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The dispersion considered consists of a large number of identical small rigid 

spheres with random positions which are falling through Newtonian fluid under 

gravity. The volume fraction of the spheres (c) is small compared with unity. The 

dispersion is statistically homogeneous, and the axes of reference are chosen so 

that the mean volume flux across any stationary surface is zero. The problem 

is to determine the mean value of the velocity of a sphere (U). In 3 3 there is de- 

scribed a systematic and rigorous procedure which overcomes the familiar dif- 

ficulty presented by the occurrence of divergent integrals, essentially by the 

choice of a quantity V whose mean value can be found exactly and which has the 

same long-range dependence on the position of a second sphere as U so that the 

mean of U - V can be expressed in terms of an absolutely convergent integral. 

The result is that, correct t o  order c, the mean value of U is U,( 1 - 6.55 c), where 

U, is the velocity of a single sphere in unbounded fluid. The only assumption 

made in the calculation is that the centres of spheres in the dispersion take with 

equal probability all positions such that no two spheres overlap; arguments are 

given in support of this assumption, which is expected to be valid only when the 

spheres are identical. Calculations which assume a simple regular arrangement of 

the spheres or which adopt a cell model of the hydrodynamic interactions give 

the quite different result that the change in the mean speed of fall is proportional 

to d, for reasons which are made clear. 

The general procedure described here is expected to be applicable to other 

problems concerned with the effect of particle interactions on the average proper- 

ties of dispersions with small volume fraction of the particles. 

1. Introduction 

When a homogeneous mixture of solid particles and a fluid is allowed to stand 

in a container, the particles settle out under gravity at  a rate which depends on 

their size, shape, excess weight and concentration. The dependence on concen- 

tration arises from the interaction between particles, exerted by means of the 
velocity distribution generated in the fluid surrounding each moving particle. 

The effects of size and shape of the particles take the simplest possible form when 

the particles are identical rigid spheres of such small size that the Reynolds num- 

ber of the fluid motion is small and inertia forces can be neglected. The mean 

speed of fall of a particle is then proportional to the excess weight and is other- 

wise a function primarily of the volume fraction of the particles. Some authors 
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have maintained that the shape of the container walls is also relevant, but this 

is intrinsically unlikely, at  any rate in a case in which the vessel contains a large 

number of parbicles uniformly dispersed throughout the fluid. The settling speed 

is found to be less than for an isolated particle (in the absence of particle ag- 

glomeration, of the kind reported by Kaye & Boardman 1962), and the pheno- 

menon is often referred to as ‘hindered settling’. 

In  t,he case of a cloud of particles which is surrounded by clear fluid, instead 

of being bounded by vessel walls, the motion of the particles depends also on the 

dimensions and shape of the cloud, like a finite-sized blob of one fluid falling 

through a second and less dense fluid. This presents a different problem, usually 

one in which the velocity of the cloud as a whole becomes so large that inertia 

forces are significant. The essential difference between the two problems lies not 

so much in the presence or absence of rigid boundaries as in the spatial variation 

of the statistical properties of the dispersion. We assume here that the distribu- 

tion of particles in the ambient fluid is statistically homogeneous, and that; the 

linear dimensions of the outer boundary of the fluid are large relative t o  the 

average distance between particles. As a consequence, no spatial variation of the 

mean velocity in the dispersion can be generated by gravity. 

It is convenient in theoretical work to use axes of reference such that the mean 

velocity at  a point in the dispersion (or, equivalently, the mean flux of material 

volume per unit area across any small stationary plane surface in the dispersion) 

is zero, although there are some practical contexts, such as a fluidized bed of 

particles, in which different axes are more natural. 

Although there have been many contributions to the problem of determining 

the effect of concentration on the settling speed of small rigid spheres, beginning 

with Smoluchowski (1912)) it  has remained a challenge, even for the case of a dilute 

dispersion for which the volume fraction of the particles is small compared with 

unity. Many different theoretical and empirical formulae have been advanced, 

but not one of the available theoretical arguments is wholly satisfactory. The 

available observations appear not to be sufficiently accurate or consistent to 
specify the relationship closely. An account of past work on the problem is to be 

found in chapter 8 of the book by Happel & Brenner (1965). 

The difficulty in the determination of the hydrodynamic interaction of the 

particles derives from the slowness with which the velocity disturbance in the 

fluid due to an isolated falling particle decreases to zero at increasing distance and, 

to a lesser extenb, from the random arrangement of the particles in a real dis- 

persion. The magnitude of the fluid velocity at  distance r from a single sphere 

of radius a falling with speed Uo varies asymptotically as Uoa/r, and so a ,straight- 

forward attempt to sum the contributions t o  the velocity a t  one point from an 

indefinitely large number of falling spheres in a homogeneous dispersion leads 

to a series or an integral which diverges strongly. The main objective of work on 

the problem has been to overcome this obstacle. 

Previous theoretical investigations fall into three groups, corresponding to the 

assumptions made about the arrangement of the spherical particles in the dis- 

persion and the nature of their interaction. In  the first group are calculations 

which suppose, for mathematical convenience, that the centres of the spheres 
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lie in some regular geometrical pattern, such as a cubical array, with the length 

scale of the array being of order a d ,  where a is the radius of each of the spheres 

and c i s  the fraction of the total volume occupied by the spheres. It could not be 

maintained that in a real dispersion the particles are arranged regularly, and the 

implicit hypothesis underlying these investigations is presumably that the 

dependence of fall speed on concentration is much the same for the assumed 

regular arrangement of particles as it is for the disordered arrangement found in 

practice. These calculations yield the result that for a dilute dispersion (c < 1 )  

the fractional reduction in the fall speed due to particle interactions is pro- 

portional to d ,  with a constant of proportionality which is of order unity and 

which varies with the type of arrangement assumed (simple cubic, body-centred 

cubic, rhombohedral, etc.). Hasimoto (1959) recognized that the way to overcome 

the difficulty of summing contributions from the various spheres in a regular 

array is to represent the local velocity as a Fourier series (which ensures the 

homogeneity of the dispersion) and t o  solve the equation for the Fourier co- 

efficients subject to the boundary conditions corresponding to forces applied 

to the fluid at  the positions of the spheres. 

In the second group are calculations which use a ‘cell ’ model of the interaction 

effects. The assumption here is that the average hydrodynamic effect on one 

sphere of the presence of all the other spheres in the dispersion is equivalent to 

that of a boundary, usually taken as spherical, enclosing the sphere under con- 

sideration. The radius of this outer spherical boundary is usually chosen as 

ac-g, where a is the radius of the rigid sphere, thereby making the fraction of 

volume occupied by solid material the same in the cell as in the real dispersion. 

The motion of the fluid in the cell satisfies the no-slip condition at  the surface of 

the rigid sphere, which is falling under gravity, and some suitably chosen con- 

dition at the stationary artificial outer boundary of the cell. One simple choice is 

that the fluid velocity is zero there; this and several alternative outer boundary 

conditions have been adopted by different authors. All these calculations with 
a cell radius proportional to I.-* give a fractional reduction in the fall speed 

which is proportional to c* for c < 1. The constant of proportionality is again of 

order unity, but is not the same as that found for a regular array of spheres. 

