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ABSTRACT: The width and depth of submarine channels change progressively as the channels evolve. This is inferred

to act as an important control on the rate of sediment loss due overbank and in-channel deposition. Understanding the

downstream extraction of sediment from turbidity currents is important for the prediction of grain-size trends and

volume distribution in the stratigraphy. However, the partitioning of sediment by individual turbidity currents as a

function of channel dimensions has not been investigated previously. We present a series of physical experiments

studying the link between channel dimensions and the resulting partitioning of sediment volume and grain size

between sub-environments. The experimental set-up consists of a slope (118) with a straight pre-formed channel and a

horizontal basin floor. An identical flow was released repeatedly into channels with different dimensions, resulting in

various styles of overspill, erosion, and deposition under varying degrees of channel confinement. The fraction of

sediment that was bypassed through the channel to the basin floor varied between 67% and 89%, depending on the

amount of levee and in-channel deposition. The volume of levee deposition correlates well with channel depth. A large

channel depth relative to flow thickness limits the amount of overspill. The amount of in-channel deposition correlates

well with channel width/depth (W/D) ratio, where low-W/D-ratio channels have less deposition.

We compare the experiments to natural system to show that the same patterns of volume and grain-size partitioning

are present at different scales. The experiments provide snapshots of different phases of evolution of natural

submarine channels. Natural submarine channels in an early evolution phase are inferred to be shallow and the

experiments demonstrate that this results in significant sediment loss to levee deposition along the channel. The

process of levee deposition preferentially extracts the fine-grained sediment fraction, which overspills from the

channel. Therefore, we predict that the initial sediment pulse that reaches the basin floor is coarse grained and

volumetrically small. As the channel matures and deepens, it will bypass more sediment with a mix of grain sizes to the

basin floor.

INTRODUCTION

Turbidity currents transport large volumes of sediment from the shelf

edge into ocean basins through submarine channels over distances varying

from tens to thousands of kilometers (Heezen and Ewing 1952; Damuth

and Kumar 1975; Talling et al. 2012; Stevenson et al. 2013; Dorrell et al.

2014; Kneller et al. 2016). These channels can transfer the currents over

large distances with limited exchange of sediment by deposition or erosion

(Stevenson et al. 2013, 2015). Typically, however, there is some degree of

in-channel and overbank deposition by turbidity currents, which leads to

changes in volume and grain-size distribution of sediment transported in

suspension. The remaining sediment in turbidity currents that reaches the

downstream end of a channel is deposited as lobes. Size and composition

of these lobes are thus controlled by the degree of sediment extraction in

the upstream channel section. The analysis of sediment routing systems in

a mass-balance framework has proven to be a valuable method to unravel

the forcing mechanisms driving such coupled volume�grain-size trends.

Such an approach has already been applied to alluvial�coastal systems

such as the Cretaceous infill of the Western Interior Basin (Hampson et al.

2014), the Eocene infill of the South Pyrenees Foreland Basin (Michael et

al. 2014), to experimental fluvial systems (Strong et al. 2005), and a

turbidite minibasin (Paola and Martin 2012).

Volumetric partitioning of sediment among different components of

deep-water systems has been reconstructed at several locations. Straub et

al. (2012) analyzed a channel system on the upper continental slope

offshore Brunei (Fig. 1A, B) and found that levees form 89% of the

channel-related stratigraphy while channel fills occupy 11%. Paola and

Martin (2012) studied a turbidite minibasin and found that channels

occupied roughly 80% of the stratigraphic volume while terminal lobes

formed the remaining 20% (Fig. 1C). Based on this, they speculated that

the channel�lobe transition in deep-water systems may be controlled by the

degree of mass extraction. Grain-size changes along the sediment-transport

system have been shown to be intricately linked with this mass extraction.
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The highest proportion of sand in the system studied by Paola and Martin

(2012) is found around the start of the channel�lobe transition at a mass

extraction of 50% (Fig. 1D). Similarly, the highest sand content in many

other deep-water systems occurs in the basin-floor segment, where lobes

are a major stratigraphic component (Prather et al. 2017).

In all of this previous work the relationship between turbidity-current

characteristics (thickness, stratification) and channel dimensions is widely

recognized as a key control on sediment partitioning in deep-water

systems, yet no study has systematically and quantitatively explored the

controlling parameters and demonstrated how flow�channel interactions

modulate delivery of sediment mass and grain size to the basin floor.

Turbidity currents in leveed submarine channels can exchange sediment

with their surroundings in various ways. Firstly, overspilling flows

preferentially deposit fine-grained sediment on the levees (Hiscott et al.

1997; Posamentier and Kolla 2003; Kane et al. 2007; Hansen et al. 2015;

de Leeuw et al. 2018). Secondly, deposition in the channel axis occurs

when channels are aggradational, resulting in the extraction of the coarser-

grained sediment fraction from the flow (Clark and Pickering 1996;

Normark 1978). The volume and grain size of the mass extracted depend

mainly on channel depth relative to flow height (Mohrig and Buttles 2007;

de Leeuw et al. 2018). Typically, after channel inception, confinement

increases progressively due to levee build-up and/or channel incision, and

this increases channel efficiency (i.e., their ability to transport sediment

basinwards (Hodgson et al. 2016)). The increased efficiency may cause the

channel to extend, delivering more sediment to terminal lobes.

