits between sites AS6 and AS8.

In Hudson, the impoundment's thickest sediment (7.5 ft) was measured in the area north of H12 (fig. 11); sediment thicknesses exceeding 6 ft were also measured in the vicinity of H15. The bottom of the Hudson impoundment was characterized by sand and gravel in the river channel and fine materials in lateral depositional areas. Water depths reached more than 10 ft near in the channel leading to the dam.


The deepest manual probes in Gleasondale sediments were made in the upstream areas (fig. 12) in the general vicinity of G18, G19, and G20, where they penetrated farther than 18 ft without reaching refusal; however, the probes may have penetrated preimpoundment sediment deposits. The downstream reach had a relatively steep gradient that may have caused sediment scouring and shallow sediment thicknesses. Water depths approached 11 ft near G22.


Figure 9. Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Aluminum City impoundment in Northborough, Massachusetts, 2003.

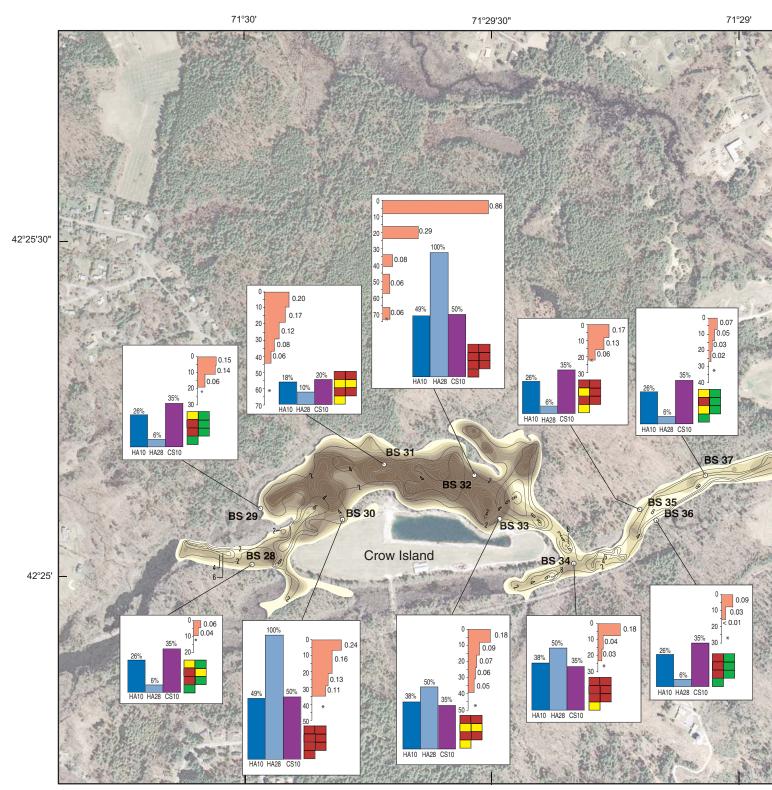
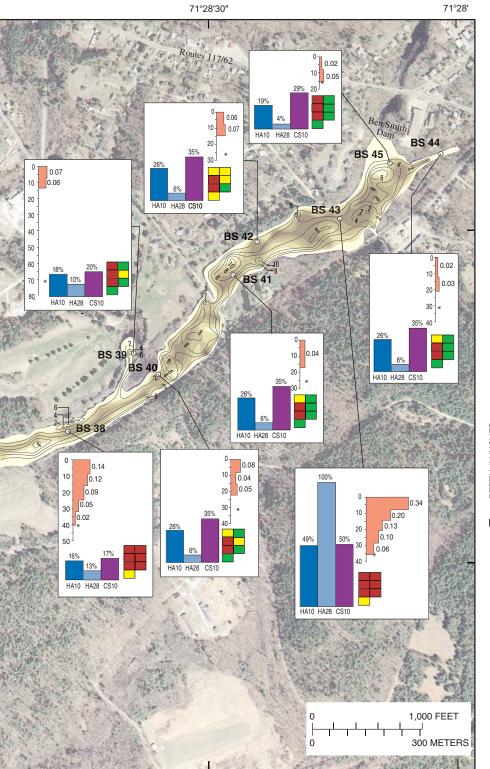
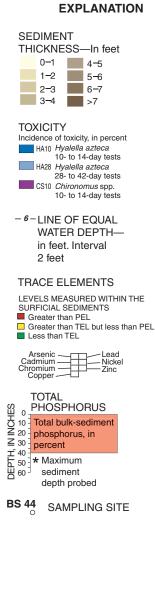
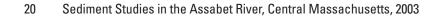


Figure 11. Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Route 85 impoundment in Hudson, Massachusetts, 2003.




Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Gleasondale impoundment in Stow, Massachusetts, 2003. Figure 12.

18 Sediment Studies in the Assabet River, Central Massachusetts, 2003



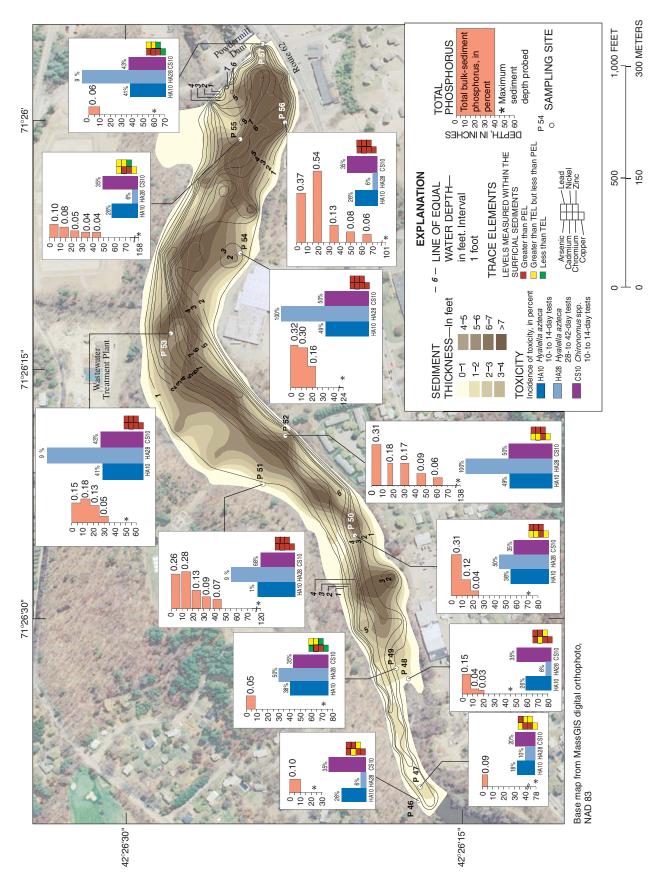

Base map from MassGIS digital orthophoto, NAD 83

Figure 13. Sediment thickness, phosphorus bulksediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Ben Smith impoundment in Maynard, Massachusetts, 2003.

Sediment thickness, phosphorus bulk-sediment profiles, exceedances of TEL (threshold effect level) and PEL (probable effect level) guidelines for toxic trace elements, and potential for sediment toxicity to aquatic life from cores collected in Powdermill impoundment in Maynard and Acton, Massachusetts, 2003. Figure 14.

The elongated Ben Smith impoundment was characterized by extensive, thick sediment deposits in the vicinity of Crow Island (fig. 13). The probe reached through more than 15 ft of sediment at several places and more than 24 ft near BS32. The bottom of the narrow channel section between BS34 and BS41 was sandy with finer materials distributed along the lateral edges. In the vicinity of the dam, the bottom materials were predominantly coarse sand and gravel. Water depths exceeded 8 ft near the dam.

The Powdermill impoundment was characterized by having a narrow, rocky channel upstream from P49. Sediments were distributed uniformly throughout the main body of the impoundment, with the thickest sediments approximately along the impoundment's midline (fig. 14). Sandy conditions dominated the impoundment's bottom. Water depths were more than 8 ft just upstream of the dam.

Ben Smith impoundment had the greatest volume of sediment and Aluminum City the least, as calculated by the TIN computer program. In decreasing order, the impoundments' sediment volumes were: Ben Smith (580,000 m³), Powdermill (120,000 m³), Gleasondale (67,000 m³), Hudson (55,000 m³), Allen Street (42,000 m³), and Aluminum City (380 m³). These sediment-volume estimates may include some preimpoundment material, and thus may overestimate the amount of impounded sediment.

Sediment Chemistry of the Assabet River Impoundments

The concentrations of metals detected were compared among the impoundments and with results from analyses of the chemistry of sediments in other New England rivers (Chalmers, 2002; Robinson and others, 2004). The results were also compared with sediment-quality guidelines (table 2) related to 1) potential effects on freshwater organisms, 2) dangerous levels for human contact, and 3) permitted levels for reuse (disposal) in landfills. The potential effects on freshwater organisms are further organized into three groups: a) threshold effect level (TEL), the concentration below which adverse effects are rarely observed; b) probable effect level (PEL), the concentration above which adverse effects are commonly observed; and c) probable effect concentration (PEC), the concentration above which adverse effects are expected. In general, the PEC is greater than the PEL; the exception is Cu. The TEL and PEL are used in discussions of the effects of metals on biota and the PEC is used in discussions of the combined effects of metals, PAHs, and PCBs on biota.

Elemental Analyses

Dividing the results of the elemental analyses performed by SGS Canada Inc., Minerals Services, into three categories — phosphorus (as a bulk-sediment analyte), toxic metals, and other elements – groups the data in a meaningful way for efficient interpretation. The vertical distribution of phosphorus in sediments throughout the study area (table 3) was investigated because the sediments may serve as a potential phosphorus source. The toxic trace elements constitute a seven-element subset of metals (table 14, at back of report) often referred to as critical contaminants. The remaining elements are not generally considered commonly occurring toxics requiring special attention to minimize potential harm to aquatic life or humans; their concentrations are reported (table 15, at back of report), but not discussed in comparisons among the Assabet impoundments.

Phosphorus

A recent survey of stream sediments in New England (Chalmers, 2002) reported bulk concentrations of phosphorus in samples collected primarily in urban and rural settings. The median concentration from that study is slightly higher than those for the individual impoundments reported here (table 4). The maximum phosphorus concentrations in the Assabet River sediments, however, exceeded the maxima reported in the other study.

Bulk-sediment phosphorus concentrations ranged from less than the RL of 0.01 percent at site BS37 (subsample from approximately 2 ft below the sediment surface) to 0.86 percent at site BS32 (surface sample). Throughout the six-impoundment system, the highest phosphorus concentrations generally were measured in samples collected closest to the sediment surface (table 5; figs. 9 to 14). Three possible explanations for this distribution of phosphorus concentrations are: (1) high concentrations of phosphorus transported in the water column may serve as a continuous supply of phosphorus; (2) rooted macrophytes will take up available phosphorus from surficial sediments, and as these plants die and decay, all or part of their phosphorus will be deposited on the sediment surface, where it may once again become available; (3) phosphorus may dissolve in deep, anaerobic sediment, diffuse upward, and precipitate at the sediment-water interface.

Comparing the means, medians, minima, and maxima of concentrations of all samples and of only surface samples from the impoundments reveals phosphorus-concentration trends with reservoir position (table 5). In the environmental samples, the median phosphorus concentration was 0.08 percent and the mean concentration was 0.12 percent. Sediment samples from Aluminum City, from all impoundments, had the highest median (0.17 percent) and mean (0.18 percent) phosphorus concentrations. Sediment samples from Aluminum City had the lowest maximum (0.28 percent) but the highest minimum (0.12 percent) phosphorus concentrations of samples collected at all depths from all impoundments. Phosphorus-concentration maxima increased downstream from Aluminum City until the Powdermill impoundment, where the maximum concentration decreased. The minima of all samples generally decrease in the downstream direction.

Table 2. Sediment-quality guidelines for freshwater organisms, human contact, and Massachusetts landfill reuse.

[Sources: Massachusetts Department of Environmental Protection, 1995; Breault and others, 2000; Ingersoll and others, 2001. EPH, extractable petroleum hydrocarbon; PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; PEC, Probable Effect Concentration, concentration above which adverse effects are expected; PEL, Probable Effect Level, concentration above which adverse effects are commonly observed; TEL, Threshold Effect Level, concentration below which adverse effects are rarely observed; TPH, total petroleum hydrocarbon; µg/kg, micrograms per kilogram; mg/kg, milligrams per kilogram; <, actual value is less than value shown; --, no value available]

Constituent or class	TEL	PEL	PEC	Human contact	Landfill reuse
		Total organics (µ	g/kg)		
TPH (~EPH)				800,000	5,000,000
Total PAH			22,800		100,000
Total PCB	34.1	277	676	2,000	<2,000
Total chlordane	4.5	8.9	17.6	1,000	
		Individual PAHs (µg/kg)		
Acenaphthylene		88.9		100,000	
Acenaphthene		128	620	1,000,000	
Anthracene		245	845	1,000,000	
Benzo[a]anthracene		385	1,050		
Benzo[k]fluoranthene		240	7,000		
Benzo[g,h,i]perylene		170	1,000,000		
Benzo[<i>a</i>]pyrene		782	1,450	700	
Chrysene		862	1,290	7,000	
Dibenzo[<i>a</i> , <i>h</i>]anthracene		135		700	
Fluoranthene		2,355	2,230	1,000,000	
Fluorene		144	536	1,000,000	
Indeno[1,2,3-cd]pyrene			200	700	
Naphthalene		391	561	100,000	
Phenanthrene		515	1,170	1,000,000	
Pyrene		875	1,520	700,000	
	I	ndividual PCB Aroclo	ors (µg/kg)		
Aroclor-1248			30		
Aroclor-1254			60		
Aroclor-1260			5		
Aroclor-1262					
Aroclor-1268					
		Metals (mg/k	g)		
Arsenic	5.9	17	33	30	40
Cadmium	.6	3.53	4.98	30	80
Chromium	37.3	90	111	1,000	1,000
Copper	35.7	197	149		
Lead	35	91.3	128	300	2,000
Nickel	18	35.9	48.6	300	
Zinc	123	315	459	2,500	

Table 3.Concentrations of phosphorus, in percent, in bulk sediment samples from six impoundments in the Assabet River Basin,Massachusetts, 2003.

[Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core. <, actual value is less than value shown]

Map ID	Sample ID	Total phosphorus (percent)	Map ID	Sample ID	Total phosphorus (percent)	Map ID	Sample ID	Total phosphorus (percent)
	Aluminum City	/	Н	udson—Contini	ued	Glea	sondale—Cont	inued
AC1	5	0.16	H13	14D	0.18	G26	38B	0.06
AC2	7A	.23	H13	14E	.06	G26	38C	.04
AC2	7B	.28	H14	10A	.14	G27	43	.08
AC2	7C	.22	H14	10B	.04		Ben Smith	
AC3	6A	.13	H15	15A	.32		Den Siniti	
AC3	6B	.19	H15	15B	.16	BS28	16A	0.06
AC3	6C	.17	H15	15C	.09	BS28	16B	.04
AC4	8A	.17	H15	15D	.06	BS29	18A	.15
AC4	8B	.17		Gleasondale		BS29	18B	.14
AC4	8C	.12		Gleasondale		BS29	18C	.06
	Allen Street		G16	34A	0.08	BS30	17A	.24
			G16	34B	.06	BS30	17B	.16
AS5	1A	0.05	G16	34C	.04	BS30	17C	.16
AS5	1B	.05	G17	39A	.04	BS30	17D	.13
AS5	1C	.06	G17	39B	.03	BS30	17E	.11
AS5	1D	.05	G17	39C	.04	BS31	19A	.20
AS6	3A	.21	G17 G17	39C 39D	.04	BS31	19R 19B	.17
AS6	3B	.08	G17 G18	35A	.17	BS31	19D 19C	.17
AS6	3D 3C	.18	G18	35B	.14	BS31	19D	.08
AS7	2A	.21	G18	35C	.12	BS31	19E	.06
AS7	2B	.07						
AS7	2D 2C	.08	G18	35D	.09	BS32	20A	.86
			G18	35E	.07	BS32	20B	.29
AS7	2D	.07	G19	40A	.67	BS32	20C	.08
AS8	4A	.19	G19	40B	.19	BS32	20D	.06
AS8	4B	.28	G19	40C	.17	BS32	20E	.06
AS8	4C	.31	G19	40D	.07	BS33	21A	.18
AS8	4D	.11	G19	40E	.02	BS33	21B	.09
AS8	4E	.06	G20	36A	.06	BS33	21C	.07
	Hudson		G20	36B	.06	BS33	21D	.06
110	0	0.00	G20	36C	.04	BS33	21E	.05
H9 H10	9 12A	0.06	G20	36D	.04	BS34	22A	.18
H10	12B	.11	G20 G20	36E	.05	BS34	22B	.04
H10	12D 12C	.10	G20 G21	44	.07	BS34	22D 22C	.03
H10	120 12D	.04	G21 G22	41A	.71	BS35	22C 23A	.17
			G22	41B	.19	BS35	23B	.13
H10	12E	.05						
H11	13A	.09	G22	41C	.10	BS35	23C	.06
H11	13B	.04	G23	37A	.04	BS36	27A	.07
H11	13C	.05	G23	37B	.03	BS36	27B	.05
H11	13D	.02	G23	37C	.03	BS36	27C	.03
H12	11A	.04	G23	37D	.09	BS36	27D	.02
H12	11B	.01	G24	42A	.05			
H13	14A	.11	G24	42B	.02			
	14B	.09	G25	45	.02			
H13								

Table 3.Concentrations of phosphorus, in percent, in bulk sediment samples from six impoundments in the Assabet River Basin,Massachusetts, 2003.—Continued

[Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core. <, actual value is less than value shown]

Map ID	Sample ID	Total phosphorus (percent)	Map ID	Sample ID	Total phosphorus (percent)	Map ID	Sample ID	Total phosphorus (percent)
Ben Smith—Continued			Powdermill		Pov	vdermill—Conti	nued	
BS37	29A	0.09	P46	48	0.10	P53	56A	0.32
BS37	29B	.03	P47	49	.09	P53	56B	.30
BS37	29C	<.01	P48	46A	.15	P53	56C	.16
BS38	26A	.14	P48	46B	.04	P54	54A	.31
BS38	26B	.12	P48	46C	.03	P54	54B	.12
BS38	26C	.09	P49	47	.05	P54	54C	.04
BS38	26D	.05	P50	52A	.26	P55	51A	.10
BS38	26E	.02	P50	52B	.28	P55	51B	.08
BS39	25A	.07	P50	52C	.12	P55	51C	.05
BS39	25B	.06	P50	52D	.09	P55	51D	.04
BS40	24A	.08	P50	52E	.07	P55	51E	.04
BS40	24B	.04	P51	55A	.15	P56	50A	.37
BS40	24C	.05	P51	55B	.18	P56	50B	.54
BS41	28A	.04	P51	55C	.13	P56	50C	.13
BS41	28B	.04	P51	55D	.05	P56	50D	.08
BS42	33A	.06	P52	53A	.31	P56	50E	.06
BS42	33B	.07	P52	53B	.18	P57	57	.07
BS43	30A	.34	P52	53C	.17			
BS43	30B	.20	P52	53D	.09			
BS43	30C	.13	P52	53E	.06			
BS43	30D	.10						
BS43	30E	.06						
BS44	31A	.02						
BS44	31B	.03						
BS45	32A	.02						
BS45	32B	.05						

Table 4. Mean and median concentrations of trace metals in New England stream sediments.

	Previous investigations				Current (2003) investigations			
Trace metal	Robinson and others, 2004		Chalmers, 2002		Aluminum City		Allen Street	
	Mean	Median	Mean	Median	Mean	Median	Mean	Median
Aluminum, percent			5.60	5.65	1.22	1.20	0.13	0.08
Antimony, mg/kg			2.70	2.40	<5	<5	<5	<5
Arsenic, mg/kg	5.08	2.80	39.2	19.0	10.0	9.00	11.0	11.0
Barium, mg/kg	331	315	506	455	183	180	120	87.5
Beryllium, mg/kg			3.00	2.80	NA	.50	<.5	<.5
Bismuth, mg/kg			NA	<1	NA	<5	<5	<5
Cadmium, mg/kg			3.75	2.10	2.00	2.00	NA	1.00
Calcium, percent			1.34	1.40	.45	.45	.32	.29
Chromium, mg/kg			134	99.0	336	149	168	154
Cobalt, mg/kg			19.9	18.0	12.0	12.0	12.0	11.0
Copper, mg/kg	12.1	10.0	121	92.5	397	298	149	55.0
Iron, percent			4.71	3.90	1.78	1.72	1.61	1.48
Lanthanum, mg/kg	53.7	41.0	50.5	46.0	14.7	15.5	13.3	13.4
Lead, mg/kg	44.1	30.0	229	190	113	82.0	153	150
Magnesium, percent			.70	.71	.38	.36	1.09	1.02
Manganese, mg/kg			3,500	1,850	465	481	358	280
Molybdenum, mg/kg			4.85	2.60	5.50	5.50	NA	2.50
Nickel, mg/kg			43.4	45.0	25.0	24.0	21.0	19.0
Phosphorus, percent			.23	.22	.18	.17	.13	.08
Potassium, percent			1.46	1.40	.17	.16	.17	.17
Scandium, mg/kg	9.78	9.00	8.71	8.50	1.66	1.60	1.79	1.80
Silver, mg/kg			2.31	1.50	NA	5.20	NA	.35
Sodium, percent			1.30	1.20	.05	.04	.04	.04
Strontium, mg/kg	157	146	165	170	41.0	43.0	29.0	23.0
Tin, mg/kg			23.4	18.5	22.9	20.0	25.6	26.0
Titanium, mg/kg			.41	.42	.03	.03	.05	.05
Vanadium, mg/kg	55.5	53.0	76.8	78.5	25.0	26.0	26.0	25.0
Zinc, mg/kg	49.8	43.0	439	295	379	285	295	216
Zirconium, mg/kg	723	535			2.79	2.80	2.25	2.00

Table 4. Mean and median concentrations of trace metals in New England stream sediments.—Continued

	Current (2003) investigations								
Trace metal	Hudson		Gleasondale			Ben Smith		Powdermill	
	Mean	Median	Mean	Median	Mean	Median	Mean	Median	
Aluminum, percent	1.28	1.27	1.03	1.00	1.25	1.32	1.28	1.21	
Antimony, mg/kg	<5	<5	<5	<5	<5	<5	NA	<5	
Arsenic, mg/kg	17.0	9.00	17.0	11.0	22.0	13.0	22.5	14.0	
Barium, mg/kg	73.5	43.0	79.6	53.0	79.2	54.0	133	95.5	
Beryllium, mg/kg	NA	.70	NA	<.5	NA	.70	NA	.55	
Bismuth, mg/kg	<5	<5	<5	<5	<5	<5	<5	<5	
Cadmium, mg/kg	NA	<1	NA	<1	NA	<1	NA	<1	
Calcium, percent	1.99	2.15	.31	.29	.27	.27	.43	.29	
Chromium, mg/kg	155	155	205	194	177	170	588	322	
Cobalt, mg/kg	26.1	22.0	11.0	8.00	1.89	1.62	19.0	13.0	
Copper, mg/kg	44.0	14.0	61.0	11.0	49.0	13.0	291	89.2	
Iron, percent	1.97	1.66	1.54	1.40	49.3	13.4	1.96	1.94	
Lanthanum, mg/kg	22.0	15.3	13.1	12.2	19.6	15.0	15.6	12.9	
Lead, mg/kg	95.0	20.0	68.0	16.0	121	16.0	248	171	
Magnesium, percent	.30	.27	.30	.32	.25	.27	.31	.32	
Manganese, mg/kg	412.2	243	320	245	519	439	348	292	
Molybdenum, mg/kg	NA	<.2	4.00	3.00	4.00	4.00	5.81	5.00	
Nickel, mg/kg	26.0	22.0	24.0	17.0	25.0	16.0	47.8	30.0	
Phosphorus, percent	.12	.08	.11	.06	.11	.07	.15	.11	
Potassium, percent	.30	.25	.15	.16	.09	.08	.14	.14	
Scandium, mg/kg	1.99	2.15	1.71	1.70	1.82	1.80	1.76	1.70	
Silver, mg/kg	NA	<.2	NA	<.2	NA	.20	NA	1.20	
Sodium, percent	.30	.27	.04	.04	.04	.04	.04	.04	
Strontium, mg/kg	24.0	23.0	22.0	21.0	21.0	20.0	8.13	7.00	
Tin, mg/kg	NA	<1	NA	<1	.03	.02	67.6	50.5	
Titanium, mg/kg	.04	.04	.03	.03	.03	.02	.04	.04	
Vanadium, mg/kg	155	155	.03	.03	23.0	24.0	28.0	28.0	
Zinc, mg/kg	132	63.0	134	37.0	144	37.0	319	163	
Zirconium, mg/kg	NA	1.60	2.13	2.30	1.41	1.30	2.59	2.15	

[mg/kg, milligrams per kilogram; NA, not available; <, actual value is less than value shown; --, no data]

Table 5.Summary statistics of total bulk phosphorus concentrations in sediment samples from six impoundments in the AssabetRiver Basin, Massachusetts, 2003.

Impoundment	Median, all samples	Mean, all samples	Maximum, all samples	Minimum, all samples	Median, surface samples	Mean, surface samples	Maximum, surface samples	Minimum, surface samples			
Aluminum City	0.17	0.18	0.28	0.12	0.17	0.17	0.23	0.13			
Allen Street	.08	.13	.31	.05	.21	.17	.21	.05			
Hudson	.06	.08	.32	.01	.11	.13	.32	.04			
Gleasondale	.06	.10	.71	.02	.07	.17	.71	.02			
Ben Smith	.07	.11	.86	<.01	.12	.17	.86	.02			
Powdermill	.07	.15	.54	.03	.15	.19	.37	.05			

[All concentrations in percent. <, actual value is less than value shown]

Whereas the medians and means of the surface samples exhibited no trends with reservoir position, the surface-sample phosphorus maxima and minima exhibited trends similar to those for all samples. Three of the maximum surface values were the same as the maximum values for all samples.

Within some of the individual impoundments, the distribution of sediment phosphorus concentrations varied considerably. At Aluminum City (fig. 9), the smallest impoundment, where only four sets of cores were collected, sample concentrations ranged from 0.12 (in the sample from the greatest depth at site AC4) to 0.28 percent (at site AC2 in the sample from the intermediate depth). At Allen Street (fig. 10), the phosphorus concentrations were lowest in the core collected farthest upstream (AS5). The farthest downstream core (AS8) yielded samples with the highest phosphorus concentrations (0.28 and 0.31 percent) measured in this impoundment. In the Hudson impoundment (fig. 11), the highest phosphorus concentrations, 0.16 to 0.32 percent, were found in upper sediment layers at the most downstream sites (H14 and H15). In the Gleasondale impoundment (fig. 12), phosphorus concentrations were generally low, but the surface samples from sites G19 and G22 had high concentrations, 0.67 and 0.71 percent, respectively. Of all the impoundments, the Gleasondale impoundment had the steepest bed-slope gradient, and the downstream sediment thicknesses were not great; it is possible that phosphorus-bearing sediments did not settle out in that section. At Ben Smith (fig. 13), most of the high phosphorus concentrations were found in cores from the upper reaches of the impoundment (BS29 to BS35), although a few comparable concentrations were found in cores BS38 and BS43 from the downstream half of the impoundment. Finally, in the Powdermill impoundment (fig. 14), the highest concentrations of phosphorus were detected in cores P50 through P54 and P56, which were collected between the middle and the downstream end of the impoundment. This area coincides with the outfall from the Maynard wastewater-treatment plant.

The maps provide data useful for deciding the extent of sediment to dredge, both by surface area and by depth, if that option is considered; however, no target bulk-sediment phosphorus concentration that would eliminate or minimize nuisance plant growth has been established. The data indicate that if surficial sediments were removed, the sediments at greater depths would still contain phosphorus.

Toxic Trace Elements

The occurrence, distribution, and potential toxic effects of seven metals—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), metals that may come from natural weathering, from industrial areas, agricultural applications, or automobile traffic (Robinson and others, 2004)—were assessed in the surficial sediment samples of the six Assabet impoundments (table 14; figs. 9 to 14). Even at low ambient concentrations, these metals can prove harmful to aquatic organisms, because they concentrate through bioaccumulation. Mercury, another commonly cited toxic metal, is not considered here because the required sample storage and analysis methods for mercury were beyond the scope of this investigation.

