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ABSTRACT 
 
The Konkan and Kerala Basins constitute a major depocentre for sediment from the 

onshore hinterland of Western India and as such provide a valuable record of the timing 

and magnitude of Cenozoic denudation along the continental margin. This paper presents 

an analysis of sedimentation in the Konkan-Kerala basin, coupled with a mass balance 

study, and numerical modelling of flexural responses to onshore denudational unloading 

and offshore sediment loading in order to test competing conceptual models for the 

development of high-elevation passive margins.  The Konkan-Kerala basin contains an 

estimated 109,000 km
3
 of Cenozoic clastic sediment, a volume difficult to reconcile with 

the denudation of a downwarped rift flank onshore, and more consistent with denudation of 

an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere 

to sediment loading offshore and denudation onshore infer that flexure is an important 

component in the development of the Western Indian Margin. There is evidence for two 

major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in 

the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a 

denudational response to the rifting between India and the Seychelles, whereas the 

mechanism responsible for the Pleistocene pulse is more enigmatic.  
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INTRODUCTION 
Passive continental margins (PCMs) develop on the trailing edges of tectonic plates in response to 

continental rifting, sea floor spreading and ocean basin development (Kearey & Vine, 1996). The 

anatomy of PCMs is dependent on a range of factors, including the pre-rift topography, drainage 

network evolution, syn- and post- breakup, denudation, proximal basin development, climatic control 

on rock weathering, long-term sea level fluctuations, thermal evolution of the lithosphere and flexural 

properties of the lithosphere (Summerfield, 1991; Watts, 2001; Allen & Allen, 2005). Despite this 

range of factors controlling the evolution of any particular margin, the macro-geomorphology of high 

elevation PCMs of Gondwanan continents is remarkably consistent, comprising a low elevation coastal 

plain and an elevated interior plateau separated by an escarpment running parallel to the coastline 

(Ollier, 1982, 1985; Gilchrist & Summerfield, 1990). 

Two broad groups of competing conceptual models have been developed to describe 

qualitatively the post-rift evolution of high elevation PCMs. These conceptual models are: escarpment 

retreat into a downwarped rift shoulder (King, 1967; Ollier & Pain, 1997) and escarpment development 

into an elevated rift shoulder (Gilchrist & Summerfield, 1990; Gilchrist et al., 1994; Kooi & Beaumont, 

1994; Tucker & Slingerland, 1994). These competing conceptual models differ fundamentally in the 

magnitude of denudation, and the volume of sediment deposited offshore. The downwarp model 

advocated by King (1967) and Ollier and Pain (1997) assumes that the lithosphere is flexurally rigid 

and, accordingly, postulates the removal of small amounts of crust at the coast increasing to a maxima 

at the escarpment (Fig. 1a and b). The magnitude of unroofing at the coast is so small that incomplete 

destruction of the downwarped surface occurs and isolated remnants are preserved (Fig 1b). By 

contrast, the elevated rift flank model and its associated mode of evolution is capable of generating 

much greater amounts of denudation by incorporating initial rift flank surface uplift and/or post-rift 
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lithospheric flexure (Fig. 1d and e). Consequently, determining the mode of escarpment formation and 

the flexural response to escarpment formation is critical to improving our understanding of the 

evolution of, and subsequent sediment fluxes from, high elevation PCMs. 

The rate of escarpment formation also exerts an important temporal control on denudation rates. 

Earlier conceptualisation of escarpment evolution requires formation by steady parallel retreat of the 

escarpment face between rifting/breakup and the present (King, 1955; Ollier, 1982, 1985; Gilchrist & 

Summerfield, 1990, 1994; Kooi & Beaumont, 1994; Tucker & Slingerland, 1994; Seidl et al., 1996). 

However, the emerging view is that the development of these escarpments may be rapid and short-

lived, with the escarpment reaching essentially its modern configuration in a relatively short time after 

rifting (Cockburn et al., 2000; Matmon et al., 2002; Persano et al., 2002, 2005). 

Western India exhibits many features common to elevated passive margins, but additionally 

includes a coast-parallel monocline clearly observed inland of Mumbai (Auden, 1949). Such coast-

parallel monoclines have been used to support passive margin evolution by escarpment retreat into a 

downwarped rift flank (King, 1967; Ollier & Pain, 1997). The deformation of laterite surfaces 

developed on the Deccan lavas indicates protracted and ongoing post-rift lithospheric flexure, a 

response which can only be adequately explained by the downwarp hypothesis if the model is adapted 

(Widdowson & Cox, 1996; Widdowson, 1997; Widdowson & Mitchell, 1999) (fig 1c). Within the 

Deccan Volcanic Province (DVP) the margin displays a downwarped geometry but with 1-2 km of 

denudation across the coastal plain (Widdowson & Cox, 1996; Widdowson, 1997), magnitudes 

inconsistent with the King (1967) and, Ollier and Pain (1997) downwarp model.  

Along strike, south of the DVP, the mode of escarpment development remains more elusive. 

Seaward cambering of laterites on the coastal plain (Widdowson & Gunnell, 1999) indicate that a 

modified Widdowson (1997) downwarp model may continue south of the Deccan. Further support for a 
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modified Widdowson (1997) downwarp model is provided by numerical surface process models for the 

Western Indian margin where a downwarped geometry (with accompanying lithospheric flexure) can 

be generated (Gunnell & Fleitout, 1998, 2000). However, numerical surface process modelling 

incorporating initial rift flank uplift or an isostatic response to denudational unloading generates margin 

morphologies analogous to the elevated rift flank model (Gunnell & Fleitout, 1998, 2000). Apatite 

fission track thermochronometry (AFTT) has been employed to quantify the rate and timing of 

denudation on the margin (Kalaswad et al., 1993; Gunnell et al., 2003). AFT data from coastal areas 

were reset at the start of the Palaeocene indicate ca. 2-4 km of denudation. AFT data further inland 

were not reset, indicating much smaller magnitudes of denudation than at the coast. This pattern of 

denudation is more consistent with escarpment evolution into an elevated rift flank. 

Denudation, sediment supply, and the resultant lithospheric flexural response are intrinsically 

linked, and the analysis of offshore sedimentation coupled with other methodologies such as AFT 

thermochronology and drainage basin development are valuable approaches for constraining landscape 

development on PCMs (e.g., Brown et al., 1990; Rust & Summerfield, 1990; Pazzaglia & Gardner, 

1994; Pazzaglia & Brandon, 1996) . However, most studies of the Western Indian margin have tended 

to focus on either the onshore post-rift denudational history, or the offshore depositional record, with 

only a few notable exceptions attempting to integrate both methodologies (Gunnell & Fleitout, 1998, 

2000; Gunnell, 2001b). This paper presents an evaluation of the sedimentation history within the 

Konkan-Kerala basin in order to constrain the timing and magnitude of post-rift denudation for the 

adjacent onshore hinterland of the Western Ghats. Sediment mass balance analysis is then undertaken 

by placing the recompacted clastic volume of sediment onto a pre-defined area of the continental 

margin in order to determine the style of landscape development. Two competing conceptual models of 

escarpment evolution are tested: the downwarped rift flank model with no post-rift lithospheric flexure 
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(King, 1967; Ollier & Pain, 1997), and the elevated rift flank model. The analysis is further refined by 

modelling the isostatic flexural response of the lithosphere to sediment loading offshore and 

denudational unloading onshore to assess the role of flexural isostasy (if any) in the development of the 

margin. 