Investigators in the third group have used statistical analytical methods in an 

attempt to determine the hindered settling of a random distribution of spheres 

in a dilute dispersion (Burgers 1942; Pyun & Fixman 1964). Burgers tried a 

variety of ways of overcoming the difficulty presented by the lack of absolute 

convergence of the sum of the separate effects of an indefinitely large number of 

falling spheres on a given sphere, both for a random distribution and for a regu- 

lar arrangement, and his sequence of papers is remarkable for the number of 

different answers provided. Burgers recognized the arbitrariness of some of his 

summation procedures, and was uncertain whether he had found expressions for 

the change in fall speed due to particle interactions which were independent of 

the shape of the container walls. I believe, nevertheless, that his papers do con- 

tain essentially the right approach, as well as some wrong steps, and that he was 

nearer to the correct answer than he or later writers have supposed. Pyun & 

Fixman employed a generally similar statistical approach, and improved on 
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Burgers’s calculation in one detailed respect but erred in not following Burgers 

in another respect. For a random distribution of spheres Burgers and Pyun & 

Yixman found that the average change in the fall speed is proportional t o  c, 

a result which is not generally accepted in the literature, perhaps because the 

statistical methods used t o  obtain it were neither clear nor convincing, and per- 

haps because it is so different in form from that found either for a regular array of 

spheres or from the cell model. 

In  this paper we shall take it for granted that in a dispersion containing a 

large number of particles the arrangement of the particles in the ambient fluid 

is disordered and that only a statistical description of the particle locations is 

significant. It will be shown by rigorous methods that the change in the mean 

settling speed due to  particle interactions in a dilute dispersion of rigid spheres 

is proportional to  c, and the constant of proportionality will be determined. 

There are some common features of the present problem of determining the 

velocity of sedimentation in a dilute dispersion correct to the order c and the prob- 

lem of finding one of the bulk transport properties of a dilute dispersion correct 

to the order c2, where in both cases c is the volume fraction of the phase present 

in the form of discrete particles. Included among these transport properties are 

the effective thermal conductivity of a stationary dispersion, the effective vis- 

cosity of a suspension of neutrally buoyant particles in simple shearing motion, 

and the effective elastic shear modulus for a dispersion of one solid material in 

another. I n  all these cases it is necessary to take into account the interaction of 

different particles, and in all these cases the straight-forward process of summing 

the separate effects of each of many particles on a given particle is frustrated 

by failure of the sums to converge absolutely. The general method that has been 

devised t o  overcome the difficulties of the present sedimentation problem is 

expected to be applicable also t o  these other similar problems. 

2. Formulation of the problem 

We consider a statistically homogeneous dispersion of identical rigid spherical 

particles of radius a in a Newtonian ambient fluid of viscosity p. The flux of 

volume of material (which may be either fluid or solid) per unit area across 

any stationary plane surface in the dispersion defines a local velocity vector 

whose mean is uniform, and the axes of reference are chosen so that this mean 

velocity is zero. Inertia forces on either the solid particles or the fluid will be 

neglected. 
The translational velocity of one particular sphere a t  one instant in one 

realization of the dispersion is U say. If this sphere were alone in infinite fluid 

and falling under gravity its velocity would be 

where ps is the density of the solid particle and p is that of the fluid. The velocity 

U of a particular sphere differs from U, owing to the hydrodynamic interaction 
between the various particles in the dispersion, and U -U, is a random quantity 
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with a non-zero mean which depends on the concentration of the particles by 

volume and whose value we wish to determine. 

The velocity and pressure distributions in the fluid are governed by the linear 

Stokes equations 

The motion of a particular sphere is subject to the conditions that the resultant 
force exerted on it by the fluid is - $..a3 (p, - p )  g and the resultant couple about 

its centre is zero; and the no-slip condition must be satisfied at  the surface of the 

sphere. It is known that in these circumstances the whole flow field within a region 

V is determined by the instantaneous positions of the spheres within 8, together 

with the value of either the velocity or the force exerted per unit area at  each 

point of the boundary of V .  And in the case of a homogeneous dispersion the 

velocity a t  any point in V is evidently independent of the size and shape of the 

chosen region and of the conditions at the boundary of V ,  provided ( 1 )  that the 

region is large enough to contain many spheres, and (2) that the conditions at 

the boundary of T' are compatible with zero mean velocity everywhere in V .  We 

may thus suppose that the velocity and other field variables at  a point x in the 
dispersion, in one realization, are determined by the instantaneous positions of 

the centres of the N spheres in a region of volume V containing x, where N $ 1. 

It follows that an average of some property of the dispersion at x over the 

ensemble of realizations is effectively an average over the ensemble of sphere 

positions relative to  x. 
We shall denote the set of position vectors of the centres of N spheres in one 

realization by V,, and term it a configuration of N spheres. The probability 

density of the configuration is P(%,), meaning that the probability of sphere 

centres being located simultaneously in the volume elements Sr,, Sr2, . . . , Sr, 
about the points 

x + r,, x + r2, . . ., x + r, 
is P(VN) SVN = P(x + rl, x + r2, . . . , x + rN) Sr,, Sr,, . . . , Sr,. 

The position vector x here specifies a reference point for the configuration 

P(V,) is of course independent of x in view of the homogeneity of the disper- 

sion, and we need show the reference point only when configurations are being 

described explicitly. The N spheres in the region of volume V are identical and 

so we have the normalization relation 

(2.2) pv2u = v p ,  v.u = 0. 

JP(VN)dc&,. = N ! ,  (2.3) 

where here and later it is understood that each of the N volume integrals com- 

prising integration with respect to V N  is taken over the whole of the volume V .  
The probability density of the position vector of a single sphere centre will be 

(2.4) 
written as P(%?,) = P(x+r) = N / V  = n, 

where n is the average number of spheres per unit volume. 

We also introduce the conditional probability density P(VNI x) which refers to 

a dispersion in which there are N + 1 sphere centres in V ;  P(V,IX)S%~ is the 

probabiliby of a configuration of N sphere centres being found in the range M, 
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about VN,  given that there is a sphere centre at  the point x .  The relation (2.3) 

also holds when P(VN) is replaced by P($$"Ix). A connexion between the condi- 

tional and unconditional probabilities is provided by the identity 

P(VN) = P ( x  + rk) P ( g N - J x  + rk) = nP(VN-llx -t- rk), 

P(VNIx) = P ( x  + rklx) P(VN-& x + rk).  

( 2 . 5 )  

where x + rk is the location of one of the sphere centres of VN. Likewise, with an 

obvious notation, 

(2.6) 

It will be assumed that there is no long-range order in the dispersion, and 

that the probabilities of sphere centres being at points whose separation is large 

compared with a sphere radius are independent. In  particular we have 

W f N I X )  M P(%iV) (2.7 ) 

when each of the points ofqN is at  a distance from x which is large compared with 

a.  
We may now express the average of some quantity G(x ,qN)  which is associa- 

ted with a point x in the dispersion (G necessarily being defined for points both in 

the fluid and in the rigid spheres) and which is determined by the configuration 

of N spheres, as 

B = &JG(X,VN) P(VN) dVN. (2.8) 

We shall also be concerned with the average of a quantity, H ( x ,  V N )  say, which is 

associated with a sphere with centre at the point x ;  this requires the conditional 

probability density and is 

H = - H(x,VN) P(VNIx)dVN. (2.9) N !  's 
The interpretation of the expressions (2.8) and (2.9) is that G(x,VN) and H(x,VN)  
in the integrands represent the values taken by the quantity concerned at the 

point x when the configuration of the centres of the surrounding spheres has the 

form gN.  
Our objective is to calculate the mean value of the velocity of fall of a sphere, 

which is given by (2.9) with U in place of H .  We shall thus need to know both the 

configurational statistics for a group of spheres and the dependence of the velo- 

city of one sphere on the relative locations of surrounding spheres. 