Results of recent studies generally bracket the concentrations reported in this study (table 4). Robinson and others (2004) studied sediment samples from New England rivers whose watersheds represented a broad range of land uses, including relatively undisturbed areas. Their results generally described streams in which the concentrations of all four (As, Cu, Pb, and Zn) of the seven toxic metals reported had lower concentrations than were detected in the Assabet sediments; exceptions were the high concentrations of strontium and zirconium that they reported. In contrast, the mean and median concentrations of the seven toxic metals calculated from Chalmers's (2002) data, with the exception of chromium, were higher than those determined in the Assabet sediment samples; her study focused on streams whose chemistry was strongly affected by urban land use, a likely source of metal contamination. In both of these studies, surficial-sediment samples were sieved and were not necessarily digested with aqua regia, procedures that could have affected the concentrations measured.

Among the Assabet impoundments, highest average concentrations for the seven metals were found in either the Aluminum City impoundment (Cd, Cu, and Zn) or the Powdermill impoundment (As, Cr, Ni, and Pb); however, sediment samples from many sites in all of the six impoundments had high metal concentrations (table 14). At Aluminum City, extremely high concentrations of Cr (2,070 mg/kg) and Zn (1,220 mg/kg) were found in samples from AC4; samples from AC3 and AC2 also had high metal concentrations. The highest metal concentrations in samples from Allen Street were detected at AS6, AS7, and AS8; in particular, samples from AS8 had high concentrations of Cu (807 mg/kg) and Zn (551 mg/kg) and samples from AS7 and AS6 had high concentrations of Zn (827 and 487 mg/kg, respectively). In the Hudson impoundment, high concentrations of Zn, Pb, Cr, and Cu were detected in samples from H10, H11, H13 and H15; Zn, of these four metals, was generally found in highest concentrations in samples collected from these sites. In Gleasondale, samples from sites G18, G19, and G22 all were characterized by high metal concentrations. Sites with high concentrations of metals were scattered throughout the elongated Ben Smith impoundment (in particular, BS30 to BS35, BS38, and BS43), but these sites were most densely distributed in the wide upstream section of the impoundment (fig. 13). About half the sites within the Powdermill impoundment yielded samples of sediment with high metal concentrations: P46, P48, P51 to P54, and P56. Powdermill yielded 15 detections of metal concentrations higher than 1,000 mg/kg.

Concentrations of metals in many of the sediment samples from the six impoundments exceeded sediment-quality guidelines (table 2; figures 9 to 14 describe which sediment concentrations exceeded the TEL and PEL for surface samples only. See tables 3 and 15 to determine exceedances for all sediment samples.)

Arsenic concentrations in samples from all of the impoundments were generally higher than the TEL of 5.9 mg/kg. At Aluminum City and Allen Street, the PEL was not exceeded; in the Hudson impoundment, the PEL of 17 mg/kg was exceeded at four of seven sites; the humancontact guideline of 30 mg/kg was exceeded at H11 and H15 and the landfill-reuse guideline of 40 mg/kg was exceeded at H15. At Gleasondale, the PEC guideline for As was exceeded at G18-G20 and G22, and the human-contact guideline at G18-G20. At Ben Smith, the PEL or PEC was equaled or exceeded at all but two sites in at least one sample. In the Powdermill impoundment, sites noted previously as having sediment samples with multiple, high-concentration detections (P48, P50 to P54, and P56) also had As concentrations exceeding either or both of the human-contact and the landfill-reuse guidelines.

Most of the Cd analyses returned values below the reporting level of 1 mg/kg, leaving uncertainty about the frequency with which the TEL of 0.6 mg/kg was exceeded. The PEL of 3.53 mg/kg or the PEC of 4.98 mg/kg was exceeded in 1 sediment sample at Aluminum City, 2 at Allen Street, none at Hudson, 2 at Gleasondale, 7 at Ben Smith, and 11 at Powdermill. Human-contact and landfill-disposal guidelines for Cd were not exceeded at any of the impoundments.

Only a single sediment sample had a Cr concentration lower than the TEL of 37.3 mg/kg. Most Cr concentrations were higher than the PEC of 111 mg/kg. Eight samples from sites in the Powdermill impoundment (P48, P51-P54, and P56) had Cr concentrations higher than the 1,000 mg/kg maximum concentration allowable for human contact and landfill disposal.

All but two samples from the Aluminum City impoundment had Cu concentrations higher than the PEL of 197 mg/kg. Half of the samples from Allen Street had concentrations of Cu less than the PEC of 149 mg/kg and higher than the TEL of 35.7 mg/kg. At Hudson, 13 of 23 samples had Cu concentrations lower than the TEL and none exceeded the PEC. At Gleasondale also, 23 of 37 samples had concentrations less than the TEL; in samples from sites G19 and G22, the PEL was exceeded. In the Ben Smith impoundment, the PEC was exceeded in samples from five sites (BS30, BS31, BS32, BS34, and BS43) and the PEL was exceeded in two samples (BS30 and BS32). At Powdermill, the PEL was exceeded at the same seven sites (P46, P48, P51, P52, P53, P54, and P56).

In sediment samples from all the impoundments, sediment concentrations of Ni frequently exceeded the 18 mg/kg TEL. At Aluminum City and Allen Street, the PEL (35.9 mg/kg) was not exceeded. At Hudson, samples from sites H10, H13, and H15 had concentrations higher than the PEC (48.6 mg/kg). In the Gleasondale impoundment, the PEC was exceeded at G19 and G22; at Ben Smith and Powdermill, samples from sites BS30, B32, B34, B35, B38, B43, P46, P48, and P50 to P56 had samples with concentrations higher than either the PEL or PEC. All the sediment samples collected at Aluminum City and Allen Street had Pb concentrations that exceeded the TEL (35 mg/kg), and more than half had concentrations that also exceeded the PEC (128 mg/kg). More than half of the samples from Hudson, Gleasondale, and Ben Smith had Pb concentrations lower than the TEL. Most of the other sample Pb concentrations, however, were higher than the PEC; one sample from H10 had a Pb concentration of 324 mg/kg, which exceeded the human-contact guideline of 300 mg/kg, and a sample from BS38 had a Pb concentration of 3,800 mg/kg—higher than the maximum for landfill reuse (2,000 mg/kg). At Powdermill, 12 of the sites had samples with Pb concentrations that exceeded the PEC, and 12 samples had concentrations (at P50 to P54 and P56) higher than the human-contact guideline; none exceeded the landfill-disposal guideline.

The sediment-quality guidelines for Zn are higher than the other metals. Nevertheless, all the samples from Aluminum City had Zn concentrations in excess of the 123 mg/kg TEL; four samples had concentrations that exceeded the PEL (315 mg/kg) or PEC (459 mg/kg). Concentrations in 12 of the 16 samples collected at Allen Street also exceeded the TEL and 5 also exceeded the PEC. At Hudson, most of the samples had Zn concentrations lower than the TEL; none exceeded the PEC, but samples from H13 and H15 had Zn concentrations higher than the PEL. At Gleasondale, concentrations in samples from only sites G18, G19, and G22 exceeded the sediment-quality guidelines. In the Ben Smith impoundment, most of the samples whose concentrations exceeded the Zn guidelines were taken from the upstream area, the Zn PEC was exceeded by concentrations in at least one sample from BS30 to BS32, BS34, and BS38. At Powdermill, Zn concentrations in more than half (21) of the samples exceeded the TEL; 8 of those samples also had Zn concentrations greater than the PEC; 4 were in excess of 1,000 mg/kg.

Reactive Sulfide

Only one sample had a reactive sulfide concentration (1,570 mg/kg) that exceeded the minimum reporting level of 5 mg/kg. The sample came from a completely homogenized, 62-cm core from the Gleasondale impoundment, site G22 (fig. 12). Sediment from this site also exhibited higher concentrations of toxic metals than sediment from the other sites at Gleasondale (table 3).

Organic Analyses

Because only a subset of the cores selected for organicchemistry analyses were sectioned, it is not possible to make broad generalizations about concentration trends with depth. Changes with depth are discussed for individual cores and more general interpretations are based on means or medians of all samples collected within an impoundment.

Matrix interference in all VOC and organochlorinepesticide samples required sample dilution by factors as great as 100. Such dilutions caused reporting levels to increase by the same factors. As a probable result of these effects, the analytical laboratories reported no detections for either category of compound. The lack of detections, however, should not be interpreted to mean that the compounds were absent in the tested samples because the compounds were detected in New England by Harris (1997) and Chalmers (2002). A regional study of organochlorine pesticides in New England conducted from 1992 to 1994 by Harris (1997) reported the detection of dichlorodiphenyltrichloroethane, chlordane, and some of their metabolites, as well as nonachlor and dieldrin. A more recent study (Chalmers, 2002) reported detections of the same compounds in sediments in a different set of New England streams.

Polycyclic Aromatic Hydrocarbons

PAHs are one of the most frequently detected types of compounds in sediments. As particles from incomplete hydrocarbon combustion and in runoff from roads and parking lots, PAHs eventually enter water bodies, adsorb to other particles, and sink to the bottom. These compounds exhibit carcinogenic and mutagenic properties (Somers and others, 2004), and hence may affect human health and aquatic life.

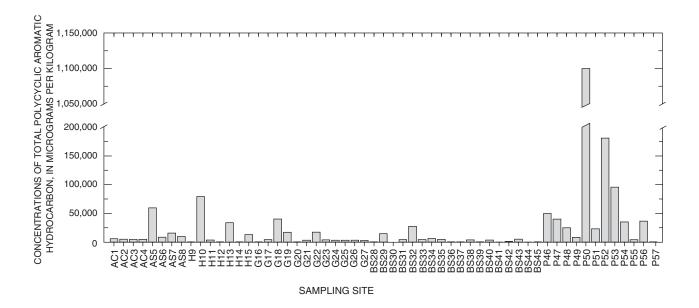
Among the six impoundments, the highest mean and median total PAH concentrations, 89,500 μ g/kg and 16,500 μ g/kg, respectively, were found in sediment samples from the Powdermill impoundment. Samples from Ben Smith had the lowest median total PAH concentration (615 μ g/kg), and Aluminum City had the lowest mean total PAH concentration (2,850 μ g/kg); Ben Smith also had a relatively low mean total PAH concentration (4,520 μ g/kg). In samples from Allen Street, Hudson, and Gleasondale, the mean PAH concentrations were similar, whereas the medians differed considerably in samples from these three impoundments (table 6).

No general total PAH vertical-distribution patterns appear obvious among the sectioned samples (table 16, at back of report). Many seem to decrease with increasing depth (for example, AC4, H13, G18, BS30, BS32, BS38, BS43, P54), while others increase (BS31, P48), and some exhibit no clear trend with depth (AS7, G19, P56). These data demonstrate, at minimum, the variability in the distribution of PAH compounds deposited over time.

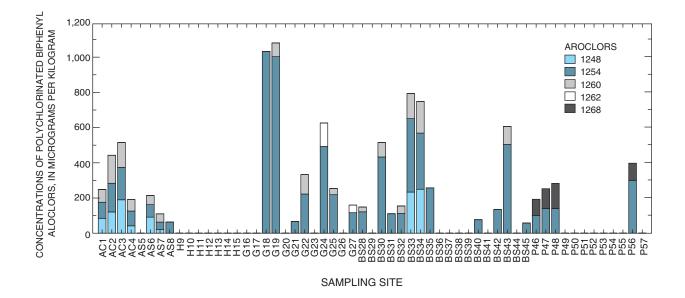
Concentrations of total PAHs in many (9 of 20) of the samples from the Powdermill impoundment exceed the PEC sediment-quality guideline of 22,800 μ g/kg (Ingersoll and others, 2000; table 16). Few samples from the other impoundments exceed this value: Aluminum City (0), Allen Street (1), Hudson (3), Gleasondale (4), and Ben Smith (2) (fig. 15).

Table 6.Median and mean values for total polycyclic aromatichydrocarbon concentrations detected in sediment samples fromsix impoundments in the Assabet River Basin, Massachusetts,2003.

Impoundment	Median	Mean	
Aluminum City	2,950	2,850	
Allen Street	12,100	19,000	
Hudson	1,140	18,900	
Gleasondale	3,000	16,700	
Ben Smith	615	4,520	
Powdermill	16,500	89,500	


A sample from the Powdermill impoundment had the highest total PAH concentration (site P50, 1,100,000 μ g/kg); this impoundment had a sample from one additional site (P52) with a total PAH concentration that exceeded the Massachusetts standard of 100,000 μ g/kg for sediment reuse at lined landfills. Other impoundment sites exhibiting high total PAH concentrations include AS5 and AS7 (Allen Street), H10 and H13 (Hudson), G18 and G19 (Gleasondale), BS30 and BS31 (Ben Smith), and P46, P47, P48, P53, and P56 (Powdermill).

Many samples had concentrations of individual PAH compounds that exceeded PEL and PEC sediment-quality guidelines (tables 3 and 16). The Powdermill impoundment yielded the largest percentage of samples that exceeded the guidelines; Aluminum City and Ben Smith yielded the smallest percentage of samples.


Polychlorinated Biphenyls

Total PCB concentrations and individual Aroclor concentrations differed substantially within and among the impoundments (table 7; fig. 16). No PCBs were detected in any of the Hudson-impoundment samples. Only Aroclors 1248, 1254, and 1260 were detected in samples from Aluminum City, Allen Street, and Ben Smith impoundments; only Aroclors 1254, 1260, and 1262 were detected in Ben Smith; and only Aroclors 1254, 1260, and 1268 were found in samples from Powdermill.

Only one sample, from Gleasondale impoundment site G18, had a total PCB concentration $(3,100 \ \mu g/kg)$ that exceeded the maximum allowable for sediment reuse in lined landfills and for human contact (2,000 $\mu g/kg$); however, all samples except for two (AC4 and BS28) with detectable PCB concentrations exceeded the TEL sediment-quality guideline of 34.1 $\mu g/kg$; about half of the sites (14 of 30) also had total PCB concentrations greater than the PEL of 277 $\mu g/kg$; eight of the sites (G18, G19, BS30, BS33, BS34, BS43, P48, and P56) also had total PCB concentrations that were higher than the PEC of 676 $\mu g/kg$. In addition, most of the samples in which Aroclors 1248, 1254, and 1262 were detected exceeded the PEC values for these individual PCB Aroclors (table 2).

Figure 15. Total polycyclic aromatic hydrocarbon concentrations in core samples from six impoundments in the Assabet River, central Massachusetts, 2003.

Figure 16. Concentrations of selected polychlorinated biphenyl Aroclors detected in core samples from six impoundments in the Assabet River, central Massachusetts, 2003.

Table 7. Concentrations of polychlorinated biphenyl Aroclors in sediment samples from six impoundments in the Assabet River Basin, Massachusetts, 2003.

[All values are in micrograms per kilogram. Minimum reporting level is 0.17 micrograms per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. **Total PCB:** Sum of detectable concentrations of Aroclors rounded to three significant figures. Shaded numbers exceed sediment-quality guidelines. PCB, polychlorinated biphenyl, --, not detected]

Man ID	Completio	Aroclor					
Map ID	Sample ID -	1248	1254	1260	1262	1268	- Total PC
			Aluminu	ım City			
AC1	5	85.2	91	72.6			249
AC2	7	121	163	159			443
AC3	6	190	184	142			516
AC4	8A		126	102			228
AC4	8B	126	100	69.2			295.2
AC4	8C		24.7	25.2			49.9
			Allen S	Street			
AS5	1						
AS6	3	91.2	71.7	51.6			214
AS7	2A	61.3	129	142			332
AS7	2B						
AS7	2C						
AS8	4		63.5				63.5
			Huds	son			
Н9	9						
H10	12						
H10	12Q						
H11	13						
H12	11A						
H12	11B						
H13	14A						
H13	14AQ						
H13	14B						
H13	14BQ						
H13	14C						
H13	14CQ						
H14	10						
H15	15						
			Gleaso	ndale			
G16	34						
G17	39						
G18	35A		3,100				3,100
G18	35B						
G18	35C						
G19	40A		1,960				1,960
G19	40B		1,050	234			1,280
G19	40C						
G19	40CQ						
G20	36						

 Table 7.
 Concentrations of polychlorinated biphenyl Aroclors in sediment samples from six impoundments in the Assabet River Basin,

 Massachusetts, 2003.—Continued
 Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.17 micrograms per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. **Total PCB:** Sum of detectable concentrations of Aroclors rounded to three significant figures. Shaded numbers exceed sediment-quality guidelines. PCB, polychlorinated biphenyl, --, not detected]

	Committee ID			Aroclor			Tatal DOD
Map ID	Sample ID	1248	1254	1260	1262	1268	- Total PCB
			Gleasondale—	-Continued			
G20	36Q						
G21	44		67.2				67.2
G22	41		223	110			333
G23	37						
G24	42		493		133		626
G25	45		219	35.5			254
G26	38						
G27	43		117		42.6		160
			Ben Sr	nith			
DGGG	16						1.40
BS28	16		122	26.7			149
BS29	18						1.550
BS30	17A		1,300	247			1,550
BS30	17B						
BS30	17C						
BS31	19A						
BS31	19AQ						
BS31	19B						
BS31	19BQ						
BS31	19C		332				332
BS31	19CQ						352
BS32	20A		335	130			465
BS32	20B						
BS32	20C						
BS33	21	234	417	142			793
BS34	22	250	319	180			749
BS35	23		258				258
BS36	27						
BS37	29						
BS38	26A						
BS38	26B						
BS38	26C						
BS39	25						
BS40	24		77				77
BS41	28						
BS42	33		136				136
BS43	30A		1,300	309			1,610
BS43	30B		212				212
BS43	30C						
BS44	31						
BS45	32		57.8				57.8

Table 7. Concentrations of polychlorinated biphenyl Aroclors in sediment samples from six impoundments in the Assabet River Basin,

 Massachusetts, 2003.—Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.17 micrograms per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. **Total PCB:** Sum of detectable concentrations of Aroclors rounded to three significant figures. Shaded numbers exceed sediment-quality guidelines. PCB, polychlorinated biphenyl, --, not detected]

Man ID	Comple ID			Aroclor			- Total PCB
Map ID	Sample ID –	1248	1254	1260	1262	1268	- IOLAI PUD
			Powd	ermill			
P46	48		91.7			116	208
P46	48Q		108			69.3	177
P47	49		141			112	253
P48	46A						
P48	46B						
P48	46C		422			424	846
P49	47						
P50	52						
P51	55						
P52	53						
P53	56						
P54	54A						
P54	54B						
P54	54C						
P55	51A						
P55	51B						
P55	51C						
P56	50A		631			177	808
P56	50AQ		726	381		178	1,280
P56	50B		273			113	386
P56	50C						
P57	57						

Extractable Petroleum Hydrocarbons

EPH analysis, the measure of the sum of the concentrations of extractable aliphatic (C_9 to C_{18} and C_{19} to C_{36}) and aromatic (C_{11} to C_{22}) petroleum hydrocarbons, provides data used to evaluate the effect of exposure of these compounds on human health. The sum of the concentrations of these compounds for a particular sample, plus the sum of the 17 PAHs also determined by this method, yields the traditional total petroleum hydrocarbon (TPH) value (Massachusetts Department of Environmental Protection, 2004).

The sources of petroleum hydrocarbons are atmospheric, and include incomplete combustion as well as direct releases of petroleum hydrocarbons. The EPH-method analyses are reported at levels greater than those required for cleanup in drinking-water-resources areas. Because this report previously considered the results of more sensitive analyses for individual PAHs, and because the Massachusetts EPH toxicological approach focuses on human health concerns, this section does not refer to specific PAHs determined by the EPH method.

The Powdermill impoundment had the highest median and mean total EPH concentrations along with the highest concentrations measured in individual samples in this study (table 8). The highest measured total EPH concentration (438 mg/kg from the surface sample at site P54) was at least an order of magnitude less than the maximum allowable concentration for landfill reuse of approximately 5,000 mg/kg (the TPH maximum of 5,000 mg/kg implicitly includes the PAH maximum of 100 mg/kg).

Few samples had individual PAH concentrations that were high enough to be detected by the EPH method (concentration data not included in this report). In the Powdermill impoundment, samples with concentrations high enough to allow detection of individual PAHs by means of the EPH method were taken from sites P46 to P54; the three remaining downstream sites (P55 to P57) were close to the dam and a diversion outlet through which hydraulic conditions may have carried particles with high PAH concentrations out of the impoundment. Two sites at Hudson (H10 and H13) and one at Ben Smith (BS30) also had a few PAHs that were detectable by the EPH method.

Potential for Adverse Biological Effects

Sediment-quality guidelines (Ingersoll and others, 2001; McDonald and others, 2000) were used to evaluate the potential for bottom sediments from the six impoundments to have toxic effects on aquatic biota. The chemical compositions of the Assabet River impoundment sediment samples were compared with the chemistry of sediments known to have toxic effects from a database of 1,657 previous North American sediment-toxicity studies; the guidelines were derived from this database (Ingersoll and others, 2001). Because none of the samples in this database were from New England, regional variability was not considered in interpreting results. The likelihood that any one sample will have a toxic effect, the "incidence of toxicity," refers to the percentage of sediment samples having any negative effect on the growth or survivability of test organisms.

The sediment-quality database incorporates measures by test assays of the growth and survivability of two benthic organisms: the amphipod, *Hyalella azteca* (HA10 and HA28, 10 and 28-day tests, respectively) and an aquatic insect larva, *Chironomous* spp. (CS10 day test). The longer HA28 test is generally more sensitive and provides a higher incidence of toxicity values than the short-term test (Ingersoll and others, 2001).

The USEPA determined PECs for 28 freshwater-sediment contaminants of concern in the major chemical groups of trace metals, PAHs, PCBs, and pesticides (MacDonald and others, 2000; Ingersoll and others, 2001); these contaminants are considered to be reliable predictors of sediment toxicity. PEC values are used to estimate sediment toxicity where adverse conditions for biota are expected. In the development of the sediment-quality guidelines, toxicity predictions were considered reliable if the toxicity was correctly predicted for more than 75% of the sediment samples.

Data from sediment samples were processed as described by MacDonald and others (2000) and Ingersoll and others (2001). Censored data from a particular site were given values equal to one half of the RL. If all data from a site were censored, then concentrations equal to the RL were assigned. After these data filters were applied, individual concentrations of trace elements, PAHs, and PCBs at a particular site were added within their respective groups to yield total values. If the total of nondetected values (that is, the sum of the assigned RLs) at a site was greater than that chemical group's PEC value, then that total was excluded from the calculations. Total values not excluded were divided by their respective PEC values to obtain a PEC quotient.

The PEC quotients of the chemical groups for each site were then summed and averaged and referred to as mean MPP values for that site (MPP refers to Metals, PAHs, and PCBs). In this study, mean MPPs were determined by two methods: (1) an equal-weight mean of the three chemical groups, referred to as MPP(and), and (2) MPP(or), a mean calculated only for metals and PAHs (shown in boldface type in table 9). Because of analytical interferences reported by the laboratory, pesticide values were all less than RLs and were omitted entirely from the toxicity estimations. The mean MPP values were compared to five PEC-quotient ranges developed by Ingersoll and others (2001) to establish a relation between the ranges and the incidences of sediment toxicity determined by the organism tests; the PEC-quotient ranges are: <0.1, 0.1 to <0.5, 0.5 to <1.0, 1.0 to <5.0, and >5.0. For example, a mean MPP range of 0.5 to 1.0 is associated with a 50-percent incidence of toxicity in the HA28 test (Zimmerman and Breault, 2003).

Table 8. Concentrations of extractable petroleum hydrocarbons in sediment samples from six impoundments in the the Assabet River

 Basin, Massachusetts, 2003.

[All concentrations are shown in milligrams per kilogram. Minimum reporting level is 10 milligrams per kilogram. Total EPH and means and medians for each impoundment were calculated using 10 as an estimate for all <10 values where other values were 10 or greater. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier of a sample collected from a particular core, arranged alphabetically from the top of the core. EPH, extractable petroleum hydrocarbon; <, actual value is less than value shown]

Map ID	Sample ID	C9-C18 aliphatic hydrocarbons	C19-C36 aliphatic hydrocarbons	C11-C22 aromatic hydrocarbons	Total EPH
		Alumin	um City		
AC1	5	<10	10	20	40
AC2	7	<10	15	32	57
AC3	6	<10	14	29	53
AC4	8A	<10	<10	26	46
AC4	8B	<10	21	30	61
AC4	8C	<10	<10	12	32
Mean		<10	13	25	38
Median		<10	12.0	27.5	39.5
		Allen	Street		
AS5	1	<10	85	53	148
AS6	3	<10	14	18	42
AS7	2A	<10	38	24	72
AS7	2B	<10	22	22	54
AS7	2C	<10	49	47	106
AS8	4	<10	29	38	77
Mean		<10	40	34	73
Median		<10	33.5	31.0	64.5
		Huc	dson		
Н9	9	<10	<10	20	40
H10	12	<10	<10	27	47
H11	13	<10	<10	14	34
H12	11A	<10	<10	14	34
H12	11B	<10	<10	13	33
H13	14A	<10	<10	26	46
H13	14B	<10	<10	16	36
H13	14C	<10	<10	<10	30
H14	10	<10	<10	14	34
H15	15	<10	<10	<10	30
Mean		<10	<10	17	27
Median		<10	<10	15.0	35.0
		Gleas	ondale		
G16	34	<10	<10	13	33
G17	39	<10	<10	<10	30
G18	35A	71	115	78	264
G18	35B	<10	37	28	75
G18	35C	<10	25	21	56
G19	40A	12	38	43	93
G19	40B	33	76	90	199
G19	40C	<10	<10	17	37
G20	36	<10	11	32	52
G21	44	<10	11	15	36

Table 8. Concentrations of extractable petroleum hydrocarbons in sediment samples from six impoundments in the the Assabet River Basin, Massachusetts, 2003.—Continued

[All concentrations are shown in milligrams per kilogram. Minimum reporting level is 10 milligrams per kilogram. Total EPH and means and medians for each impoundment were calculated using 10 as an estimate for all <10 values where other values were 10 or greater. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier of a sample collected from a particular core, arranged alphabetically from the top of the core. EPH, extractable petroleum hydrocarbon; <, actual value is less than value shown]

Map ID	Sample ID	C9-C18 aliphatic hydrocarbons	C19-C36 aliphatic hydrocarbons	C11-C22 aromatic hydrocarbons	Total EPH
		Gleasondale	Continued		
G22	41	<10	31	30	71
G23	37	<10	22	23	55
G24	42	<10	15	12	37
G25	45	<10	<10	<10	30
G26	38	<10	<10	62	82
G27	43	<10	<10	10	30
Mean		15	26	30	71
Median		<10	12.5	22.0	34.5
		Ben	Smith		
BS28	16	<10	<10	<10	30
BS29	18	<10	11	26	47
BS30	17A	<10	47	39	96
BS30	17B	<10	13	39	62
BS30	17C	<10	14	30	54
BS31	19A	<10	70	38	118
BS31	19B	<10	54	<10	74
BS31	19C	<10	43	<10	63
BS32	20A	11	75	80	166
BS32	20B	<10	31	54	95
BS32	20C	<10	31	58	99
BS33	21	<10	21	49	80
BS34	22	<10	<10	59	79
BS35	23	<10	40	48	98
BS36	27	<10	<10	<10	30
BS37	29	<10	<10	12	32
BS38	26A	<10	15	36	61
BS38	26B	<10	<10	21	41
BS38	26C	<10	<10	11	31
BS39	25	<10	<10	38	58
BS40	24	<10	<10	31	51
BS41	28	<10	<10	<10	30
BS42	33	<10	<10	21	41
BS43	30A	<10	13	34	57
BS43	30B	<10	<10	24	44
BS43	30C	<10	<10	<10	30
BS44	31	<10	<10	11	31
BS45	32	<10	<10	13	33
Mean		<10	64	45	120
Median		<10	46.5	31.0	77.5

Table 8. Concentrations of extractable petroleum hydrocarbons in sediment samples from six impoundments in the the Assabet River

 Basin, Massachusetts, 2003.—Continued

[All concentrations are shown in milligrams per kilogram. Minimum reporting level is 10 milligrams per kilogram. Total EPH and means and medians for each impoundment were calculated using 10 as an estimate for all <10 values where other values were 10 or greater. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier of a sample collected from a particular core, arranged alphabetically from the top of the core. EPH, extractable petroleum hydrocarbon; <, actual value is less than value shown]

Map ID	Sample ID	C9-C18 aliphatic hydrocarbons	C19-C36 aliphatic hydrocarbons	C11-C22 aromatic hydrocarbons	Total EPH
		Powo	lermill		
P46	48	<10	83	61	154
P47	49	<10	12	41	63
P48	46A	<10	<10	<10	30
P48	46B	<10	<10	12	32
P48	46C	<10	101	75	186
P49	47	<10	14	31	55
P50	52	14	54	92	160
P51	55	14	178	31	223
P52	53	<10	24	55	89
P53	56	22	41	118	181
P54	54A	<10	253	175	438
P54	54B	26	171	29	226
P54	54C	10	52	12	74
P55	51A	<10	<10	<10	30
P55	51B	<10	<10	<10	30
P55	51C	<10	<10	<10	30
P56	50A	12	75	45	132
P56	50B	13	142	77	232
P56	50C	10	10	<10	30
P57	57	<10	<10	<10	30
ean		11.9	64.3	44.9	121
edian		<10	46.5	31.0	77.5

 Table 9.
 Incidence of toxicity, in percent, and mean MPP values calculated from Probable Effect Concentration quotients for sediment samples from the six impoundments in the Assabet River Basin, Massachusetts, 2003.