 

REGIONAL GEOLOGY, TECTONICS & GEOMORPHOLOGY 
 

The varied geology along the Western Indian passive margin can be generalized into several 

regions. The north (16° - 22°N) is characterised by the extensive Deccan flood basalts covering the 

margin as far south as Belgaum (Fig. 2). These sub-horizontal basalts lie unconformably on the 

crystalline basement, infilling and blanketing a pre-existing shield topography (Jerram & Widdowson, 

2005). Our interest is the area south of the Deccan flood basalts (8° - 16°N), where the margin is 

composed of crystalline basement with Archaean basement gneiss and the younger metasediments of 

the Dharwar system forming the common rock types (Beckinsale et al., 1980; Drury et al., 1983; Naqvi 

& Rogers, 1987). The southern portion of the margin (i.e. south of 12°N) is composed almost entirely 

of Archaen charnokites, gneisses and granites (Naqvi & Rogers, 1987), though Tertiary sediments of 

limited extent occur locally, particularly along the coast of Kerala (Nair et al., 2006). Proterozoic and 

Phanerozoic rocks are completely missing from the margin until the Deccan Traps are emplaced at the 

Cretaceous/Tertiary boundary.  

The western continental margin of India and the adjacent oceanic regions are the result of a 

multi-stage rift history. Breakup of East Gondwana began in the early Jurassic ca. 180 Ma (Besse & 

Courtillot, 1988, 1991; Storey, 1995) followed by the separation of India-Madagascar (termed Greater 

India) from Africa ca 130-120 Ma (Reeves & de Wit, 2000). Greater India started to separated from 

Madagascar around 88 Ma (Storey, 1995), this separation being the first major rifting event to affect 
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the Western Indian continental margin. Finally, a ridge jump in the nascent Indian Ocean resulted in the 

breakup of India and Seychelles at the end of the Late Cretaceous to form the current Western Indian 

margin (McKenzie & Sclater, 1971; Norton & Sclater, 1979; Naini & Talwani, 1982; Schlich, 1982). 

The emplacement of Deccan flood basalts at 65 Ma was contemporaneous with rifting of the 

Seychelles microcontinent (Norton & Sclater, 1979; Hooper, 1990), and was followed by rapid seafloor 

spreading creating the present day Arabian Sea (Courtillot et al., 1986; Miles & Roest, 1993). 

Western India has a well-defined escarpment, known as the Western Ghats or Sahyadri, 

paralleling the coast for 1500 km (Fig. 2). The Western Ghats are a shoulder-type escarpment (Matmon 

et al., 2002) with the drainage divide near coincident with the top of the escarpment for most of its 

length. The average elevation of the escarpment is around 1200 m, and the escarpment is bounded on 

the landward side by plateaus of more than 800 m elevation along most of its length (Fig.2). The 

coastal plain on the seaward side has an average width of 60 km. There are four major embayments 

along the length of the escarpment, the largest being the Palghat Gap, which has generated an 80 km-

wide breach of the escarpment (Fig. 2). 

It is now well established that the Western Ghats are predominantly a denudational feature 

(Radhakrishna, 1967; Widdowson & Cox, 1996; Gunnell & Radhakrishna, 2001) and not a major fault 

scarp as previously postulated (Krishnan, 1960; Pascoe, 1964). There is a general lack of stratigraphic 

markers to constrain the escarpment’s evolution and so palaeosurfaces have been used to reconstruct 

the denudational chronology of the margin (Radhakrishna, 1967; Vaidyanadhan, 1977; Radhakrishna, 

1993; Gunnell, 1997; Widdowson, 1997).. 

Post-rift surface uplift is certainly evident along the Western Indian margin (Radhakrishna,  

1967; Widdowson & Cox, 1996; Gunnell, 2001a) but its causes remain unclear. Plume-related regional 

surface uplift and secondary mantle convection have been proposed (Cox, 1980; Thakur & Nagarajan, 
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1992) but these mechanisms are transient and so cannot explain persistent surface uplift and denudation 

long after the initial rifting event. Lithospheric necking, lithospheric delamination and magmatic 

underplating have also been invoked but such mechanisms also operate at shorter timescales 

(McKenzie, 1978; Cox, 1980). Other mechanisms that result in surface uplift persisting beyond the 

transient thermal effects associated with rifting include the impact of the Himalayan collision since the 

late Miocene (Gowd et al., 1992), and flexural isostatic effects driven by denudational rebound onshore 

and sediment loading offshore (Widdowson & Cox, 1996; Widdowson, 1997; Gunnell & Fleitout, 

1998, 2000). 

 

 

 

 

 

 

OVERVIEW OF KONKAN-KERALA BASIN 
 

The sedimentary basins adjoining the west coast of India include, from north to south, Kutch 

Offshore Basin, Cambay Basin, Saurashtra Basin, Surat Basin, Bombay Offshore Basin (collectively 

termed Northern Basins), the Konkan Basin and the Kerala Basin (Fig.2). The Northern Basins have a 

greater hydrocarbon potential than the Konkan and Kerala Basins, resulting in more intensive research 

and a better understanding of their sedimentation history (Mathur & Nair, 1993; Singh et al., 1999). 

These data have aided our knowledge of the stratigraphy within the Konkan and Kerala Basins. For the 

purposes of this study, these Northern Basins have been excluded from the mass balance study due to 

their complexity in terms of multiple sediment sources. The Konkan and Kerala Basins are the focus of 

this study. 

 The Konkan and Kerala Basins are particularly useful in that they provide a sedimentary record 

since ca. 80 – 90Ma. The basins represent sag basin development on the stretched pre-Deccan 



continental basement during the rifting of India from Madagascar (Singh & Lal, 1993). Sedimentation 

in the Konkan and Kerala Basins is within coast parallel N-S trending grabens separated by local 

basements highs. Seismic profiles of the sediments indicate the presence of differential vertical 

movements as well as wrench faults, reverse faults and folds (Ghosh & Zutshi, 1989). Some of the 

faults may be basement controlled since the thinned crust underlying the sediments is characterized by 

a coast-parallel Precambrian grain (Kolla & Coumes, 1990; Subrahmanyam et al., 1994, 1995). 

The Vengurla Arch basement high is a natural barrier at 17° N latitude, and separates the 

Konkan Basin from basins to the north. Sediments north of the Vengurla Arch are not derived solely 

from the denudation of the Western Ghats and instead contain sediments from the Deccan basalt 

terrain, and the Cambay and Kutch grabens, as well as material from the Indus fan (Rao & Rao, 1995). 

The depositional history of these more northerly basins also differs from that of the Konkan and Kerala 

Basins, with the northern basins containing larger volumes of older (Mesozoic) sediments and rifted 

remnants of the extensive sub-aerial volcanism generated during Deccan eruptive episode. The Chagos-

Laccadive Ridge does not form a complete barrier for sediment transport westwards; however, 

sediment thickness is reduced on the abyssal plain and is probably indicative of deep water pelagic 

processes or local sedimentation and not hinterland denudation. In effect, the inner shelf has been a 

closed sediment sink for the erosional products of the Western Ghats and hence provides an excellent 

record of onshore denudation. 