We have yet to make use of the assumption that the dispersion is dilute, with 

an average spacing of sphere centres ( n d )  which is large compared with a sphere 
radius. The probability that just one of the sphere centres of the configuration 

gAv is located at  a distance from the reference point x which is a multiple of a 
of order of magnitude unity is of order c, where 

c = +nu% 

is the volume fraction of the spheres in the dispersion, and so is a small quantity. 

Likewise the probability that two sphere centres are simultaneously at such a 

distance from x is of order c2. It follows that, in any case in which the quantity 
G decreases to zero sufficiently rapidly with increase of the distance r of a single 

rigid sphere from the point x ,  the average (2.8) may be calculated, with an error 
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of order c2, as if the surrounding configuration contained just one sphere; 

'sufficiently rapidly' evidently means as rapidly as ( c ~ / r ) ~ + ~ ,  where e > 0, in order 

to ensure absolute convergence of an integral over all positions of one sphere 

centre of the configuration with uniform probability density of location. This 

approximation corresponds to using the identity (2.5) and the approximate 

relation (2.7) to replace P('XLV) in the integrand of (2.8) by 

P(x + rk) P(gN-l) 

for that part of the range of integration of rle for which rk/a (where rk = Irkl) is 

of order unity and to ignoring the influence of other spheres on the value of G. 

Thus we have 

= JG(x, x + r) P(x + r) dr + O(c2),  (2.10) 

where G(x, x + r) stands for the value of the function G at the point x in the 

presence of a single sphere with centre at  x + r. 
Exactly the same remarks may be made about any quantity H(x,gN) as- 

sociated with a sphere with centre at  x which is significantly different from zero 

only when at least one sphere of the configurationVN is within a distance of order 

a from x, with the conditional probability P(x + rlx) replacing P(x + r) in the 

counterpart of (2.10). 

However, it must be noted that not all the quantities represented by G or €3 
occurring in the problem under discussion satisfy the required condition of 

decreasing to zero sufficiently rapidly with increase of the distance of a single 

rigid sphere from the point x. In  particular, the velocity at the point x due to one 

falling sphere with centre at  x + r behaves as r-l when r/a 3 1, and so it is de- 

finitely not permissible in this case to disregard contributions to an average of 

the form (2.8) from spheres at distances large compared with a; and the approxi- 

mation (2.10) for the average would be a divergent integral if G(x,x+r) were 

t o  be interpreted as the velocity at  x due to a sphere with centre a t  x + r. On the 

other hand, without a reduction of an average to an expression involving only a 

small number of spheres it does not seem to be possible t o  make progress analytic- 

ally. This is the central difficulty of the problem to which we have already re- 

ferred. 

3. The method of solution 

Our objective is Go determine the mean velocity of a spnere, which is repre- 

a = - U(x0,gN) P(%Nlxo)d%N. (3 .1)  N !  ' S  
sented formally by 

The sphere with centre at  x0 whose velocity is U(x0, qN) will be termed the test 

sphere. We seek in particular an approximation to 0 which is correct to the order 

c. Calculations of the flow fields due to one or two spheres falling in infinite fluid 

are feasible, whereas they are not for a larger number of spheres, and so we wish 
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to reduce (3.1) in some way to a consideration of a group of no more than two 

spheres. The straight-forward idea of regarding the integral in (3.1) as effectively 

an integration over the location of just one sphere in the configuration V N ,  on 

the grounds that the chance of two spheres being simultaneously close enough 

to x, to influence the velocity of the test sphere is of order c2 and so negligible, is 

invalidated by the slowness of the decrease to zero of the influence of one falling 

sphere on U(x,) with increasing distance from x,. 

The procedure to be adopted here is to look for a quantity whose mean is 

known exactly from some overall condition or constraint in the specification of 

the problem and whose value at x, has the same long-range dependence on the 

presence of a sphere at  x, + r as the velocity of the test sphere; and, once found, 

the dizerence between is and the mean of this quantity can be expressed as an 

integral like (3.1) which can then legitimately be reduced to an integration 

over the location of just one sphere in the configuration qN and evaluated 

explicitly. 

The choice of the desired quantity becomes evident as soon as w0 investigate 

the asymptotic form of the dependence of U(x,,$$") on the configuration qN 
as the distance of the spheres in VN that are nearest to x, becomes large. Now 

when all the spheres of VN are well away from the point x,, the test sphere may be 

regarded as immersed in fluid which in the absence of that sphere would have 

approximately uniform velocity over a region of linear dimensions 2a; and 

U(x0,gN) would then be approximately equal to the sum of U, and that uniform 

velocity. This suggests we should look closely at  the relation between U(x0,VN) 
and the velocity distribution that would exist in the dispersion if the test sphere 

were replaced by fluid of viscosity ,u without change of the configuration VAT. 

This latter velocity, whose value at  point x is denoted by u ( x , % ~ )  (the configura- 

tion VN here being specified relative to x, still), will in general be non-uniform on 

the spherical surface A ,  centred on x, with radius n. 

In order to determine the sphere velocity U(xo,qN) in terms of u(x,%'~) we 

need to find a surface distribution of forces, or Stokeslets, on A ,  whose vector 

resultant is $nu3 (p,-p) g and which, if applied to the fluid in the presence of all 

the other rigid freely moving spheres in the dispersion, would generate a fluid 

velocity on A ,  which is the sum of a uniform vector and the variable quantity 

- u(x). It is shown in the appendix that, if the need to continue t o  satisfy the no- 

slip condition at  the surface of spheres other than the test sphere is disregarded 

for the moment, the unique translational velocity of the test sphere is exactly 

U, + V, where 
1 

V ( X 0 , ~ N )  = = S , ~ ( X , % ) d A .  

On representing u(x) as a Taylor series in x - x, and integrating over A,, and using 

the slow-motion equation V4u = 0, we see that 

V(X,,'%,) = U(X,,%N) +*."V"U(x,~N)),=,; (3.2) 

this expression for the translational velocity of a rigid sphere due to a non- 

uniform environment was obtained many years ago by Faxen (see Oseen 
1927). 
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The expression (3.2) takes account of the velocity distribution in the fluid 

near x, due to the motion of all spheres other than the test sphere, but it is in- 

complete because the forces acting at  the surface of the test sphere need to be 

accompanied by image systems in the spherical boundaries of all other spheres 

in order to ensure that the no-slip condition continues to be satisfied at those 

boundaries. The effect of the presence of the test sphere is to induce at  distance r 

in the surrounding fluid a velocity whose order of magnitude is Uoa/r, a velocity 

gradient of order Uoa/r2, etc. A rigid sphere of radius a whose centre is at  distance 

r from that of the test sphere will as a consequence acquire an additional trans- 

lational velocity (with no associated change in the stress distribution at  its sur- 

face), and in addition there will be changes in the stress distribution at the sphere 

surface due to the ambient velocity gradient which have a net force dipole 

magnitude of orderpU,a4/r2. This new force dipole will in turn induce a change in 

the velocity distribution near the test sphere, and in particular the test sphere 

will be given an additional translational velocity of order U,a4/r4. All other spheres 

in the dispersion will have a similar effect on the test sphere. The translational 

velocity of the test sphere with centre at  x, should thus be written as 

where W represents the effect of the image systems, in the boundaries of all other 

spheres, of the Stokeslets at the surface of the test sphere. Note (I)  that these 

Stokeslets include both those related to the gravity force on the test sphere and 

those required to cancel the velocity field u, (2) that the contribution t o  W from 

one other sphere at  distance r varies asymptotically as r4, showing that the sum 
of the separate contributions from an indefinitely large number of spheres located 

with uniform probability density would converge, and (3) that W is defined pre- 

cisely as the difference between U -U, and the velocity V given by (3.2). 