[**Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). Data for HA10, HA28, and CS10 toxicity tests from the U.S. Environmental Protection Agency (2000) and Ingersoll and others (2001). Boldface type indicates Mean MPP (or) method was used because of censored data. All other Mean MPP data were calculated by the Mean MPP (and) method. Sites H13, P46, and P54 were sampled at three depths in the cores indicated by the letter A, B, C appended to the Map ID]

Map ID	Mean MPP	HA10	HA28	CS10	Map ID	Mean MPP	HA10	HA28	CS10
	A	uminum City				Ben S	mith—Contir	nued	
AC1	0.22	26	6	35	BS32	1.47	49	100	50
AC2	.36	26	6	35	BS33	.56	38	50	35
AC3	.37	26	6	35	BS34	.56	38	50	35
AC4	.51	38	50	35	BS35	.35	26	6	35
	-	Allen Street			BS36	.14	26	6	35
					BS37	.16	26	6	35
AS5	0.82	38	50	35	BS38	.18	16	13	17
AS6	.24	26	6	35	BS39	.01	18	10	20
AS7	.84	38	50	35					
AS8	.24	26	6	35	BS40	.18	26	6	35
		Hudson			BS41	.13	26 26	6	35
110	0.22	26	(25	BS42	.19	26	6	35
H9	0.22	26 40	6	35	BS43	1.61	49	100	50
H10	1.12	49	100	50 25	BS44	.13	26	6	35
H11	.18	26 26	6	35	BS45	.08	19	4	29
H12	.12	26	6	35	Powdermill				
H13A	1.09	41	97	43					
H13B	.57	38	50	35	P46A	0.11	26	6	35
H13C	.25	26	6	35	P46B	.16	26	6	35
H14	.12	26	6	35	P46C	1.17	49	100	50
H15	.34	26	6	35	P47	.72	38	50	35
	6	Gleasondale			P48	.18	26	6	35
G16	0.30	26	6	35	P49	.00	18	10	20
G17	.13	26	6	35	P50	2.41	49	100	50
G18	5.31	86	100	78	P51	.24	26	6	35
G19	3.49	49	100	50	P52	3.29	41	97	43
					P53	.29	26	6	35
G20	.29	26	6	35	P54A	1.13	49	100	50
G21	.11	26	6	35	P54B	.07	19	4	29
G22	.48	26	6	35	P54C	.03	18	10	20
G23	.04	18	10	20	P55	19.36	71	97	68
G24	.42	26	6	35	P56	.60	38	50	35
G25	.19	26	6	35	P57	1.75	41	97	43
G26	.05	18	10	20					
G27	.18	26	6	35					
		Ben Smith							
BS28		26	6	25					
	0.12 .33	26 26	6	35 35					
BS29			6						
BS30	1.28	49 18	100	50					
BS31	.05	18	10	20					

Sediment-sample mean MPP values indicated an increasing trend downstream. For simplicity's sake, the incidences of toxicity that were used for comparison were from the HA-28 test, a more sensitive test than the HA10 and CS10 tests. From the Aluminum City impoundment, the highest mean MPP from site AC4 (0.51) was associated with an incidence of toxicity of 50 percent. Allen Street sediment samples from sites AS5 and AS7 both had mean MPP values greater than 0.80 and incidences of toxicity of 50 percent. Two Hudson impoundment sites, H10 and H13, gave samples with high mean MPPs and incidences of toxicity of 100 and 97 percent, respectively. Samples from sites G18 and G19 in the Gleasondale impoundment gave some of the largest mean MPPs of the study: 5.31 and 3.49, respectively, with 100 percent incidences of toxicity. The Ben Smith impoundment had five sites that gave samples with mean MPPs greater than 0.5 and incidences of toxicity of 50 or 100 percent: BS30 (1.28), BS32 (1.47), BS33 (0.56), BS34 (0.56), and BS43 (1.61). A sample from a site in the Powdermill impoundment had the highest mean MPP of the study: P55 (19.36). The Powdermill impoundment also had seven other sites that gave samples with high mean MPPs and incidences of toxicity greater than 50 percent: sites P46 (1.17, in the deepest sediment sample), P47 (0.72), P56 (0.60), P50 (2.41), P52 (3.29), P54 (1.13, in the surface sample), and P57 (1.75).

As a result of the sediment-processing procedures, all incidence-of-toxicity results (figs. 9 to 14) represent the entire core sample except for the results for stations H13, P46, and P54, which include the toxicity at three individual depths within the cores. The incidences of toxicity for the surface sediments at these three sites appear to be higher than for some of the completely homogenized samples (with the exception of site P46, which was effectively a surface-sediment core sample because its total length was less than 30 cm). Likewise, the deepest sediments appear to have lower toxicities than some of the completely homogenized samples. An entire core with retrieval depths more than 60 cm may include preimpoundment sediments that have not been affected by human activities; thus, analytical results of tests on such a core may show a bias toward a lower toxicity. If this hypothesis is valid, the incidences of toxicity presented in this report (with the exception of sites H13, P46, and P54) may be underestimated.

Sediment Distribution and Chemistry— Possible Implications for Sediment Management

The six Assabet River impoundments differed greatly in size and sediment volume, with Aluminum City having a sediment volume of only 380 m³ and Ben Smith 580,000 m³ (table 10). Results of chemical analyses of sediment differed considerably within and among the impoundments. In general, guideline exceedances increased in the downstream direction. The chemical analyses revealed that toxic metal and PAH concentrations exceeded quantitative sediment-quality guidelines in almost all samples. PCBs were not detected in as many samples as metals and PAHs were, but all PCB detections exceeded at least one guideline. Chemical-matrix interference was cited by two laboratories to explain why they did not detect VOCs and organochlorine pesticides in any samples; failure to detect these compounds, however, does not imply their absence.

Regional variability was not taken into consideration in interpreting incidence of toxicity data; nevertheless, there is no reason to expect that the incidence of toxicity data calculated from contaminant concentrations in New England sediments would be different from data calculated from contaminant concentrations in any other region. Approximately one third of the sediment samples could be expected to exhibit toxic effects (lethality, growth inhibition, or reproductive diminution) on test organisms with a likelihood of 50 percent or more. Although USEPA guidelines that focus on the health of aquatic organisms were commonly exceeded in the impoundments, the MDEP guidelines for landfill disposal of dredged materials were exceeded in only a small percentage of samples. If sediment dredging were undertaken, it may be possible to dilute sediments that exceed MDEP disposal standards with less contaminated sediments to produce an acceptable mixture. Selective dam removal or modification (partial removal or lowering of dam crests) might improve aesthetics and, to some extent, restore natural conditions, but could still leave toxic sediments intact or allow them to be transported downstream to the next impoundment.

If adequate disposal areas can be found, these results could be interpreted to suggest that extensive dredging might improve the aquatic habitat of the Assabet River. Dredging could also remove much of the sediment phosphorus, which is most highly concentrated in surficial sediments, but whether this removal would reverse the eutrophic conditions in the impoundments is unknown because the relation between bulksediment phosphorus concentrations and phosphorus availability as an algal nutrient is not well understood. Dredging could create deeper pools with increased thermal stratification and additional potential for sediment-phosphorus release. In addition, the high nutrient concentrations in wastewater effluent from treatment plants may still be sufficient to support nuisance growths of rooted and floating macrophytes and epiphytic algae in the impounded and free-flowing reaches of the river, in which case the dredging would only provide shortterm benefits.

 Table 10.
 Selected characteristics of six impoundments in the Assabet River Basin, Massachusetts. Exceedances listed reflect one or more samples in an impoundment.

Impoundment	Maximum it water depth thick (m)		sediment impoundment '		Impound- ment area (m²)	Chemical groups that exceeded aquatic- life guidelines (PEL or PEC)	Chemical groups that exceeded landfill-reuse guidelines
Aluminum City	1.2	1.0	380	110	1,600	Cr, Cu, Pb, PCB, PAH	Cr
Allen Street	2.5	3.6	42,000	890	28,000	Cd, Cr, Cu, Pb, Zn, PCB, PAH	
Hudson	3.0	2.3	55,000	5,300	89,000	As, Cd, Cr, Cu, Pb, Ni, Zn, PAH	As
Gleasondale	3.3	5.6	67,000	990	55,000	As, Cd, Cr, Cu, Pb, Ni, Zn, PCB, PAH	As, PCB
Ben Smith	3.3	7.5	580,000	11,000	590,000	As, Cd, Cr, Cu, Pb, Ni, Zn, PCB, PAH	As, Pb
Powdermill	2.5	2.7	120,000	4,800	110,000	As, Cd, Cr, Cu, Pb, Ni, Zn, PCB, PAH	As, Cr, Pb, PAH

[PEC, probable effect concentration; PEL, probable effect level; m³, cubic meter; m, meter; m², square meter]

Part 2. Phosphorus Dynamics in a Wastewater-Dominated Impoundment, Hudson, Massachusetts

Introduction

Nutrient total maximum daily loads (TMDLs) are being developed for streams in Massachusetts, many of which have water-quality-impairment issues similar to those of the Assabet River. Recent TMDL assessment and modeling studies of the Assabet River have documented the extent of eutrophication of the river's impoundments and free-flowing reaches, and suggested that phosphorus releases from bed sediments may continue to promote excessive plant growth in the river even if loads from wastewater-treatment plants and other point sources were eliminated (ENSR International, 2001, 2004). Data from environmental-assessment and laboratory studies of phosphorus release from sediments were used by ENSR International to develop and test the model that developed several management scenarios to provide acceptable alternatives for improving water quality enough to meet standards. All alternatives included reductions in phosphorus loadings from treatment plants and from sediments. According to the ENSR International study recommendations, attainment of water-quality standards may entail a combination of removal of the bed sediments, chemical treatment to immobilize sediment phosphorus, or dam removal or breaching to increase flows and disperse some of the sediments. More detailed information on the distribution, transport, and internal cycling of phosphorus between sediments and surface water as well as on external phosphorus loading would help managers select the most cost-effective course of action. A judgment could then be made whether annual fluxes of sediment phosphorus in the river are of sufficient magnitude to require dredging, or if dam removal or breaching can be used to achieve water-quality and other environmental goals.

The relation between bulk-sediment phosphorus concentrations, discussed elsewhere in this report, and the release of phosphorus from sediments remains uncertain. Sediment pore water may contain phosphorus in high enough concentrations to become available to aquatic plants as a nutrient in the water column if conditions permit. Mortimer (1971), Boström and others (1982), and Nürnberg (1988) describe many factors that combine to control the release of sediment phosphorus to the water column. Foremost among these are the oxidationreduction (redox) conditions at the sediment-water interface that control the availability of loosely bound, or adsorbed, phosphorus, and phosphorus that is bound to iron hydroxides. As reducing conditions intensify, phosphorus unbinds and may move into the water column in the form of a dissolved phosphate ion that is available for absorption by aquatic plants. Anoxic conditions are most likely to develop in the deep parts of impoundments during summer and early autumn low-flow periods and perhaps in areas where floating macrophytes (for example, *Lemna* sp.) completely cover the surface; the combination of biochemical oxygen demand in the water column and macrophytes blocking light needed to support oxygen-yielding photosynthesis by algae could create this situation. However, the presence of nitrate is known to suppress the release of phosphorus by maintaining a high redox potential (Golterman, 2004; Tiren and Petterson, 1985; Andersen, 1982); high ambient nitrate concentrations sustained by releases from treatment plants along the Assabet River might produce this effect.

Recent laboratory studies by ENSR International (2001) to determine the potential for Assabet River sediments to release phosphorus sufficient to constitute a substantial fraction of the measured water-column phosphorus mass yielded mixed results. The water column actually lost phosphorus to sediment cores collected in March 2000 and incubated at ambient temperatures. Phosphorus release was observed from cores that were incubated at temperatures elevated above ambient; however, phosphorus released from the sediments amounted to less than 3 percent of the water-column phosphorus. When the water overlying cores collected in September 2000 was allowed to become anaerobic, however, the study reported that the sediments released as much as 170 percent of the pre-existing water-column phosphorus concentrations into the water column. On the other hand, the report noted that the waters in the impoundments rarely became anaerobic. Sediments never previously exposed to anaerobic conditions may have substantial amounts of iron-bound phosphorus that would not have been released under normal (aerobic) conditions.

To resolve uncertainty inherent in extrapolating laboratory results to field conditions, a field study examining changes in concentrations of total phosphorus and orthophosphorus took place from July to September 2003. The purpose of the field study was to determine whether phosphorus was likely to be released from the sediments in concentrations sufficient to negate improved wastewater treatment. Because the project was innovative and funding was limited, only one impoundment was studied.

Site Selection and Sample Collection

The Hudson impoundment was selected for this study because available data indicated that its summer ambient phosphorus concentrations were among the lowest of the six impoundments (ENSR International, 2001); substantial releases of phosphorus would be more easily detected there than in an impoundment with higher ambient concentrations. Furthermore, point sources and tributaries do not contribute significantly to streamflow in this impoundment during lowflow periods.

In this study, field measurements of water-column temperature, dissolved oxygen (DO), and specific conductance were made to determine the extent of hypoxia. In addition, samples were collected from multiple depths in the water column for analyses of chloride, ortho-, and total phosphorus; ortho- and total phosphorus samples were also collected from sediment pore water at selected sites. Different forms of phosphorus were analyzed to determine the proportion of labile (available for plant uptake) phosphate. Estimates of sediment phosphorus fluxes obtained in this way are inherently more realistic than measurements made under laboratory conditions. Thus, this approach was considered better than repeating the TMDL experiments on cores in the laboratory or measuring benthic phosphorus flux rates directly in the impoundments; the latter method would likely give a large range of flux rates and would also be prohibitively expensive.

Reconnaissance and Site Selection

One week before the start of the study, a reconnaissance consisting of preliminary measurements in the water column of DO, specific conductance, pH, and temperature was made at 37 locations to determine sites where sampling would most clearly reveal variations in the water quality. At all sites along the preimpoundment river channel, or thalweg, water-quality measurements showed no stratification. Some areas that did not lie along the thalweg, however, showed signs of potential stratification that could lead to anaerobic conditions and possibly phosphorus release.

Five sites were selected for use in this part of the study (fig. 17): one near the upstream end (17), one at the outlet (37); one off the main channel in a shallow embayment covered with *Lemna* (20); one in a deeper offchannel embayment with rooted macrophytes and some *Lemna* (27); and one in the middle of the impoundment off the main channel in dense, rooted macrophyte beds (29). All rooted macrophytes had heavy coatings of epiphytic algae.

Field Measurements and Collection of Phosphorus and Chloride Samples

From July 16 to September 8, 2003, the Hudson impoundment was monitored once each week in a study to determine whether phosphorus release from sediments could be evaluated in spite of the high background concentrations. Each day, after the water-column-profile measurements were made, water samples for total phosphorus and orthophosphorus and chloride analyses were collected with a stainless-steel pushpoint sampler.

Water samples were collected from the water column at approximately 0.5-m or smaller intervals at five locations with a peristaltic pump attached to pushpoint samplers, stainless-steel rods about 1- or 2-m long that are screened at the tip. The pushpoint samplers are normally used for shallow ground-water sampling. For pore-water sampling, a platform was attached to the bottom of the sampler (fig. 18). When the platform was resting on the sediment surface, the screened tip of the sampler was stabilized at a depth of 5 cm below the surface.

Samples were analyzed for total phosphorus, dissolved phosphorus, and chloride by standard methods (Patten and Truitt, 1992; Fishman, 1993; Strickland and Parsons, 1968; Stauffer, 1983). Total phosphorus and chloride samples were analyzed by the USGS National Water Quality Laboratory, and orthophosphorus samples were analyzed in the USGS Massachusetts-Rhode Island Water Science Center office's laboratory. Differences in phosphorus concentrations in samples from the main river channel and the backwater areas were examined to determine if there was a measurable net release of phosphorus from the sediments. The chloride served as a conservative tracer and check on the calculations of the phosphorus generation from the sediments; a larger upstream than downstream ratio of chloride to total phosphorus would suggest net phosphorus release in the impoundment. It was assumed that there were no unaccounted-for sources of chloride or water in the impoundment.

Quality Control

To ensure quality control of the samples, replicate and blank samples were collected during the study (table 17, at back of report). Replicate samples demonstrated that the method yielded consistent results and supported their reliability. Field-blank analyses showed that neither the equipment nor the procedures employed caused any contamination of the samples that would lead to misinterpretation of data.

Figure 17. Hudson, Massachusetts, impoundment with sampling sites for phosphorus-release dynamics study, July to September 2003.

Figure 18. Platform attached to pushpoint sampler in preparation for porewater sampling. The sampler's screened tip protrudes through a hole in the bottom of the platform.

Field Study of Phosphorus Dynamics

Vertical-profile data collected in 2003 at the five study sites in the Hudson impoundment for total phosphorus, orthophosphorus, and DO concentrations were plotted in relation to time and compared with rainfall data to reveal the relations among phosphorus concentrations in the water column and sediment, DO concentrations in the water column, and the effects of rainfall on total phosphorus storage in the impoundment (fig. 19).

On the first sampling date, July 16, all field measurements indicated minimal, if any, stratification in the water column at any of the sampling stations (table 17; fig. 19). DO profiles were similar, too, with all concentrations approximately 6 to 7 mg/L. As the study period progressed, DO profiles at stations 17 and 37 demonstrated little stratification, while at stations 20, 27, and 29, DO concentrations frequently showed marked stratification.

The mean total phosphorus concentrations of all watercolumn samples were approximately twice the orthophosphorus concentrations at each station (table 11). Mean total phosphorus and orthophosphorus concentrations were generally higher at the midimpoundment stations, 20, 27, and 29, than at 17 and 37. Station 20 had the highest mean total phosphorus and orthophosphorus concentrations, 0.3890 mg/L and 0.155 mg/L, respectively. Medians of total phosphorus concentrations were also approximately twice the orthophosphorus median concentrations. The median total phosphorus concentrations, however, did not differ as much as the mean total phosphorus concentrations, and the median orthophosphorus concentrations ranged only from 0.0550 to 0.0690 mg/L. Table 11.Mean and median total phosphorus and orthophosphorus concentrations, in milligrams per liter, of all samples inthe water column or pore water at each sampling station in theHudson, Massachusetts, impoundment, July to September 2003.

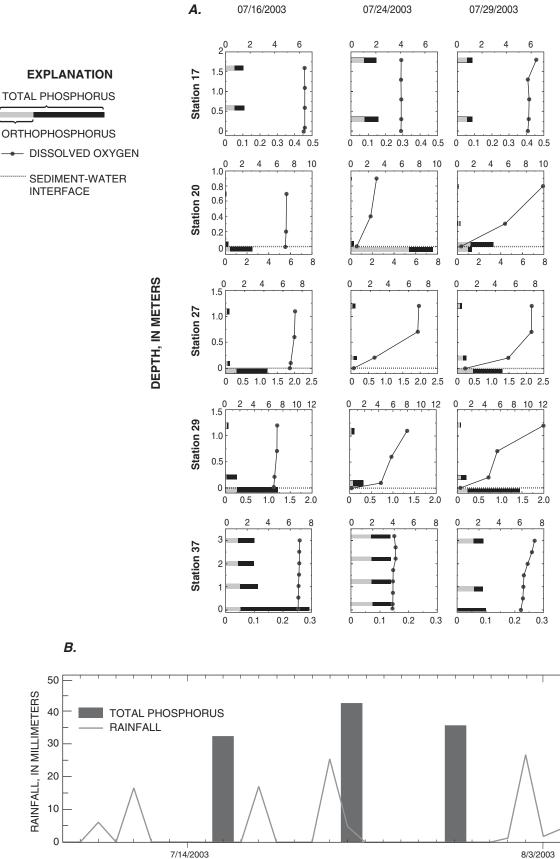
_	M	ean	Ме	dian
Station number	Total phos- phorus	Ortho phos- phorus	Total phos- phorus	Ortho phos- phorus
		Water Colum	าท	
17	0.1365	0.0687	0.1283	0.0550
20	.3890	.1548	.1524	.0605
27	.1483	.0839	.1209	.0660
29	.1860	.0629	.1434	.0690
37	.1246	.0676	.1122	.0590
		Pore Wate	r	
20	2.192	1.148	1.676	0.660
27	.8381	.3244	.6540	.323
29	1.245	.4309	1.2090	.271

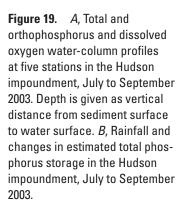
Total phosphorus and orthophosphorus concentrations in the sediment pore water were substantially higher than in the water column, with mean orthophosphorus concentrations several times greater than concentrations in the overlying water. The highest mean and median concentrations of orthophosphorus in sediment pore water were found at station 20, the shallowest station and the one where the surface was always covered with *Lemna*.

Site-Specific Profiles

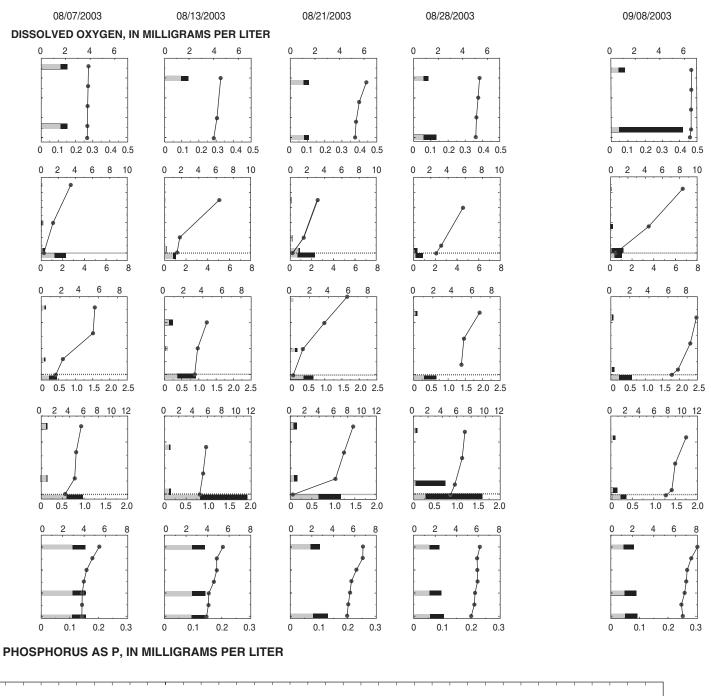
At stations 17 and 37, the impoundment inflow and outflow stations, respectively, total phosphorus and orthophosphorus concentrations were approximately the same on any given date; total phosphorus generally ranged from 0.10 to 0.15 mg/L and orthophosphorus concentrations were generally about two-thirds the concentration of the total. At station 17, on September 8, the sample collected nearest the bottom had the highest concentration of total phosphorus at the site, 0.4200 mg/L, and the DO concentration was 6.56 mg/L (table 17). The total phosphorus concentrations at station 37 were particularly consistent, and indicated a well-mixed condition throughout the water column; on July 16, the bottom sample had a total phosphorus concentration of approximately 0.3 mg/L; otherwise, concentrations were not greater than 0.15 mg/L (fig. 19).

At stations 20, 27, and 29, the bottom and pore-water phosphorus concentrations were higher and varied more with time than concentrations at other depths in the water column (fig. 19). The highest pore-water total phosphorus and orthophosphorus concentrations, approximately 5 and 7 mg/L, respectively, were detected on July 24 at station 20, where total phosphorus concentrations in the pore water had been measured as above 2 mg/L twice. At station 27, measured pore-water total phosphorus concentrations were higher than 1 mg/L twice and were generally about 0.5 mg/L. At station 29, total phosphorus concentrations in the pore water commonly approached or exceeded 1.0 mg/L. Phosphorus concentrations at the lowest levels of the water column and in the pore water did not appear to correlate well among the stations. Low DO concentrations in the water column did not correlate strongly with high phosphorus concentrations in the surface or pore waters. In addition, higher phosphorus concentrations in the samples taken from the greatest depth did not seem to be mirrored by increased concentrations elsewhere in the water column at any given station (fig. 19). This last finding indicated that phosphorus released from the sediments was taken up quickly, adsorbed onto particles, or precipitated when it entered the oxidized zone.


In general, the phosphorus concentrations detected in this study were not as great as previously detected in the ENSR International (2001) study. Hydrologic conditions differed substantially between summers, with 2000 (the ENSR study) being extremely dry and 2003 (this USGS study) moderately wet. ENSR International cited discharges less than 0.57 m³/s, whereas discharges during the present study were about


2.8 m³/s. The higher discharges in 2003 probably contributed to greater dilution of phosphorus, and probably affected flushing rates and stratification dynamics as well.

Changes in Phosphorus Storage


By combining the knowledge gained during the initial bathymetric mapping with the data obtained on phosphorus distribution in the water column, it was also possible to estimate the amount of phosphorus generated internally from the impounded sediment; that is, it was possible to calculate the mass of phosphorus at different depths within the water column to determine if increases were caused by sediment release.

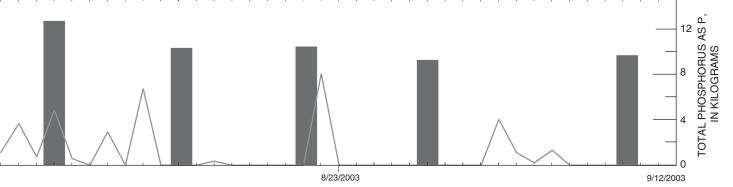

To examine the magnitude of phosphorus release throughout the impoundment during the study period, a geographic information system (GIS) was used to divide the bathymetric map into five sections, each represented by one of the stations in the study, and to estimate the volume of water in a series of 0.5-m-thick vertical layers in each section. The concentration of phosphorus in each layer was multiplied by the layer's volume to give an estimate of the mass of phosphorus in that layer. The masses of phosphorus in the layers were added for each section, as were the sums for all sections, to give the total mass of phosphorus in the impoundment on a given sampling date. This series of estimates was intended to enable a visualization of the hydrologic effect of rainfall on the mass of phosphorus during the summer study period (table 12; fig. 19). Although rains fell frequently during the summer, there were no large storms with torrential rains, which could have destratified and flushed the impoundment. In addition, there were no extended drought-like periods. Storms in late July and early August seemed to precede increases in the mass of total phosphorus; possibly the increases were the result of nonpoint runoff. In August, the one period with frequent rainfall exhibited an increase in phosphorus mass and, after the rainy period ended, the mass of total phosphorus decreased. The rise could be a result of runoff and the drop may be attributable to dilution and flushing of phosphorus from the impoundment. Overall, the data acquired for this study and the estimated areas selected and delineated as representative of the conditions at the five sampling stations indicated no strong relations between rainfall and phosphorus mass. More frequent collection of samples, however, would be needed to establish a definite cause-and-effect relation between the two variables.

Table 12. Estimated phosphorus storage in the Hudson, Massachusetts, impoundment sections, July to September 2003.