The shelf sediments along the Western margin of India are strongly compartmentalised and 

show marked affinities along strike with their adjacent onshore areas. Thus, north of Goa, modern shelf 

sediments have a basaltic source, whereas south of Goa these sediments have a gneissic source (Rao & 

Rao, 1995; Rao & Wagle, 1997; Kessarkaret al., 2003). Given this close relationship between the 

onshore geology and the offshore sediments, and lacking evidence to the contrary, we take it to be the 
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case that there was little longshore transport of sediment in the Konkan and Kerala Basins during the 

Cenozoic. Although the the Konkan Basin is separated from the Kerala basin by the Tellicherry Arch 

basement high (fig. 2), both basins only source their sediments from the Western Ghats, and for the 

purposes of this study are grouped together here as the Konkan-Kerala basin.  

 The Upper Cretaceous early rift phase of sedimentation (i.e. Campanian) in the Konkan-Kerala 

basin is localized in narrow grabens in the south, west of Cochin. This sedimentation took place in a 

shallow continental setting (i.e., fan deltas, tidal flats and carbonate platforms) suggesting that a major 

part of the stretched portion of the crust on which the basin developed had remained above sea-level 

until at least pre-Santonian time (Singh & Lal, 1993). Upper Cretaceous sediments in the deepest wells 

of Konkan-Kerala basin overlie altered volcanic rocks. These basal volcanic rocks are undated, but 

outcrops of similar volcanic rocks nearer the coast (St. Mary Islands; Fig.2) have been dated as 85.6 

Ma (Pande et al., 2001), and hence are contemporaneous with Marion hot-spot magmatism (Joseph & 

Nambiar, 1996). Accordingly, basin initiation is likely to have occurred at 88 Ma, the time of India-

Madagascar rifting and during the peak of Marion hotspot volcanism (Storey, 1995); nevertheless, the 

bulk of sediments in the Konkan-Kerala basin appear to have been deposited during the Cenozoic. 

 Passive subsidence in response to rifting between India and the Seychelles (fig. 3) began at the 

start of the Palaeocene and led to the development of an extensive marine basin containing sediments 

whose volumes are quantified in this study. Sediment isopach maps in the Konkan-Kerala basin 

indicate Cenozoic sediment thicknesses of up to 4 km (Rao & Srivastava, 1984). More typically, total 

sediment thickness ranges from 500 ms to 3500 ms (seismic two way travel times  - TWT) averaging 

1300 ms for the Konkan-Kerala Basins. The greatest accumulation occurs within coast-parallel graben 

structures that lie approximately 50-150 km offshore, thinning to less than 500 ms TWT over the 

Laccadive ridge which is a portion of the Chagos-Laccadive volcanic ridge produced by the Reunion 
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hotspot (Subrahmanyam, 1995) (fig. 3). Data from eleven bore-holes (Singh & Lal, 1993; Gunnell, 

2001b; Chaubey et al., 2002; Rao et al., 2002) may be combined into a generalized stratigraphy 

consisting of a thick carbonate accumulation (Eocene to Late Miocene) sandwiched between clastic-

dominated sequences (Fig. 4). The major breaks in deposition/unconformities in the basin occurred in 

the Middle Paleocene, the Early Eocene and the Late Eocene-Early Oligocene; the Lower and Middle 

Miocene are also marked by unconformities (Singh & Lal, 1993). 

 Paleobathymetry estimates imply shallow depths (<100 m) for sedimentation within the 

Konkan-Kerala basin during the Upper Cretaceous (ca. 85 Ma) (Raju et al., 1999). The basin became a 

major depocentre at 85-75 Ma when its depth increased to >200 m; however, uplift due to the onset of 

rifting led to a decrease in basin depth to near sea level from 65-60 Ma, and a period of non-deposition. 

Re-submergence then occurred in the Palaeocene/Eocene. The Konkan-Kerala basin is then interpreted 

to have followed a normal subsidence path for a rifted passive margin beginning with rapid initial 

subsidence in the Cretaceous, followed by slow thermal subsidence throughout the Cenozoic (Gombos 

et al., 1995). 

 The development of a thick carbonate sequence in the Miocene throughout all the basins of the 

western continental margin of India has been linked to increased sea level and a drier and warmer 

climate in the Middle Miocene (Clift et al., 2001; Molnar, 2004). However, during the late Miocene the 

Western Indian margin experienced a heavy influx of terrigeneous clastic sediments (Singh et al., 

1999). This phase of high sedimentation is associated with fracturing, shear zone movements, down-

faulting and collapse of several parts of the shelf, and may be attributed to a change in the tectonic 

regime following the Himalayan collision (Ghosh & Zutshi, 1989). The markedly thicker sediments 

accumulated further northwest of the region are referred to as the Indus Fan where total sediment 

thickness reaches over 9km (Clift et al., 2001), reflecting the very high sediment fluxes derived from 
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the Himalaya (Fig. 2). Indus Fan sediments thin eastwards towards the Chagos-Laccadive Ridge and 

constitute an insignificant component of the Konkan-Kerala basin sediments (McHargue & Webb, 

1986; Kolla & Coumes, 1990). 

 

 
METHODS 

Quantifying sediment volume 

 The data used here to document Cenozoic sedimentation in the Konkan Kerala Basin are 

derived from 11 commercial wells (Singh & Lal, 1993; Gunnell, 2001b; Chaubey et al., 2002; Rao et 

al., 2002), seismic profiles (Singh et al., 1999; Chaubey et al., 2002) and isopach maps (Rao & 

Srivastava, 1984). Total sediment thickness is based on the isopach maps of Rao and Srivastava (1984) 

and Rao et al. (2002). 

 A regional seismic survey by Rao and Srivastava (1984) derived three major Cenozoic 

sedimentary sequences in the Konkan-Kerala basin (fig. 5): a lower succession, sequence II, with 

sediments of Palaeogene age ranging in thickness from 200 ms to 1200 ms TWT; a middle succession, 

sequence III, of Miocene sediments ranging in thickness from 200 ms to 1200 ms TWT; and an upper 

succession, sequence IV, of post-Miocene sediments ranging in thickness from 20 ms to 120 ms TWT. 

By contrast, Chaubey et al. (2002) identified six Cenozoic sequences (H1 to H6) on the basis of a 

multi-channel seismic reflection profile across the northern part of the Konkan Kerala Basin (Figs 2 

and 5). We have combined the sequences of Chaubey et al. (2002) with the three broad sedimentary 

sequences of Rao and Srivastava (1984). The boundary between Chaubey et al. (2002) sequences H2 

and H3 has an inferred age of Late Oligocene (Chaubey et al. (2002) Table 1, p.306) and thus 

correlates well with Rao and Srivastava (1984) boundary between sequences.II and III. Similarly, the 

boundary between Chaubey et al. (2002) sequences H5 and H6 is Late Pleistocene and correlates well 



with the boundary between Rao and Srivastava (1984) sequences III and IV. The relationships between 

the chronologies of Chaubey et al. (2002) and Rao and Srivastava (1984) are summarised in Table 1. 

Our revised chronostratigraphy refines the depositional period for Rao and Srivastava’s (1984) 

sequences II, III and IV. 