With the relations (3.2) and (3.3) in mind it is possible t o  see how to overcome 

the difficulty referred to at  the beginning of this section. In  place of 0 we now 

evaluate the two mean quantities v and E. For the latter we may use the kind 

of approximation represented by (2.10), because the value of W due to one 

sphere of the configuration at  distance r from xo decreases so rapidly, as r/a -+ 00, 

that only those spheres of the configuration V N  which are within a distance from 

x, of order a have a significant effect. Thus we have 

= Jw(x,, xo + r) P ( X ,  + rlx,) dr + O(CZ), (3.4) 

W(x,, x,+ r) = U(x,, xo+ r) -U,-u(x,, xo+r) - $a2{V2u(x, x,+ r)}==%, (3.5) 

U(x,, xo + r) is the velocity of a sphere with centre at x, in the presence of a 

second sphere with centre at  x, + r, and u(x, x, + r) is the velocity at  the point 
x in the presence of IL sphere with centre at  x, + r. 

All the difficulties presented by non-convergence are incorporated in the 

where 

contribution = F+v" 
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where 

It is not possible to reduce either of these two integrals t o  an integral with respect 

to the position of only one sphere, because IuI behaves as a/r at distance r from 

one falling sphere and a21V2ul behaves as a3/r3, the latter giving a decrease to 

zero as r/a + co which is only just too slow for absolute convergence of such an 

integral. We therefore try to evaluate the integrals in (3.6) with the aid of known 

exact mean values involving all the spheres in the configuration Vx. 

One obviously relevant result is that the mean value of the velocity at a point 

in the dispersion is zero, which is expressed formally as 

a = - N !  U(X,%jv) P(qlV) dVN = 0, 's (3.7) 

where the local velocity u has its ordinary physical meaning in each of the fluid 

and solid parts of the dispersion. The contribution v m a y  thus be written as 

v' = N! u ( x O , ( e , )  {P ( g N ( x O ) - p ( % N ) } d % X *  (3.8) - 's 
A reminder of the meaning of the symbols occurring in the integrand here may 

be in order. u(xo, V N )  denotes the velocity at  the point xo in the presence of the 

configuration of N spheres represented by VN,  and the two terms within curly 

brackets specify two probability distributions for the first, P(%xlxo)7 
represents the distribution of V N  as it would be if the centre of another sphere 

was known to be at x, (but note that this sphere is not present so far as the 

value of u(x, ,%~) is concerned), and the second, P ( g N ) ,  is the unconditional 

distribution of V N ,  involving some configurations for which the point x, lies 

within a rigid sphere. 

The integral (3.8) is now in a form which allows reduction t o  an integral over 

the position of just one sphere of the configuration VN.  The identities (2.5) and 

(2.6) enable us to rewrite the quantity within curly brackets in (3.8) as 

P ( x O + r k ~ x O ) P ( ~ ~ - l ~ x O ~  x O + r k ) - P ( x O + r k ) P ( V ~ ~ - l I X O f r k ) ,  

where x, + rk is one of the points of the configuration qN; and for those parts of 

the range of integration with respect to  FN in (3.8) for which rk/a is of order unity 
and rl/a 9 1 for all 1 except 1 = k, this is approximately equal to 

{p(xO + rklxO) -P(xO + rlc)}P(gN-l)* 

We may assume that the difference P(x,+rk~xo)-P(x,+r,) tends t o  zero 

rapidly7 as rk/a -+ co, and so we have 

f We defer consideration of the actual expression for this quantity until the next section. 
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the error being of order c2 since the probability of the neglected possibility that 

at least two spheres of %N are located within a distance of order a from xo is of this 
order. The leading approximation to U ( X ~ , % ~ )  when only the sphere centre at  

xo + rlc is close to xo is u(xo, xo + r,) (and when no sphere of the configuration V, 
is close to xo the integrand is small in any event), whence 

V' = u(xo, xo + r) {P(x,+ rlx,) -P(xo+ r)}dr + O(c2). (3.9) - s  
In  order to evaluate the contribution v" we introduce the deviatoric stress 

which is defined in both the fluid and solid parts of the dispersion and has the New- 

tonian form 2peij in the fluid, where eij  is the rate-of-strain tensor. Now d,(x) 
is a stationary random function of position in a statistically homogeneous dis- 

persion, and so has constant mean. It follows that the mean ofad,,/ax, is zero, that 

is 

(3.10) 

in which the differentiation of dij with respect to x is carried out with VN held 

fixed and the position vectors of the N sphere centres can be chosen as xo + rl, 
xo + r2, . . ., xo + rN.  We shall divide the range of integration with respect to rk 
into two parts, one of which is specified by jxo + r, - X I  < a (so that x lies inside 

or on the surface of the kth sphere) and makes a contribution to the integral in 

(3.10) which, with use of the identity (2.5)) may be written as 

Now since the range of integration with respect to %N-l here is unrestricted, it 

is permissible to carry out the integration with respect to r, with the configura- 

tion %N-l held fixed relative to the sphere centre xo + r,, that is, with 

p(VN-llxO + rk) 

constant. The integral of &ldj/axj with respect to r, over the volume of the kth 

sphere can then be transformed to an integral of dij over the surface of this 

sphere. A contribution of this kind is made by each of the N spheres separately, 

and on summing over all values of k, and noting that when Ix0+r,-xl > a 
for all k we may put 

we have in place of (3.10) 
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where f(xo + rk, VN--l) is the total force exerted by the deviatoric stress on the 

surface of a rigid sphere with centre at  xo + rk in the presence of a configuration 

of N - 1 other spheres. The first of these integrals is independent of rk, and so we 

can put rk = 0;  and second is independent of x, and we can put x = xo. 
The contribution v" may now be written as 

it is permissible to impose the restriction on the range of integration for the 

integral coming from (3.6), since in any event P(%NIxo) = 0 for any rk smaller 

than 2a.  The argument which led to the reduction of (3.8) to the approximate 

form (3.9) may also be applied to the first integral in (3.12). And for the second 

integral in (3.12) we note that the leading approximation to the mean value of 

na2f/6p for c 4 1 is -&AJ, (the drag due to viscous stiress at the surface of a 

single falling sphere in infinite fluid being two-thirds of the total drag force), 

which is sufficiently accurate. The approximate expression for v" is therefore 

- 
~a2{V2u(x,xo+r)}~=,{P(xo+r[x,)-P(xo+r)}dr+&Uo, (3.13) 

'11 = / r > a  

with an error of order c2. 