[m³, cubic meter]

Station number/	Layer -			Total phosph	orus mass, in l	cilograms, on s	sampling date		
range of layer thickness	volume (m ³)	7-16-03	7-24-03	7-29-03	8-07-03	8-13-03	8-21-03	8-28-03	9-08-03
				Static	on 17				
0–0.5	15,000	1.52	2.18	1.27	2.28	2.05	1.58	1.23	1.23
0.5-1.0	9,400	.95	1.36	.80	1.43	1.28	.99	.77	.77
1.0-1.5	5,600	.60	.84	.48	.84	.76	.59	.59	1.40
1.5-2.0	2,200	.24	.35	.19	.33	.30	.23	.28	.92
2.0–2.3	220	.02	.03	.02	.03	.03	.02	.03	.09
Total		3.33	4.76	2.75	4.92	4.43	3.43	2.90	4.42
				Statio	on 20				
0–0.5	4,000	0.42	0.30	0.31	0.40	0.29	0.39	0.23	0.22
0.5–1.0	3,100	.60	.51	.68	.47	.38	.47	.59	.66
1.0–1.5	340	.10	.09	1.06	.11	.06	.28	.11	.38
Total		1.11	0.90	2.05	0.98	0.73	1.13	0.93	1.27
				Statio	on 27				
0-0.5	5,100	0.49	0.61	0.65	0.70	0.07	0.59	0.53	0.38
0.5-1.0	7,400	.81	1.08	1.42	.93	.37	1.17	.76	.67
1.0-1.5	920	.11	.16	.24	.10	.08	.18	.23	.10
1.5-2.0	440	.05	.08	.11	.05	.04	.09	.17	.05
Total		1.47	1.92	2.43	1.79	0.56	2.04	1.69	1.20
				Static	on 29				
0-0.5	3,900	0.28	0.43	0.30	0.56	0.50	0.62	0.31	0.36
0.5–1.0	1,900	.31	.40	.27	.28	.25	.31	.77	.22
1.0–1.5	590	.16	.18	.12	.09	.08	.10	.43	.08
Total	-	0.75	1.02	0.69	0.93	0.84	1.03	1.51	0.67
				Statio	on 37				
0–0.5	9,200	0.91	1.26	0.84	1.40	1.29	0.95	0.80	0.74
0.5–1.0	7,900	.78	1.09	.72	1.21	1.12	.86	.64	.65
1.0–1.5	6,600	.66	.91	.60	1.01	.93	.76	.54	.56
1.5-2.0	3,200	.36	.44	.29	.50	.46	.38	.31	.28
2.0–2.5	900	.12	.13	.09	.14	.13	.02	.09	.08
2.5–2.8	90	.01	.01	.01	.01	.01	.01	.01	.01
Total	-	2.84	3.84	2.54	4.28	3.94	2.99	2.38	2.31
Total in all	_								
sections		9.49	12.44	10.46	12.90	10.50	10.62	9.42	9.88

To determine whether there was a net export of phosphorus from the Hudson impoundment as a result of sediment release, the ratio of chloride to total phosphorus in the water column was traced during the study (table 13). With no known inputs of phosphorus or chloride besides inflowing water or sediment, sediment release would be expected to cause increases in total P concentrations and a lowering of the ratio. Comparison of the ratio for the upstream, influent site (station 17) with the downstream outflow site (station 37) demonstrated no decreasing trend from upstream to downstream, as would be expected if sediments released phosphorus that was transported to the outflow; the values were not statistically different (p=0.3551). This information suggests that there was no net gain of total phosphorus in the water column from the upstream to the downstream end of the impoundment. However, the data leave open the possibility that any phosphorus releases were rapidly cycled internally, either taken up by rooted or floating plant life or settled to the bottom as particulate matter.

Phosphorus Dynamics in the Hudson Impoundment

Phosphorus release from sediments is largely limited to those parts of the impoundment in which DO becomes depleted near the sediment-water interface; this depletion mainly occurs in offchannel areas where advection does not cause mixing. Because the temperature profiles do not indicate strong stratification, these low DO conditions probably do not persist for long periods of time; they may easily be disrupted by wind-induced mixing or light rain storms that increase local flows. The results of the phosphorus-dynamics study in the Hudson impoundment suggest that sediment release of

phosphorus does not substantially affect the mass of phosphorus in the impoundment's water column; from the hypoxic zone nearest the impoundment bottom, the DO concentrations increase toward the water surface. Two phenomena may prevent sediment phosphorus from mixing throughout the water column. First, high concentrations of nitrate may maintain high redox potentials and keep the iron in an oxidized state. Second, any phosphorus that is not taken up by plants after being released from the sediments may form colloids with iron hydroxides in the vicinity of the sediment-water interface; the precipitation of the colloids would inhibit phosphorus movement from sediments to the water column. However, the elevated mean and median concentrations of total phosphorus and orthophosphorus in the embayment areas of the impoundment in comparison to the main channel suggest that morphology and hydrodynamics play a large role in phosphorus dynamics in these impoundments. A more detailed phosphorusbudget study, including phosphorus transport and deposition and detailed analysis of the forms of phosphorus, might help define the effect of sediment phosphorus on the overall water quality in this and the other Assabet River impoundments.

Table 13. Ratios of chloride to total phosphorus at the inflowand outflow of the Hudson, Massachusetts, impoundment, July toSeptember 2003.

Date	Inflow (station 17)	Outflow (station 37)
7-24-03	810	890
7-29-03	1,700	1,600
8-07-03	720	720
8-13-03	820	820
8-21-03	1,200	1,200
8-28-03	2,000	1,700
9-08-03	1,800	1,800

Summary

This study of the quantity, distribution, and chemistry of sediments in six impoundments on the Assabet River was undertaken during the summer and early fall of 2003 in cooperation with the Massachusetts Department of Environmental Protection and the U.S. Environmental Protection Agency. The results of the study provide information to enable managers, regulators, and other stakeholders to make informed decisions regarding the management of sediment to improve the river's sediment and water quality.

This two-part report provides the results of an assessment of the sediment extent and chemistry in six impoundments in the Assabet River and describes the study of the potential for the release of phosphorus from sediment to affect water quality in the Hudson impoundment. Obtaining data about the distribution of phosphorus in the sediments and the concentrations of phosphorus in the water column links the two parts of this study. Sediment volumes in the impoundments ranged from 380 cubic meters to 580,000 cubic meters. The interpretations of bulk-sediment chemistry data in this report include results of analyses for polycyclic (or polynuclear) aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), extractable petroleum hydrocarbons (EPH), reactive sulfide, and a selected group of metals and other elements, including phosphorus. Contract laboratories were unable to obtain data for organochlorine pesticides and volatile organic compounds (VOCs) because of matrix interference and sample dilution. The concentrations of these chemical constituents in the sediments are compared to standards for the disposal of dredged hazardous materials, for human contact, and for potential effects, including toxicity, on aquatic organisms.

The incidence of toxicity calculations show that approximately one third of the surficial sediment samples may be expected to have some toxic effect on test organisms. These effects may include mortality, diminished growth, and reduced reproductive capacity. Although the database used to estimate the incidence of toxicity did not contain results of toxicity testing for New England sediments, the calculated values are based on contaminant concentrations and should not be affected by regional differences. If no action is taken to mitigate the effects of sediment toxicity, efforts to restore the Assabet River may not be fully successful.

Bulk-sediment phosphorus concentrations generally decreased with depth below the sediment surface and generally increased in the downstream direction. Concentrations of phosphorus in the bulk-sediment samples ranged from less than 0.1 percent to 0.86 percent. If the amount of sediment removal required to deplete the mass of phosphorus to levels that will not adversely affect water-column concentrations of phosphorus can be calculated, then the bulk-sedimentphosphorus data should prove useful in mapping the areas to be dredged. However, the relations between bulk-sedimentphosphorus concentrations and phosphorus availability as an aquatic-plant nutrient have not been determined in the six impoundments that are the subjects of this study.

The analytical results of the first part of the study show that the distribution of potentially hazardous or toxic materials in the sediments is extremely complex. Concentrations of toxic metals, PAHs, and PCBs exceeded U.S. Environmental Protection Agency guidelines for the protection of aquatic life in most of the impoundments. PCBs were not detected only in the Hudson impoundment. The Powdermill impoundment had the largest number of contaminants exceeding Massachusetts Department of Environmental Protection guidelines for landfill disposal of sediments.

During the two-month period of the study of the Hudson impoundment, the water column in the areas of the impoundment studied did not stratify long enough to allow substantial amounts of phosphorus to be released from underlying sediments. High concentrations of nitrate in the water column may also have prevented favorable conditions for phosphorus release. A comparison of changes in phosphorus storage did not indicate that the total mass of phosphorus increased with time, only to be dispersed by storm-generated increases in streamflow; rather, there was a suggestion that increases in the calculated mass of phosphorus were associated with storm runoff into the impoundment. On the basis of the ratio of chloride to total phosphorus, changes in phosphorus concentrations in the stratified areas of the impoundment did not lead to increases in the mass of phosphorus in the water column and to increases in the net phosphorus transport out of the impoundment. This result indicates that phosphorus was either released from the sediments in less than measurable amounts or that it was absorbed quickly before it could be transported out of the impoundment.

Acknowledgments

Successful completion of the mapping, sediment sampling field work, and sample processing could not have been accomplished without the assistance of the USGS Massachusetts-Rhode Island Water Science Center staff members David Armstrong, Lora Barlow, Kimberly Campo, Leslie DeSimone, Jonathan King, Paul Nardone, Lance Ostiguy, Vicki-Rose Siegel, Britt Stock, Bruce Taggart, and Marcus Waldron. USGS colleague reviewers Jonathan Morrison and John Colman made valuable technical recommendations that substantially improved this report. The entire staff of the Water Science Center's Publications Unit - Mary Ashman, Mark Bonito, Matthew Cooke, Christine Mendelsohn, and Anne Weaver — is thanked for their patience and support. The Organization for the Assabet River not only enthusiastically encouraged this project, but also provided maps and insights that made our work easier.

References

Andersen, J.M., 1982, Effect of nitrate concentration in lake water on phosphate release from the sediment: Water Research, v. 16, p. 1119–1126.

Boström, B., Jansson, M., and Forsberg, C., 1982, Phosphorus release from lake sediments: Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie, v. 18, p. 5–59.

Chalmers, A.T., 2002, Trace elements and organic compounds in streambed sediment and fish tissue of coastal New England streams, 1998–99, U.S. Geological Survey Water-Resources Investigations Report 02-4179, 30 p.

ENSR International, 2001, SuAsCo Watershed Assabet River TMDL Study, Phase One: Assessment, Final Report, variously paged.

ENSR International, 2004, SuAsCo Watershed Assabet River TMDL Study, Phase Two: Analysis, Final Report, variously paged.

ESRI, Inc., 2002, Arc/Info, version 8.3, Redlands, CA.

Fishman, M.J., ed., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory— Determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93-125, 217 p.

Golterman, H.L., 2004, The chemistry of phosphate and nitrogen compounds in sediments: Dordrecht, The Netherlands, Kluwer Academic Publications, 251 p.

Harris, S.L., 1997, Inorganic and organic constituents and grain-size distribution in streambed sediment and ancillary data for the Connecticut, Housatonic, and Thames River Basins Study Unit, 1992–94: U.S. Geological Survey Open-File Report 96-397, 39 p.

Ingersoll, C.G., McDonald, D.D., Ning, W., Crane, J.L., Field, L.J., Haverland, P.S., Kemble, N.E., Lindskoog, R.A., Severn, C., and Smorong, D.E., 2001, Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines: Archives of Environmental Contamination and Toxicology, v. 41, p. 81–21.

Massachusetts Department of Environmental Protection, 1995, Interim policy for sampling, analysis, handling and tracking requirements for dredged sediment reused or disposed at Massachusetts permitted landfills, accessed on June 24, 2005, at http://www.mass.gov/dep/bwp/dswm/files/dredge. htm1 Massachusetts Department of Environmental Protection, 2002, Characterizing risks posed by petroleum contaminated sites: Implementation of the MADEP VPH/EPH Approach, last viewed on April 22, 2004 at http://www.mass.gov/dep/ bwsc/files/02-411.pdf.

Massachusetts Department of Environmental Protection, 2004, Method for the determination of extractable petroleum hydrocarbons (EPH), last viewed on December 15, 2004, at http://www.mass.gov/dep/bwsc/files/data/eph0504.pdf.

McDonald, D.D., Ingersoll, C.G., and Berger, T.S., 2000, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems: Archives of Environmental Contamination and Toxicology v. 39, p. 20–31.

Mortimer, C.H., 1971, Chemical exchanges between sediments and water in the Great Lakes—Speculations on probable regulatory mechanisms: Limnology and Oceanography, v. 16, p. 387–404.

Nürnberg, G.K., 1988, Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments: Canadian Journal of Fisheries and Aquatic Science, v. 45, p. 453-461.

Patton, C.J., and Truitt, E.P., 1992, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of total phosphorus by a Kjeldahl digestion method and an automated colorimetric finish that includes dialysis: U.S. Geological Survey Open-File Report 92-146, 39 p.

Robinson, G.R., Jr., Kapo, K.E., and Grossman, J.N., 2004, Chemistry of stream sediments and surface waters in New England, U.S. Geological Survey Open-File Report 2004-1026, accessed on April 26, 2004, at http://pubs.usgs.gov/ of/2004/1026/

Scott, J. C., 1990, Computerized stratified random site-selection approaches for design of a ground-water-quality sampling network: U.S. Geological Survey Water-Resources Investigations Report 90-4101, 109 p.

Somers, C.M., McCarry, B.E., Malek, F., and Quinn, J.S., 2004, Reduction of particulate air pollution lowers the risk of heritable mutations in mice: Science, v. 304, p. 1008–1010.

Stauffer, R.E., 1983, Determination of arsenic and phosphorus compounds in groundwater with reduced molybdenum blue: Analytical Chemistry, v. 555, p. 1205–1210.

- Strickland, J.D.H., and Parsons, T.R., 1968, A practical handbook of seawater analysis: Ottawa, Canada, Fisheries Research Board of Canada, Special Publication No. 167, 311 p.
- Tiren, T., and Petterson, K., The influence of nitrate on the phosphorus flux to and from oxygen depleted lake sediments: Hydrobiologia v. 120, p. 207–223.
- U.S. Environmental Protection Agency, 1996a, Volatile organic compounds by gas chromatography/mass spectrometry (GC/MS), accessed on March 3, 2004, at http://www. epa.gov/epaoswer/hazwaste/test/pdfs/8260b.pdf.
- U.S. Environmental Protection Agency, 1996b, Titrimetric procedure for acid-soluble and acid insoluble sulfides, accessed on March 5, 2004 at http://www.epa.gov/epaoswer/hazwaste/test/pdfs/9034.pdf.

- U.S. Environmental Protection Agency, 1996c, Polychlorinated biphenyls (PCB) by gas chromatography, accessed on March 5, 2004, at http://www.epa.gov/epaoswer/hazwaste/ test/pdfs/8082.pdf
- U.S. Environmental Protection Agency, 1996d, Organochlorine pesticides by gas chromatography, accessed on March 5, 2004, at http://www.epa.gov/epaoswer/hazwaste/ test/pdfs/8081a.pdf.
- U.S. Environmental Protection Agency, 2000, Standard operating procedure for the extraction and analysis of polynuclear aromatic hydrocarbons (PAH) in solid samples using SIM-BC/MS analysis, USEPA Region I SOP: EIA-PAH in soil (PAH) PAHSOLL.SOP, 33 p.
- Zimmerman, M.J., and Breault, R.F., 2003, Sediment quantity and quality in three impoundments in Massachusetts, U.S. Geological Survey Water-Resources Investigations Report 03-4013, 36 p.

Tables 14–17

[[]Quantity in brackets is detection limit. All values are in milligrams per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. NA, not applicable because of nondetects; <, actual value is less than value shown]

Map ID	Sample ID	Arsenic [3]	Cadmium [1]	Chromium [1]	Copper [0.5]	Lead [2]	Nickel [1]	Zinc [0.5]
				Aluminum City				
AC1	5	5	1	145	309	85	22	183
AC2	7A	9	2	96	256	74	22	249
AC2	7B	9	3	124	768	182	28	397
AC2	7C	7	1	171	189	67	18	155
AC3	6A	10	2	145	286	95	22	278
AC3	6B	16	4	174	844	180	30	495
AC3	6C	15	2	183	362	238	24	296
AC4	8A	12	2	103	262	65	24	223
AC4	8B	7	2	153	502	78	24	291
AC4	8C	6	3	2,070	196	65	31	1,220
Mean		10	2	336	397	113	25	379
Median		9	2	149	298	82	23	285
				Allen Street				
AS5	1A	8	<1	177	42.9	84	17	211
AS5	1B	11	1	209	55.3	149	14	184
AS5	1C	10	<1	85	44.8	113	16	136
AS5	1D	6	<1	97	25.5	143	16	83.4
AS6	3A	11	4	142	515	229	33	487
AS6	3B	16	<1	224	53.7	150	19	182
	3D 3C	7	<1	149	16.9	58	19	78.3
AS6								
AS7	2A	13	3	340	110	241	30	827
AS7	2B	11	3	242	59.2	146	18	474
AS7	2C	12	2	137	60.4	154	17	351
AS7	2D	8	<1	128	29.6	185	19	87.3
AS8	4A	12	2	152	188	90	24	281
AS8	4B	11	4	208	807	176	31	551
AS8	4C	12	3	158	300	201	27	515
AS8	4D	14	1	155	51.5	110	23	221
AS8	4E	9	<1	90	18	218	15	54
Mean		11	NA	168	149	153	21	295
Median		11	1	154	55	150	19	216
				Hudson				
Н9	9	8	<1	129	12.7	12	14	35
H10	12A	15	2	104	119	324	41	212
H10	12B	20	2	130	78.9	243	24	300
H10	12C	8	<1	114	92.6	118	22	122
H10	12D	5	<1	28	8.2	8	8	14.6
H10	12E	9	<1	54	14.4	9	12	16
H11	13A	24	1	228	131	129	38	288
H11 H11	13A 13B	8	<1	164	7.2	129	14	19.4
H11 H11	13B 13C	27	<1	93	5.9	9	22	38.7
H11	13D	38	1	111	5.4	9	33	62.7

[Quantity in brackets is detection limit. All values are in milligrams per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. NA, not applicable because of nondetects; <, actual value is less than value shown]

Map ID	Sample ID	Arsenic [3]	Cadmium [1]	Chromium [1]	Copper [0.5]	Lead [2]	Nickel [1]	Zinc [0.5]
			Hu	ıdson—Continue	d			
H12	11A	4	<1	155	7	6	20	28.1
H12	11B	3	<1	186	3.3	3	14	18.9
H13	14A	14	3	161	120	266	57	410
H13	14B	21	2	213	67.4	274	36	422
H13	14C	9	<1	304	22.9	146	29	66.1
H13	14D	5	<1	220	7.6	5	14	12.7
H13	14E	3	<1	144	4.3	4	11	16.2
H14	10A	9	<1	237	27.3	20	32	77
H14	10B	5	<1	134	4.1	6	12	20.7
H15	15A	20	2	208	141	283	86	406
H15	15B	25	1	193	96.1	218	29	365
H15	15C	17	<1	159	40.3	65	22	69
H15	15D	101	<1	85	3.4	20	11	21.8
Mean		17	NA	155	44	95	26	132
Median		9	<1	155	14	20	22	63
				Gleasondale				
G16	34A	4	<1	77	7.2	16	12	18.6
G16	34B	<3	<1	127	8	13	16	32.1
G16	34C	3	<1	114	3.5	8	17	27.6
G17	39A	5	<1	173	8.2	6	16	29.2
G17	39B	<3	<1	158	7.6	4	15	22.3
G17	39C	6	<1	155	9.5	4	16	28.5
G17	39D	6	<1	191	8.2	3	17	24.3
G18	35A	34	3	404	115	186	33	369
G18	35B	32	2	203	111	221	23	484
G18	35C	46	1	313	122	186	22	315
G18	35D	19	1	99	125	141	18	262
G18	35E	17	<1	333	128	125	22	180
G19	40A	19	12	326	261	254	91	464
G19	40B	75	3	195	162	232	26	518
G19	40C	50	2	257	144	198	24	358
G19	40D	7	<1	237	72	69	19	101
G19	40E	3	<1	209	5.6	4	12	19.6
G20	36A	7	<1	125	8.7	9	15	31.4
G20	36B	5	<1	118	7	6	14	24.2
G20	36C	<3	<1	125	7.7	5	15	38.7
G20	36D	10	<1	112	13.2	6	18	31.2
G20	36E	41	1	39	38.8	5	28	93.8
G21	44	8	<1	373	24.8	30	22	71
G22	41A	17	7	284	405	233	149	485
G22	41B	20	3	367	102	145	44	248

[[]Quantity in brackets is detection limit. All values are in milligrams per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. NA, not applicable because of nondetects; <, actual value is less than value shown]

Map ID	Sample ID	Arsenic [3]	Cadmium [1]	Chromium [1]	Copper [0.5]	Lead [2]	Nickel [1]	Zinc [0.5]
			Glea	sondale—Contin	ued			
G22	41C	14	<1	409	81.6	87	22	142
G23	37A	<3	<1	219	10.2	17	15	31.7
G23	37B	7	<1	246	9.2	12	13	36.8
G23	37C	5	<1	192	17.7	23	13	47.6
G23	37D	14	<1	286	153	147	23	191
G24	42A	14	<1	101	7.1	20	17	33.7
G24	42B	9	<1	149	4.6	9	17	25.3
G25	45	5	<1	223	7	9	11	23.7
G26	38A	11	<1	64	7.9	11	9	15
G26	38B	16	<1	96	10.7	8	9	15.9
G26	38C	16	<1	194	7.8	4	24	34.2
G27	43	7	<1	295	33.3	66	24	84.2
Mean		17	NA	205	61	68	24	134
Median		11	<1	194	11	16	17	37
				Ben Smith				
BS28	16A	9	<1	157	23.2	30	20	82.8
BS28	16B	8	<1	195	11.4	15	15	50.1
BS29	18A	7	<1	157	19.2	26	14	43.9
BS29	18B	6	<1	100	5.4	13	9	5.7
BS29	18C	5	<1	174	3.5	12	16	9.8
BS30	17A	24	7	293	201	204	98	515
BS30	17B	52	3	250	118	188	31	617
BS30	17C	64	3	353	128	179	31	637
BS30	17D	18	<1	241	102	95	23	165
BS30	17E	<3	<1	79	5.8	10	8	3.2
BS31	19A	82	2	397	121	178	32	479
BS31	19B	35	<1	298	167	166	29	281
BS31	19D	17	<1	210	72.6	74	23	112
BS31 BS31	19D	5	<1	197	7.5	9	20	21.6
BS31 BS31	19E	6	<1	236	8.3	6	20	16.8
BS32	20A	17	7	170	318	192	132	492
BS32 BS32	20R 20B	35	5	170	124	263	36	481
BS32 BS32	20D 20C	6	<1	115	14.8	12	16	34.4
BS32 BS32	20C 20D	6	<1	48	9.4	6	10	23
BS32 BS32	20D 20E	9	<1	165	10.6	6	12	29.8
BS33	21A	35	2	179	123	144	26	334
BS33	21A 21B	8	<1	85	123	20	20 16	30.9
BS33 BS33	21B 21C	8 4	<1	85 85	7.5	20	10	21.6
	21C 21D			132	7.5 8.9			21.0
BS33		4	<1			7	17	
BS33	21E	3	<1	151	8.3	6	16	26.6

[Quantity in brackets is detection limit. All values are in milligrams per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. NA, not applicable because of nondetects; <, actual value is less than value shown]

Map ID	Sample ID	Arsenic [3]	Cadmium [1]	Chromium [1]	Copper [0.5]	Lead [2]	Nickel [1]	Zinc [0.5]
			Ber	n Smith—Continu	ıed			
BS34	22A	34	7	249	175	213	59	484
BS34	22B	9	<1	195	15.4	18	15	38.3
BS34	22C	<3	<1	94	6.6	7	14	19.4
BS35	23A	39	3	175	116	160	47	446
BS35	23B	61	2	213	101	164	27	458
BS35	23C	11	<1	135	18.9	72	15	37.5
BS36	27A	8	<1	58	3.9	10	14	26.4
BS36	27B	19	<1	176	4	10	18	27.8
BS36	27C	55	<1	88	3.2	12	18	26.8
BS36	27D	82	<1	54	2.7	11	14	24.2
BS37	29A	17	<1	152	23.2	32	16	62.2
BS37	29B	8	<1	99	2.2	10	12	18.4
BS37	29C	4	<1	130	1.7	11	13	18.7
BS38	26A	71	4	160	131	3,800	46	483
BS38	26B	59	2	245	122	160	28	390
BS38	26C	19	<1	167	67.8	80	22	110
BS38	26D	11	<1	147	5.8	13	23	13.7
BS38	26E	9	<1	75	5.1	10	28	44.6
BS39	25A	17	<1	184	13.6	25	25	53.7
BS39	25B	11	<1	246	11.1	11	26	29
BS40	24A	14	<1	216	13.4	16	27	36.9
BS40	24B	8	<1	130	3.5	8	17	23.8
BS40	24C	14	<1	151	4.6	9	25	27
BS41	28A	14	<1	237	4.5	8	18	23.4
BS41	28B	83	<1	91	2.7	14	18	22.3
BS42	33A	12	<1	239	38.6	50	21	81.1
BS42	33B	10	<1	383	41.2	29	19	43.4
BS43	30A	21	5	132	167	160	68	386
BS43	30B	41	4	182	117	157	47	422
BS43	30C	36	<1	167	94.2	125	22	213
BS43	30D	19	<1	140	21.4	32	17	47
BS43	30E	8	<1	94	2.8	11	11	13.3
BS44	31A	6	<1	254	5.5	5	12	16.6
BS44	31B	5	<1	271	11.7	18	11	22.6
BS45	32A	<3	<1	180	3.8	3	11	14.9
BS45	32B	4	<1	228	10.3	8	14	18.9
Iean		22	NA	177	49	121	25	144
/Iedian		13	<1	170	13	16	19	37

[[]Quantity in brackets is detection limit. All values are in milligrams per kilogram. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. NA, not applicable because of nondetects; <, actual value is less than value shown]

Map ID	Sample ID	Arsenic [3]	Cadmium [1]	Chromium [1]	Copper [0.5]	Lead [2]	Nickel [1]	Zinc [0.5]
				Powdermill				
P46	48	21	2	899	280	233	40	289
P47	49	8	<1	394	50.9	110	30	152
P48	46A	34	1	1,290	257	259	26	162
P48	46B	20	<1	238	31.6	23	31	75.2
P48	46C	62	<1	129	17.2	11	45	47
P49	47	5	<1	268	19.4	58	27	59.3
P50	52A	15	2	272	109	231	54	331
P50	52B	13	2	339	123	261	77	298
P50	52C	11	1	311	78.3	244	41	183
P50	52D	22	4	478	128	174	35	306
P50	52E	36	<1	291	55	318	20	93.2
P51	55A	31	5	1,060	839	594	60	1,140
P51	55B	58	3	1,830	386	343	24	1,010
P51	55C	<3	<1	97	22.4	12	51	10.8
P51	55D	6	<1	128	40	7	52	17.5
P52	53A	16	2	399	100	167	56	354
P52	53B	13	4	404	184	371	53	339
P52	53C	101	7	2,270	330	621	29	726
P52	53D	20	<1	421	194	115	21	163
P52	53E	10	<1	302	26.8	71	25	44.8
P53	56A	18	6	416	669	580	272	379
P53	56B	47	4	1,550	277	515	54	424
P53	56C	66	8	1,970	545	419	26	1,010
P54	54A	44	7	1,530	3430	1,030	69	905
P54	54B	6	<1	148	49.8	29	14	388
P54	54C	<3	<1	106	14.6	14	10	62.6
P55	51A	9	<1	248	78	54	46	99.6
P55	51B	6	<1	179	10.5	11	21	33.2
P55	51C	9	<1	173	6.2	7	22	31.4
P55	51D	6	<1	274	5.5	7	29	28.7
P55	51E	4	<1	240	5.9	7	30	29.3
P56	50A	17	6	332	720	411	179	572
P56	50B	28	10	786	910	1,250	84	1,200
P56	50C	48	9	1,320	459	305	28	703
P56	50D	9	<1	187	23.7	40	26	48.2
P56	50E	<3	<1	221	9.1	7	13	10.3
P57	57	<3	<1	272	18	45	30	66.9
Mean		25	NA	588	284	242	47	319
Median		17	<1	311	78	167	30	163