 Importantly, it has been possible to further sub-divide the three broad sequences based on a 

detailed analysis of the stratigraphy from ten litho-logs collected throughout the Konkan-Kerala basin, 

and an additional stratigraphic column from onshore Kerala. These five sub-divisions (IV, IIIa, IIIb, IIa 

and IIb) and their equivalent ages are displayed in Figure 4, and have been used for the sediment 

volume calculations. Figure 6 gives a simplified cross section through the northern part of the basin 

based on the seismic profile of Chaubey et al. (2002) together with the topographic profile onshore of 

this section. 

 Sediment volumes were calculated by digitizing the sediment isopach maps of Rao and 

Srivastava (1984) and importing them into a GIS. Volume calculations for sequences II, III, and IV 

were then computed in the GIS with the assumption that 1 s two-way travel time is equivalent to 1 km 

thickness of sediment (e.g., Gunnell & Fleitout, 1998). The sediment thicknesses for each of the three 

broad sequences in the study area are shown in figure 5. Stratigraphic correlations between the 

boreholes were used to subdivide sequences II and III into IIa, IIb, IIIa and IIIb respectively (fig. 4). 

The ratios of sequence IIa:IIb and IIIa:IIIb were then used to calculate the proportion of sediment (both 

clastic and non-clastic) for each of the sub-divisions. Using lithologies recorded in the eleven boreholes 

in the study area, percentages of clastic (terrigenous) and non-clastic sediments (biogenic and marine 

limestones) were obtained for each of the five sequences (IV, IIIa, IIIb, IIa, IIb). The non-clastic 

component of each of the sequences was then removed from the individual volumes, thereby to acquire 

the compacted clastic components. 
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 Finally, to obtain true sediment volumes the clastic volumes were decompacted to allow for the 

effects of sediment loading with depth. For this we assumed an exponential relationship between depth 

and sediment porosity following the procedure of Allen & Allen (2005) and using the following 

equation:  

 

( ) ( )[ ] ( ) ( )[ ]21211212 expexpexpexp 00 ycyccycyyyyy
cc

′−−′−+−−−−−=′−′ φφ
   [1] 

 

where y′2 and y2 are the decompacted and compacted depths respectively to the base of the layer, y′1 and 

y1 are the decompacted and compacted depth respectively to the top of the layer (y′1 = 0 for 

decompaction to sea level). The term Ф0 is a constant for the initial porosity prior to compaction (0.56 

for shaley sandstone, the most abundant terrigenous sediment in the basin (Rao & Srivastava, 1984; 

Chaubey et al., 2002). The porosity coefficient (c) is a constant which describes the gradient of the 

porosity-depth curve (0.39 for shaley sandstone). Equation [1] is equivalent to ‘sliding’ a given 

sedimentary layer up the porosity-depth curve. Average depths for the top and base of each of the five 

sedimentary layers were used and their percentage increases in thickness were applied to their 

decompacted volumes. For example, the average depths to the base and top of sequence IIa are 2900m 

and 1000m respectively, giving an average compacted thickness of 1900m. If sequence IIa is 

decompacted, the thickness increases to 2200 m or by 15%. This 15% increase is then applied to the 

compacted volume for sequence IIa to give a true decompacted volume. 

There are two potential further sources of sediment which have not been accounted for in these 

mass balance calculations, namely, dissolved non-clastic material derived from chemical weathering, 

and clastic sediment sourced from the conjugate margins of Madagascar and the Seychelles. The non-

clastic component of sediment is not included in the mass balance calculations, yet a proportion of 

carbonate sediments must be derived from the dissolution, chelation and weathering of Ca-bearing 

minerals onshore. Tropical weathering conditions are likely to have been significant in Western India; 
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however, dissolved calcium is difficult to quantify and there are only approximate present day 

estimates available for Western India (Dessert et al., 2001; Das et al., 2005; Prasad & Ramanatran, 

2005). Sediment derived from the conjugate margins (Seychelles or Madagascar) likewise could have 

contributed sediment to the Konkan-Kerala basin. Madagascar rifted from Greater India at 88Ma 

(Storey, 1995), with pre-Cretaceous sediments being restricted to the deeper central grabens within the 

basin. These early sedimentary successions have not been included in the sediment volume 

calculations. Similarly, the development of the Carlsberg ridge separated India from the Seychelles at 

65 Ma, and accordingly, there is little sediment contribution from the low-lying Seychelles 

microcontinent (Plummer & Belle, 1995). Where elevations on the microcontinent are significant, 

sediments are carbonate-dominated and not extensive  

 

Sediment mass balance 

 A simple mass balance study is possible for the Konkan-Kerala basin because the clastic 

sediments are essentially derived from the adjacent onshore portion of the margin (Rao & Rao, 1995). 

The source of sediment onshore is defined as the area seaward (to the west) of the regional watershed 

(Figure 2). Easterly- and westerly-flowing river basins were extracted from the GTOPO30 DEM in 

order to define the regional watershed between these catchments, which forms the eastern limit of the 

study area. The northern limit of the sediment source area is onshore of the northern margin of the 

Konkan-Kerala basin east of the Vengurla arch basement high, and the southern limit is the tip of the 

Indian peninsula (Figure 2). The offshore sediment volume is a combination of the volume of prism 

eroded from the coastal plain (use to test the different conceptual models) and the additional volume 

eroded between the escarpment lip and the regional watershed (fig 7). 
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The DEM was used to calculate the onshore area and volume of crust that might have existed 

prior to denudation of the coastal plain. Most critically, the volume of eroded crust depends on the 

geometry of the upper surface of the eroded prism, which is itself controlled by both the geometry of 

the syn-rift palaeosurface and the flexural strength of the lithosphere. Flexurally strong lithosphere will 

resist the denudational isostasy resulting from denudation of the prism, and so the prism of material 

removed will either be rectangular in its cross-section (i.e. where the prism has a horizontal upper 

surface corresponding to a syn-rift palaeosurface extending horizontally seawards from the crest of the 

escarpment) or the prism will be wedge-shaped in form, thinning towards the coast (Fig. 7a). A wedge-

shaped prism is analogous to a downwarped margin geometry where syn-rift downwarping occurs, 

thereafter the lithosphere remains flexurally rigid (Ollier, 1982; Ollier & Pain, 1997). By contrast a 

flexurally weaker lithosphere will rebound through denudational unloading, thereby increasing the 

volume of material that is eroded and subsequently transported offshore (Gunnell, 1998). The geometry 

of a crustal prism depends on the pre-existing palaeo-elevation of the rift shoulder and/or flexural 

rebound, will be an inverted wedge thickening towards the coast, analogous to the elevated rift flank 

model (Fig. 7b). Amounts of lithospheric rebound will vary with lithospheric flexural properties, 

generating different volumes of missing crustal prisms; this matter is explored more fully below.  