We apply a mass-balance approach to an experimental deep-water

system consisting of a slope-channel segment and a horizontal basin floor.

Physical experiments have the advantage that the sediment input is

precisely constrained and it is possible to track the distribution of deposits

from individual currents. The aims of this study are: (1) to investigate the

FIG. 1.—Volume estimates of depositional elements in deep-water systems. A, B) Partitioning of sediment volumes between channel fills and levees for a channel network

on the continental slope offshore Brunei Darussalam (NW Borneo). Levees constitute a much greater volume than channel fills in this system. Figure modified after Straub et

al. (2012). C) Partitioning of sediment volumes between channel-related deposits and lobe deposits in an intraslope minibasin that is part of the Brazos–Trinity slope system in

the Gulf of Mexico. Parts B and C are modified after Paola and Martin (2012). D) Partitioning of sediment grain sizes in the same minibasin. Sand content of the deposits

increases downstream in the channelized section of the basin. Sand content of the deposits decreases downstream in the section of the basin where lobes dominate.
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partitioning of sediment volumes and grain sizes among levees, channel

fills, and lobes as a function of channel width and depth (together termed

channel dimensions throughout this paper) in a controlled laboratory

setting; (2) to reconstruct the flow evolution from the documented deposits;

(3) to review published estimates of volume and grain-size partitioning in

deep-water systems; and (4) to discuss the applications of our results

towards stratigraphic prediction and interpretation.

METHODS

Set-Up, Procedure, and Measurements

We performed the experiments in a tank which is 11 m long, 6 m wide,

and 1.2 m deep (Fig. 2A). The basin had a floor with a slope of 118 with a

horizontal section at its base. All boundary conditions, except for channel

dimensions, were identical for all experiments (Table 1). The entire basin

floor was covered with a layer of erodible sand. A channel was carved in

the slope before each experiment. Table 2 shows the depth and width of the

pre-formed channel for each experiment. These dimensions were chosen

based on the dimensions of a self-formed channel created in earlier

experiments with similar boundary conditions (de Leeuw et al. 2016). The

same procedure was followed during each of the experiments. First, the

basin was entirely filled with water. The suspension for the turbidity

current was prepared in an external mixing tank. Underwater cameras

recorded the turbidity current on the slope and the basin floor (Fig. 2B, C).

The sediment used consisted predominantly of fine sand with a fraction of

silt (D10¼ 25 lm, D50¼ 131 lm, D90¼ 223 lm; Fig. 3). The substrate in

the tank is made of sand with the same grain-size distribution. Any

entrainment of substrate therefore would add the same material to the flow

as supplied at the inlet. The suspension from the mixing tank was supplied

to the set-up with a centrifugal pump. A Krohne Optiflux 2300 was used to

monitor the discharge during the experiments. The turbidity current

entered the set-up through an inlet box. This box consisted of a 1 m section

with a non-erodible substrate and gradually expanding side walls. An

ultrasonic velocity probe (UVP) was used to measure the flow velocity

profile in the center of the channel, at equal distance from the inlet during

Runs 1, 2, 4, and 5. No velocity measurements were obtained during Run

3. Digital elevation models of the sediment surface were made before and

after each run. The difference between these elevation models indicates

TABLE 1.—Boundary conditions that were identical for all of the

experiments.

Boundary Conditions

Suspension tank volume [L] 900

Initial sediment concentration [% vol.] 17

Discharge [L/s] 8.3

Slope angle [8] 11

Basin-floor angle [8] 0

FIG. 2.—A) Set-up for flume experiments. A mixture of sediment and water is sourced from an external mixing tank. In the basin, the turbidity current flows over a slope

with a pre-formed channel. The substrate is erodible. Current velocity is monitored with an ultrasonic velocity probe in the center of the channel at 2.1 m from the inlet. B, C)

Images taken by underwater cameras taken from various viewpoints. The images show multiple velocity probes. We only use data from one velocity probe in this paper.
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where the flow deposited and eroded sediment. Sediment samples were

collected close to the sediment surface. The ~ 1-mm-thick silt drape that

covered the deposits after each experiment was removed before samples

were collected. A laser particle sizer (Malvern Mastersizer) was used to

determine the grain-size distribution of each sediment sample.

Mass-Balance Analysis

We used deposit volume and grain size to reconstruct the downstream

change in transported sediment volume and grain size by turbidity currents

as they ran out on the slope and basin floor. The initial state of the turbidity

current is defined by the suspension in the mixing tank. Volume and grain-

size distribution of the suspended sediment at each point in the system

were reconstructed by subtracting the sediment that was deposited

upstream of that point (Fig. 4). The deposit volumes are derived by

subtracting the elevation models before and after the experiments.