Table 15. Results of all elemental analyses performed by SGS Canada, Inc., Mineral Services, Toronto, Ontario, Canada, of sediment samples from six impoundments in the Assabet River Basin, Massachusetts, 2003.
[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabeti- cally from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

Magne- sium (%) [0.01]		0.45	36	41	.29	.34	.45	.43	.36	.36	.35	.35		0.34	.32	.28	.35	.34	.44	.34	.3	.43 2	10	.33	.38	.32	.39 43		10.
Lithium N (ppm) [1]		ر د	1 -	- 6	- -	$\overline{}$	5	3	7	$\overline{\lor}$	1	<1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	v.	3	$\overline{\lor}$	\vec{v}	- -	Ī	\sim	<u>~</u>	- V	√ ~~) ,	
Lead I (ppm) [2]		85	74	182	67	95	180	238	65	78	78	65		84	80	149	113	143	229	150	58	241	140	154	185	60	176 185		201
Lanth- anum (ppm) [0.5]		15.1	15.51	15.6	10.4	15.6	18.1	16.4	15.2	14.1	13.9	11.1		10.4	10.7	9.2	11.7	10.4	17.2	12.4	13.6	15.6	17.1	13.2	14	13.8	16.9 17.6		C.41
lron (%) [0.01]		1 87	1.75	1.87	1.5	1.63	2.15	2.2	1.51	1.62	1.6	1.68		1.48	1.43	1.16	1.47	1.37	1.93	1.46	1.45	2.35	1.40	1.5	1.39	1.93	2 2 05		1.05
Copper (ppm) [0.5]		300	256	768	189	286	844	362	262	502	501	196		42.9	42.7	55.3	44.8	25.5	515	53.7	16.9	110	7.60	60.4	29.6	188	807 820		500 51 5
Cobalt (ppm) [1]		0	- 1	; [12	10	13	16	11	12	12	13		8	7	9	11	8	21	11	8	18	10	10	10	13	14 15	0	18
Chro- mium [1]		145	96	124	171	145	174	183	103	153	150	2,070		177	172	209	85	76	142	224	149	340	747	137	128	152	208 274	1 20	8CI 331
Calcium (%) [0.01]	n City	0.35	55	53	.55	.46	.49	.41	.43	.41	.41	.29	reet	0.23	.23	.29	.23	.2	.52	.29	.21	.39	C7:	.28	.23	i,	.51 49		4. ç
Cadmium (ppm) [1]	Aluminum City	-	- 6	1 (**	. —	5	4	2	2	2	5	3	Allen Street	$\overline{\vee}$	$\overline{\lor}$	1	$\overline{\lor}$	\vec{v}	4	$\overline{\lor}$	~	ςς	n	2	- V	6	4 4	· ,	0 -
Bismuth (ppm) [5]		Y) '() ∝	° 'Q	Ŷ	6	Ŷ	Ŷ	Ŷ	Ŷ	\$		Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	v) v	0	Ŷ	Ŷ	\$	× ×	, ų	04
Beryl- lium (ppm) [0.5]		202	C.0/	, «	<.5	<.5	9.	i.	5	<.5	<.5	<.5		<0.5	<.5	<.5	<.5	<.5	9.	<.5	5.	.5.5	<u>,</u>	<.5	<.5	<.5	9. Г	: 4	י י איי
Barium (ppm) [1]		137	210	230	154	162	198	247	193	166	169	135		71	69	68	74	63	265	90	62	176	06	88	74	183	265 275		017
Arsenic (ppm) [3]		v	n 0	6	L	10	16	15	12	L	9	9		8	6	11	10	9	11	16	7	13	11	12	8	12	11	ç	71
Antimony (ppm) [5]		3/	? ℃) ' (\$ \$	Ş	Ş	Ŷ	Ŷ	Ŷ	Ŷ	9		Ş	\$ S	ŝ	Ŷ	\$	Ş	Ŷ	ŝ	\$ ℃ v	0	Ş	Ş	Ŷ	\$ ₹	į ų	04
Alum- inum (%) [0.01]		1	1.2	1.28	1.25	1.15	1.47	1.35	1.21	1.17	1.14	96.		0.87	.83	LL.	.94	89.	1.4	66.	1.25	1.36	<i>ck</i> .	1.01	1.12	-	1.29 1 28		1.17
Sample ID		2	AL	7B	7C	6A	6B	6C	8A	8B	8B-DUP	8C		1A	1A-DUP	1B	1C	1D	3A	3B	3C	2A	Q 7	2C	2D	4A	4B 4R-DHP		
Map ID		4U1			AC2				AC4 8			AC4 8		AS5	AS5	AS5		AS5]		AS6		AS7					AS8		458 458

60 Sediment Studies in the Assabet River, Central Massachusetts, 2003

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

, not reported] Alum-				.			.			Chro-			.	Lanth-			Magne-
Sample inum Antimony Arsenic ID (%) (ppm) (ppm) [5] [3]	Antimony (ppm) [5]		Arsenic (ppm) [3]		Barium (ppm) [1]	lium (ppm) [0.5]	Bismuth (ppm) [5]	Cadmium (ppm) [1]	Calcium (%) [0.01]	mium (ppm) [1]	Cobalt (ppm) [1]	Copper (ppm) [0.5]	lron (%) [0.01]	anum (ppm) [0.5]	Lead (ppm) [2]	Lithium (ppm) [1]	sium (%) [0.01]
				1				Hudson	on								
0.83 <5 8	\$ 5	<5 8	8		36	1.3	Ŷ	\vec{v}	0.25	129	4	12.7	0.63	19.7	12	\sim	0.11
12A 1.34 <5 15	€5		15		157	9.	Ŷ	2	.26	104	12	119	1.69	15	324	0	.42
1.39 <5	Ş		20		111	9.	Ŷ	2	.18	130	13	78.9	1.63	15.3	243	2	.37
1.86	Ş		8		102	9.	Ŷ	$\overline{\lor}$.18	114	12	92.6	1.83	18.8	118	9	.51
12D .58 <5 5		<5 5	5		33	i,	Ŷ	7	.33	28	4	8.2	.76	13.6	8	$\overline{\lor}$.1
(2E 1.33 <5 9	Ş		6		29	3.4	Ŷ	\sim	.2	54	4	14.4	.86	148	6	$\overline{\lor}$.19
\$ 5	Ş		24		93	9.	Ŷ	1	ë	228	24	131	1.66	14	129	$\overline{\vee}$.27
3A-DUP 1.19 <5 26	\$		26		98	.5	Ŷ	7	.28	222	26	138	1.59	15	134	0	.25
(3B 1.1 <5 8	ŝ		8		37	Ľ.	Ŷ	\sim	.25	164	12	7.2	1.21	30.8	12	$\overline{\lor}$.16
13C 2.08 <5 27	€		27		36	1.7	Ŷ	\vec{v}	.23	93	31	5.9	2.45	38.7	6	3	.36
3D 2.19 <5 38	Ŝ		38		122	8.	Ŷ	1	.11	111	38	5.4	3.25	21.2	6	10	.52
Ş	Ş		4		37	<.5	Ŷ	$\overline{}$.14	155	7	L	1.03	11.4	9	$\overline{\lor}$.22
<5 3	<5 3	3			27	<.5	Ŷ	\sim	60.	186	9	3.3	1.15	15.3	С	$\overline{\lor}$.24
<5 14	<5 14	14		—	109	Ľ.	8	б	.67	161	15	120	2.37	15.6	266	13	.34
[4A-DUP 1.26 <5 14 1	<5 14	14		1	119	Ľ.	Ŷ	3	.68	153	13	125	2.25	15.7	264	14	.34
2 1.33 <5 15	<5 15	15		1	114	٢.	Ŷ	2	99.	180	16	130	2.49	14.8	279	14	.36
1.6 <5 21	<5 21	21			81	Ľ.	Ŷ	2	9.	213	14	67.4	2.46	14.4	274	18	.43
2 1.59 <5 19	<5 19	19			78	Ľ.	Ŷ	7	.56	227	14	69	2.43	14.1	247	19	44.
1.1 <5 9	<5 9	6		-	41	<.5	Ŷ	7	.28	304	L	22.9	1.7	9.3	146	17	.42
14CQ 1.15 <5 8	<5 8	8	8		47	<.5	Ŷ	$\overline{\lor}$.26	287	L	22.5	1.78	9.3	234	18	.46
14D .39 <5 5		<5 5	5		18	<.5	Ŷ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.81	220	3	7.6	.56	7.8	5	6	.12
2 .43 <5 4	<5 4	4	4		20	<.5	Ŷ	\sim	.83	298	7	9.6	.64	7.6	8	б	.12
.84 <5 3	<5 3	ю	3		20	<.5	Ŷ	\vec{v}	.23	144	ю	4.3	.92	12.1	4	12	.25
14EQ	<5 3	3	3		20	<.5	Ŷ	\sim	2	223	0	5.5	1.01	12.1	5	12	.26
10A .79 <5 9		<5 9	6		88	<.5	Ŷ	\vec{v}	.35	237	11	27.3	1.44	11.3	20	$\overline{\lor}$.22
.76 <5 5	<5 5	5			30	<.5	Ŷ	\sim	.14	134	9	4.1	.93	17	9	\sim	.2
1.77	\$		20		250	1	Ŷ	7	.46	208	33	141	3.1	16.4	283	20	.46
1.93 <5	Ş		25		119	6.	Ŷ	1	.42	193	19	96.1	2.47	16.6	218	23	.47
1.53 <5	ŝ,		17		71	Ŀ. '	۲ ک	7	.36	159	15	40.3	2.5	12.4	65	16	.31
[5C-DUP 1.46 <5 16	С К		101		17	r. 7 1	\$ €	7 7	.36 14	147 85	13	38.6 34	2.36 8 78	13.4 11 7	61 20	16	ei ç
7			TAT		f	U.I	IU	1	+ -	60	11	t. C	0./0	11./	70	٦	07.

Magne- sium (%) [0.01]	0.2 .32 .4 .38 .42	.35 .37 .34 .36	.38 .35 .35 .35 .38	.37 .42 .31 .23	.32 .27 .29 .21	.08 .22 .28 .28
Lithium (ppm) [1]	11 19 22 22 22	14 16 18 15 16	16 16 18 15	15 17 14 11	18 15 12 10	2 1 1 1 2
Lead (ppm) [2]	11 8 8 8 8 6	4 4 186 221	186 141 125 254 232	228 198 69 4	9 11 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 30 233 145 87
Lanth- anum (ppm) [0.5]	11.9 17 19.1 18.1 1.6	9.8 9.6 16.4 16.6	16.8 13.7 16.6 17.5 14.5	14.9 16.6 16.3 11.4 9	11.9 15.6 11.6 12.8 13.4	21.3 8.2 11.3 11.3 12.8
lron (%) [0.01]	0.65 .98 .97 .97	1.16 1.36 1.3 2.26 1.88	1.89 1.49 1.85 3.11 2.18	2.13 2.02 2.05 1.4 .96	$1.13 \\ 1.55 \\ 1.55 \\ .92 \\ 1.12 \\ 1.36$	2.4 1.66 3.39 1.87 1.88
Copper (ppm) [0.5]	7.2 8 3.5 8.2 8.2	7.6 9.5 8.2 115 111	122 125 128 261 162	160 144 141 72 5.6	8.7 13.8 7 13.2	38.8 24.8 405 1102 81.6
Cobalt (ppm) [1]	4 0 0 0 v	5 5 4 5 5 1 5 1 5 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 11 13 47	16 14 10 30 30	4 6 6 4 11 8 6 6	23 7 32 19 11
Chro- mium [1]	77 127 114 107 173	158 155 191 404 203	313 99 333 326 195	192 257 309 237 209	125 554 118 112 112	39 373 284 367 409
Calcium (%) [0.01]	0.39 .29 .2 .11	.13 .12 .33 .29	.3 55 45	.09 .03 .03 .05	.32 .32 .33 .33 .33 .32 .52 .52 .52 .52 .52 .52 .52 .52 .52 .5	
Cadmium (ppm) [1]	Gleasondale <1	7 7 7 ℃ C		$\omega \sim 0 \sim 10^{\circ}$	$\bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \checkmark \checkmark$	− ∞
Bismuth (ppm) [5]	\$ \$ \$ \$ \$ \$ \$	$\delta \delta \delta \delta \delta$	$\delta \delta \delta \delta \delta$	$\delta \delta \delta \delta \delta$	$\delta \delta \delta \delta \delta$	$\circ \circ \circ \circ \circ$
Beryl- lium (ppm) [0.5]	 <0.5 .6 .6 .5 .5 	v v v v v v v	 	8. L. L. N.	$\stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}} \stackrel{\wedge}{\mathcal{X}}$	$\dot{\mathcal{N}}$ $\dot{\mathcal{N}}$ $\dot{\mathcal{U}}$ $\dot{\mathcal{U}}$ $\dot{\mathcal{U}}$
Barium (ppm) [1]	51 54 54 38	35 37 35 125 128	115 132 91 264 142	140 128 124 60 28	53 65 51 61 52	50 64 351 114 81
Arsenic (ppm) [3]	4 φ ω φ ν	33 3 6 6 3 32 4 6 6	46 19 17 75	71 50 7 3		41 8 17 20 14
Antimony (ppm) [5]	\$\$\$\$\$	\$\$ \$\$ \$\$ \$\$ \$\$	$\Diamond \land \Diamond \land \Diamond \Diamond$	$\Diamond, \Diamond, \Diamond, \Diamond, \Diamond, \Diamond$	$\Diamond \land \Diamond \land \Diamond \Diamond$	$\delta \delta \delta \delta \delta$
Alum- inum (%) [0.01]	1.04 1.39 1.48 1.38 .94	.75 .93 .81 1.29 1.41	$ \begin{array}{c} 1.45\\ 1.32\\ 1.44\\ 1.44\\ 1.51\\ 1.51\\ \end{array} $	1.47 1.52 1.51 .96 .54	1.04 1.05 .91 .84 .84	.6 .68 1.51 1.15 1.15
Sample ID	34A 34B 34C 34C-DUP 39A	39B 39C 35A 35B	35C 35D 35E 40A 40B	40B-DUP 40C 40CQ 40D 40E	36A 36AQ 36B 36D	36E 44 41A 41B 41B
Map ID	G16 G16 G16 G16 G16 G17	G17 G17 G17 G18 G18 G18	G18 G18 G18 G19 G19	G19 G19 G19 G19 G19	G20 G20 G20 G20 G20	G20 G21 G22 G22 G22

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabeti-cally from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

CopperIronLanth-LeadLithiumMagne-(ppm)(%)anum(ppm)(ppm)sium[0.5][0.01][0.5][2][1][0.01]	10.2 1.01 7.8 17 10 0.2 10.2 1.02 8.5 18 10 .21 9.2 1.16 8 12 11 .22 17.7 .97 7.9 23 9 .2 153 1.72 16 147 18 .39	2.33 17.2 20 1.72 21 9 1.06 9.6 9 1.03 9.4 9 1.03 9.4 9 .64 10.9 11 .62 7.6 8 1.23 10.5 4 1.48 8.4 66	1.11 7.1 1.45 9.2 .94 50.3 .79 61.2 .79 112 .79 112 2.44 16 2.58 15.2 2.14 16 2.58 15.2 2.14 16 2.14 16 2.14 16 2.14 16.5 1.44 14.7	28.5 10 2 16.4 168 14 15.4 174 14
Chro-Cobalt mium (ppm) [1] [1]	219 4 226 3 246 4 192 4 286 10		157 13 195 9 195 9 157 13 174 2 397 31 250 24 353 28 353 28 241 19	79 3 381 26 432 29
Calcium (%) [0.01]		. 1 .08 .06 .06 .06 .77 .45 .15 .15	0.13 .07 .51 .15 .15 .39 .45 .43 .38 .38 .38	.31 .38 .38
Bismuth Cadmium (ppm) (ppm) [5] [1]	Gleasondale- 63 5 5 5 5 1 5 5 1 5 5 1 5 5 1 5 1 1		\$	\$\chi_2\$\
Beryl- lium (ppm) [0.5]	 ∂ ∂ ∂ ∂ 1 1 0 1 1		<pre> </pre> 40.5 40	⊙ं∞ं∞ं
Arsenic Barium (ppm) (ppm) [3] [1]	 3 45 3 44 7 38 42 41 		9 47 8 35 6 47 6 47 6 47 82 154 82 154 24 209 52 131 64 127 18 85	 <3 26 69 152 78 151 78 151
Antimony (ppm) [5]	<u> </u>	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y y y y
ted] Alum- Sample inum ID (%) [0.01]	37A 0.53 37A-DUP 54 37B 57 37C 52 37D 1.4	- AD	16A 0.6 16B .78 18A 1.03 18B 1.03 18B 1.08 18C 1.72 18C 1.72 172 1.49 17A 1.49 17B 1.46 17C 1.55 17D 1.35	17E
, not reported] Map ID San	G23 37 G23 37 G23 37 G23 37 G23 37 G23 37 G23 37		BS28 16 BS28 16 BS29 18 BS29 18 BS29 18 BS29 19 BS30 17 BS30 17 BS30 17 BS30 17	BS30 17 BS31 19 BS31 19

Magne- sium (%) [0.01]		0.27	.27	.28	.28	.23	.28	c;	i.	.17	.16	.12	.15	¢.	.27	.26	.26	.28	.28	.23	67.	.24	.22	.22	.18	.31	.37	.37	.32	.21 24
Lithium (ppm) [1]		14	14	15	14	13	14	14	14	7	7	5	9	15	14	14	13	14	12	12	1	11	11	10	12	17	22	23	21	14
Lead (ppm) [2]		74	71	6	11	9	9	192	263	12	11	9	9	144	20	8	L	9	213	18	-	160	164	159	72	10	10	12	11	10 32
Lanth- anum (ppm) [0.5]		14.1	14.2	15.8	13.9	14.1	14.2	15	13.7	10.9	10.8	12.3	11.3	14.5	14.1	13.7	13.3	13.3	15.4	12.4	11.4	13.3	14.7	14.2	21.3	17.2	26	25.3	19.1	18.6 15.5
Iron (%) [0.01]		1.67	1.65	1.27	1.25	1.11	1.18	3.71	2.34	1.07	66.	.93	1.12	1.95	1.22	1.1	1.15	1.25	2.13	1.02	06.	2.38	1.93	1.83	1.34	1.67	2.71	4.78	6.12 7.22	5.83 1.7
Copper (ppm) [0.5]		72.6	64.6	7.5	7.9	8.3	8.6	318	124	14.8	13.9	9.4	10.6	123	14.4	7.5	8.9	8.3	175	15.4	0.0	116	101	100	18.9	3.9	4	3.2	2.7	2.2 23.2
Cobalt (ppm) [1]		21	22	7	7	9	7	48	34	6	L	11	12	29	6	8	6	8	40	v) (N	31	27	24	9	12	26	25	41	<u>8</u> 8
Chro- mium [1]		210	220	197	165	236	190	170	173	116	110	48	165	179	85	85	132	151	249	195	44	175	213	206	135	58	176	88	54	15 152
Calcium (%) [0.01]	Continued	0.28	.28	.16	.16	.19	.21	.54	.48	.57	.57	S.	.41	.43	.32	.31	.36	.34	.32	.18	60.	.37	.34 1	.35	.29	.19	.15	.13		.1 .19
Cadmium (ppm) [1]	Ben Smith—(V	$\overline{\nabla}$	~ 7	\sim	v.	V V	L	5	- V	$\stackrel{\scriptstyle \checkmark}{}$	V V	$\overline{\vee}$	7	$\overline{\lor}$	V V	\sim	\sim	7	$\overline{\lor}$		б	0	7	$\overline{\vee}$	V V	v.	<u>~</u>	V	v v
Bismuth (ppm) [5]	B	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	vÇ ų	0	5	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	γ,	0 0
Beryl- lium (ppm) [0.5]		0.6	9.	<.5	<.5	<.5	<.5	1.1	<u>%</u>	<.5	<.5	<.5	<.5	-	9.	<.5	.s.	<.5	1	.5.5.5	C. >	%	∞. ∣	<i>L</i> .	6.	Ľ.	1.2	1.2	<u> </u>	1 7.
Barium (ppm) [1]		86	85	54	50	54	55	415	194	73	71	65	60	121	71	65	68	67	187	35	C 7	149	89	89	41	43	43	39	37	30 60
Arsenic (ppm) [3]		17	15	S	5	9	5	17	35	9	9	9	6	35	8	4	4	б	34	0 (2	39	61	56	11	×	19	55	82	17
Antimony (ppm) [5]		\$	\$	ŝ	Ş	\$	Ş	Ŷ	\$	ŝ	Ş	\$	ŝ	Ŷ	Ŷ	\lesssim	Ş	Ŷ	ŝ	°C v	0	Ş	Ŷ	<5	Ŷ	Ŷ	\$	Ŷ	°Ç'	0,0
Alum- inum (%) [0.01]		1.42	1.43	1.28	1.18	1.09	1.12	1.41	1.38	.81	.76	LL.	.75	1.54	1.36	1.18	1.09	1.08	1.44	68. 25	0/.	1.23	1.32	1.27	1.19	1.4	1.86	1.72	1.32	1.20 1.3
Sample ID		19C	19CQ	19D	19DQ	19E	19EQ	20A	20B	20C	20C-DUP	20D	20E	21A	21B	21C	21D	21E	22A	22B 22C	777	23A	23B	23B-DUP	23C	27A	27B	27C	27D	2/D-DUP 29A
Map ID		BS31	BS31	BS31	BS31	BS31	BS31	BS32	BS32	BS32	BS32	BS32	BS32	BS33	BS33	BS33	BS33	BS33	BS34	BS34	B0 34	BS35	BS35	BS35	BS35	BS36	BS36	BS36	BS36	BS30 BS37

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabeti-cally from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

- u - T		4 10 01 00 00	1 ~ ~ ~ ~	040-~	<u> </u>	0 0 0
Magne- sium (%) [0.01]	0.25 .3 .23 .21 .21	<u>1</u> . 4	, , , , <u>,</u> , ,	.29 .24 .31 .38	<i>9</i> 9 9 1 1	1.2.5
Lithium (ppm) [1]	16 21 11 12	9 24 11 17	16 21 16 16 18	19 11 14 13	13 14 11 9	6 12 2
Lead (ppm) [2]	$\begin{array}{c} 10\\11\\3,800\\160\\80\end{array}$	13 10 25 11 16	8 9 8 9 4 1	14 50 29 160 157	159 125 32 11 5	3 % 8 8 %
Lanth- anum (ppm) [0.5]	20.2 27.1 13.7 13.9 18.6	60 41.1 14 13.9 15.7	17.4 23.3 22.7 20.5 18.2	17 10.5 14.2 15 15.1	14.6 14.9 15.8 19.6 8	12.1 7.8 16.2
Iron (%) [0.01]	1.47 1.59 2.25 2.15 1.82	1.87 2.15 1.59 1.62 1.84	1.71 3.17 2.68 2.58 6.94	6.64 1.25 1.46 2.52 2.21	2.16 1.91 1.62 1.14 1.06	.78 .93 1.09
Copper (ppm) [0.5]	2.2 1.7 131 122 67.8	5.8 5.1 13.6 11.1 13.4	3.5 4.6 3 2.7 2.7	2.7 38.6 41.2 167 117	117 94.2 21.4 2.8 5.5	$ \begin{array}{c} 11.7 \\ 3.8 \\ 1.3 \end{array} $
Cobalt (ppm) [1]	5 4 24 16	6 11 12 12	13 22 17 18 29	31 9 37 29	27 24 3 3	m 0 m
Chro- mium [1]	99 130 160 245 167	147 75 184 246 216	130 151 237 106 91	76 239 383 132 182	178 167 140 94 254	271 180 228
Calcium (%) [0.01]	0.1 .09 .36 .26 .15	.12 .06 .39 .18		.11 .27 .36 .38 .38	.38 .21 .13	00. 07. 11.
Cadmium (ppm) [1]	1	$\overline{\lor}$ $\overline{\lor}$ $\overline{\lor}$ $\overline{\lor}$ $\overline{\lor}$	$\overrightarrow{}$ $\overrightarrow{}$ $\overrightarrow{}$ $\overrightarrow{}$ $\overrightarrow{}$	$\stackrel{\wedge}{_{1}}$ $\stackrel{\wedge}{_{1}}$ $\stackrel{\wedge}{_{1}}$ $\stackrel{\wedge}{_{2}}$ $\overset{\wedge}{_{2}}$	4 <u>1 1 1 1</u>	\overrightarrow{v} \overrightarrow{v} \overrightarrow{v}
Bismuth (ppm) [5] B	$\circ \circ \circ \circ \circ$	$\circ \circ \circ \circ \circ$	$\Xi ~ \& ~ \& ~ \& ~ \&$	\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}	$\circ \circ \circ \circ \circ$	\Diamond \Diamond \Diamond
Beryl- lium (ppm) [0.5]	0.7 5. 8. 8.	2.4 1.3 .6 .6	.6 .9 .1 .5	1.4 7.5 9. 8.	8. r. 9. r. s. S. S. S.	ہ ہٰ نُن نُن
Barium (ppm) [1]	33 39 144 111 68	24 54 38 51	26 29 34 41	39 47 43 278 169	169 108 62 38 32	33 33 33
Arsenic (ppm) [3]	8 4 59 19	11 9 11 41	8 14 17 83	73 10 21 41	37 36 8 6	v
Antimony (ppm) [5]	% $%$ 4 $%$ $%$	\$\$ \$\$ \$\$ \$\$ \$\$	$\Diamond, \Diamond, \Diamond, \Diamond, \Diamond, \Diamond$	\$ \$ \$ \$ \$ \$ \$	\$\$ \$\$ \$\$ \$\$ \$\$	$\Diamond,\Diamond,\Diamond$
Alum- inum (%) [0.01]	1.41 1.42 1.25 1.3 1.43	1.46 2.03 1.29 1.26 1.32	$1.17 \\ 1.51 \\ 1.55 \\ 1.55 \\ 1.5 \\ 1.92$	1.85 1.05 1.4 1.34 1.34	1.3 1.42 1.37 1.15 .51	.51 .56 .77
Sample D	29B 29C 26A 26B 26C	26D 26E 25A 25B 24A	24B 24C 28A 28AQ 28B	28BQ 33A 33B 30A 30B	30B-DUP 30C 30D 30E 31A	31B 32A 32B
Map ID San	BS37 BS37 BS38 BS38 BS38 BS38	BS38 BS38 BS39 BS39 BS39 BS40	BS40 BS40 BS41 BS41 BS41 BS41	BS41 BS42 BS42 BS43 BS43 BS43	BS43 BS43 BS43 BS43 BS43 BS44	BS44 BS45 BS45