For the purposes of this work, the eroded volumes were calculated corresponding to (i) a 

seaward tapering wedge-shaped geometry (Ollier & Pain’s (1997) downwarped rift flank), and (ii) an 

inverted wedge-shaped geometry (elevated rift flank) (fig. 7). The small volume of eroded material 

between the escarpment lip and the regional watershed was then added to the eroded volume of each 

crustal prism (fig. 7), constrained using palaeosurface reconstructions from the Deccan volcanic 

province (Widdowson, 1997) and from the northern Dharwar Craton (Gunnell, 1998). Finally, the 

chemical weathering contribution has been corrected for by removing 20% (Dessert et al., 2001; Das et 
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al., 2005; Prasad & Ramanatran, 2005) from the total eroded volume. Recompacting the decompacted 

volume of offshore clastic sediment to equivalent crystalline basement rock densities allows a 

comparison between the offshore sediment volume and onshore denuded material (for different crustal 

prisms), completing the mass balance. A density of 1200 kg m
-3

 (average for shaley sandstone) was 

adopted for the sediments and a density of 2700 kg m
-3

 for crystalline rocks (Rust & Summerfield, 

1990). 

 

Flexural response of the lithosphere to sedimentation and denudation 

 The lithosphere compensates for large stresses either locally by Airy isostasy, or regionally by 

the mechanism of flexural isostasy (Watts, 2001). Offshore sediment loading will load the underlying 

lithosphere and cause flexural subsidence: if there has been no additional tectonic or thermal 

subsidence, then the depth to the sediment-basement interface is the result of flexural compensation 

only (Allen & Allen, 2005). Similarly, the onshore lithosphere responds to denudational unloading by 

upwards flexural deflection: If there has been no additional tectonic rock uplift or if the pre-rift surface 

was elevated (and has since been denuded), then the amount of eroded material is a function of the rate 

of denudation and the flexural response of the lithosphere only. 

 Regionally-compensated topographic loads that deform the lithosphere are commonly modelled 

as a loaded, thin, elastic plate overlying a fluid substratum (Hetenyi, 1946; Watts, 2001; Turcotte & 

Schubert, 2002). Accordingly, the flexural response of the Western Indian margin has previously been 

modelled as a continuous elastic plate analogous to an infinite beam, or as a broken plate analogous to 

a semi-infinite beam with one free end (Gunnell & Fleitout, 1998, 2000). The broken plate model 

simulates a break or fault that effectively de-couples the onshore and offshore portions of the margin. 

The much-debated West Coast Fault putatively located offshore could represent such a de-coupling 

zone (Chandrasekharam, 1985; Balakrishnan, 2001). We here calculate the flexural deflection of the 
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lithosphere to sediment loading offshore for the Konka-Kerala basin and denudational unloading 

onshore for Western India. The lithospheric flexure resulting from a load of a continuous plate [eq. 2] 

and broken plate [eq. 3] can be defined following Pazzaglia & Gardner (1994) and Watts (2001) as: 
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where Wb (x) is the deflection at distance x from is the maximum deflection at the point of loading and 
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D, the flexural rigidity is the relationship between plate elasticity (E), Poisson’s ratio (v) and the 

effective elastic thickness (Te). The effective elastic thickness varies depending on the rheology, age 

and structure of the lithosphere. Estimates of Te for continental lithosphere range between 5km and 

70km (Watts, A. B., 2001). The flexural parameter (α) and flexure (q) are defined by the following 

relationships (Pazzaglia, F. J. & Gardner, T. W., 1994): 
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where ρs and ρm are sediment and mantle densities, g is the acceleration due to gravity (i.e., 9.8 ms
-2

). 

The sediment cross-section that is loading (or unloading) the lithosphere at a particular point is defined 

as Δxy (fig. 8). Distributed loads of various sizes result in contrasting flexural responses such that a 

narrow load flexes the lithosphere differently to a wide load. Determining the geometry of the cross 

sectional area is critical in order to model the flexural response of sediment loading and denudational 

unloading accurately. The effective elastic thickness (Te) is a theoretical thickness that is attributed to a 

thermal layer within oceanic lithosphere (Watts, 1978; Watts & Burov, 2003) but its physical meaning 

within continental lithosphere is unclear (Burov & Diament, 1995, 1996; Stuwe, 2001). The effective 

elastic thickness is, nonetheless, a useful variable for altering the flexural properties of the lithosphere. 

Modifying Te provides different magnitudes and geometries of deflection such that low Te values 

generate large amounts of flexure over short distances and large Te values generate lower amounts of 

flexure but over greater distances. The parameter values for modelling flexure of the lithosphere are 

listed in Table 2. 
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The modelled lithosphere was split into eight cells, five 100 km wide cells representing the 

lithosphere offshore and three the lithosphere onshore (one 50 km wide cell seaward of the escarpment 

and two 100 km wide cells landward of the escarpment). The present day coast was taken as the 

boundary between the loaded offshore section of lithosphere and the unloaded onshore section of the 

lithosphere. Although the position of the coastline is largely a function of Holocene eustatic sea level 

rise it nonetheless marks the boundary between onshore denudation and offshore deposition. It is 

recognised that the position of the coast will have altered throughout the geological history of the 

Western Indian margin; however, there are no adequate constraints on coastal palaeoposition so the 

simplifying assumption is made that the coastline has, on average, effectively remained constant. 

The flexural responses for each of the cells in the cross-section (including the flexural effects on 

neighbouring cells) were modelled for both continuous and discontinuous plates. The Δxy values for 

each of the five cells loading the lithosphere offshore were obtained by taking the average decompacted 

sediment thicknesses along strike from their position offshore using the sediment isopach maps of Rao 

&  Srivastava (1984). The Δxy value for the cell seaward of the escarpment was obtained using the re-

compacted total clastic sediment thickness from the mass balance estimates, and the Δxy values for the 

two cells landward of the escarpment were obtained by assuming that 500 m of lithosphere has been 

denuded from the interior plateau since the onset of rifting. This is a reasonable value because removal 

of ca. 500m Deccan lavas inland of the escarpment north of the study area has been estimated 

(Widdowson, 1997). The flexural effects from each loaded cell and the flexural effects from loaded 

neighbouring cells were then summed to provide the total deflection at a particular point along the 

modelled plate (fig. 9).Published constraints for the effective elastic thickness of the Indian sub-

continent are rare and are summarised in Table 4.  
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As a consequence of the large range of published Te estimates for Western Indian we have used 

Te values ranging from 10 km to 70 km. The oceanic/continental crust transition is thought to occur 

west of the Chagos-Laccadive ridge (Kolla & Coumes, 1990), therefore the lithosphere beneath the 

Konkan-Kerala basin has similar rheological properties to the adjacent onshore lithosphere and their 

flexural properties (including Te) should also be similar. The flexural isostatic response of the 

lithosphere is modelled to determine if the amount of subsidence offshore and the amount of 

denudation onshore can be explained by flexural isostasy alone or if additional mechanisms are 

required. 

 

 
RESULTS 
 

Sediment volumes and fluxes 

 The Konkan-Kerala basin contains an estimated total sediment volume (clastic and carbonate) 

of 464,000km
3
; the total clastic volumes and decompacted clastic volumes for each sequence are given 

in Table 5. The decompacted sediment volume and the depositional duration for each of the five 

sequences (the latter constrained by the borehole stratigraphy) allow clastic sediment volume 

accumulation rates to be calculated. Estimated onshore volumes of rock are also included in Table 5 as 

recompacted sediment volumes equivalent to crystalline basement. The final column of Table 5 gives 

the onshore denudation rates equivalent to the volumes of sediment in sequences IIb, IIa and IIIb. The 

depositional duration of sequence IV is only 0.08 Ma, which implies unrealistically high denudation 

rates, and so the denudation rates of sequences IIIa and IV have been combined. 