Regularly spaced samples of the slope and basin-floor deposits constrained

the grain-size distribution of the deposits on the slope and basin floor. The

samples were analyzed with a laser particle-size analyzer (Malvern

Mastersizer), which provides a grain-size distribution with a bin width of

0.16 / (using the logarithmic sedimentological phi scale as defined by

Krumbein and Aberdeen 1937).

RESULTS

Deposit Volume Distribution

We conducted five experiments during which the duration of the

turbidity current, sediment grain-size distribution, and discharge were the

same. During each of the five experiments, the turbidity current deposited

part of its sediment load on the slope section, while the remainder of its

sediment formed a lobe on the horizontal basin floor (Fig. 5). During Runs

2, 4, and 5 (Fig. 5B, D, E) deposition on the slope was both inside the

channel, as channel fill, and outside of the channel, by the formation of

levees. During Runs 1 and 3 (Fig. 5A, C) the turbidity current deposited

sediment outside the channel, whereas inside of the channel there was a

mix of erosion and deposition.

Initial channel dimensions had a significant effect on the partitioning of

sediment volumes between the slope and the basin floor. The fraction of

sediment that was transferred to the basin floor was lowest (67%) during

Run 5 (channel width: 0.8 m, depth: 0.03 m; Fig. 6B). The turbidity current

in Run 1 flowed through a deeper channel (width: 0.8 m, depth: 0.08 m)

and delivered 89% of the sediment to the basin-floor lobe (Fig. 6). The

channel in Run 1 can thus be classified as efficient because it delivers the

largest fraction of sediment to the basin floor.

Also, the partitioning of sediment volume on the slope between the

channel fill and the levees differed between the experiments. The runs with

the narrowest channel (Run 3, channel width 0.53 m, depth: 0.08 m)

experienced the least in-channel deposition relative to levee deposition

(Vlevee:Vchannel ¼ 85:15). The run with the largest channel width (Run 2,

channel width 1.2 m, depth: 0.05 m) experienced the most deposition in the

channel relative to deposition on the levee (Vlevee:Vchannel ¼ 34:66).

The dimensions of the channel also affected the geometry of the lobe

that formed on the basin floor. Figure 7 shows the 25 mm thickness

TABLE 2.—Dimensions of the pre-formed channel for the experiments.

Initial Channel Dimensions
Cross Section

(33 vertical exaggeration)Run Width [m] Depth [m]

1 0.8 0.08

2 1.2 0.05

3 0.53 0.05

4 0.8 0.05

5 0.8 0.03

FIG. 3.—Grain-size distribution of the sediment used in the experiments.
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contours of the lobe formed in each of the experiments. Lobes that are

sourced by a channel that is relatively deep (Fig. 7A) or relatively narrow

(Fig. 7C) are more elongated, reach farther into the basin, and are also

farther detached from the slope. Detached lobes are characterized by a zone

of shallow scouring and minor deposition directly downstream of the break

of slope. A good example of this erosional type of channel�lobe transition

zone in one of the experiments is provided by Profile D in Figure 5C.

Similarly, scours near the exit points of submarine channels are also

observed in natural systems such as the Niger Delta slope (Prather et al.

2012).

Grain Size of Deposits

Maps of median grain size of the deposits in each experiment are shown

in Figure 8. Each dot indicates the location of a sediment sample, and its

color indicates the median grain size. Two patterns are persistent among

the runs. Firstly, the lobes are relatively coarse-grained compared to the

slope deposits. Secondly, the maximum grain size of the lobes is found in

the central part of the lobe.

The median grain size of the slope deposits ranges from 130 to 160 lm,

and the median grain size of the lobe deposits ranges from 150 to 175 lm.

The deposits are thereby consistently coarser than the initial composition

of the turbidity current at the inlet (D50 ¼ 131 lm). This is primarily a

result of bypass of the silt fraction in the flow. This fine sediment fraction

remains in suspension, is not incorporated in the deposits, and settles

slowly as a thin drape long after the turbidity-current supply at the inlet has

stopped.

Grain sizes of levee and channel-fill deposits show a clear relation with

channel depth. Representative values for levee and channel-fill grain size

are obtained by taking the average of all the deposit samples from these

two environments. Figure 9A shows that both the channel fill and the levee

deposits become more fine-grained with increasing channel depth. We did

not find a clear relationship between the channel width and the grain size

of channel-fill or levee deposits (Fig. 9B).

Velocity Structure of Channelized Turbidity Currents

In Figure 10 we compare time-averaged (interval 10–30 s) velocity

profiles of the channelized flow for different runs. Velocity profiles show

that the maximum flow velocity was 0.9–1 m/s at 1–1.5 cm above the bed

(Fig. 10). The flow velocity at 10 cm above the bed was 10–20% of the

maximum flow velocity. The exact current thickness depends on the

definition of the turbidity-current top, but video footage combined with the

velocity profiles suggests that the current thickness is of the order of 0.1 m.