The final expression for the mean velocity of a sphere in the dispersion is 

U=U,+V+V+E, (3.14) 

where is given approximately by (3.9), v" by (3.13), and %' by (3.4), in all 

three cases with an error of order c2. The expressions for V'and V"and can 

be evaluated from a knowledge of the probability density of the location of one 

sphere relative to a second sphere in a statistically homogeneous dispersion and 

of the flow field due to two spheres falling through infinite fluid. 

This completes the description of the general method of overcoming the 

difficulty caused by the slowness of the decrease of the velocity to zero with in- 

creasing distance from one falling sphere. The statistical aspects of the method 

have been set out in rather formal terms, partly because it is otherwise so difficult 

t o  avoid errors in a statistical argument and partly in order to facilitate the ex- 

pected applications to other problems concerned with the mean properties of a 

mixture consisting of randomly dispersed particles in a uniform ambient medium. 

4. The probability distribution of the separation of two spheres 

It is evident that the integrals in (3.4), (3.9) and (3.13) are all of order cUo; 

for the magnitude of IuI can be estimated as Uoa/r, that of both P(xo+ rlx,) and 

P(xo+r) by n, and the value of r /a  at which the integrands become small is of 

order unity. Consequently, in order to obtain the mean sphere velocity correct 

to order c, we need determine only the leading approximation to P(xo+ rlxo), 
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that is, we need determine only the functional form corresponding to the limit 

C+ 0. 

We now consider what statistical distribution of relative particle positions 

should be expected in a dispersion, taking account of both the initial conditions 

and the subsequent effect of hydrodynamic interactions. The initial conditions 

depend on the actual way in which the dispersion is obtained, and completely 

general statements cannot be made. However, it seems likely that any procedure 

such as violent shaking of the mixture in a closed container which causes strong 

fluctuating forces to act on the spheres will generate a disbribution such that the 

locations of sphere centres have no statistical connexions other than those arising, 

either directly or indirectly, from the requirement that rigid spheres do not over- 

lap.? This initial condition corresponds to production of the dispersion in a large 

volume V by the hypothetical process of choosing the locations of sphere centres 

one by one at  random in V according to the rule that each new sphere centre can 

be placed with uniform probability anywhere in the accessible part of V (that is, 

at any point not closer than two sphere radii to any previously chosen point). 

Another way of generating such a distribution mathematically would be to sup- 

pose that the spheres exist in a vacuum and move in straighb lines with constant 

velocity until they make elastic collisions at  which momentum and energy are 

conserved, with the duration of this hypothetical motion being long enough 

for an equilibrium distribution to have been established. 
The determination of the analytical form of the distribution of relative particle 

positions corresponding to this initial condition is a difficult problem in statistical 

geometry$ for general values of the volume fraction c .  However, in the limit 

c --f 0 the effect of the impenetrability of the spheres reduces to a simple exclusion 

of configurations for which overlappings of spheres occurs, with all allowed con- 

figurations being equally probable. Thus, for a dilute dispersion our supposed 

initial condition implies that the probability density of the location of one sphere 

centre relative to another is 
n if r >/ 2a 

P(x+rlx) = 

where n is the uniform mean number density of spheres. Similar statements 

may be made about the probability densities of configurations of more than two 

spheres. 

There is now the question of change of the initial statistical distribution of 

spheres due to the motion of the spheres under gravity. In  most problems concern- 

ing dispersed spheresit is to be expectedthat hydrodynamicinteractionwill lead to 

some weighting of the different sphere configurations and ultimately to the estab- 

lishment of a sphere distribution which is independent of the initial conditions. 

However, any such bias due to hydrodynamic interaction must be small in a dilute 

dispersion of identical spheres in which sedimentation has been going on for a 

In  the case of very small particles there may exist electrostatic repulsive and inter- 
molecular attractive forces between the particles which affect significantly the excluded 
volume associated with one particle, although we shall ignore any such effects here. 

$ Well known in the theory of the liquid state, see Fisher (1964, chap. 3) and Rice & Gray 
(1965, chap. 2). 

F L M  52  17 
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limited time only. It is known that two identical spheres falling through infinite 

fluid maintain a constant relative position (as is evident from symmetry and 

reversibility ), and so any tendency for certain configurations of neighbouring 

spheres to be preferred as a result of hydrodynamic action can arise only from 

triple or higher-order interactions. Now the fraction of all the spheres in one 

realization that instantaneously are located within a few radii of a second sphere 

is of order c, and this is also the fraction of the total time that a given sphere 

spends in proximity to a second sphere. Likewise the fraction of the total time 

that a given sphere spends in proximity to two other spheres simultaneously is of 

order 9. It follows that the effecf of triple interactions disappears, for a given 

duration of sedimentation, when the volume fraction c is sufficiently small, in 

which case the joint probability distribution of the position vectors of sphere 

centres remains approximately constant at  its initial form.? 

Information about the details of interactions between three neighbouring 

spheres will be needed before we can draw any firm conclusions about dispersions 

in which sedimentation has continued for an indefinite time. Four different para- 

meters appear to be required for the specification of a three-sphere encounter 

(aside from the time variable), and so triple encounters are likely t o  be very com- 

plicated. It may happen that the effect of triple encounters on the probability 
distribution of the position of one sphere relative to another is weak, as a conse- 

quence of some cancellation of contributions from the many different types of 

triple encounter. 

Another way of obtaining a hydrodynamically-determined steady state might 

be to calculate the probability density of the separation vector of two spheres 

of slightly different radii, a, and a, say, in a dispersion which contains these two 

sizes in some assumed proportion. The differential equation for the probability 

density obtained from a consideration of two-sphere encounters would then be of 

the form 

= - (U,-U,) . VP - PO. (U, - U,), 
aP(x+rlx) 

at 

where U, and U, are the velocities of the two spheres when their centres are at 

x and x + r, and V is here a differential operator with respect to r. As a, - at --f 0, 

the rate of change of P tends to zero, but a definite equilibrium form for P pre- 

sumably exists, however slow the rate of approach to it may be, and would be 

obtainable from this equation with the time derivative put equal to zero and with 

a,-- ,  small but non-zero. (We see incidentally from (3.2) and (3.3) that, since 

]W(x,x+r)\ is of order a4/r4 when a/r < 1, both V.U, and V.U, are of order 
a5/r5 and so in the steady state P(x+rlx) is equal to a constant (n) plus a 

term of order a4/r4, thus confirming-in this case-the claim made in $ 3  that 

P(x + rl X) - P(x + r) tends to zero ‘rapidly ’ as r /a  -+ 00.) In  a particular experi- 

ment with a dispersion in which there were small unintended variations of size of 

t This dependence of the probability distribution, and consequently of the mean sphere 
velocity, on the initial state of the dispersion is perhaps relevant to the interpretation of 
observations. If, contrary to what we have supposed, the dispersion is not ‘ well stirred’ 
initially, there could be some variation of the observed mean sphere velocity, depending on 
chance features of the way in which the dispersion is prepared. 