 

 Sequences IIb, IIIa and IV have much greater proportions of clastic sediment compared to 

sequences IIa and IIIb which are carbonate-dominated. Clastic sediment accumulation rates mirror this, 



with peak accumulation rates in the Palaeocene and Pliocene, separated by an intervening period of low 

clastic accumulation rates throughout the Eocene, Oligocene and Miocene (Fig. 10). 

 The total equivalent rock volume calculated from the combined volumes of re-compacted 

clastic sediment is estimated to be 109,000 km
3
. The onshore source area for these sediments comprises 

of 6 x10
4
 km

2
 for the area between the escarpment and the coast, and 2.3 x10

4
 km

2 
for the area between 

the escarpment and the regional watershed (total of 8.3 x10
4
 km

2
). The total volume of denuded 

lithosphere (including the contribution landward of the escarpment lip) for a seaward tapering wedge-

shaped prism (Ollier & Pain’s (1997) downwarp geometry) is 38,000 km
3

.
 
Accordingly, denudation of 

a downwarped wedge-shaped prism accounts for ~ 30% of the offshore sediments . By contrast, an 

inverted wedge-shaped prism with 3 km of rebound at the coast (decreasing to 1.2 km at the 

escarpment) has a volume of 110,000 km
3
, an amount more obviously consistent with the volume of 

sediment calculated as being present offshore. 

 

Flexural isostasy modelling 

 

We here model the flexural isostatic response of the lithosphere for a continuous plate (Table 6) 

and broken plate (Table 7) with a range of effective elastic thicknesses. Results are summarised in 

Figure 11. In general, as the lithosphere becomes progressively more rigid (higher effective elastic 

thicknesses), the vertical amplitude of flexural deflection decreases. The maximum vertical amplitude 

of flexural deflection (both offshore and onshore) tends to be greater for a continuous plate 

configuration as opposed to a broken plate configuration because in the former there is no de-coupling 

between the offshore and onshore areas. With a continuous plate, the flexural effects from cells 

offshore are transmitted as a peripheral foreland bulge onshore and vice versa. This interaction is most 
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significant for high values of effective elastic thickness (more rigid lithosphere) where the vertical 

amplitude of flexural deflection is smaller but is transmitted over larger distances. 

Flexural modelling was undertaken to ascertain whether the flexural response of the lithosphere 

could account for the magnitude and position of maximum subsidence offshore and denudation 

onshore. The maximum depth to the sediment-basement interface (2.5 km; measured directly from the 

cross section) is greatest in the centre of the basin, at an average distance from coast of 150km. The 

modelled flexural deflection as a consequence of sediment loading, even for a lithosphere with a Te 

value of 10 km, cannot account for the current depth to the sediment-basement interface in the centre of 

the basin. Therefore, additional tectonic or thermal subsidence must be invoked to explain the observed 

configuration. The measured distance from the coast to the centre of the basin corresponds well to the 

modelled distance from the coast to the point of maximum flexure (i.e. analogous to the flexural 

wavelength). 

 Mass balance analysis indicates that, for an inverted denuded crustal prisms (analogous to the 

elevated rift flank model), 3 km of downwearing at the coast decreasing to 1.2 km downwearing at the 

escarpment is sufficient to account for the volume of sediment present offshore. Modelling of 

lithosphere with a Te value of 10 km predicts sufficient onshore flexural deflection to account for the 

magnitude of downwearing at the escarpment (i.e. 1.2 km) and does not require any additional 

mechanisms to generate denudation. However, even a low Te of 10 km is insufficient to account for the 

3 km of denudation required at the coast for an inverted missing wedge of crustal material. A 

lithosphere with Te values between 10 km and 30km also generates maximum flexure on the coastal 

plain, whereas flexurally stronger lithosphere (Te = 50 - 70 km) corresponds to maximum values of 

flexure inland of the escarpment on the interior plateau. The geomorphology and geology suggest that 

there has only been ca. 500 m of downwearing inland of the escarpment (Widdowson, 1997); therefore, 
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if flexural isostasy is the sole mechanism for generating denudation then a flexurally weak lithosphere 

is required. 

 

 

 
DISCUSSION 
 
There are two maxima in offshore sedimentation rates, pointing to two maxima in onshore denudation. 

The first maximum in sedimentation rates, beginning in the Palaeocene (Sequence IIb), is likely the 

result of rift-flank denudation and escarpment formation in response to breakup between Western India 

and the Seychelles at ca. 65 Ma. The second maximum in sedimentation rates occurred after the Late 

Miocene (i.e., Sequences IIIa and IV). This younger phase cannot be readily related to the initial 

surface uplift in response to rifting, and, if real, the mechanisms responsible remain unclear.  

Gunnell et al. (2003) conducted an extensive apatite fission track study to resolve the thermal 

history of the Western Indian margin. Modelled thermal histories indicate that a sharp increase in 

denudation occurred at the start of the Cenozoic, which is contemporaneous with the increase in 

sedimentation recorded in the offshore sedimentary record (Fig. 12). However, these 

thermochronometric data fail to identify the observed post-Miocene increase in sedimentation. The 

average amount of downwearing predicted from the mass balance study across the coastal plain 

throughout the Cenozoic for an elevated rift flank is 3 km at the coast decreasing to 1.2 km at the 

escarpment (Fig. 6b). Magnitudes of denudation between 1 and 2 km do not reset AFT ages and 

approach the sensitivity limits of the AFTT system (Braun & van der Beek, 2004). The absence of the 

post-Miocene increase in sedimentation (and hence denudationally induced cooling) within the AFTT 

record may thus be a consequence of the limits of the technique. 

The downwarped rift flank model proposed by King (1967), and Ollier & Pain (1997) 

incorporates a flexurally rigid lithosphere and as such only envisages small magnitudes of denudation, 



which is incompatible with the volume of clastic sediment present offshore. The downwarp model has 

been subsequently modified for the Deccan Volcanic Province not only to account for the monoclinal 

structure of this segment of the margin (Auden, 1949) but also to include ongoing post-rift flexural 

uplift (Widdowson & Cox, 1996; Widdowson, 1997). The question remains whether this modified 

downwarp model also applies to the segment of the margin south of the Deccan Volcanic Province. 

The volume of clastic sediment within our study area can only be accounted for if there is denudational 

isostasy, which in figure 6b, is modelled as a component of the elevated rift flank model. However, 

sediment mass balance alone does not have the spatial resolution to differentiate between the elevated 

rift flank model and the modified downwarp model. The volume of clastic sediment could equally be 

explained by a denuded prism ~ 2 km thick similar to the modified downwarp model illustrated in 

Widdowson’s (1997) figure 12. Apatite fission track thermochronometry is capable of resolving the 

spatial differences in denudation between the elevated rift flank model (greatest magnitude of 

denudation at the coast) and the modified downwarp model (greatest denudation at the escarpment). 

The AFTT data suggest between 3 and 4 km of denudation close to the coast, but AFTT data from 

further inland on the coastal plain suggest more modest amounts of unroofing of between 1.5km and 

2.5km (Gunnell et al., 2003). Data from apatite fission track thermochronometry along the west coast 

of India are thus more consistent with the elevated rift flank model.  