Magne- sium (%) [0.01]	0.32 .32 .3 .3 .3		25 25 25 25 24	.26 .29 .27 .18		
Lithium (ppm) [1]	12 13 13 13	16 20 13 15	10 12 11 11	10 9 9 2	16 13 11 11	11 13 17 15 15
Lead (ppm) [2]	233 226 110 259 259	23 11 58 231 261	244 239 174 318 326	594 626 343 346 12	7 167 371 621 115	109 71 580 515 511
Lanth- anum (ppm) [0.5]	10.6 10 9.8 10.7 10.8	14.4 20.2 9.4 10.7 11.3	7.8 7.2 11.9 9.2 10.1	10.8 11.2 10.5 11.7 21.7	50.5 11.1 12.9 9.2 11.7	11.7 11.1 17.7 15.1 14.5
lron (%) [0.01]	1.86 1.84 1.62 1.65 1.61	2.41 4.4 1.79 2.75 2.75	2.28 2.51 2.22 1.62 1.56	1.77 1.84 1.33 1.33 .66	.69 3.07 2.22 2.27 1.92	1.88 1.65 2.45 2.05 2.01
Copper (ppm) [0.5]	280 274 50.9 257 254	31.6 17.2 19.4 109 123	78.3 90.3 128 55 54.3	839 886 386 385 22.4	40 100 330 194	185 26.8 669 277 275
Cobalt (ppm) [1]	13 13 11 11	27 60 23 20	15 12 8 8	23 22 9 6	7 21 7 8	8 50 20 18
Chro- mium [1]	899 942 394 1,290 1,260	238 129 268 339	311 242 478 291 288	1,060 1,020 1,830 1,810 97	128 399 404 2,270 421	427 302 416 1,550 1,590
Calcium (%) [0.01]	0.3 28 27 27 27	.13 .06 .43 .28	.18 .17 .28 .23	.6 .61 .8 .8 .2.07	.67 .3 .35 .26	.25 .17 .32 .21 .21
Cadmium (ppm) [1]	Powdermill 2 2 0.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 <u>-</u> <u>-</u> <u>-</u> <u>-</u>	$\kappa \kappa \omega \omega \frac{\Lambda}{2}$	1 0 4 L V	1 v v v v v v v v v v v v v v v v v v v
Bismuth (ppm) [5]	<u>८ </u>	$\delta \delta \delta \delta \delta$	\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}	$\delta \delta \delta \delta \delta$	$\delta \delta \delta \delta \delta$	$\delta \delta \delta \delta \delta$
Beryl- lium (ppm) [0.5]	<pre></pre>	× × × × × × × × ×	$\langle \cdot \rangle \langle \cdot \rangle \langle \cdot \rangle \rangle \langle \cdot \rangle \langle $	<u>г. г. </u> . 6. 8.	9. 9. 7. 7. 7. 9. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	、 、 、 、 、 、 、 、 、 、 、 、 、 、
Barium (ppm) [1]	94 90 85 86	49 69 180 181	133 126 107 99 96	139 144 69 83	64 193 214 134 104	101 57 310 226 216
Arsenic (ppm) [3]	21 19 34 40	20 62 15 13	11 9 36 35	31 29 58 38 38	6 16 13 101 20	15 10 18 47 52
Antimony (ppm) [5]	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\$ \$ \$ \$ \$ \$ \$ \$	$\Diamond, \Diamond, \Diamond, \Diamond, \Diamond, \Diamond$	∠ 1 15 5 1 5 1 5	$\Diamond, \Diamond, \Diamond, \zeta, \zeta, \Diamond$	$\Diamond \ \Diamond \ \Diamond \ \Xi \ \Xi$
Alum- inum (%) [0.01]	1.06 1.03 .81 1.58 1.58	1.52 2.26 .76 1.04 1.09	.7 .7 .92 .92	1.27 1.23 1.98 1.98 .8	1.13 1.05 1.06 1.8 1.32	$\begin{array}{c} 1.29\\ 1.07\\ 1.57\\ 1.73\\ 1.79\end{array}$
Sample ID	48 48Q 49 46A-DUP	46B 46C 47 52A 52B	52C 52C 52D 52E 52E-DUP	55A 55AQ 55B 55B-DUP 55C	55D 53A 53B 53C 53D	53DQ 53E 56A 56B 56B
Map ID	P46 P46 P47 P48 P48	P48 P48 P49 P50 P50	P50 P50 P50 P50 P50	P51 P51 P51 P51 P51	P51 P52 P52 P52 P52	P52 P52 P53 P53 P53

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

	Magne- sium (%) [0.01]		33	33	12	11	.1	32	31	32	33	34	.31	47	46	4	4	32	77	77	53	73
	_		0.5		Ţ.									٦.	٦.	۷.	7.				41	1
	Lithium (ppm) [1]		11	13	1	б	4	14	15	15	16	16	18	22	21	19	15	16	4	5	25	27
	Lead (ppm) [2]		419	1,030	29	14	13	54	11	10	L	L	7	411	393	1,250	305	40	L	6	45	15
	Lanth- anum (ppm) [0.5]		10.5	12.9	11.6	30.7	24.1	14.4	18.6	20.6	19	21.5	20.6	18	17.4	21	13	14.4	25.5	26.4	16.8	15.6
	lron (%) [0.01]		1.8	2.1	1.08	.78	.71	1.96	1.72	1.82	2.06	2.06	1.54	3.09	б	2.9	2.16	1.61	.54	.54	7	2.03
	Copper (ppm) [0.5]		545	3430	49.8	14.6	11.7	78	10.5	10.8	6.2	5.5	5.9	720	675	910	459	23.7	9.1	8.9	18	16.2
	Cobalt (ppm) [1]		12	19	L	0	7	17	17	20	21	10	8	88	83	57	12	15	Э	3	L	9
	Chro- mium [1]		1,970	1,530	148	106	135	248	179	134	173	274	240	332	291	786	1,320	187	221	235	272	209
	Calcium (%) [0.01]	Continued	0.26	.53	1.45	1.46	1.18	.32	4	2	.14	.11	.11	.59	.59	.53	.36	.33	.26	.26	5	.16
	Cadmium (ppm) [1]	Powdermill—	8	7	$\overline{\lor}$	$\overline{\lor}$	\vec{v}	\sim	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	$\overline{}$	9	9	10	6	~ V	$\overline{\lor}$	~	~	$\stackrel{\scriptstyle \sim}{\sim}$
	Bismuth (ppm) [5]	Pc	7	1	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ
	Beryl- lium (ppm) [0.5]		0.9	Ľ.	Ľ.	1.6	1.1	<.5	<.5	<.5	.5	.5	1	1	1	1.4	9.	<.5	Ľ.	С.	<.5	<.5
	Barium (ppm) [1]		109	456	76	65	56	LL	31	33	22	22	29	323	312	589	136	73	49	48	54	48
	Arsenic (ppm) [3]		99	44	9	\Diamond	\heartsuit	6	9	9	6	9	4	17	17	28	48	6	\heartsuit	\heartsuit	\heartsuit	4
	Antimony (ppm) [5]		19	5	ŝ	Ş	\$	Ş	ŝ	ŝ	Ş	<5	Ş	ŝ	Ş	7	11	\$	ŝ	ŝ	Ş	Ŷ
	Alum- inum (%) [0.01]		1.82	1.61	9.	.89	TT.	1.15	1.26	1.28	1.32	1.23	1.27	1.79	1.73	2.03	1.81	1.39	.65	.65	1.18	1.28
orted]	Sample ID		56C	54A	54B	54C	54CQ	51A	51B	51BQ	51C	51D	51E	50A	50AQ	50B	50C	50D	50E	50E-DUP	57	57Q
, not reported]	Map ID		P53	P54	P54	P54	P54	P55	P55	P55	P55	P55	P55	P56	P56	P56	P56	P56	P56	P56	P57	P57

MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium (ppm) [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
								Alum	Aluminum City								
Ū	v	101	v	ç	710	30.0	0		100		5	0.05	10	Г. С	с г	102	o c
	- r	401 202	n o	77 6	01.0	CZ.U	1.7 1 £	+ ת טיכ	0.04	1.12	CI (c0.0	<10 10	17		010	0.7
	A/	CU0	01	77	C7.	14	1.0	7.0	cu.	49.1	<10	cu.	<10	07	7.6	249	5. 2
AC2	7B 2 2	617	S.	28	.28	.19	1.8	>10	.04	49.5	34	.03	<10	26 20	9.4	397	3.2
AC2	/C	633 266	I L	ع ر	.22	11.	1.7	Ч. Ч. Ч.	.I.	39.3 15.6	4 7	.03 03	<10	20 26	0.0 8.5	661 876	1.3 2 1
ACJ A	V O	700	-	77	C1.	+ :	C.1	0.0	<i>c</i> n.	0.04	ţ	cn.		07	C.0	017	1.0
AC3	6B	235	5	30	.19	2	1.5	>10	.03	53.2	30	.03	<10	29	10.6	495	3.5
AC3	6C	380	5	24	.17	.21	2.1	2.5	.03	50.9	26	.04	<10	30	9.5	296	2.8
AC4	8A	481	9	24	.17	.14	1.6	5.4	.05	39.8	<10	.03	<10	23	6	223	2.8
AC4	8B	557	7	24	.17	.15	1.3	9.8	.05	33.9	12	.03	<10	22	8.5	291	2.7
AC4	8B-DUP	557	9	23	.17	.15	1.4	9.5	.05	33.8	13	.03	<10	22	8.4	280	2.8
AC4	8C	392	9	31	.12	.17	1.6	2.1	.04	25.6	40	.04	<10	16	6.1	1,220	2.5
								Alle	Allen Street								
AS5	1A	169	ŝ	17	0.05	0.18	1.7	0.2	0.04	21.1	24	0.05	<10	22	4.8	211	2
AS5	1A-DUP	170	ю	16	.05	.18	1.6	2	.04	20.6	23	.05	<10	21	4.9	199	1.8
AS5	1B	135	$\overline{\vee}$	14	.05	.13	1.3	ë	.04	27	47	.05	<10	21	4.8	184	1.5
AS5	1C	193	3	16	.06	.17	1.8	i.	.03	22.3	45	.06	<10	25	5.6	136	1.9
AS5	1D	146	$\overline{\vee}$	16	.05	.17	1.8	<.2	.03	22.7	19	.06	<10	23	4.4	83.4	1.7
AS6	3A	395	4	33	.21	.22	2	4.8	.05	46.7	33	.04	<10	29	10.4	487	3.2
AS6	3B	294	4	19	.08	.16	1.8	4.	.05	25.1	30	.05	<10	24	6.3	182	7
AS6	3C	323	7	17	.18	.13	1.3	<.2	.03	18	<10	.05	<10	26	4.2	78.3	1
AS7	2A	600	5	30	.21	.19	2.3	С.	.04	32.3	25	90.	<10	32	8.3	827	
AS7	2B	213	$\overline{\vee}$	18	.07	.15	1.8	4.	.03	20.4	53	.05	<10	24	5.9	474	2.1
AS7	2C	222	ŝ	17	.08	.16	1.8	4.	.03	23.8	33	.05	<10	26	6.6	351	2
AS7	2D	202	~ V	19	.07	.18	2.1	<.2	.02	19.6	11	90.	<10	27	6.2	87.3	1.9
AS8	4A	844	6	24	.19	.16	1.6	2.9	.05	42.5	12	.03	<10	24	8	281	3.4
AS8	4B	699	С	31	.28	.19	1.4	>10	.05	55.2	30	.03	<10	26	9.8	551	4.1
AS8	4B-DUP	699	4	35	.31	.2	1.6	>10	90.	59.3	28	.03	<10	27	10.3	604	4.2
AS8	4C	737	7	27	.31	.17	1.9	2.3	.04	44.1	27	.04	<10	25	8.7	515	2.4
AS8	4D	320	$\overline{\lor}$	23	.11	.22	2.6	с:	.03	21	19	.07	<10	34	8.1	221	2.2
AS8	4E	266	2	15	90.	.12	1.4	<.2	.04	21.9	<10	.05	<10	23	5.9	54	1.4

of sediment samples from six impoundments in the	
Toronto, Ontario, Canada, o	
nc., Mineral Services, T	
ormed by SGS Canada, I	tinued
Results of all elemental analyses perfor	/er Basin, Massachusetts, 2003.—Cont
able 15.	vssabet Riv

Table 15. Results of all elemental analyses performed by SGS Canada, Inc., Mineral Services, Toronto, Ontario, Canada, of sediment samples from six impoundments in the Assabet River Basin, Massachusetts, 2003.—Continued
[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown; not reported]

											ļ						
MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Тп (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
) 王	Hudson								
6H	6	98	- V	14	0.06	0.04	0.9	<0.2	0.03	24.3	<10	<0.01	<10	13	10.6	35	<0.5
H10	12A	243	2	41	.13	.17	2.2	6.	.04	26.9	<10	.05	<10	36	8.5	212	2.2
H10	12B	232	$\overline{\vee}$	24	.11	5	2.3	ć.	.03	23.3	<10	.05	<10	31	8	300	2.1
H10	12C	258	$\overline{\vee}$	22	.1	.31	2.8	<.2	.03	15.5	<10	.08	<10	37	8.7	122	2.7
H10	12D	167	v.	8	.04	.03	<.5	<.2	.03	24	<10	.01	<10	11	7.4	14.6	<.5
H10	12E	89	~ V	12	.05	.08	2.3	<.2	.02	17.6	<10	.02	<10	13	78.8	16	<.5
H11	13A	733	2	38	60.	.11	1.5	4.	.03	23.1	<10	.03	<10	24	8.9	288	1.5
H11	13A-DUP		2	38	60.	.11	1.6	.S	.03	25.2	<10	.03	<10	22	9.1	263	1.7
H11	13B	1,100	~	14	.04	.05	1.2	<.2	.02	17.5	<10	.03	<10	25	13.7	19.4	<.5
H11	13C	1,590	2	22	.05	.04	2.8	<.2	.02	15.7	<10	.05	<10	49	36.5	38.7	1.6
H11	13D	949	2	33	.02	.08	4.2	<.2	.03	8.9	<10	.1	<10	53	21.6	62.7	4.1
H12	11A	237	2	20	.04	.05	1	<.2	.02	10.8	<10	.03	<10	17	4.7	28.1	<.5
H12	11B	148	1	14	.01	.06	1.2	<.2	.03	7.4	<10	.04	<10	18	4.3	18.9	6.
H13	14A	146	L	57	.11	.16	2.1	1.2	90.	52.2	34	.03	<10	26	7.9	410	3.8
H13	14A-DUP	146	L	52	.11	.17	7	<u>%</u>	.07	54.3	31	.04	<10	27	8.1	380	2.8
H13	14AQ	148	7	62	.11	.17	1.9	4.	.07	54.6	38	.03	<10	26	8	418	1.3
H13	14 B	139	5	36	60.	.2	2.5	<.2	.05	51.5	26	.05	<10	30	7.1	422	2.6
H13	14BQ	139	5	38	.08	.21	2.5	Ľ.	.05	49	29	.05	<10	31	L	389	2.7
H13	14C	141	L	29	.04	.25	1.7	<.2	.04	22.4	74	.04	<10	21	3.5	66.1	1.9
H13	14CQ	154	L	29	.04	.25	1.9	<.2	.04	20.5	145	.05	<10	22	3.6	69	1.7
H13	14D	49	S	14	.18	.04	6.	<.2	.04	55.5	<10	.02	<10	12	2.7	12.7	6.
H13	14DQ	48	8	17	.04	.05	6.	<.2	.05	64.2	<10	.02	<10	14	3.1	12.4	9.
H13	14E	87	1	11	90.	60.	1.6	<.2	.03	17.6	<10	.03	<10	10	4.3	16.2	<.5
H13	14EQ	76	9	19	.04	60.	1.6	<.2	.03	16.7	<10	.03	<10	11	4.3	16.4	<.5
H14	10A	776	3	32	.14	.08	1	9.	.03	22.6	<10	.02	<10	17	6.1	LL	1
H14	10B	287	~	12	.04	.04	6.	<.2	.03	9.1	<10	.02	<10	15	8.7	20.7	<.5
H15	15A	869	4	86	.32	.23	2.7	1.5	.07	39.9	14	.04	<10	35	9.8	406	1.9
H15	15B	460	3	29	.16	.22	2.9	<u>%</u>	.06	33.8	13	.05	<10	33	8.9	365	2.3
H15	15C	364	5	22	60.	.11	2.2	ć.	.06	25.7	<10	.03	<10	34	6.6	69	<.5
H15	15C-DUP	352	5	21	.08	.11	2.1	<.2	.06	25.2	<10	.04	<10	33	6.6	64.3	1.4
H15	15D	318	12	11	.06	.05	2.8	ς.	.03	12	<10	.04	<10	87	9.9	21.8	3.2

MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
								Glea	Gleasondale								
G16	34A	119	7	12	0.08	0.05	1	0.3	0.03	31.8	<10	0.01	<10	17	6.5	18.6	0.6
G16	34B	115	3	16	90.	.07	1.7	4.	.03	22.6	<10	.02	<10	23	8.4	32.1	8.
G16	34C	111	1	17	.04	.06	2.2	<.2	.02	14.8	<10	.03	<10	20	8.3	27.6	Ľ.
G16	34C-DUP	107	- 1	16	.04	.05	7	<.2	.02	14.3	<10	.03	<10	20	8.1	26.9	<i>L</i> .
G17	39A	188	n	16	.04	.25	1.6	<.2	.03	6.2	<10	.03	<10	16	3.6	29.2	3.1
G17	39B	132	\sim	15	.03	.26	1.5	<.2	.04	7.6	<10	.04	<10	15	3.2	22.3	2.9
G17	39C	161	3	16	.04	.26	1.8	<.2	.05	10.1	<10	.05	<10	18	4.3	28.5	3.9
G17	39D	163	1	17	.03	.27	1.5	<.2	.05	7.1	<10	.04	<10	15	3.5	24.3	3.4
G18	35A	492	10	33	.17	2	2.3	1.5	.05	27.7	20	.04	14	29	8	369	2.9
G18	35B	330	ю	23	.14	.18	2.3	1.6	.03	24	23	.04	<10	28	8.8	484	2.4
G18	35C	263	4	22	.12	.22	2.4	×.	.03	22.8	19	.04	<10	29	8.9	315	2.8
G18	35D	272	1	18	60.	.21	2.3	9.	.02	21.3	15	.05	<10	26	7.6	262	4.3
G18	35E	407	5	22	.07	.22	2.4	6.	.04	17.5	<10	.05	<10	26	8.2	180	2.6
G19	40A	1,420	11	91	.67	<i>c</i> i	2.1	2.5	.06	57.7	27	.03	14	34	12.1	464	2.5
G19	40B	516	L	26	.19	.24	2.7	6.	.05	37	21	.03	13	31	8.1	518	2.3
G19	40B-DUP	511	L	26	.19	.23	2.6	6.	.05	36.5	20	.03	12	30	8	506	2.9
G19	40C	453	3	24	.17	.24	2.6	ë	.04	32.3	15	.04	<10	29	6	358	3.4
G19	40CQ	436	б	26	.15	.25	2.7	ς.	.04	31.4	15	.04	<10	30	6	346	3.4
G19	40D	245	7	19	.07	.18	1.8	<.2	.03	14.1	<10	.04	<10	18	4.8	101	1.9
G19	40E	127	ю	12	.02	.15	1	<.2	.03	5.3	<10	.02	<10	10	2.8	19.6	2.2
G20	36A	262	2	15	90.	60.	1.3	<.2	90.	21.7	<10	.02	<10	15	4.8	31.4	1.1
G20	36AQ	326	6	22	.06	.15	1.6	<.2	.08	21.5	<10	.02	<10	17	9	29.7	1.7
G20	36B	310	7	14	.06	.05	1.3	2	.06	19.1	<10	.02	<10	18	5.7	24.2	8.
G20	36C	294	3	15	.04	.05	1.7	<.2	.04	17.1	<10	.03	<10	18	6.2	38.7	8.
G20	36D	375	С	18	.04	.04	1.5	<.2	.03	21.3	<10	.03	<10	15	7.5	31.2	1.5
G20	36E	727	Ζ	28	.05	.02	1.7	<.2	.03	41.5	<10	.02	<10	13	14.2	93.8	2.9
G21	44	206	4	22	.07	.16		<.2	.05	16	67	.02	<10	12	б	71	2.2
G22	41A	1,600	، ∞	149	.71	.22	2.1	4.5	.07 20	52	21	.03	<10	32	10.5	485	3.2
G22	41B	488	ŝ	48	.19	.17	1.7	ە ۋ	.05 20	25.6	16	.03	<10	22	5.6	248	2.1
G22	41C	368	9	22	.1	.23	1.9	<.2	.05	22.6	<10	.04	<10	23	5.8	142	2.3

ed by SGS Canada, Inc., Mineral Services, To ed	ned by SGS Canada, Inc., Mineral Services, To ued	o, Ontario, Canada, of sediment samples from six impoundments in the	
ed by SGS Canada, ed	Results of all elemental analyses performed by SGS Canada, ver Basin, Massachusetts, 2003.—Continued	Mineral Serv	
	Results of all elemental analyses perf ver Basin, Massachusetts, 2003.—Co	ormed by SGS Canada,	ntinued

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown; --, not reported]

, not reported	portea																
MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
							9	leasonda	Gleasondale—Continued	ued							
G23	37A	123	2	15	0.04	0.14	0.9	<0.2	0.04	7.4	<10	0.02	<10	6	2.3	31.7	1.8
G23	37A-DUP	125	1	16	.04	.14	6.	<.2	.04	7.5	<10	.02	<10	6	2.3	32.1	2.4
G23	37B	130	4	13	.03	.16	1	<.2	.04	6.4	<10	.02	<10	10	2.4	36.8	2.4
G23	37C	134	2	13	.03	.12	6.	<.2	.03	9.7	<10	.02	<10	6	2.6	47.6	1.6
G23	37D	301	4	23	60.	.24	2.3	4.	.05	22.5	12	.04	<10	24	7.5	191	3.5
G24	42A	190	5	17	.05	90.	2.9	<.2	.02	6	<10	.03	<10	39	10.5	33.7	.5
G24	42 B	110	ю	17	.02	60.	2.8	<.2	.03	6.9	<10	.03	<10	29	9.3	25.3	2.5
G25	45	164	4	11	.02	.13	1	<.2	.03	5.6	<10	.02	<10	10	2.7	23.7	2.5
G25	45-DUP	159	3	11	.02	.13	6.	<.2	.03	5.5	<10	.02	<10	6	2.6	23.3	2.1
G26	38A	67	3	6	.07	.05	6.	<.2	.03	55.2	<10	.01	<10	17	9	15	9.
G26	38B	60	4	6	90.	.04	8.	<.2	.03	45.9	<10	.01	<10	11	3.9	15.9	Ľ.
G26	38C	102	5	24	.04	.07	1.4	<.2	.03	32	<10	.02	<10	19	5.4	34.2	9.
G27	43	299	9	24	.08	.14	1.1	<.2	.04	14	<10	.02	<10	13	2.9	84.2	2.5
								Bei	Ben Smith								
BS28	16A	190	4	20	0.06	0.09	1.1	0.3	0.03	9.3	<10	.02	<10	11	3.3	82.8	0.8
BS28	16B	161	2	15	.04	.16	1.2	<.2	.03	5.7	13	.02	<10	13	2.9	50.1	1.6
BS29	18A	137	3	14	.15	.04	8.	<:2	.04	49.2	<10	<.01	<10	8	31.2	43.9	×.
BS29	18B	92	1	6	.14	.04	6.	<.2	.04	40.6	<10	<.01	<10	9	37.5	5.7	1.5
BS29	18C	70	4	16	.06	.06	1.9	<.2	.02	13.3	<10	<.01	<10	10	58.8	9.8	Ľ.
BS29	19A	750	Ś	32	.2	.16	2.1	1.3	.05	33.7	53	.03	<10	29	10.2	479	2
BS30	17A	679	7	98	.24	.15	2.2	2.6	.07	39.3	40	.03	<10	27	10.1	515	2.5
BS30	17B	521	ю	31	.16	.16	2.3	1.3	.07	34.6	42	.02	<10	26	8.9	617	2.5
BS30	17C	491	5	31	.16	.17	2.1	6.	.06	32.2	68	.03	<10	27	10	637	2.3
BS30	17D	399	3	23	.13	.11	1.6	<.2	.05	28.1	160	.02	<10	21	8.9	165	.5
BS30	17E	118	1	8	.11	.03	<u>%</u>	ų.	.02	22	<10	<.01	<10	6	14.7	3.2	<u>8</u> .
BS31	19A-DUP	730	4	30	.19	.16	2.1	6	.05	33	46	.03	<10	28	9.6	454	2.1
BS31	19AQ	734	5	34	2	.16	2.1	%	.05	32.9	51	.02	<10	28	9.9	481	1.9
BS31	19B	761	ε	29	.17	.17	2.2	×,	-0. 2	28.2	111	.03	<10	28	9.5	281	1.9
BS31	19BQ	762	S	32	.17	.16	2.2	×.	.04	27.8	113	.03	<10	28	9.4	277	7

MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium (ppm) [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
								Ben Smit	Ben Smith—Continued	led							
BS31	19C	537	б	23	0.12	0.11	1.8	0.2	0.04	20.2	215	0.02	<10	24	8.1	112	0.6
BS31	19CQ	533	S	25	.12		1.8	<.2	.04	20.4	217	.02	<10	24	8.2	104	<.5
BS31	19D	284	9	20	.08	90.	1.6	<.2	.03	11.3	<10	.02	<10	22	7.2	21.6	1.2
BS31	19DQ	281	2	16	.08	.06	1.6	<.2	.02	10.8	<10	.02	<10	21	6.5	21.6	.5
BS31	19E	254	5	22	90.	.05	1.5	<.2	.02	12.8	<10	.02	<10	17	6.6	16.8	<u>%</u>
BS31	19EQ	270	3	18	.05	90.	1.7	<.2	.02	13.6	<10	.02	<10	21	6.8	19.3	1
BS32	20A	3,040	6	132	.86	.17	2	S	.08	51.2	30	.02	<10	26	10.9	492	2.1
BS32	20B	1,020	3	36	.29	.14	2	1.9	.06	44.3	38	.03	<10	28	9.2	481	1.9
BS32	20C	578	4	16	.08	.04	1.1	<.2	.04	36.7	<10	.01	<10	13	6.4	34.4	%
BS32	20C-DUP	553	3	15	.08	.04	6.	<.2	.04	35.4	<10	.02	<10	12	6.2	32	Γ.
BS32	20D	596	3	12	90.	.03	1.1	<.2	.04	31.1	<10	.01	<10	13	7.6	23	1.3
BS32	20E	527	4	19	.06	.04	1.2	<.2	.03	25	<10	.02	<10	14	6.7	29.8	1.3
BS33	21A	541	3	26	.18	.15	2.2	6:	90.	33.7	126	.02	<10	25	9.4	334	1.2
BS33	21B	401	3	16	60.	.05	1.5	<.2	.04	21.6	15	.02	<10	24	7.7	30.9	<.5
BS33	21C	397	1	14	.07	.04	1.4	<.2	.03	19.7	<10	.02	<10	19	7.1	21.6	<.5
BS33	21D	439	4	17	90.	.04	1.6	<.2	.03	22.4	<10	.02	<10	17	7	25.1	i,
BS33	21E	450	2	16	.05	.07	1.8	.3	.02	21.1	<10	.03	<10	17	6.6	26.6	6:
BS34	22A	470	L	59	.18	.14	1.8	1.9	.04	30.1	30	.02	<10	27	11.1	484	1
BS34	22B	234	00	15	-0. 80	.07	1.4	0 0 0	.03	11.7	10	.02	<10	15	5.8	38.3	1.3
400d	777	100	n	1	cu.		C.1	7.~	707	C.C	<10	cn.	<10	cI	4.C	19.4	-
BS35	23A	441	4	47	.17	.12	1.7	1.4	.03	29.5	23	.02	<10	26	9.1	446	2
BS35	23B	280	ŝ	27	.13	11.	1.7	∞. (.03	27.2	39	.02	<10	26	9.3	458	1.8
BS35	23B-DUP	277	ŝ	25	.12	II.	1.5	0. 2.2	.02	27.2	34	.02	<10	25	9.2	445 21 1	1.3
BS35 BS36	23C	162 473	n a	51 41	90 [.]	c0. 20	1.3 C C	7, r V	.03	23.4 14	<10	.02	<10	16 29	12.6 10.3	37.5 2.75	√ √ ℃ v
		24)	-		<u>.</u>	1	;		-	01/	<u>.</u>	01/	ì	0.01		
BS36	27B	477	9 (18	.05	60. 20	3:3 7	0. v V	.05	11.9	<10	.05 05	<10	41	15.4	27.8	1.3
BS36 RS36	2/2 27D	1,1/0	- 0	14		co: 8	0.0 2 2	j v	40. 40	7.7 8 8	<10	cn: 50	<10	0C 0	10.0 11 8	20.8 24.7	2.8 3.1
BS36	27D-DUP	1,240	6	14	-02.	.03 .03	2.5	, ci 2	-02 -02	8.7	<10	.05 .05	<10	4 8	11.6	23.7	3.5
BS37	29A	232	4	16	60.	.08	1.7	<.2	.04	15.7	<10	.02	<10	21	8.5	62.2	6.