Xedimentation in a dilute dispersion of spheres 259 

the spheres, the ultimate probability distribution might be determined by the 

slow changes due to these two-sphere encounters or by the changes due to the 

rare three-sphere encounters, depending on the circumstances. 

Brownian motion might also have some influence in the case of a dispersion of 

very small spheres. The effect of Brownian motion on a sphere would be to tend to 

make it take all available positions in the fluid with equal probability, that is, 

to reduce the function P(x+ rlx) to the form (4.1). 

Some observations concerning the spatial distribution of spheres have been 

made by Smith (1968). He used a dispersion of uniform acrylic spheres with 

volume fraction 0.025 in silicone liquid, the Reynolds number of the motion of 

one sphere being about 0.6. He found by actual counting that the frequency dis- 

tribution of the number of sphere centres occurring within a spatial region of 

given volume was approximately of the binomial form, indicating that the proba- 

bility of any particular sphere being located in the given region was statisti- 

cally dependent on the positions of other spheres only inasmuch as they might 

diminish the available space in the given region. The chosen volume was of such 

a size as to contain 0.75 spheres on average, so that this is a fairly sensitive 

test of the statistical connexion between the positions of two neighbouring 

spheres. 

It is evident that determination of the probability density P ( x +  rlx) for a 

dispersion of ostensibly equal spheres and a long time of sedimentation presents 

a delicate problem, the answer to which may depend on the precise conditions. 

In  most of the remainder of the paper we shall adopt the simple result (4.1) 

representing uniform probability for all physically accessible positions of one 

sphere relative to another. This well-defined and fundamental state is expected to 

apply to a dispersion of identical spheres within a certain time of sedimentation 

after some initial ‘well stirred’ state. In  other circumstances a different form of 

the probability distribution may be found to be appropriate. The plan of calcula- 

tion of 0 described in the previous section can be carried out with any form for 

P(x + rlx) which may be provided by later investigations. In  9 7 we shall con- 

sider one alternative form for P ( x  + r (x). 
With the adoption of the form (4.1) for the probability density of one sphere 

position relative to another, the bracketed expression occurring in (3.9) and (3.13) 

becomes 
0 if r 3 2a, 

-n if r < 2a. 
P(xo+r~xo)-P(x,+r) = 

Thus the mean velocity of a sphere is 

where 

= n J ~  ~ ( x , ,  xo + r) dr, 
r22a 

(4.5) 

17-2 
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in which u(x,, xo+ r), @2u(x, x, + r)),=, and W(x,, x, + r) are to be interpreted 

as values of the functions u, Vzu and W at the point X, as determined by the pre- 

sence of a single sphere with centre at  x, + r .  It will be recalled that u is the local 

velociky and that W(x,, x,+ r) is given by (3.5). 

For calculation purposes it is simpler to regard the centre of the ‘presence ’ 
sphere as fixed, a t  the point x say, in which case the above integrals become 

- 
V‘ = -n u ( x + r , x ) d r  (4.6) 

(4.7) 

/ r < 2 a  

V” = - n  Qa2Vru(x + r, x) dr  + &U, 
- .la<r<za 

w = n s  W(x+r ,x )d r ,  (4.8) 
r>2a 

where 
W(x + r ,  x) = U(x -I- r, x) - U, - u(x + r, x) - &a2Viu(x + r, x). (4.9) 

5. Explicit calculation of the mean sphere velocity 

The remaining part of the calculaCion of i? is a matter of detailed algebra. 

We shall need to make use of the expression for the fluid velocity at  x + r due 

t o  a single rigid sphere of radius a with centre instantaneously at  x falling through 

infinite fluid with velocity U,, viz. 

u ( x + r , x )  = U ,  for r 6 a 

and u ( x + r , x ) = U ,  (5.1) 

The corresponding expression for V:U at points in the fluid is 

3a r.U, 9a Viu = U --.r-- 
‘2r3 r2 2 ~ 3 ‘  

It follows that 

u(x + r, x) dr  = 67ra3U,, s a<r<2a 
u(x + r, x) dr  = +7ra3U,, 

!r<a 

and then from (4.6) we have 
- 
V’ = - 12na3nU - - +L cu,. 

3 0 -  

+a2V,2u(x+r,x)dr = 0 ,  
a<r<2a - 

V“ = ‘i-cu,. 
s 

Similarly we find 

whence, from (4.7), 

Consider now the mean value of W ( x + r , x )  which in view of (4.9), (5.1) and 
(5.2) can be written as 

W ( x + r , x )  =U(x+r,x)-U,-U,  

In this relation U(x+ r, x) is the exact translational velocity of each one of a pair 

of rigid spheres in infinite fluid with centres separated by the vector r, and 
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W(x + r, x) can be regarded as the difference between this exact value and the 

approximation to U obtained by modifying the stress distribution at  the surface 

of each sphere to take account of the velocity distribution due to the other as if 

that other sphere were alone in infinite fluid. As mentioned in 4 3, the magnitude 

of W(x+ r, x) behaves as U,a4/r4 when a/r < I. 

The translational velocity of a pair of identical spheres falling in infinite 

fluid has been found in closed form by Stimson & Jeffrey (1926) for the case in 

which the line of centres is vertical and by Goldman, Cox & Brenner (1966) for a 

horizontal line of centres (with the two spheres free to rotate). The problem is 

linear, and so there are only two independent cases. We may therefore write 

the common translational velocity of two identical rigid spheres with centres 

separated by the vector r as 

U ( x + r , x )  = 

where U, is the velocity with which either sphere would fall in isolation. A, and 

A, are inverse resistance coefficients for vertical and horizontal line of centres 

respectively which are functions of the separation distance r alone and which are 

r 

a 
- 

2.0 

2.0049 
2.0907 

2.2553 
2.6749 

3.0862 

4.0 

6.0 

8.0 

1.5500 

1.5494 
1.5376 

1.5160 
1.4662 

1.4236 

1.3472 
1.2427 

1.1847 

1.3’799 
1.4027 

1.3933 
1.3648 

1.3029 
1.2586 

1.1950 

1.1273 

1.0947 

- 0.761 

- 0.569 

- 0.484 

- 0.431 

- 0‘355 
- 0.298 

- 0.203 

- 0.100 

- 0.058 

TABLE 1. Values of the inverse resistance coefficients for vertical (A,) and horizontal (A,) 
line of centres of an isolated pair of equal spheres with centres distance r apart 

known from the two papers just mentioned. The integral of W(x+r ,  x) over a 

spherical surface of radius r with centre a t  x is then found from (5.5) and (5.6) 

to be 
477r2U0{+(A, + 2A,) - 1 - a/r), 

and the average value of follows from (4.8) as 

\iii = cu,s2” (A,+ 2A,- 3 (I  + $1 0. (5.7) 

Table 1 shows values of A, and A, for some values of r /a  between 2 and 8 ob- 
tained from the reciprocals of these quantities given by Goldman et al. 1966 (who 

obligingly provided numerical values of AT1 from Stimson & Jeffrey’s solution 

along with their own calculations of A;,). Table 1 also gives values of the 
integrand of (5.7) over this range; for larger values of rla, the integrand is given 
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sufficiently accurately by its asymptotic form, which is readily found by the 

method described in $ 3  to be - y ( a / r ) 2 .  By numerical integration? over 

the range 2 < r/a < 8 (using more data than is given in table 1)  and algebraic 

integration of the asymptotic form over the range r/a 2 8 it was found that 

W = - 1.55cUO, (5 .8 )  

correct t o  the second decimal place in the numerical coefficient. 