If our study area has developed into an elevated rift flank, this poses additional challenges in 

generating a model for the evolution of Western India by implicating a tectonically and geomorphically 

segmented margin. Further work must be undertaken to improve our understanding of the spatial 

pattern of denudation for the onshore hinterland. It is unclear if the magnitude of cooling at the coast 

predicted from AFTT is a consequence of denudationally induced rock uplift (supporting the elevated 
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rift flank model) or an increase in the palaeogeothermal gradient due to rift related lithospheric thinning 

and/or the passage of the Reunion plume. 

Flexural isostasy is an important requirement for elevated rift flank model and modelling results 

suggest that a flexural response to sediment loading offshore and denudation onshore can play an 

important role. Flexural isostasy alone cannot produce a significant amount subsidence offshore, and is 

thus unlikely to be the sole mechanism for such subsidence. However, flexural isostasy can generate 

sufficient rock uplift onshore close to the escarpment provided that the lithosphere has a Te of 10 km. 

The magnitude of denudation at the coast for the elevated rift flank model is constrained using AFTT, 

but the 3 km of unroofing necessary to produce the clastic sediment offshore cannot be adequately 

account for by a flexural response to denudational unloading. The 3 km of unroofing at the coast could 

be a combination of flexural uplift and a pre-existing elevated rift flank (i.e. additional palaeoelvation) 

present at the onset of rifting.  

 

CONCLUSIONS 
 

Isopach maps and lithologs have made it possible to divide the Konkan-Kerala basin into five sub-

sequences of post rift sedimentation since the Late Cretaceous. Sediment volumes indicate two major 

pulses in clastic deposition: one immediately after rifting of the Seychelles microcontinent from India 

(sequence IIb) and a second in the Pliocene (sequences IIIa and IV). These two phases of enhanced 

sedimentation are separated by an intervening period of quiescence dominated by carbonate deposition 

(sequences IIa and IIIb).  

 Clastic deposition rates immediately after rifting, represented by sequence IIb, are high (11,522 

km
3
 Myr

-1
). Rates decrease to a low of 183 km

3
 Myr

-1
 during the Palaeogene, represented by sequences 

IIa and IIb. A second rise in deposition rates began in the Pliocene (sequence IIIa) peaking at 462 500 

km
3
 Myr

-1
 in the Pleistocene (sequence IV). These values equate to 0.56 km of downwearing during the 
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post rift phase, 0.66 km during the second, later higher phase and an intervening period of very low 

denudation of only 0.08km onshore. 

 Sediment mass balance confirms that denudation of an Ollier and Pain (1997) downwarped rift 

shoulder does not yield sufficient sediment to account for the clastic accumulations in the Konkan-

Kerala basin. It seems unlikely that additional sources of sediment such as from the conjugate margin 

or longshore transportation can generate all of the ‘excess’ sediment that is not accounted for by 

denudation of the triangular wedge of a downwarped margin. Rather, denudation of either a modified 

downwarped rift flank (Widdowson, 1997) or an elevated rift flank both accompanied by lithospheric 

flexure in response to denudational unloading onshore offers a better explanation for the large volumes 

of sediment preserved offshore. Despite the implications for a tectonically divided margin, this study 

prefers the elevated rift flank model on the basis of denudational constraints provided from AFTT.  

 This study highlights the importance of offshore sedimentation records in understanding passive 

margin evolution. Offshore basins provide an almost continuous record of the depositional (and hence 

erosional) history where stratigraphic markers on the adjacent onshore margin are scant. The 

application of such studies combined with low temperature thermochronology onshore will 

undoubtedly advance our knowledge of the development of passive margins. 
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(B) TABLES AND CAPTIONS 

 
TWT  Age  Rao & Srivastava (1984) Chaubey et al. (2002) Age  

20 – 120 post Miocene Sequence IV H6 Late Pleistocene – Recent 

200 – 1200  Miocene Sequence III H3, H4 & H5 Late Oligocene –  Late 

Pleistocene 

200 – 1200  Palaeogene Sequence II H1 & H2 Palaeocene – Late 

Oligocene 

Table 1 Comparison between the stratigraphy of the Konkan-Kerala basin defined by Rao & 

Srivastava (1984) and Chaubey et al. (2002) 

 

 

V 0.25  E 70 x 10
9
 Pa 

ρs (offshore) 1200 kg/m
3
  G 9.8 ms

-2
 

ρs (onfshore) 2700 kg/m
3
  Δxy variable – see results 

ρm 3300 kg/m
3
  Te variable – see results 

Table 2. Parameters for flexural modelling 

 

 

 Offshore Onshore 

Cell A B C D E F G H 

Dist. from 

coast (km) 

-450 -350 -250 -150 -50 25 125 225 

Δxy (km
3
) 74 90 109 195 125 100 50 50 

ρs (kg/m
3
) 1200 1200 1200 1200 1200 2700 2700 2700 

Table 3 Δxy and ρs for individual cells loading and unloading the margin, distance from the coast is the 

distance to the mid-point of the cell. See text for further explanation. 

 

 

Author Te values Method 

Watts and Cox (1989) 100 km Modelling Deccan lava emplacement 

Gunnell and Fleitout (1998, 2000) 35 km – 70 km Finite difference numerical model 

Stephen et al. (2004) 13 km Gravity and topographic coherence function 

Chand and Subrahmanyam (2003) 8 – 15 km Gravity and bathymetry spectral analysis 

Tiwari and Mishra (1999) 10 km Gravity and topographic coherence function 

Table 4. Published constraints for the effective elastic thickness of the Indian lithosphere 
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(a) 

Offshore 

Total 

sediment 

volume 

(km3) 

% 

clastic 

Total 

clastic 

volume 

(km3) 

Decompacted 

clastic 

volume (km3) 

Depositional 

duration 

(Myrs) 

Clastic 

sediment 

accumulation 

rates 

(km3/Myrs) 

Equivalent 

rock 

volume 

(km3) 

Denudation 

rate 

(m/Myrs) 

IV 
Late 

Pleistocene – 

Recent 

 
40,330 

 
91 

 
37,000 

 
37,000 

 
0.08 

 
462,500 

 
16,300 

 

IIIa 
Early Pliocene– 

Late 

Pleistocene   

 
94,500 

 
92 

 
87,000 

 
87,500 

 
11.5 

 
7,609 

 
38,900 

 
57.2 

IIIb 
Late Oligocene 

– Late Miocene 

 

 
140,000 

 
2 

 
2,800 

 
3,808 

 
16.8 

 
227 

 
1,370 

 
0.9 

IIa 
Eocene – Late 

Oligocene 

 

 
89,000 

 
11 

 
9,800 

 
11,400 

 
27.4 

 
416 

 
5,070 

 
2.2 

IIb 
Palaeocene – 

Eocene 

 

 
100,000 

 
89 

 
89,000 

 
106,000 

 
9.2 

1 
11,522 

 
47,100 

 
61.4 

      Total 
equivalent 

rock volume 

 
108,740 

 

 

(b) Onshore Volume of denuded prism 
between the escarpment 

and the coast (km
3
) 

Total volume including 
material denuded landward 

of escarpment (km
3
) 