The turbidity currents were only partially confined in the channels during

the experiments because the thickness of the current thickness exceeded

the channel depth (0.03–0.08 m). Flow velocity at the level that

corresponds to the top of the confinement varies between 0.15 m/s (Run

1, channel depth 8 cm) and 0.7 m/s (Run 5, channel depth 3 cm). The

geometry of the channel has a significant impact on the velocity structure

of the turbidity current. Figure 10A shows that the current in a shallow

channel (Run 5) is flattened compared to a current in a channel of equal

width and a larger depth (Run 1). Figure 10B shows that the turbidity

current in a wide channel is flatter than the current in a channel of equal

depth and a smaller width.

Reconstruction of Turbidity-Current Runout

Sediment grain-size- and volume-partitioning were reconstructed for

three experiments (Runs 1, 4 and 5). The pre-formed channels in Runs 1, 4,

and 5 were 8, 5, and 3 cm deep, respectively, whereas the channel width

was 80 cm in each of these runs. The volume of transported sediment in the

turbidity currents decreased downstream as a result of deposition (Fig.

11A). A deeper channel results in less deposition on the slope and a larger

FIG. 4.—Sketch illustrating the reconstruction of downstream mass extraction. The sediment deposited in each section of slope is subtracted from the initial sediment

volume in the turbidity current. Deposition typically results in the selective extraction of a certain grain-size fraction. The suspended sediment volume and grain-size

distribution thus change downstream.
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FIG. 5.—Maps of deposition and erosion with cross sections of the channel and lobe at a one-meter interval. A) Results from Run 1, in which the initial channel depth was 8

cm and the channel width 80 cm. B) Run 2 (channel depth: 5 cm, width: 120 cm). C) Run 3 (channel depth: 5 cm, width: 53 cm). D) Run 4 (channel depth: 5 cm, width: 80

cm). E) Run 5 (channel depth: 3 cm, width: 80 cm).
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proportion of sediment reaching the break of slope. Beyond the break of

slope, on the horizontal basin floor, the deposition rate increased. The flow

that exited the shallowest channel (Run 5) responded to the change in slope

more abruptly and the maximum deposition rate was reached at ~ 1.5 m

(1.9 times the channel width) downstream of the break of slope. The

turbidity current in the deepest channel (Run 1) transported sediment

farther out onto the basin floor, and a peak in deposition rate occurred

farther out into the basin, at ~ 2.5 m (3.1 times the channel width) from the

break of slope. Downstream changes of median grain size of the flows and

the deposits are shown in Figure 11B. The median grain size of the

suspended sediment in the flow shows a small decrease in the slope section

and a much sharper decrease along the basin-floor section. The flows that

are sourced by deeper channels cover a larger distance on the basin floor

before the median grain size of the suspended sediment is significantly

affected by extraction of the coarse-grained sediment due to deposition on

the lobe.

Detailed grain-size distribution of the flow and the deposits of Run 5 are

compared at various positions in the system (Fig. 12A). Silt-size sediment

becomes more abundant in the flow farther downstream in the system as

the sand-size sediment fraction is lost due to deposition. The downstream

change in sediment volume per grain-size class is shown in Figure 12C.

This figure illustrates that sediment finer than ~ 100 lm completely

bypasses the lobe. During the experiments, it was observed that the dilute

suspension cloud with fine-grained sediment reflected against the back of

the flume tank and slowly settled in the minutes after the run to form a

drape that is ~ 1 mm thick. This silt fraction would have been deposited

farther downstream in a natural system.

DISCUSSION

Channel Geometry and Sediment Partitioning

The volume and grain size of sediment that reaches the downstream end

of a channel section depend on the initial sediment load of the turbidity

current and the fraction that is extracted on the slope. The initial sediment

caliber delivered to the canyon head determines the range of grain sizes

and the volume of sediment that are deposited in down-dip locations. Part

of this sediment load is deposited on the lower slope, especially where

aggradational channels and levees are present. These channel-associated

deposits are generally finer than the input sediment, mostly because the

overbank deposits are formed from the dilute, finer-grained tops of

turbidity currents. This preferential deposition of finer sediment causes the

flow composition to become coarser down-flow (Fig. 13). The coarser sand

fraction is subsequently concentrated in the lobe.

The experiments show that sediment is partitioned into channel fill and

levees on the slope in variable volume fractions depending on the channel

geometry. These results are in line with previous experiments that showed

FIG. 6.—A) Sediment bodies distinguished in

the experiments. B) Partitioning of sediment

volumes between channel, levees, and lobes in

experiments with different initial channel dimen-

sions. Each pie chart represents one experiment.

Isolines of channel W/D ratio are indicated with

dashed lines. Isolines for channel cross-sectional

area are indicated with solid lines.
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that channel efficiency (i.e., the fraction of sediment that bypasses the

channel section) increases with channel depth (Kane et al. 2008; de Leeuw

et al. 2016). The mechanisms through which channel dimensions affect

sediment partitioning in deep-water systems are assessed in detail below.