The results (5.3)) (5.4) and (5.8), together with (3.14), show that the mean 

translational velocity of a sphere in a dispersion of identical rigid spheres with 

(small) volume concentration c is 

0 = U, + cU,( - 5.50 + 0.50 - 1.55) 

= U,( I - 6 * 5 5 ~ ) ,  (5.9) 
correct to order c. 

Now that the resultant change in the mean settling speed due to particle inter- 

actions has been determined, it is instructive to look back and compare the 

physica(1 meanings and magnitudes of the various contributions. The downward 

flux of volume of solid material in the dispersion is accompanied, in a homogen- 

eous dispersion with zero mean volume flux a t  each point, by a corresponding net 

upward flux of fluid volume; this change in the fluid environment for one sphere 

causes the mean settling speed to differ from the value it would have in infinite 

clear fluid by an amount -cU, (correct to the order c). The falling spheres also 

drag down with them some adjoining fluid, and this downward flux of fluid volume 

in the inaccessible shells surrounding the rigid spheres is accompanied by an 

equal upward flux of volume in the part of the fluid that is accessible t o  the centre 

of a test sphere, the corresponding contribution to the change in mean settling 

velocity being - :cUo. (These two contributions associated with conservation of 

volume flux together comprise the term denoted by v.) The motion of the spheres 

generates collectively a velocity distribution in the fluid such that the second 

derivative of the velocity (or V2u, more precisely) has non-zero mean, and this 

property of the environment for a particular sphere changes its mean velocity 

by an amount + +cU,. Finally, when the test sphere whose velocity is being aver- 

aged is near one of the other spheres in the dispersion, the interaction between 

these two spheres gives the test sphere a translational velocity which is signifi- 

cantly different from that which is estimated from the velocity distribution in the 

fluid in the absence of the test sphere, and so the previous three contributions 

need to  be supplemented; this gives a further change in the mean settling speed 

equal t o  - 1-55cU,. 

The largest single contribution to the change in the settling speed thus comes 

from the diffuse upward current which compensates for the downward flux of 
fluid volume in the inaccessible shells surrounding the rigid spheres; and this 

contribution, like the net change in the settling speed, is a reduction in the settling 

speed. 

t I am grateful t o  Mr E. J. Hinch for carrying out these computer calculations for me. 
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6. Comparison with other work 

As noted in 0 1, there are two previous investigations (Burgers 1942; Pyun & 
Fixman 1964) which have produced the result that) a - U, is proportional to c 

for a dilute dispersion. Both investigations assumed the spheres to be randomly 

located, with equal probability for all physically possible configurations (although 

Burgers also considered a regular array), both employed probability methods, 

and both recognized that there are convergence difficulties when the effects 

of adjoining spheres on a test sphere are taken separately and summed over all 

the spheres in the dispersion. However, the statistical methods employed were 

ad hoc in character rather than systematic, and neither set of authors overcame 

satisfactorily the convergence difficulties. Burgers adopted an expression for the 

velocity of a sphere which was effectively that given by (3.3) with (3.2). He then 

calculated the average value of the term V'(X,,$'?~) from a consideration of the 

flow field due to a single falling sphere, essentially by the device of introducing 

a certain distributed body force on the fluid which makes the net volume flux 

across any infinite horizontal plane identically zero and which turns the r-l 

asymptotic behaviour of the velocity due to the falling sphere into behaviour as 

rp3; and he expressed the mean value of V ( X ~ , % ' ~ )  as a volume integral over the 

possible positions of a single falling sphere which was not absolutely convergent 

but which he made determinate by carrying out the integration in three dimen- 

sions in a particular way, the result (which is correct!) being accepted with 

obvious unease. Pyun & Fixman dealt correctly with the reduction of to an 

absolutely convergent integral involving the velocity distribution of a single 

falling sphere, essentially by use of the exact volume flux relation (3.7) as in this 

paper (although they describe this device curiously as a change of reference 

frame) ; but they failed to notice that the volume integral of 

U(x,, xo + r) - U, - V'(xo, x, + r) 

over all possible positions of the sphere with centre a t  x,+r is still not 

absolutely convergent, and, although as a consequence of continuing to overlook 

the term +a2V2u in the expression for the velocity of a sphere due to a non- 

uniform environment their explicit integrals were absolutely convergent, the 

outcome was that the contribution v" was missing from their calculation. Fin- 

ally neither Burgers nor Pyun & Fixman had access to the results of the recent 

exact calculation by Goldman, Cox & Brenner (1966) of the speed of fall of a pair 

of identical spheres with horizontal line of centres, and so they were able to make 

only an approximate calculation of i?l using the method of reflexions; Burgers 
used only the asymptotic form for the velocity of one sphere at  distance r from 

a second sphere and got %7 = - 1-88cUo, whereas Pyun & Fixman took more 

terms in the sequence of reflexions and obtained fi = - 1.66cU,, the accurate 

value from $ 5  being - 1.55cU0. The overall result for u--U, from Burgers's 

calculation for a random distribution of spheres was -6*88cU0, and that of 

Pyun & Fixman was - 7.16cU0. Neither result is far from the value obtained here 

( -  6.55cUO). The intended contribution of the present paper is not SO much 

a new numerical value of a as the provision of a systematic method of solution 
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which can be trusted and which may be applicable to a range of problems involv- 

ing randomly dispersed particles. 

Measurement of the average velocity of a particular sphere in a dispersion over 

a long time is difficult, and many observers have sought other kinds of average 

of the particle velocity, such as the speed of fall of the relatively sharp ‘top’ 

to  the cloud of particles in a vessel. The available data of different kinds have been 

examined by Maude & Whitmore (1958) who concluded that the observed mean 

settling velocity of identical spheres moving with small Reynolds number is best 

represented, over a wide range of values of c including small values, by a relation 

of the form B = U,( 1 - C ) P ,  

in which the value of the constant p ‘is uncertain but is approximately 5 ’ .  The 
agreement between this empirical relation in the case c < 1 and the theoretical 

result (5.9) is not worse than one would expect from the general scatter of the 

observations. There is a need for more decisive experiments on the average 

falling speed of spheres specifically for small values of c (say, c less than about 

0.05). 

There is a persistent belief in the literature that the decreasein thesettling speed 

in a dilute suspension should be proportional to c*, despite the fact that such a 

relation predicts appreciably larger decreases in settling speed than are observed 

The basis of this belief is presumably that all the calculations for a regular array 

of spheres, and all those using a cell model, give a result of this f0rm.t It is worth- 

while to consider in general terms the reasons why these methods yield a result 

which is different in form from that found in this paper. 

We may note first that any method of calculation which represents each falling 

sphere wholly as a point force G applied to the fluid at  the position of the sphere 

centre is certain on dimensional grounds to find that the additional velocity near 

one sphere due to the presence of all the others is proportional to G/,uR, because 

in this linear problem the external force G acting on each sphere must appear 

linearly on the right-hand side and some length R associated with the particle 

arrangement is the only length entering the problem. The force G can be written 

as 6na,uU,, and so the change in fluid velocity a t  the position of a particular sphere 

due to the presence of all the other spheres - which is equivalent to the change in 

fall velocity of the chosen sphere to the first order in c, in these calculations- 

would be predicted to be of the form 

U - U ,  cc aU,/R. 