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium (ppm) [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
								Ben Smitl	Ben Smith—Continued	led							
BS37	29B	107	1	12	0.03	0.05	2.3	<0.2	0.02	9.2	<10	0.02	<10	24	10.1	18.4	0.6
BS37	29C	95	2	13	<.01	.07	3.3	<.2	.03	9.3	<10	.03	<10	48	11	18.7	2.6
BS38	26A	822	3	46	.14	.13	1.7	1.8	.05	29.6	28	.02	<10	27	9.2	483	1.6
BS38	26B	1,060	4	28	.12	.12	1.6	9.	.03	22.7	53	.02	<10	26	9.4	390	1
BS38	26C	1,130	3	22	60.	.07	1.8	.2	.03	12.4	73	.02	<10	24	10.6	110	1.3
BS38	26D	1,550	4	23	.05	.03	1.6	<.2	.02	6.9	<10	.01	<10	23	41.2	13.7	6.
BS38	26E	461	2	28	.02	90.	2.7	<.2	.02	3.9	<10	.07	<10	29	41.1	44.6	1.4
BS39	25A	208	б	25	.07	60.	1.8	<.2	.04	23.3	<10	.04	<10	22	7.3	53.7	1
BS39	25B	173	L	26	.06	.08	1.8	ų.	.03	13.9	<10	.04	<10	21	6.1	29	1.4
BS40	24A	469	Г	27	.08	.07	7	<.2	.03	11.7	<10	.04	<10	23	7.1	36.9	1.5
BS40	24B	377	2	17	.04	.03	2	.2	.02	7.4	<10	.03	<10	23	8.9	23.8	L.
BS40	24C	1,090	9	25	.05	.04	2.8	<.2	.02	7.6	<10	.05	<10	32	13.3	27	1.3
BS41	28A	589	9	18	.04	60.	3.1	2	.06	13.9	<10	.05	<10	33	15.8	23.4	1.9
BS41	28AQ	605	3	15	.04	.06	3	<.2	.04	12.4	<10	.04	<10	33	16	23	1.3
BS41	28B	1,100	6	18	.04	.05	3.3	ć.	.04	12.7	<10	.04	<10	99	13.6	22.3	3.6
BS41	28BQ	1,180	8	17	.04	.04	3.1	4.	.03	12.3	<10	.04	<10	64	12.8	22.3	3.1
BS42	33A	107	3	21	90.	.12	1.4	.2	.04	28.5	21	.04	<10	18	5.5	81.1	1.6
BS42	33B	139	L	19	.07	.14	1.8	<.2	.05	35.2	42	.05	<10	24	7.2	43.4	1.6
BS43	30A	1,220	5	68	.34	.18	2.1	2.4	90.	40.2	21	.03	<10	26	10.2	386	1.9
BS43	30B	747	4	47		.15	5	1.5	.04	30.8	24	.03	<10	27	9.4	422	1.8
BS43	30B-DUP	747	4	46	2	.15	1.9	Ľ.	.04	30.5	22	.03	<10	26	9.4	421	
BS43	30C	505	7	22	.13	.13	1.9	4.	.03	22.8	82	.03	<10	26	8.6	213	1.2
BS43	30D	303	4	17	.1	.08	1.7	<.2	.03	14.9	32	.02	<10	25	8.2	47	
BS43	30E	173	7	11	90.	.04	1.7	<.2	.03	11	<10	<.01	<10	19	9.7	13.3	·
BS44	31A	157	4	12	.02	.12	6.	<.2	.04	8.4	<10	.02	<10	6	2.8	16.6	1.3
BS44	31B	88	5	11	.03	.11	1.2	2	.04	9.5	<10	.02	<10	8	3.4	22.6	2.1
BS45	32A	95	1	11	.02	.15	<u>%</u>	<.2	.04	6.2	<10	.01	<10	8	2.3	14.9	2.2
BS45	32B	163	4	14	.05	.2	1.4	с.	.04	8.2	<10	.04	<10	13	5.5	18.9	2.4

Powdermil Powdermil 268 5 40 01 0.16 1.6 1.4 0.04 2	= -	Sample (Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium (ppm) [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6	Ξ					Pov	vdermill					[
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			268	s	40	0.1	0.16	1.6	1.4	0.04	25.9	46	0.04	<10	27	5.5	289	3.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			263	L	41	.1	.15	1.5	1.5	.04	24.7	48	.04	<10	26	5.5	288	2.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			343	4	30	60.	.13	1.1	1.1	.04	22.7	43	.04	<10	22	4.6	152	1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46A		422	3	26	.15	.11	1.5	2.7	.03	18.9	61	.04	<10	28	5.8	162	2.3
	_	OUP	417	4	25	.15	.11	1.5	<.2	.04	19	65	.04	<10	25	4.7	155	2.9
901 7 45 03 11 3 4 03 5.5 <10 08 <10 38 8.7 4.7 199 7 7 2 0.0 11 5 0.4 13.4 23 0.4 <10			655	8	31	.04	.13	1.4	is.	.04	10.6	<10	.05	<10	30	5.2	75.2	1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			901	7	45	.03	.11	3	4.	.03	5.5	<10	.08	<10	38	8.7	47	3.6
842 9 54 26 19 17 2 04 35.2 42 05 <10 34 6.8 331 2 702 5 77 28 21 1.6 2 03 17.6 64 04 <10			199	7	27	.05	.2	1.1	9.	.04	13.4	23	.04	<10	18	3.6	59.3	3.5
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			842	6	54	.26	.19	1.7	2	.04	35.2	42	.05	<10	34	6.8	331	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			702	S	LL	.28	.21	1.6	7	.03	25.9	59	.05	<10	38	6.3	298	1.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52C		356	8	41	.12	.14	1	1.7	.03	17.6	64	.04	<10	30	4.2	183	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52CQ		378	ю	35	.13	.14	1	1.9	.02	18.1	75	.04	<10	30	4.3	174	1.2
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	52D		256	8	35	60.	.18	1.9	1.4	.03	18.1	62	.06	<10	33	5.8	306	6.7
UP 212 3 19 .07 .13 1.1 .9 .02 17.3 227 .04 <10 21 4.6 91.4 2.3 117 9 60 .15 .09 1 >10 .07 .13 1.1 .9 .02 17.3 227 .04 <10	52E		218	Э	20	.07	.13	1.2	1.1	.03	17.7	234	.04	<10	21	4.6	93.2	1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	DUP	212	б	19	.07	.13	1.1	6.	.02	17.3	227	.04	<10	21	4.6	91.4	2.3
135 12 69 14 09 1 > 10 06 49.4 112 03 <10 24 7.1 963 1 86 4 24 18 $.09$ 1.1 2.8 $.06$ 67.2 90 $.03$ <10 24 7.1 963 1 53 4 51 $.13$ $.04$ $.6$ $.5$ $.08$ 149 <10 $.24$ 7.1 963 1 72 5 $.35$ $.08$ 149 $.610$ $.22$ 6.5 999 $.09$ $.17$ 108 100 17 108 17 108 17.7 108 17.5 229 099 217.5 229 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 <	55A		117	6	09	.15	60.	1	> 10	.05	49.7	110	.02	<10	24	7.3	1,140	1.4
86 4 24 $.18$ $.09$ 1.1 2.8 $.06$ 67 94 $.03$ <10 22 6.3 $1,010$ 1 53 4 51 $.13$ $.04$ $.6$ $.5$ $.08$ 149 <10 22 6.5 999 23 72 55 $.13$ $.04$ $.6$ $.5$ $.08$ 149 <10 22 6.5 999 23 71 </td <td>(γ)</td> <td></td> <td>135</td> <td>12</td> <td>69</td> <td>.14</td> <td>60.</td> <td>1</td> <td>> 10</td> <td>90.</td> <td>49.4</td> <td>112</td> <td>.03</td> <td><10</td> <td>24</td> <td>7.1</td> <td>963</td> <td>1.6</td>	(γ)		135	12	69	.14	60.	1	> 10	90.	49.4	112	.03	<10	24	7.1	963	1.6
UP 87 4 25 $.18$ $.1$ 1.2 3 $.06$ 67.2 90 $.03$ <10 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 999 22 6.5 11.7 10.8 7.1 30.6 81 11.7 1.7 2.2 0.9 101 210 21 11.7 11.7 2.2 0.9 0.10 210 21 11.7 12.7 21.9 0.7 11.7 12.7 22.7 0.9 0.94 6.5 16.9 339 27.1 354 23 239 6 22 11.7 227 0.9 0.94 6.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	55B		86	4	24	.18	60.	1.1	2.8	.06	67	94	.03	<10	22	6.3	1,010	1.5
53 4 51 $.13$ $.04$ $.5$ $.08$ 149 <10 <01 <10 $1.1.1$ 10.8 72 5 52 $.05$ $.1$ 1.7 <2 $.04$ 51.7 <10 02 <10 $11.1.1$ 10.8 924 11 56 $.31$ $.2$ 1.5 $.05$ $.11$ 1.7 <22 $.05$ <10 $.01$ <10 $.11.1$ 10.8 924 11 56 $.03$ $.18$ $.18$ $.18$ $.16$ $.29$ $.04$ $.51.7$ <10 $.20$ $.11 .23 .29 .17 .19 .17.5 .23 .21 .22 .21 .29 .04 .306 .82 .05 <10 .21 .23 .11 .19 .17.5 .22 .21 .22 .21 .29 .01 .10 .11.2 .21 .22 .21 .22 .21 .22 .21 .25 .$	<u> </u>	DUP	87	4 .	25	.18		1.2	ς Έ	.06 06	67.2	06 ;	.03	<10	22	6.5	666 Ŭ	2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			55	4	10	61.	.04	0.		.08	149	<10	<.01	<10	_	11./	10.8	Ū.
924 11 56 .31 .2 1.5 2 .05 40.9 38 .05 <10 33 7.1 334 424 5 53 .18 .18 1.6 2.9 .04 30.6 82 .05 <10 40 6.9 339 289 6 29 .17 .19 1.7 2.7 .04 37.6 89 .04 <10 30 5.7 726 235 2 21 .09 .22 2.7 .9 .03 20.7 85 .07 <10 30 5.7 726 233 4 23 .09 .21 2.6 .3 11.4 5.7 70 36 6.3 153 6.5 163 339 577 726 233 4 23 .09 .21 2.6 .07 <10 30 577 726 163 163 163 163 163 163 163 163 163 <td></td> <td></td> <td>72</td> <td>5</td> <td>52</td> <td>.05</td> <td>.1</td> <td>1.7</td> <td><.2</td> <td>.04</td> <td>51.7</td> <td><10</td> <td>.02</td> <td><10</td> <td>12</td> <td>22.9</td> <td>17.5</td> <td>9.</td>			72	5	52	.05	.1	1.7	<.2	.04	51.7	<10	.02	<10	12	22.9	17.5	9.
424 5 53 .18 .18 1.6 2.9 .04 30.6 82 .05 <10			924	11	56	.31	4	1.5	7	.05	40.9	38	.05	<10	33	7.1	354	2.8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			424	5	53	.18	.18	1.6	2.9	.04	30.6	82	.05	<10	40	6.9	339	2.7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			289	9	29	.17	.19	1.7	2.7	.04	37.6	89	.04	<10	30	5.7	726	4.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			235	7	21	60.	.22	2.7	6.	.03	20.7	85	.07	<10	37	6.5	163	8.6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		\sim	230	4	23	60.	.21	2.6	Γ.	.03	20.1	68	.07	<10	36	6.3	158	8.4
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			196	4	25	90.	.14	1.4	بې	.03	11.4	55	.05	<10	23	4.8	44.8	1.2
260 7 54 .3 .17 2 4.6 .04 37.2 91 .04 <10 39 8.4 424 261 5 40 3 17 2 4.6 .04 36.0 00 04 -10 39 8.3 430			306 260		272	.32	.19	2.6	8.6	.06	41.8	193 21	.05	134	49	11.4	379	2.8 1
	56B S6BC	~	260 261	<u> </u>	4 6 4	τ ι α	.17	54 C	4.4 4	-0. 70	31.2	91 00	-0. 7	<10	30	8. 0 4. 0	424	C.2 C.2

[Quantity in brackets is detection limit. Map ID: The identifier associated with a sampling site on a map (figs. 9–14). Sample ID: Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample; DUP, SGS laboratory duplicate quality-control sample. %, percent; ppm, parts per million; <, actual value is less than value shown;

, not reported]	oorted]																
MapID	Sample ID	Manga- nese (ppm) [2]	Molyb- denum (ppm) [1]	Nickel (ppm) [1]	Phos- phorus (%) [0.01]	Potas- sium (%) [0.01]	Scan- dium (ppm) [0.5]	Silver (ppm) [0.2]	Sodium (%) [0.01]	Stron- tium (ppm) [0.5]	Tin (ppm) [10]	Titanium (%) [0.01]	Tungsten (ppm) [10]	Vana- dium (ppm) [2]	Yttrium (ppm) [0.5]	Zinc (ppm) [0.5]	Zirconium (ppm) [0.5]
								Powdermill	ill—Continued	ued							
P53	56C	299	3	26	0.16	0.16	2.2	0.3	0.02	32.9	83	0.04	<10	27	6.3	1,010	3.4
P54	54A	294	15	69	.31	.17	1.5	> 10	.04	51.6	560	.03	<10	28	8.3	905	3.2
P54	54B	355	3	14	.12	.03	Γ.	<.2	.04	109	15	<.01	<10	10	6.6	388	<.5
P54	54C	243	4	10	.04	.04	3.2	4.	.03	119	<10	.01	<10	11	14.2	62.6	L.
P54	54CQ	210	З	10	.03	.04	2.5		.02	96.2	<10	.01	<10	6	10.5	73	6:
P55	51A	384	9	46	.1	.12	1.6	1.3	.05	25.5	14	.04	<10	26	6.5	9.66	1.8
P55	51B	330	3	21	.08	90.	1.8	4.	.04	14.5	<10	.04	<10	28	9.7	33.2	S.
P55	51BQ	342	4	19	.08	90.	1.8	4.	.04	14.8	<10	.05	<10	29	10.1	34.1	<.5
P55	51C	323	3	22	.05	.06	1.9	4.	.04	9.4	<10	.05	<10	31	9.6	31.4	6.
P55	51D	282	8	29	.04	.07	2.1	4.	.04	6.9	<10	.06	<10	28	6	28.7	1.1
P55	51E	267	4	30	.04	.05	2.8	9.	.04	7.1	<10	.05	<10	25	8.7	29.3	1.3
P56	50A	583	6	179	.37	.26	2.3	> 10	.08	58	125	.05	117	40	11.7	572	2.2
P56	50AQ	573	8	164	.36	.25	2.3	> 10	.07	56.3	116	.04	114	39	11.4	555	2.7
P56	50B	704	14	84	.54	.23	2.4	> 10	90.	77.8	83	.04	<10	53	15.6	1,200	2.1
P56	50C	308	4	28	.13	.26	2.8	2.2	.04	32.8	55	.06	<10	39	8.3	703	7
P56	50D	262	5	26	.08	.12	1.7	6	.04	24	16	.04	<10	25	7.4	48.2	1.3
P56	50E	148	2	13	90.	.05	Ľ.	ω.	.03	19.5	<10	<.01	<10	9	9.5	10.3	<.5
P56	50E-DUP	148	7	13	90.	.05	Ľ.	ω.	.02	19.5	<10	<.01	<10	9	9.6	9.4	%.
P57	57	272	3	30	.07	.31	1.9	i.	.04	9.6	<10	.07	<10	28	6.1	66.9	4.2
P57	57Q	252	4	36	.05	e.	2.3	ω.	.04	7.6	<10	.08	<10	31	5.5	67.5	4

 Table 16.
 Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet

 River Basin, Massachusetts, 2003.
 Concentration of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

Map ID	Sample ID	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo[<i>a</i>]- anthra- cene	Benzo[<i>a</i>]- pyrene	Benzo[<i>b</i>]- fluoran- thene	Benzo[<i>g,h,i</i>]- perylene	Benzo[<i>k</i>]- fluoran- thene	Chrysene
					Aluminu	ım City				
AC1	5	23	5.2	77	290	220	310	110	130	330
AC2	7	21	8.8	25	220	210	330	120	180	360
AC3	6	19	9.9	29	150	190	400	110	130	250
AC4	8A	27		44	440	390	670	220	320	640
AC4	8B	16	5.5	18	110	120	210	76	120	160
AC4	8C	4.7		16	67	42	70	23	34	65
					Allen S	Street				
AS5	1	540	70	1,100	7,100	5,600	6,200	2,200	2,400	7,100
AS6	3	43	17	120	840	510	650	230	360	740
AS7	2A	74	39	290	1,500	1,200	1,500	560	760	1,300
AS7	2B	200	57	600	2,000	1,600	2,200	600	800	2,300
AS7	2C	20	15	76	540	290	380	140	200	480
AS8	4	58	19	160	750	560	780	260	380	840
					Hud	son				
H9	9			30	12		23	12	9.0	19
H10	12	130	590	830	5,800	7,000	8,400	3,700	4,200	8,400
H10	12Q	120	520	740	5,400	6,000	7,900	3,600	3,100	7,700
H11	13		13	16	160	160	250	130	110	250
H12	11A				12		14	10	11	20
H12	11B				6.7		11	6.5	5.4	9.2
H13	14A	81	380	660	5,300	6,000	9,600	2,100	2,900	6,400
H13	14AQ	76	390	610	4,500	5,200	8,100	2,000	3,400	5,500
H13	14B	32	230	310	2,600	2,900	3,900	1,200	1,800	3,000
H13	14BQ	33	240	360	3,200	3,500	5,400	1,400	2,500	3,800
H13	14C						¹ 17			¹ 11
H13	14CQ						¹ 33			¹ 31
H14	10				5.0		9.6	5.31	5.33	10
H15	15		82	120	920	970	1,500	760	570	1,400
					Gleaso	ndale				
G16	34				20		32	13	15	30
G17	39	14	11	51	220	260	310	140	220	350
G18	35A	410	610	1,500	7,400	7,800	10,000	4,400	5,500	11,000
G18	35B	220	270	1,200	6,400	5,700	6,100	2,800	3,800	8,800
G18	35C	34	41	190	920	740	770	370	640	1,300

Table 16. Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet

 River Basin, Massachusetts, 2003.—Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

G19 408 150 120 470 2,500 2,500 3,200 1,300 2,100 3,800 G19 40C 10 8,41 57 220 190 260 110 160 320 G20 36 20 19 14 28 G20 36Q 14 16 7,10 12 26 G21 44 6.1 6.2 31 140 140 190 78 140 220 G22 41 6.3 60 210 1.300 1.300 1.700 700 1.20 280 G24 42 9.8 14 32 230 230 310 140 210 380 G25 45 86 74 81 120 350 140 210 320 G27	Map ID	Sample ID	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo[<i>a</i>]- anthra- cene	Benzo[<i>a</i>]- pyrene	Benzo[<i>b</i>]- fluoran- thene	Benzo[<i>g,h,i</i>]- perylene	Benzo[<i>k</i>]- fluoran- thene	Chrysene
G19 408 150 120 470 2,500 2,500 3,200 1,300 2,100 3,800 G19 40CQ 10 8,41 57 220 190 260 110 160 320 G20 36 20 19 14 28 G20 36Q 14 16 7,10 12 26 G21 44 6.1 6.2 31 140 140 190 78 140 220 G22 41 6.3 60 210 1.300 1.300 1.700 700 1.20 280 G24 42 9.8 14 32 230 230 310 140 210 380 G25 45 60 190 190 290 160 180 330 G27 43						Gleasondale-	-Continued				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G19	40A	47	46	160	770	800	1,200	470	440	1,200
G19 40CQ 14 11 86 310 270 350 140 220 440 G20 36 20 19 14 28 G20 36Q 14 16 7.10 12 26 G21 44 6.1 6.2 31 140 140 190 78 140 220 G23 37 6.0 9.3 36 260 190 190 97 130 260 G24 42 9.8 14 32 230 230 310 140 210 380 G25 45 60 190 190 290 160 180 320 G26 38 55 47 184 39 37 79 BS29 18 150 1,200 2,300 3,500 1,600 1,500 3,400 1,600 1,500 <td>G19</td> <td>40B</td> <td>150</td> <td>120</td> <td>470</td> <td>2,500</td> <td>2,500</td> <td>3,200</td> <td>1,300</td> <td>2,100</td> <td>3,800</td>	G19	40B	150	120	470	2,500	2,500	3,200	1,300	2,100	3,800
G20 36 20 19 14 28 G20 $36Q$ 14 16 7.10 12 26 G21 44 6.1 6.2 31 140 140 190 78 140 220 G22 41 63 60 210 $1,300$ $1,300$ $1,700$ 700 $1,200$ $2,000$ G23 37 6.0 9.3 36 260 190 190 97 130 260 G24 42 9.8 14 32 230 230 310 140 210 380 G25 45 8.6 74 81 120 51 76 120 G26 38 60 190 190 290 160 180 330 G27 43 55 47 184 39 37 $^{7}99$ B529 18 $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ 96 74 54 89 B530 $17A$ 150 $1,200$ $2,300$ $3,500$ $1,900$ $1,500$ $3,400$ B531 $19A$ $ -$ B531 $19A$ 58 210 $1,00$ $1,600$ $1,00$ $3,400$ B531	G19	40C	10	8.41	57	220	190	260	110	160	320
G20 $36Q$ 1416 7.10 1226G21446.16.23114014019078140220G224163602101.3001.3001.7007001.2002.000G23376.09.33626019019097130260G24429.81432230230310140210380G25458.674811205176120G263860190190290160180330G274355471843937179BS291855471843937199BS3017A1501.2002.3003.5001.9001.5003.400BS3017C1333527BS3119A1333527BS3119B1333527BS3119B160130440BS3119B1333527BS3119B220160 <td>G19</td> <td>40CQ</td> <td>14</td> <td>11</td> <td>86</td> <td>310</td> <td>270</td> <td>350</td> <td>140</td> <td>220</td> <td>440</td>	G19	40CQ	14	11	86	310	270	350	140	220	440
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G20	36				20		19		14	28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G20										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G21	44									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G22										2,000
G25458.674811205176120G263860190190290160180330G274354180210330140210320Ber SmithBs28165547184393779BS2918145196745489BS3017A1502702,2002,3003,5001,9001,5003,400BS3017B1501,2008801,5007506501,600BS3017C1333527BS3119A1333527BS3119AQ120120100100380BS3119B5821012012301001003,400BS3119C5821012012301001003,800BS3119C5821012012301001,003,400BS3220A58550930470460940BS3220B18221928	G23										
G263860190190290160180330G274354180210330140210320Ben SmithBS281655471843937179BS2918145196745489BS3017A1502702,2002,3003,5001,9001,5003,400BS3017B1501,2008801,5007506501,600BS3017C13335277BS3119A159,88BS3119B120120120100100380BS3119C555509301,4001,1003,400BS3119C120120120130400BS3119C555509301,4001,1003,400BS3220A18221928BS3319C18221928BS332118221928BS3321-	G24	42	9.8	14	32	230	230	310	140	210	380
G27 43 54 180 210 330 140 210 320 Ber Smith BS28 16 55 47 '84 39 37 '79 BS29 18 '45 '96 74 54 89 BS30 17A 150 270 2,200 2,300 3,500 1,900 1,500 3,400 BS30 17B 150 1,200 2880 1,500 750 650 1,600 BS31 19A '15 9,8 BS31 19AQ '15 9,8 BS31 19AQ 220 160 330 160 130 440 BS31 19AQ <td>G25</td> <td>45</td> <td></td> <td></td> <td>8.6</td> <td>74</td> <td>81</td> <td>120</td> <td>51</td> <td>76</td> <td>120</td>	G25	45			8.6	74	81	120	51	76	120
Ben Smith BS28 16 55 47 '84 39 37 '79 BS29 18 '45 '96 74 54 89 BS30 17A 150 270 2,200 2,300 3,500 1,900 1,500 3,400 BS30 17B 150 1,200 880 1,500 750 650 1,600 BS30 17C '136 '138 BS31 19A '15 9,8 BS31 19AQ '15 9,8 BS31 19BQ 220 160 330 160 130 440 BS31 19CQ 91 240 1,600 1,500 2,500 1,400	G26	38							160		330
BS281655471843937179BS2918 $^{1}45$ $^{1}96$ 745489BS3017A1502702,2002,3003,5001,9001,5003,400BS3017B1501,2008801,5007506501,600BS3017C $^{1}36$ $^{1}38$ BS3119A $^{1}33$ 3527BS3119AQ159.8BS3119B220160330160130440BS3119RQ2702,0001,7003,2001,4001,1003,400BS3119C $^{1}23$ 160130440BS3119C2702,0001,7003,2001,4001,1003,400BS3220A550550930470460940BS3220B18221928BS332118221928BS3523268412070	G27	43			54	180	210	330	140	210	320
BS29 18 '45 '96 74 54 89 BS30 17A 150 270 2,200 2,300 3,500 1,900 1,500 3,400 BS30 17B 150 1,200 880 1,500 750 650 1,600 BS30 17C '36 '38 BS31 19A '15 9,8 '38 BS31 19AQ '15 9,8 '38 BS31 19AQ '15 9,8 '38 BS31 19BQ 220 160 330 160 130 440 BS31 19CQ 58 210 120 '230 100 1,00 3,400 BS32 20A <						Ben S	mith				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BS28	16				55	47	¹ 84	39	37	¹ 79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BS29	18				¹ 45		¹ 96	74	54	89
BS3017C $$ $$ $^{1}36$ $^{1}38$ BS3119A $^{1}33$ 35 27 BS3119AQ $^{1}15$ 9.8 27 BS3119B 220 160 330 160 130 440 BS3119BQ 58 210 120 $^{1}230$ 100 100 380 BS3119C 270 $2,000$ $1,700$ $3,200$ $1,400$ $1,100$ $3,400$ BS3119CQ91 240 $1,600$ $1,500$ $2,500$ $1,200$ $1,300$ $2,600$ BS3220A59 550 550 930 470 460 940 BS3220B 42 52 28 45 70 BS332194 410 460 690 410 510 690 BS34222839 350 380 590 320 360 610 BS352326 84 120 70 100 160 BS3627 18 18 $$ 20 34 BS3729 8.01 15 14 </td <td>BS30</td> <td>17A</td> <td></td> <td>150</td> <td>270</td> <td>2,200</td> <td></td> <td></td> <td></td> <td></td> <td>3,400</td>	BS30	17A		150	270	2,200					3,400
BS3119A $^{1}33$ 3527BS3119AQ $^{1}15$ 9.827BS3119B220160330160130440BS3119BQ58210120 $^{1}230$ 100100380BS3119C2702,0001,7003,2001,4001,1003,400BS3119CQ912401,6001,5002,5001,2001,3002,600BS3220A59550550930470460940BS3220B4252284570BS332194410460690410510690BS34222839350380590320360610BS3523268412070100160BS362718182034BS37298.01151412	BS30				150	1,200	880		750	650	1,600
BS3119AQ $^{-1}$ 1 9.8 BS3119B220160330160130440BS3119BQ58210120 1 230100100380BS3119C2702,0001,7003,2001,4001,1003,400BS3119CQ912401,6001,5002,5001,2001,3002,600BS3220A59550550930470460940BS3220B4252284570BS3220C18221928BS332194410460690410510690BS34222839350380590320360610BS3523268412070100160BS36278.01151412	BS30	17C						136			¹ 38
BS3119B220160330160130440BS3119BQ58210120 1230 100100380BS3119C2702,0001,7003,2001,4001,1003,400BS3119CQ912401,6001,5002,5001,2001,3002,600BS3220A59550550930470460940BS3220B4252284570BS3220C18221928BS332194410460690410510690BS35232839350380590320360610BS36271812070100160BS37298.01151412	BS31										27
BS3119BQ58210120'230100100380BS3119C2702,0001,7003,2001,4001,1003,400BS3119CQ912401,6001,5002,5001,2001,3002,600BS3220A59550550930470460940BS3220B4252284570BS3220C18221928BS332194410460690410510690BS34222839350380590320360610BS3523268412070100160BS362718182034BS37298.01151412	BS31										
BS31 $19C$ 270 $2,000$ $1,700$ $3,200$ $1,400$ $1,100$ $3,400$ BS31 $19CQ$ 91 240 $1,600$ $1,500$ $2,500$ $1,200$ $1,300$ $2,600$ BS32 $20A$ 59 550 550 930 470 460 940 BS32 $20B$ 42 52 28 45 70 BS32 $20C$ 18 22 19 28 BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 -18 20 34 BS37 29 8.01 15 14 12	BS31										
BS31 19CQ 91 240 1,600 1,500 2,500 1,200 1,300 2,600 BS32 20A 59 550 550 930 470 460 940 BS32 20B 42 52 28 45 70 BS32 20C 18 22 19 28 BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 18 18 20 34 BS37 29 8.01 15 14 12											
BS32 $20A$ 59 550 550 930 470 460 940 BS32 $20B$ 42 52 28 45 70 BS32 $20C$ 18 22 19 28 BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 18 18 20 34 BS37 29 8.01 15 14 12	BS31	19C			270	2,000	1,700	3,200	1,400	1,100	3,400
BS32 $20B$ 42 52 28 45 70 BS32 $20C$ 18 22 19 28 BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 -18 20 34 BS37 29 $$ 8.01 15 14 12	BS31	19CQ		91		1,600		2,500			2,600
BS32 20C 18 22 19 28 BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 18 18 20 34 BS37 29 8.01 15 14 12	BS32	20A			59	550	550	930		460	940
BS33 21 94 410 460 690 410 510 690 BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 18 18 20 34 BS37 29 8.01 15 14 12	BS32								28		
BS34 22 28 39 350 380 590 320 360 610 BS35 23 26 84 120 70 100 160 BS36 27 18 18 20 34 BS37 29 8.01 15 14 12	BS32										
BS3523268412070100160BS362718182034BS37298.01151412	BS33	21			94	410	460	690	410	510	690
BS36 27 18 20 34 BS37 29 8.01 15 14 12	BS34	22		28		350	380	590		360	610
BS37 29 <u>8.01</u> 15 14 12	BS35	23			26			120	70	100	160
	BS36										
BS38 26A 90 740 690 1,300 640 630 1,500	BS37	29									12
	BS38	26A			90	740	690	1,300	640	630	1,500