Volume Partitioning

We assessed the correlation of levee volume and channel fill with four

channel geometrical parameters: depth, width, W/D ratio, and cross-

sectional area. Levee volume has a high correlation with channel depth (R2

¼ 0.62) and with channel cross-sectional area (R2
¼ 0.58) (see Appendix;

Fig. 9A). The correlation between levee volume and channel depth is

intuitive because shallower channels have more overspill (Straub and

Mohrig 2008). Velocity data confirm that the supra-channel portion of the

current is larger for shallower channels (Fig. 10A), which explains the high

sediment flux to the overbank area. Additionally, at equal channel depth, a

narrower channel is associated with a larger levee volume (Fig. 9B).

Narrow channels have a smaller cross-sectional area and will therefore

accommodate a smaller part of a turbidity current inside the channel. The

difference in current thickness between a current in narrow and wide

channels with equal depth is evident from the velocity data (Fig. 10B).

However, levee volume for the run with the widest channel (Run 2) is

larger than the levee volume for the intermediate-width channel (Fig. 9B).

This may be due to the large volume of channel-floor deposition in the

wide channel, which results in an effective decrease in channel depth,

which promotes overspill from the channel.

Channel-fill deposit volume has a high correlation (R2
¼ 0.84) with

channel W/D ratio (see Appendix). where a low W/D ratio leads to less

deposition. Channels with a low W/D ratio have steep banks, and lateral

spreading of the flow is therefore prevented. This results in a larger flow

thickness and consequently a higher shear velocity. This allows the

FIG. 7.—Effect of channel dimensions on the geometry of the lobe formed on the basin floor. The 25 mm thickness contour of each lobe is shown. A) Lobe geometry as a

function of channel depth. A shallow channel results in a broad lobe that onlaps onto the slope. Deeper channels result in slope-detached sedimentation of more elongate

lobes. B) The center of mass of the lobe is located farther into the basin when the channel is deeper. C) Lobe geometry as a function of channel width. Wider channels result in

wider lobes with depocenters close to the break of slope (BOS). Narrow channels result in slope-detached sedimentation and more elongate lobe deposits with depocenters

farther into the basin. D) The center of mass of the lobes shifts basinwards with increasing channel depth.
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currents to keep more sediment in suspension and therefore limits

deposition on the channel floor.

In combination, levee and channel-fill deposit volumes determine the

efficiency of sediment delivery to the basin floor. Levee and channel-fill

deposition respond differently to changes in channel geometry. A low

channel W/D ratio minimizes channel-fill deposition, while a large channel

depth minimizes deposition on the levees. Thus, the efficiency of sediment

delivery to the basin floor is greatest when a low channel W/D ratio occurs

in combination with a channel depth that limits overspill.

Finally, the channel geometry sets the velocity structure of the flow that

enters the basin flow. The experiments illustrate that a high-efficiency

channel (i.e., deep and low W/D ratio) results in a flow with a higher

velocity and larger thickness (Fig. 10). The thicker and faster flow reaches

farther into the basin. The resulting lobe is therefore more elongated, and

its center of mass is located far from the break of slope (Fig. 7).

Grain-Size Partitioning

Generally, in our experiments, the levee and channel-fill deposits are

finer grained than the deposits of the basin-floor lobe (Fig. 8). We identify

two main factors that control the grain-size distribution of sediment

deposited from turbidity currents: (1) the vertical sorting of sediment in the

flow and (2) the grain-size spectrum available in the flow.

Vertical sediment segregation in the flow controls grain-size distribution

of the sediment that is deposited at the base of the flow and the sediment in

the overspilling part of the current that escapes from the channel (Fig. 13).

An upward decrease in grain size in turbidity currents has been measured

FIG. 8.—Maps with median grain size of deposit samples collected after each experiment. A) Results from Run 1 in which the initial channel depth was 8 cm and the

channel width 80 cm. B) Run 2 (channel depth: 5 cm, width: 120 cm). C) Run 3 (channel depth: 5 cm, width: 53 cm). D) Run 4 (channel depth: 5 cm, width: 80 cm). E) Run 5

(channel depth: 3 cm, width: 80 cm).
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directly in small experimental turbidity currents (e.g., Garcia 1994; Baas et

al. 2005) and has been reconstructed from submarine channel deposits (e.g.,

Jobe et al. 2017; Symons et al. 2017). Previous experiments (de Leeuw et al.

2018) with boundary conditions similar to those of the experiments

presented here show that an upward decrease in suspended sediment grain

size is also recorded in the levees. Similarly, in the present experiments, the

levee grain size decreases as channel depth increases (Fig. 9A). We interpret

this to be the result of grain-size stratification. Deposits derived from the

base of turbidity currents (channel fill and lobe) are expected to be coarser

grained than the levee deposits. Lobe deposits indeed have a larger median

grain size than levees in each of the experiments. However, channel-floor

deposits formed in the experiments are finer grained than the levees (Fig.

9A). This pattern is dissimilar from natural systems, where channel-fill

deposits are usually coarser grained than the genetically related overbank

deposits (Hansen et al. 2015). The small grain size of the channel fills in the

experiments may indicate that it was at least partially deposited during the

waning phase of flow, near the end of the experiments when the sediment

that was still in transport was relatively fine-grained.