In  the case of a regular geometrical arrangement of the spheres, R can be taken as 

the distance between neighbouring spheres, whence alR is proportional to c*. 

Likewise in the case of a cell model, R can be taken only as a linear dimension of 
the cell and Dhen, with the same volume fraction of solid material in the cell as in 
the real dispersion, a/R is proportional to c9. In  all the published investigations 

t The result of a numerical calculation for a semi-random distribution of spheres by 
Famularo & Happel (1965) is also quoted in this form, but this investigation was for only 
one value of the concentration and does not provide evidence concerning the functional 
dependence on c. 



Sedimentation in a dilute dispersion of spheres 265 

which adopt either aregular arrangement of the spheres or a cell model, it appears 

that, so far as the derivation of the first approximation to U-U, for c < 1 is 

concerned, each sphere was represented by a point force and the radius a entered 

the analysis only through either the identity connecting G and U, or the choice 

of R as a function of c. A result of the form 

u - u, cc c m ,  

is consequently inevitable. 

We can also see more directly how this result comes about and why it differs 

from the result for a random distribution of spheres. The key point of the ex- 

planation is that, since the fluid velocity due to a single moving sphere varies with 

distance r as G/pr (or Uoa/r), any method which selects and takes account only 

of one particular value (or a small number of comparable values or multiples) 

of the distance between spheres, the average spacing R being the inevitable 

choice, as do both the regular-array method and the cell-method, will find a 

resultant induced velocity at  the position of one sphere which is of order U,a/R. 
On the other hand, for a random distribution of spheres such that the position 

vector of the centre of a sphere takes all accessible values with equal probability, 

there is no direct significance or preference attached to the average particle sepa- 

ration. The result for a random distribution of spheres is different, because a test 

sphere samples all accessible positions in the fluid and the change in fall speed due 

to the presence of the other spheres is determined primarily by the fact that, since 

the average velocity over a large volume of the dispersion is zero, the integral of 

the fluid velocity over positions accessible to the test sphere i s  minus the integral 

over the inaccessible region, which occupies a fraction of the total volume of 

order c and in which the velocity is of order U,. 

7. A different form for the probability distribution of the separation 
of two spheres 

In  view of the conclusion in $4 that there is likely to be some variation of the 

probability density function P(x + rlx) under different practical conditions, it  is 

desirable to consider the sensitivity of the mean settling velocity to the assump- 

tion made about this function. The formulae given in $53, 5 allow the mean 

settling speed to be calculated without difficulty for any given form for 

P(x+rlx), and, as an example of a form different from that represented by 

(4.1)) we shall suppose that there is an excess number of pairs of spheres (addi- 

tional to the number corresponding to  uniform probability density over all 
accessible positions) with separations close to the minimum value 2a. The excess 

number of nearly-touching pairs can be represented conveniently as a fraction of 

c, and we shall suppose that this excess number, ac say, is spread symmetrically 

over all directions of r. The analytical form of the new probability density func- 

tion for the separation vector of two spheres thus differs from (4.1) by the 

addition of a term 
aC 

6(r - 2a) 
1 6na2 
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to the right-hand side, where 6(r - 2a) is the delta function defined by 

6(s) = 0 when sp 0 ,  6(s) as = 1. 

The resulting addition to 0 is then 

{u(x+r,x)+ Qa2V:u(x+r,x)+W(x+r,x))dr, (7.2) 

which we see from the formulae (5.1), (5.2)) (5.5) and (5.6) to be 

= 0l~Uo(0*50 - 0.06) = 0.44 acU0. (7 .3)  

Table 1 shows that A, varies rapidly with r near r = 2a. However, it appears that 

the change in is small compared with that in v' (which is represented by the 

0.5 in (7.3)) in any event, and so the change in 0 is approximately the same when 

the excess pairs of spheres are in contact as when they are only nearly touching. 

As was to be expected, a positive value of a, corresponding t o  a larger number 

of close pairs of spheres than that assumed in the previous calculation, leads to 

an increase in the mean settling speed. The value a = I corresponds to  an excess 

average number of sphere centres a t  distance 2a from the centre of a given sphere 

which is equal to the average number of sphere centres in a volume $nu3; and for 

a = I we have 
- Uo = cU0( - 6.55 + 0.44). 

When a = 15, corresponding to an excess number of nearly-touching spheres 

equal to the average number of sphere centres in 15 times the volume of a sphere, 

the addition to the mean settling speed due to these close pairs is just sufficient 

t o  cancel the net hindering effect of the spheres with uniform probability density 

over all accessible positions. Any attractive force between neighbouring spheres 

which tends t o  bring together pairs of spheres initially a few radii apart (which 

would of course produce a deficiency of sphere centres at  distances of several 

radii from a given sphere, but this has a smaller effect on 0 than the excess num- 

ber of close pairs) is thus likely to have an appreciable effect on the value of 0 - U, 

and perhaps to make the net change in the average speed of fall an increase. A 

repulsive force between neighbouring spheres on the other hand would lead to a 

probability distribution for which a < 0 and so to an even greater reduction in 

the average speed of fall. 

Appendix. The translational velocity of a rigid sphere placed in fluid 
with a given velocity distribution 

We suppose that the velocitiy distribution in a body of fluid, before the intro- 

duction of a rigid sphere, is u(x). If a surface distribution of force of density F is 

now applied to the fluid at  a spherical surface A ,  of radius a centred on xo, the 

velocity distribution will be changed. In  the absence of any boundaries to the 
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fluid, the additional velocity at point; x due to this surface distribution of force 

is 

where 

1 n  

If this surface distribution of force is to represent the presence of a rigid sphere 

with surface A,, the total velocity on A,  must have the form 

U + Q x ( x - x , )  

corresponding to a translational velocity U and angular velocity Q of the sphere. 

Hence the integral equation determining F is 

u ~ ( x ) + -  lij(X-X’)l$(X’)dA(X’) = U,+{Q x (x-x,))~, (A2) 
8Tp ‘ S  A, 

t o  be satisfied at  each point of A,. 

A,. It can be shown by straight-forward integration that 

The desired result is now obtained by integrating this relation over the surface 

I&( x - x’ ) dA (x) = +asij 
/ A o  

when x‘ lies on A,, whence we find 

The last term is proportional t o  the total excess weight of the sphere, and can be 

represented in terms of the velocity U, which this total weight would give the 

sphere in infinite fluid otherwise at rest, giving 

As noted above, this expression for the translational velocity of the inserted 

rigid sphere is applicable only in the absence of boundaries to the fluid. If bound- 

aries exist at which certain conditions must be satisfied, the additional velocity 

resulting from the introduction of a surface distribution of force on A, is the sum 

of the expression (A 1) and a contribution from a certain system of image forces. 

The relation (A4) is equivalent to the first of Faxen’s laws (see Oseen 1927). For 

the idea underlying this simple proof I am indebted t o  Dr J. R. Smith, of Mount 

Allison University, New Brunswick, who observed that the relation (A 3) with 
u = 0 provides a neat derivation of Stokes’s law for the resistance to a moving 

sphere in unbounded fluid. 
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