 Table 16.
 Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet

 River Basin, Massachusetts, 2003.—Continued
 Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

Map ID	Sample ID	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo[<i>a</i>]- anthra- cene	Benzo[<i>a</i>]- pyrene	Benzo[<i>b</i>]- fluoran- thene	Benzo[<i>g,h,i</i>]- perylene	Benzo[<i>k</i>]- fluoran- thene	Chrysene
					Ben Smith–	-Continued				
BS38	26B			8.3	54		78	42	58	110
BS38	26C									
BS39	25				42		50	29	43	63
BS40	24		16	26	230	240	410	200	200	440
BS41	28									
BS42	33				97	92	130	75	87	140
BS43	30A				680	760	940	590	870	1,100
BS43	30B				520	400	630	310	460	740
BS43	30C						11			10
BS44	31				6.0		8.3		5.0	8.2
BS45	32				26	25	51	22	20	35
					Powd	ermill				
P46	48	270	160	1,100	4,100	4,500	4,400	2,200	2,300	5,000
P46	48Q	250	150	1,400	4,600	4,900	5,000	1,800	2,900	5,600
P47	49	270	120	590	3,100	4,100	3,700	1,800	2,700	3,800
P48	46A									
P48	46B		13	38	700	740	680	320	280	730
P48	46C	140	300	730	7,400	8,400	6,800	5,800	2,600	7,200
P49	47	69	30	170	600	670	730	360	490	590
P50	52	7,500	780	81,000	120,000	74,000	82,000	25,000	38,000	10,000
P51	55	110	67	400	2,400	1,700	2,100	630	1,200	2,700
P52	53	2,800		8,600	15,000	13,000	9,300	8,200	5,200	14,000
P53	56	790	360	3,000	9,400	8,700	6,700	3,900	5,200	11,000
P54	54A	260	230	1,500	10,000	9,300	10,000	4,300	3,700	13,000
P54	54B			120	510	380	300	270	260	550
P54	54C			16	50	38	110	64	43	140
P55	51A	75	25	320	1,100	1,200	930	710	350	1,200
P55	51B	7.1		5.2	6.5	5.5	4.4	3.2	3.0	7.2
P55	51C			7.1	15	18	9.9	7.2	6.9	13
P56	50A	150	95	350	2,000	2,400	3,000	1,200	2,300	2,900
P56	50AQ	22	16	46	300	310	450	270	170	400
P56	50B	730	140	3,300	6,600	5,300	6,000	2,900	2,100	7,600
P56	50C	22		54	130	95	90	48	76	130
P57	57			2.0	11	14	21	10	12	20

Table 16. Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet River Basin, Massachusetts, 2003.—Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

Map ID	Sample ID	Dibenzo[<i>a,h</i>]- anthracene	Fluoran- thene	Fluorene	Indeno- [1,2,3- <i>cd</i>]- pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH
					Aluminum City	,			
AC1	5	28	570	60	100	16	390	650	3,300
AC2	7	27	530	35	110	25.0	270	710	3,200
AC3	6	31	490	37	100	26	220	490	2,700
AC4	8A	52	960	41	200	29	410	1,100	5,500
AC4	8B	16	300	22	68	22	150	320	1,700
AC4	8C	5.2	130	10	20	5.0	74	150	720
					Allen Street				
485	1	710	7,300	670	2,000	460	3,400	11,000	58,000
AS6	3	61	1,100	73	220	37	550	1,200	6,800
AS7	2A	140	2,700	150	520	75	1,700	3,300	16,000
AS7	2B	170	3,200	330	600	130	2,500	4,000	21,000
AS7	2C	36	700	36	130	55	440	920	4,500
AS8	4	64	1,300	86	250	55	970	1,700	8,200
					Hudson				
-19	9		24		9.6		30	24	190
H10	12	900	9,900	740	3,500	420	6,600	16,000	77,000
H10	12Q	900	11,000	610	3,200	370	6,100	13,000	70,000
H11	13	25	310	11	110	11	140	370	2,100
H12	11A		21		8.7		12	26	130
H12	11 B		15		5.3		8.4	15	82
H13	14A	610	12,000	410	2,400	220	3,800	14,000	67,000
H13	14AQ	570	11,000	340	2,200	130	3,500	13,000	61,000
H13	14 B	330	3,900	180	1,300	160	1,700	6,400	30,000
H13	14BQ	380	7,200	190	1,500	170	2,000	8,200	40,000
H13	14C		¹ 18				13	¹ 17	13
H13	14CQ		¹ 46				40	¹ 42	40
H14	10		17		4.2		11	14	82
115	15	140	1,700	71	670	69	950	2,000	12,000
					Gleasondale				
G16	34		63		12		45	48	280
G17	39	45	460	29	130	20	290	650	3,200
G18	35A	620	14,000	1,000	4,200	690	9,700	20,000	99,000
G18	35B	470	12,000	720	2,800	380	7,800	16,000	75,000
G18	35C	55	1,700	76	340	100	1100	2,200	11,000
G19	40A	85	1,400	96	430	82	880	2,200	10,000
G19	40B	420	5,600	420	1,300	290	3,800	7,100	35,000
G19	40C	36	400	24	100	32	260	520	2,700
G19	40CQ	46	550	34	130	45	350	740	3,700
G20	36		37				20	40	180

 Table 16.
 Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet

 River Basin, Massachusetts, 2003.—Continued
 Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

Map ID	Sample ID	Dibenzo[<i>a,h</i>]- anthracene	Fluoran- thene	Fluorene	Indeno- [1,2,3- <i>cd</i>]- pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH
				Glease	ondale—Conti	nued			
G20	36Q		35		7.8		19	39	180
G21	44	23	260	10	74	7.10	120	320	1,800
G22	41	210	2,500	140	660	120	1,600	3,600	17,000
G23	37	18	330	15	95	15	190	530	2,400
G24	42	45	430	22	120	20	290	700	3,200
G25	45	15	140	5.7	46	5.98	54	220	1,000
G26	38	38	450		130		250	550	2,800
G27	43	47	420	21	120	17	190	500	2,800
					Ben Smith				
BS28	16	10	¹ 87		34		37	¹ 140	260
BS29	18		¹ 110		43		69	¹ 130	330
BS30	17A	360	4,100	230	1,600	150	2,600	6,300	31,000
BS30	17B	140	1,800	110	650	97	1,100	2,600	13,000
BS30	17C		¹ 70				39	¹ 44	39
BS31	19A		¹ 25		28				90
BS31	19AQ		¹ 16				14	¹ 12	24
BS31	19B		390		140		280	650	2,900
BS31	19BQ		410		81		300	660	2,400
BS31	19C	280	3,500	220	1,300	200	2,100	5,400	26,000
BS31	19CQ	250	2,900	180	1,100	130	1,700	4,000	21,000
BS32	20A	80	910	46	390		570	1,300	7,300
BS32	20B		76		23		45	120	500
BS32	20C		27				13	22	150
BS33	21	130	780	37	350		430	820	5,800
BS34	22	90	600	31	280	35	350	1,100	5,200
BS35	23		160		60		100	280	1,200
BS36	27							15	110
BS37	29		13				12	15	89
BS38	26A	150	1,400	79	560	89	670	2,200	11,000
BS38	26B	13	69	11	35	9.59	64	150	700
BS38	26C								
BS39	25		82		25		69	130	530
BS40	24	50	460	21	170	21	270	740	3,500
BS41	28								
BS42	33		150		67		79	260	1,200
BS43	30A		1,300		560		770	2,000	9,600
BS43	30B		770		280		450	1,100	5,700
BS43	30C		19				13	17	70
BS44	31						5.88	12	45
BS45	32		47		20		21	67	330

Table 16. Concentrations of polycyclic aromatic hydrocarbons detected in sediment samples from six impoundments in the Assabet River Basin, Massachusetts, 2003.—Continued Continued

[All values are in micrograms per kilogram. Minimum reporting level is 0.017 micrograms per kilogram. Data are rounded to two significant figures. **Map ID:** The identifier associated with a sampling site on a map (figs. 9–14). **Sample ID:** Identifier for a sample collected from a particular core, arranged alphabetically from the top of the core, with Q designating a replicate sample. Shaded numbers exceed sediment-quality guidelines (table 2). There are no guidelines for benzo[*b*]fluoranthene. PAH, polycyclic aromatic hydrocarbon; --, not detected]

Map ID	Sample ID	Dibenzo[<i>a,h</i>]- anthracene	Fluoran- thene	Fluorene	Indeno- [1,2,3- <i>cd</i>]- pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH
					Powdermill				
P46	48	580	6,100	350	1,800	710	3,000	11,000	48,000
P46	48Q	470	6,500	360	1,600	700	3,300	10,000	50,000
P47	49	480	5,500	310	1,600	350	3,800	7,800	40,000
P48	46A		3.4					3.8	7.2
P48	46B	71	300	10	240	16	110	940	5,200
P48	46C	1,200	5,900	260	4,200	550	3,000	11,000	65,000
P49	47	92	1,100	84	310	78	770	1,600	7,700
P50	52	10,000	200,000	18,000	29,000	1,300	150,000	210,000	1,100,000
P51	55	140	2,900	140	540	200	700	4,700	21,000
P52	53	1,600	20,000	3,500	5,400	2,200	29,000	40,000	180,000
P53	56	1,100	12,000	1,100	320	920	9,200	22,000	96,000
P54	54A	930	12,000	500	3,500	590	5,700	23,000	99,000
P54	54B		700		180		560	1,500	5,300
P54	54C		210		22		74	460	1,200
P55	51A	130	1,500	67	460	70	550	3,600	12,000
P55	51B		11			3.5	12	25	94
P55	51C		17		5.3		15	29	140
P56	50A	310	4,100	210	1,100	260	2,200	6,900	29,000
P56	50AQ	54	550	29	220	29	290	810	4,000
P56	50B	580	10,000	1,000	2,100	1,200	9,700	19,000	78,000
P56	50C	9.6	150	20	30	11	180	480	1,500
P57	57		25		9.3		12	26	160

¹Indicates suspected laboratory contamination

[cm, centimeter; m, meter; mg/L,	milligram per liter; µS/cm,	microsiemens per centimeter;	°C, degrees Celsius;, no data]
----------------------------------	-----------------------------	------------------------------	--------------------------------

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	pН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remark
			•		Station	า 17				
7-16-03	9:00	0.00	594	6.86	21.8	6.4		0.1010	0.051	
7-16-03		.50	594	6.83	21.8	6.4				
7-16-03	9:10	1.00	594	6.83	21.8	6.4		.1081	.051	
7-16-03		1.50	594	6.82	21.8	6.4				
7-16-03		1.60	594	6.81	21.8	6.3				
7-24-03	8:40	.00	514		22.0	4.1	118.02	.1451	.075	
7-24-03		.50	515		22.0	4.1				
7-24-03		1.00	515		22.0	4.1				
7-24-03	8:50	1.50	515		22.0	4.1		.1582	.077	
7-24-03		1.80	515		22.0	4.1				
7-29-03	8:50	.00	601		23.3	6.4	142.44	.0846	.054	
7-29-03		.50	601		23.3	5.7				
7-29-03		1.00	600		23.3	5.8				
7-29-03	9:00	1.50	600		23.3	5.8		.0861	.055	
7-29-03		1.80	601		23.3	5.7				
8-07-03	9:10	.00	485	6.42	23.2	3.8	109.64	.1523	.109	
8-07-03	9:11						109.37	.1526	.108	Replicate
8-07-03		.50	486	6.44	23.2	3.8				
8-07-03		1.00	486	6.45	23.2	3.8				
8-07-03	9:20	1.50	486	6.47	23.2	3.7		.1498	.109	
8-07-03		1.80	486	6.47	23.2	3.7				
8-13-03	9:40	.00	500	6.56	23.9	4.6	111.83	.1365	.095	
8-13-03	9:55	.50	499	6.62	23.9	4.2	.2	.002	.001	
8-13-03		1.00	499	6.62	23.9	4.2				
8-13-03		1.50	499	6.65	23.9	4.0				
8-21-03	9:25	.00	528	6.57	21.7	6.2	122.15	.1056	.075	
8-21-03		.50	525	6.6	22.8	5.6				
8-21-03		1.00	522	6.63	22.8	5.4				
8-21-03	9:35	1.40	523	6.64	22.8	5.3		.1068	.076	
8-28-03	9:40	.00	687	6.4	21.5	5.4	162.2	.0821	.055	
8-28-03		.50	687	6.43	21.6	5.2				
8-28-03		1.00	687	6.51	21.5	5.1				
8-28-03	9:50	1.50	687	6.56	21.5	5.1		.1283	.055	
9-08-03	9:00	.00	631	6.48	19.4	6.6	146.58	.0823	.046	
9-08-03		.50	631	6.49	19.4	6.6				
9-08-03		1.00	631	6.5	19.4	6.6				
9-08-03	9:20	1.50	631	6.5	19.4	6.6		.4200	.047	
9-08-03	9:21						<.2	.0029	.000	Blank
9-08-03		1.70	631	6.5	19.4	6.5				

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	pН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remark
			·		Statio	า 20				
7-16-03	9:45	0.00	578	7.53	22.5	7.1		0.1044	0.040	
7-16-03		.50	578	7.57	22.5	7.0				
7-16-03	9:55	.70	583	6.92	22.5	7.0		.2800	.060	
7-16-03	10:00	¹ 05						2.3350	.383	
7-24-03	9:15	.00	576		22.1	3.0	137.17	.0750	.033	
7-24-03		.50	574		22.7	2.3				
7-24-03	9:25	.70	602		22.5	.7		.2550	.054	
7-24-03	9:35	¹ 05						7.0770	5.016	
7-29-03	9:20	.00	529		23.9	9.9	128.64	.0764	.049	
7-29-03	9:30	.50	527		23.5	5.5		.2200	.108	
7-29-03	9:40	.80	590		23.1	.4		3.1220	1.153	
7-29-03	9:50	¹ 05						1.2210	.873	
8-07-03	10:00	.00	470	6.63	24.0	3.4	107.41	.1006	.070	
8-07-03	10:10	.50	473	6.49	23.6	1.3		.1524	.096	
8-07-03	10:20	.90	537	6.41	23.0	.2		.3130	.135	
8-07-03	10:30	¹ 05						2.1320	1.153	
8-13-03	10:25	.00	485	6.91	25.6	6.4	110.8	.0717	.053	
8-13-03		.50	501	6.68	24.6	1.8				
8-13-03	10:35	.70	505	6.64	24.4	1.5		.1731	.126	
8-13-03	10:45	¹ 05						.9490	.716	
8-21-03	10:00	.00	501	6.73	24.0	4.1	118.2	.0969	.057	
8-21-03	10:10	.50	499	6.51	23.1	2.0		.1507	.088	
8-21-03	10:15	.70	516	6.29	22.8	.3		.8120	.713	
8-21-03	10:20	¹ 05						2.1320	.605	
8-28-03	10:15	.00	562	6.94	21.8	5.7	128.18	.0569	.037	
8-28-03		.50	567	6.73	21.1	3.2				
8-28-03	10:25	.70	567	6.66	21.1	2.6		.3350	.061	
8-28-03	10:35	¹ 05						.7740	.145	
9-08-03	10:00	.00	602	6.78	19.8	8.4	139.43	.0562	.023	
9-08-03	10:10	.50	604	6.52	19.4	4.4	139.41	.2140	.047	
9-08-03	10:20	.85	631	6.36	19.0	.6		1.1150	.093	
9-08-03	10:30	¹ 05						.9120	.296	
9-08-03	10:31	¹ 05						.9400	.292	
					Statio	า 27				
7-16-03	10:35	0.00	600	7.9	22.7	7.2		0.0968	0.036	
7-16-03		.50	595	7.72	22.6	7.1				
7-16-03	10:45	1.00	572	5.62	22.2	6.7		.1213	.049	
7-16-03		1.10	571	5.08	22.2	6.6				
7-16-03	10:55	¹ 05						1.2060	.310	

[cm, centimeter; m, meter; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; --, no data]

[cm, centimeter; m, meter; mg/	L, milligram per liter; μS/cm	, microsiemens per centimeter;	°C, degrees Celsius;, no data]
--------------------------------	-------------------------------	--------------------------------	--------------------------------

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	pН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remarks
					Station 27—	Continued				
7-24-03	10:00	0.00	609		22.9	7.0	147.49	0.1204	0.031	
7-24-03		.50	601		22.8	7.0				
7-24-03	10:05	1.00	638		22.3	2.5		.1713	.057	
7-24-03		1.20	638		22.2	.3				
7-29-03	10:10	.00	571		24.4	7.7	136.3	.1280	.076	
7-29-03		.50	576		24.0	7.7				
7-29-03	10:20	1.00	552		23.6	5.3		.2570	.155	
7-29-03		1.20	571		23.5	.8				
7-29-03	10:30	¹ 05						1.2980	.446	
8-07-03	10:40	.00	491	6.63	24.4	5.6	111.71	.1380	.095	
8-07-03		.50	515	6.61	24.0	5.4				
8-07-03	10:50	1.00	585	6.45	23.4	2.3		.1133	.072	
8-07-03		1.30	565	6.42	23.0	1.5				
8-07-03	11:00	¹ 05						.5470	.216	
8-07-03	11:01	¹ 05						.3630	.236	Replicate
8-13-03	11:00	.00	501	6.7	25.1	4.4	118.29	.1369	.085	
8-13-03	11:10	.50	510	6.7	24.6	3.4		.0899	.066	
8-13-03		1.00	544	6.71	23.6	3.1				
8-13-03	11:20	¹ 05						.9030	.371	
8-21-03	10:50	.00	483	6.59	23.8	5.9	120.12	.1166	.082	
8-21-03		.50	491	6.44	23.1	3.5				
8-21-03	11:00	1.00	487	6.29	22.7	1.3		.2010	.128	
8-21-03		1.50	514	6.31	22.5	.3				
8-21-03	11:10	¹ 05						.6480	.368	
8-28-03	10:50	.00	575	7.08	22.3	6.9	133.7	.1032	.047	
8-28-03		.50	559	6.93	21.5	5.2				
8-28-03		1.00	565	6.8	21.3	5.0				
8-28-03	11:00	1.20						.3900	.295	
8-28-03	11:10	¹ 05						.6540	.323	
9-08-03	11:15	.00	610	6.84	20.5	8.9	143.02	.0747	.030	
9-08-03		.50	613	6.73	20.2	8.3				
9-08-03	11:25	1.00	621	6.62	19.9	7.0		.1136	.038	
9-08-03		1.10	620	6.6	20.0	6.4				
9-08-03	11:35	¹ 05						.6110	.237	
					Statio	n 29				
7-16-03	11:10	0.00	602	8.2	22.7	7.1		0.0720	0.028	
7-16-03		.50	601	8.38	22.7	7.1				
7-16-03	11:20	1.00	604	5.45	22.4	6.8		.2650	.027	
7-16-03		1.20	606	4.34	22.2	6.7				
7-16-03	11:30	¹ 05						1.2090	.267	

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	рН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remark
					Station 29—	Continued				
7-24-03	10:48						0.2	0.0040	0.005	Blank
7-24-03	11:00	0.00	535		22.7	8.0	127.26	.1100	.044	
7-24-03		.50	528		22.4	5.8				
7-24-03	11:10	1.00	527		22.2	4.3		.3130	.071	
7-24-03		1.10	848		22.0	.2				
7-29-03	10:50	.00	593		26.1	12.1	142.29	.0770	.049	
7-29-03		.50	599		24.3	5.5				
7-29-03	11:00	1.00	604		24.1	4.3		.2070	.075	
7-29-03		1.20	642		24.0	.4				
7-29-03	11:10	¹ 05						1.4460	.222	
8-07-03	11:20	.00	485	6.59	24.2	5.6	109.23	.1446	.101	
8-07-03		.50	487	6.53	23.8	4.9				
8-07-03	11:30	1.00	487	6.55	23.7	4.7		.1494	.123	
8-07-03		1.30	496	6.54	23.6	3.4				
8-07-03	11:40	¹ 05						.9550	.578	
8-13-03	11:40	.00	504	6.72	25.6	5.8	116.28	.1279	.090	
8-13-03		.50	508	6.78	24.4	5.4				
8-13-03	11:50	.90	513	6.81	24.2	4.9		.1405	.092	
8-13-03	12:00	¹ 05						1.9810	.811	
8-21-03	12:10	.00	499	7.11	24.8	8.7	121	.1601		
8-21-03		.50	492	6.86	23.6	7.4			.065	
8-21-03	12:20	1.00	494	6.67	23.3	6.2		.1657	.085	
8-21-03		1.30	626	6.27	23.0	.2				
8-21-03	12:30	¹ 05						1.1860	.659	
8-28-03	11:35	.00	653	7.16	22.9	7.1	150.21	.0806	.039	
8-28-03		.50	649	7.13	22.5	6.7				
8-28-03	11:45	1.00	637	7.01	22.1	5.7		.7290	.039	
8-28-03		1.20	637	6.95	22.0	5.1				
8-28-03	11:55	¹ 05						1.5830	.271	
9-08-03	12:00	.00	619	7.36	22.1	10.5	142.26	.0927	.039	
9-08-03		.50	610	6.9	20.3	9.0				
9-08-03	12:10	1.00	608	6.81	20.0	8.5		.1421	.039	
9-08-03		1.10	608	6071	20.0	7.7				
9-08-03	12:20	¹ 05						.3550	.208	
					Statio	1 37				
7-16-03	12:00	0.00	600	7.43	22.6	6.9		0.0990	0.042	
7-16-03		.50	602	7.41	22.5	6.9				
7-16-03	12:05	1.00	606	7.14	22.4	6.9		.0993	.044	
7-16-03		1.50	608	6.84	22.2	6.9				
7-16-03	12:10	2.00	608	6.45	22.0	6.8		.1122	.050	

[cm, centimeter; m, meter; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; --, no data]

[cm, centimeter; m, meter; mg/L, milligran	n per liter; µS/cm, microsiemens per	centimeter; °C, degrees Celsius;, no data]
--	--------------------------------------	--

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	рН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remarks
			•		Station 37—	Continued				
7-16-03		2.50	607	6.22	22.0	6.8				
7-16-03	12:15	3.00	607	6.13	22.0	6.8		0.2930	0.052	
7-24-03	11:50	.00	529		22.4	4.1	121.72	.1372	.070	
7-24-03		.50	531		22.5	4.2				
7-24-03	12:00	1.00	531		22.4	4.2		.1378	.070	
7-24-03		1.50	529		22.3	4.0				
7-24-03	12:05	2.00	528		22.3	3.9		.1395	.072	
7-24-03		2.50	528		22.2	3.9				
7-24-03	12:10	3.00	527		22.2	3.9		.1411	.073	
7-24-03		3.20	527		22.2	3.9				
7-29-03	11:30	.00	601		25.4	7.2	141.89	.0911	.055	
7-29-03		.50	602		24.9	6.9				
7-29-03		1.00	602		24.4	6.6				
7-29-03		1.50	599		24.2	6.2				
7-29-03	11:40	2.00	600		24.1	6.2		.0906	.059	
7-29-03		2.50	601		24.1	6.1				
7-29-03	11:50	3.00	601		24.0	5.9		.1000		
8-07-03	12:00	.00	483	6.32	24.8	5.4	108.93	.1520	.107	
8-07-03		.50	484	6.3	24.3	4.8				
8-07-03		1.00	486	6.19	23.9	4.2				
8-07-03		1.50	486	6.24	23.8	4.0				
8-07-03	12:10	2.00	487	6.26	23.6	3.8		.1554	.109	
8-07-03		2.50	487	6.26	23.6	3.8				
8-07-03	12:20	3.00	488	6.31	23.6	3.8	111.38	.1553	.109	
8-13-03	12:30	.00	506	6.71	25.3	5.4	115.66	.1407	.094	
8-13-03		.50	504	6.73	25.2	4.9				
8-13-03		1.00	505	6.74	24.7	4.9				
8-13-03		1.50	506	6.74	24.4	4.6				
8-13-03	12:40	2.00	506	6.73	24.4	4.1		.1423	.095	
8-13-03		2.50	550	6.72	24.4	4.1				
8-13-03	12:50	3.00	506	6.72	24.3	3.9	114.08	.1456	.095	
8-21-03	12:45	.00	497	6.79	25.1	6.8	120.69	.1038	.070	
8-21-03		.50	497	6.77	25.1	6.7				
8-21-03		1.00	493	6.7	23.9	6.2				
8-21-03		1.50	491	6.64	23.4	5.7				
8-21-03		2.00	491	6.61	23.3	5.5				
8-21-03		2.50	490	6.59	23.2	5.4				
8-21-03	13:00	3.00	490	6.59	23.2	5.3		.1316	.079	
8-28-03	12:10	.00	656	7.03	22.8	6.1	150.53	.0867	.053	
8-28-03		.50	659	6.99	22.6	5.8				

Date	Time	Depth (m)	Specific conduc- tance (µS/cm)	pН	Temp- erature (°C)	Dissolved oxygen (mg/L)	Chloride (mg/L)	Total phosphorus (mg/L)	Ortho- phosphorus (mg/L)	Remarks
					Station 37—	Continued				
8-28-03		1.00	656	6.97	22.5	5.9				
8-28-03		1.50	652	6.95	22.3	5.9				
8-28-03	12:20	2.00	644	6.93	22.1	5.6		0.0963	0.055	
8-28-03		2.50	644	6.91	22.0	5.6				
8-28-03	12:30	3.00	644	6.89	22.0	5.3		.1059	.056	
9-08-03	12:45	.00					< 0.2	.0037	.003	Blank
9-08-03	12:50	.00	623	6.76	21.2	8.0	143.79	.0805	.044	
9-08-03		.50	623	6.7	20.2	7.4				
9-08-03		1.00	623	6.67	20.1	7.0				
9-08-03		1.50	625	6.65	19.9	7.0				
9-08-03	13:00	2.00	628	6.64	19.8	6.8		.0883	.047	
9-08-03		2.50	627	6.63	19.8	6.5				
9-08-03	13:10	3.00	626	6.63	19.8	6.7		.0907	.048	

[cm, centimeter; m, meter; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degrees Celsius; --, no data]

¹-0.05, sample of pore water collected from 5 cm below sediment surface.

For additional information write to: Director, USGS Massachusetts–Rhode Island Water Science Center 10 Bearfoot Road Northborough, MA 01532 or visit our Web site at http://ma.water.usgs.gov