Channel Evolution and Sediment Partitioning

Progressive changes in channel confinement occur in most submarine

channels (Maier et al. 2013; Ortiz-Karpf et al. 2015; Pemberton et al.

2016), and this has important implications for the stratigraphic evolution of

deep-water systems (Hodgson et al. 2016). Each of the experiments can be

considered to represent a different phase in the evolution of a channel.

During the incipient phases of channel formation, the confinement width

and depth are likely small compared to the flow size. As a result, there is a

large sediment flux with a broad range of grain sizes that flows onto the

levees. This situation is represented by Run 5. The flow that reaches the

downstream end of the channel will therefore be significantly altered

relative to the input composition (Fig. 14A). Flow capture by a low-relief

channel or slope gully can focus turbidity-current flow and promote

erosion in the thalweg as well as buildup of the levees (de Leeuw et al.

2016). As the degree of confinement increases due to levee build-up, the

volume and grain size of sediment deposited on the levees decreases (Fig.

14B). This situation is represented by Run 1. During the later stages of

channel evolution, a channel typically shallows and widens due to

extensive deposition on the channel floor (e.g., Hubbard et al. 2014) (Fig.

14C). It should be noted that we still have limited understanding of the

allogenic and autogenic processes that drive the full cycle of submarine-

channel cutting and filling (Hodgson et al. 2016). Deposition on the

channel floor extracts relatively coarse sediment from the flow. In addition,

the deposition on the channel floor reduces channel relief, and this

increases overspill. The remaining flow at the downstream end of the

FIG. 9.—Effect of channel dimensions on grain-size- and volume-partitioning between levees and channel fill. A) Effects of channel depth. An increase in channel depth

results in a decrease in the volume and grain size of sediment deposited as levees and channel fill. B) Effects of channel width. An increase in channel width results in an

increase in channel-fill volume. Levee volume and deposit grain size do not show a clear relation with channel width.

FIG. 10.—Velocity profiles of turbidity currents

measured in the center of each channel. A) A

turbidity current in a deep channel has a larger

thickness than a turbidity current in a shallow

channel. B) A turbidity current in a narrow

channel has a larger thickness and velocity

maximum than a turbidity current in a wide

channel.
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channel section is significantly reduced in volume, and the grain-size

distribution is changed according to the components that are extracted.

This phase of channel evolution may be represented by Run 2.

This analysis emphasizes the existence of an optimal bypass phase of the

channel, when the maximum volume of supplied sediment is transferred

through the slope system. The efficient transfer of sediment in mature

channels implies that the grain-size distribution at the upstream supply will

be similar to that of the sediment that reaches the basin floor. The situation

is different during the early phase of channel evolution, when a large

overbank flux from a shallow, immature channel causes the effective

extraction of the fine-grained sediment fraction. This leads to the

stratigraphic prediction that initial sediment pulses onto the basin floor

are expected to be coarse-grained relative to the sediment composition that

is delivered to the basin in later efficient-bypass stages of the channel

system. It is important to note that the trends discussed here are generated

within the slope system, and are thus autogenic, without the need for

external forcing or allogenic mechanisms.

Sediment Partitioning in Natural Systems Compared with Experiments

Volume Partitioning.—Estimates of sediment volumes in different

components of deep-water systems (levees, channel fills, lobes, slope

deposits, basin floor deposits) are becoming increasingly available through

outcrop and subsurface studies. Some datasets with volume estimates cover

both the channel and lobe segments of deep-water systems (Fig. 15B,

C)(Jegou et al. 2008; Carvajal and Steel 2012; Paola and Martin 2012; Van

der Merwe et al. 2014; Picot et al. 2016), while other datasets cover the

channel–levee system and the partitioning between channel fills and levees

therein (Fig. 15E, F; Straub et al. 2012; Sylvester et al. 2012).

Partitioning between channel-related deposits (levees and channel fills)

and lobes was documented for the Congo Fan (Picot et al. 2016) and the

Amazon Fan (Pirmez and Imran 2003; Jegou et al. 2008). Several other

studies (Carvajal and Steel 2012; Van der Merwe et al. 2014; Prather et al.

2017) documented partitioning of sediment volumes between the

submarine slope and basin floor. Submarine slope stratigraphy is typically

FIG. 11.—Downstream changes in flow size

and composition. Results are shown for Run 1

(channel depth ¼ 8 cm, width ¼ 80 cm), Run 4

(channel depth ¼ 5 cm, width ¼ 80 cm), and Run

5 (channel depth ¼ 3 cm, width ¼ 80 cm). A)

Downstream change in transported and deposited

sediment volume. B) Downstream change in

transported and deposited sediment grain size.
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FIG. 12.—Representations of the downstream extraction of mass in Run 5 (channel depth¼3 cm, width¼80 cm). A) The grain-size distribution of the sediment in the flow

and the deposits are shown at multiple positions in the system. B) Map of deposition and erosion. The same color scale as in Figure 5 is used. C) Volume of sediment

transported in the flow for various sediment grain-size classes. Note that sediment coarser than ~ 100 lm is extracted from the flow while sediment finer than ~ 100 lm is

completely bypassed to the downstream end of the system.
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dominated by channel-related deposits (Posamentier and Kolla 2003), but

the two are not necessarily equivalent because the channel–lobe transition

can migrate upstream or downstream. Similarly, lobes are common on the

basin floor, but channel fills may also be present in this domain.

The volume of slope deposits relative to basin floor deposits and the

volume of channel-related deposits relative to lobes vary greatly between

deep-water systems (Fig. 15B). The lobes associated with the Amazon Fan

constitute only a minor volume compared to the channel-related deposits,

while in the Fort Brown Formation the channel-related deposits and lobes

are comparable in volume. In general, it seems that for large, mud-rich fan

systems on continental margins, such as the Amazon Fan and the Congo

Fan, lobes form a comparatively small fraction of the total fan volume. For

systems such as the Washakie and Karoo Basin, the lobes or basin-floor

deposits form a larger volume fraction. These systems were located in

intracontinental basins and had a higher portion of sand and a shorter slope

length than the Amazon Fan. Thus, the characteristic transition in deep-

water systems from channels to lobes is not only tied to a certain degree of

mass extraction. Paola and Martin (2012) hypothesized that, to first order,

in any sediment routing system similar deposit characteristics are likely to

occur at similar degrees of mass extraction from the source into a basin.

Basin configuration is a key control on sediment composition supplied to

deep-water systems (Covault et al. 2012), and the deep-water systems that

are compared in this study are vastly different in terms of basin

configuration and caliber of sediment supplied. The comparatively small

lobes in the more mud-prone systems, such as the Amazon Fan, might be

explainable as follows: a condition of self-channelization can be

maintained as long as sufficient mud and silt are available in the flow to

build up levees (Posamentier and Kolla 2003). A loss of confinement due

to depletion of sediment of silt size and finer will therefore occur only at a

high degree of mass extraction in mud-rich systems. Systems with a more

sand-prone sediment supply will be depleted in mud at a lower degree of

mass extraction and have lobes that form a larger volume fraction of the

sediment load. Such an interpretation implies that there may be a critical

sand:mud ratio at which a channel transition will occur. Thus, basin

configuration and the related sediment caliber (Covault et al. 2012)

emerges as an important control of the ‘‘anomaly with respect to the

reference model’’ (Paola and Martin 2012) when it comes to relating lobe

volume and composition to mass extracted along the routing system.

In the experimental systems (Fig. 15C), a much larger fraction of

sediment is partitioned into the lobe (67–89%) than in any of the natural

systems considered here (3–50%) (Fig. 15B). This is largely the result of

the geometry of the set-up, where a short section of slope (slope length is

3.6–8.1 times the channel width) is followed by a horizontal basin floor

where the flow deposits sediment at a high rate to form a lobe. Such a

profile with a sharp break occurs on some active margins where the slope is

affected by faults, but more commonly slope profiles are graded (Kneller

2003). A larger fraction of sediment would probably be partitioned into the

channel fill and levees in the experiments if the slope section were longer.

Partitioning of sediment volumes between channel fills and levees has

been documented for a channel network on the upper continental slope

offshore Brunei (Fig. 1B) (Straub et al. 2012) and for the Fuji–Einstein

system in the upper to mid-slope of the Gulf of Mexico (Sylvester et al.

2012). Levee volumes are significantly larger than channel-fill volumes in

these systems (Fig. 15E). The experiments reported here show highly

variable sediment volume partitioning between levees and channel fill (Fig.

15F). Channel-fill volumes relative to levee volumes are small in some

experiments (Runs 1, 3, 5) while channel fill volumes exceed the levee

volume in others (Runs 2, 4). Runs 1 and 3 have the largest levee volume

relative to channel-fill volume (Fig. 15F), while the volume of channel-

related deposits (levees and channel fills combined) was low for these runs,

FIG. 14.—Schematic illustration of the effect of channel evolution on sediment partitioning. A) An immature channel has little relief. The turbidity current is relatively

inefficient because a large volume of sediment is lost to overspill from the channel. The overspilling current has a broad grain-size distribution. B) A mature channel has a

greater depth due to further growth of the levees and incision in the channel thalweg. The turbidity current is efficient because only a small fraction of sediment is lost due to

overspill. The overspill is very fine-grained. C) During the late stages of channel evolution the channel gets filled with sediment. The turbidity current deposits sediment both

on the channel floor and on the levees. Deposition on the levees preferentially extracts fine sediment from the flow while deposition on the channel floor preferentially extracts

coarse sediment from the flow.

 

FIG. 13.—Summary figure illustrating the partitioning of sediment in a deep-water system consisting of a canyon section, a leveed channel, and a lobe. Lower panel shows

the downstream evolution of flow composition (sand:mud ratio) and size as a result of downstream mass extraction due to deposition (figure inspired by Posamentier and Kolla

(2003) and sepmstrata.org).
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which means that the channel was very efficient (Fig. 15C). Thus, the

experiments show that optimization of channel dimensions reduces

channel-floor deposition more effectively than levee deposition. Some

degree of current overspill onto levees will nearly always occur unless

turbidity currents are confined in a deep canyon.

Grain-Size Partitioning.—Partitioning of sediment grain-size fractions

between submarine slopes, where channel–levee systems dominate, and

basin floors, where lobes dominate, has been documented for the Lewis–

Fox Hills Formation in the Washakie Basin (Carvajal and Steel 2012).

Additionally, Prather et al. (2017) report sand percentages for the Miocene

and Paleogene deep-water deposits in the Gulf of Mexico and for the Niger

delta slope. In each of these cases the highest sand percentage is found on

the basin floor (Fig. 16B). Similarly, other basin-wide studies have

qualitatively shown that most of the sand transported by turbidity currents

accumulates on the lower slope and basin floor (Hubbard et al. 2010; van

der Merwe et al. 2014). The upper and middle Miocene deposits in the

Gulf of Mexico show relatively little difference in sand percentage between

the slope and basin floor. This is thought to be a result of the stepped slope

profile that enhances capturing of sand in minibasins on the slope (Prather

et al. 2017).

An increase in deposit grain size from the slope to the basin floor is also

found in the experiments. The contrast in grain size is smaller than in

natural systems (Fig. 16C), partially because the sediment available in the

experiments is mostly of sand size whereas the range can be much broader

in natural systems. Nevertheless, the comparison illustrates that the same

patterns of grain-size partitioning are produced across a wide range of

scales.

CONCLUSIONS

We conducted experiments in which turbidity currents flowed through

different types of submarine channels. The results highlight that the

functioning of channels as a sediment filter is strongly dependent on the

channel dimensions. Results show that:

FIG. 15.—Volume partitioning in deep-water systems. A) Comparison I: partitioning between channel-related deposits (in blue) and lobe deposits (in red). Alternatively, we

compare volume partitioning between slope (light blue) and the basin floor (pink) if this is the type of data available. B) Partitioning in natural systems between slope channels

and lobes or between slope and basin floor. C) Partitioning in experiments between slope channels and lobes. D) Comparison II: partitioning between channel-fill deposits (in

yellow) and levee deposits (in green). E) Partitioning in natural systems between channel fills and levees. F) Partitioning in experiments between channel fills and levees.
1Jegou et al. 2008 and Pirmez and Imran 2003; 2Paola and Martin 2012; 3Picot et al. 2016; 4Carvajal and Steel 2012; 5van der Merwe et al. 2014; 6Sylvester et al. 2012;
7Straub et al. 2012.
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1. Channels with a large depth combined with a low W/D ratio show the

highest degree of sediment bypass to the basin floor.

2. Channel depth relative to flow thickness is the main control on the

amount of overspill and subsequent levee deposition. Channel width-

to-depth ratio is the main control on the volume of deposition on the

channel floor.

3. Similarly to most natural systems, the experiments show that slope

deposits are fine-grained compared to the basin-floor deposits.

4. A mass-balance reconstruction, where deposits are subtracted from

the initial sediment flux, shows that suspended-sediment volume in

transport decrease downstream in the system due to preferential

extraction of the coarse sediment fraction. The sediment that is

extracted from the flow on the slope represents a finer part of the

grain-size spectrum than the deposits on the lobe.

5. Experiments with various channel dimensions and sediment partition-

ing patterns are considered to be snapshots of different phases of

channel evolution. An incipient channel has a small depth and width.

This results in a low efficiency due to the large volume of overspill. A

mature channel has a larger depth, and this results in a higher

efficiency. A channel in the latest stage of its evolution has a large

width and a small depth. This results in a low efficiency reflected in the

large volume of deposition inside and outside the channel.

ACKNOWLEDGMENTS

Henk van der Meer and Thony van der Gon Netscher are thanked for

technical assistance with the experiments. This is a contribution of the Eurotank

Studies of Experimental Deepwater Sedimentology (EuroSEDS), financially

supported by the Dutch Organisation for Scientific Research (NWO, grant no.

864.13.006), ExxonMobil, Shell, and Statoil. Reviews by Chris Paola and

Bradford Prather and Associate Editor Morgan Sullivan greatly helped to

improve the manuscript.

FIG. 16.—Grain-size partitioning in deep-water

systems. A) Partitioning between channel-related

deposits (in blue) and lobe deposits (in red).

Alternatively, we compare volume partitioning

between slope (light blue) and basin floor (pink),

if this is the type of data available. B) Grain-size

partitioning in natural systems between slope and

basin-floor deposits. C) Grain-size partitioning in

the experiments between channel-related deposits

and levees. For these experiments, the volume of

the channel-related deposits is equal to the deposit

volume on the slope and the basin-floor volume is

equal to the lobe volume. 1Prather et al. 2017;
2Carvajal and Steel 2012.
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APPENDIX.—Correlation between channel dimensions (width, depth, D/W, and area) and slope-deposit volumes (levees and lobes). Correlation coefficients (R2) are shown

in each plot.

J. DE LEEUW ET AL.794 J S R