Total denuded volume 
corrected for chemical 
weathering contribution 

(comparable with offshore) 

Ollier & Pain (1997) 

downwarp model 

36,000 47,500 38,000 

Elevated rift flank 

model 

126,000 137,500 110,000 

Table 5a Results of sedimentation analysis for sequence IV, IIIa, IIIb, IIa and IIb for the Konkan-

Kerala Basin. The denudation rate has been combined for sequence IV and IIIa due to the short 

depositional duration of Sequence IV 

Table 5b Results for the onshore total denuded volume of prisms for a downwarped rift flank and an 

elevated rift flank (column 2). Column 3 displays the total denuded volume taking into account the 

contribution of material landward of the escarpment (see fig 7). Column 4 displays the total denuded 

volume corrected for chemical weathering (~ 20 %) and is directly comparable with the total 

equivalent rock volume present offshore.  
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Elastic thickness  

Te (km) 

Max. deflection  

offshore (m) 

(subsidence) 

Dist. from coast to 

max deflection 

offshore (km) 

Max. deflection  

onshore (m) 

(uplift) 

Dist. from coast to 

max deflection 

onshore (km) 

10 -1109 150 1350 25 

30 -690 150 699 25 

50 -598 150 536 125 

70 -511 150 532 125 

Table 6 Results for a continuous plate 

 

 
Elastic thickness  

Te (km) 

Max. deflection  

offshore (m) 

(subsidence) 

Dist. from coast to 

max deflection 

offshore (km) 

Max. deflection  

onshore (m) 

(uplift) 

Dist. from coast to 

max deflection 

onshore (km) 

10 -1151 150 1510 25 

30 -525 150 652 25 

50 -425 150 478 25 

70 -379 150 402 25 

Table 7 Results for a broken plate 
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(B) FIGURES AND CAPTIONS: 

 

 

 
Figure 1 Conceptual models of elevated passive margin development. Dashed lines represent missing 

crustal material. 1a – c: Escarpment retreat into a downwarped rift flank. Note the small volume of the 

crustal prism removed and the presence of coastal facets in b. The Widdowson (1997) downwarp 

model (c) incorporates downwarp geometry but also includes isostatic rebound. Escarpment 

development into an elevated rift flank (d and e). Note the large volume of the crustal prism removed 

(with accompanying isostatic rebound) 
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Figure 2 Western India, the Konkan-Kerala basin and surrounding area. Total sediment thickness maps 

of the offshore basins are compiled from data given by Rao & Srivastava (1984) and Rao et al., (2002). 

Also shown are the locations of wells used in the study and the location of the seismic profile of 

Chaubey et al. (2002). DEM-derived contours onshore, the regional watershed and the area used for 

mass-balance calculations are also shown. 
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Figure 3 Tectonic map of the Indian Ocean displaying: major spreading centres (solid lines), major 

transform faults (narrow dashed lines) and the north-south trace of the Reunion Plume (wide dashed 

line). 
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Figure 4 Simplified lithologies and startigraphies of wells in the Konkan Kerala Basin. The dashed 

lines are stratigraphic correlations for the five sub-sequences used in the study. Wells A, B, C, D, H 

from Rao et al. (2002); K-R-1 and DSDP 219 from Chaubey et al., (2002); K-1-1 and CH-1-1 from 

Singh & Lal (1993); KG-1-1 and onshore Kerala from Gunell & Radhakrishna (2001). 

 

 

 40



 

Figure 5 Sediment-thickness maps of the three broad sequences discussed in the text (modified after 

Rao & Srivastava, 1984). The broken lines are extrapolations based on the total sediment thickness 

data. Units are two way travel time. 

 

 

Figure 6 Generalized cross section along the northern part of the Konkan Kerala Basin (based on the 

seismic profile of Chaubey et al., (2002) showing the major lithostratigraphic units, and the 

topographic profile onshore. Vertical exaggeration = 25x 

 41



 

 

Figure 7 Diagrammatic representation of the mass balance procedure. Different onshore denuded 

prisms produce different volumes. The form of the crustal prism depends on both the pre-rift 

palaeoelvation and the flexural response of the lithosphere. A wedged-shaped prism thinning to the 

coast characterises Ollier and Pains (1997) downwarped rift shoulder (A), and an inverted wedge-

shaped prism of eroded crust characterises an elevated rift shoulder with denudational isostasy 

accompanying its denudation (B). The onshore denuded material is a combination of the denuded 

prisms and the denuded material between the escarpment lip and the regional watershed (see text for 

details). The onshore volume of denuded material is then compared to the volume of clastic material 

present offshore.  
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Figure 8 Schematic diagram of an idealized section of crust represented as an infinitely long, thin, 

elastic plate overlying a fluid and the terms used in eq. 2 – 7. 

 

Figure 9. Schematic diagram of the model used to simulate flexural isostasy for Western India. The 

plate is loaded by sedimentation in cells A to E and unloaded by denudation in cells F to H. The 

amount of deflection provided by the cells (thin dashed lines) depends on their cross sectional area, 

sediment density and position. The total accumulated deflection is represented by the thick dashed line. 

 43



The position and maximum magnitude of flexure both onshore and offshore are reported in Tables 4 

and 5.  

 

 
 

Figure 10 Results of the sediment analysis. The grey bars are the decompacted clastic sediment 

volumes for each of the five sub-sequences. 
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Figure 11 Total accumulated flexure for different values of effective elastic thickness for a continuous 

plate (A) and a broken plate (B) across Western India (modelled as a thin plate).  
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Figure 12 Mesozoic and Cenozoic denudation rates constrained from AFTT (dashed line) (Gunnell et 

al., 2003) and Cenozoic denudation rates constrained from the mass balance analysis (grey bars). The 

mass balance analysis highlights two increases in denudation, one phase at the beginning of the 

Cenozoic and a second younger phase in the Pliocene. The AFT data record an increase in denudation 

in the earlier Palaeocene phase but not the later, post-Miocene phase. Madagascar rifted at ca. 88 Ma 

(Storey et al, 1995) and the Seychelles rifted at ca. 65 Ma (McKenzie and Sclater, 1971; Naini and 

Talwani, 1983; Norton and Sclater, 1979; Schlich, 1982). 
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	Flexural response of the lithosphere to sedimentation and denudation
	 The lithosphere compensates for large stresses either locally by Airy isostasy, or regionally by the mechanism of flexural isostasy (Watts, 2001). Offshore sediment loading will load the underlying lithosphere and cause flexural subsidence: if there has been no additional tectonic or thermal subsidence, then the depth to the sediment-basement interface is the result of flexural compensation only (Allen & Allen, 2005). Similarly, the onshore lithosphere responds to denudational unloading by upwards flexural deflection: If there has been no additional tectonic rock uplift or if the pre-rift surface was elevated (and has since been denuded), then the amount of eroded material is a function of the rate of denudation and the flexural response of the lithosphere only.
	         [2]
	D, the flexural rigidity is the relationship between plate elasticity (E), Poisson’s ratio (v) and the effective elastic thickness (Te). The effective elastic thickness varies depending on the rheology, age and structure of the lithosphere. Estimates of Te for continental lithosphere range between 5km and 70km (Watts, A. B., 2001). The flexural parameter (α) and flexure (q) are defined by the following relationships (Pazzaglia, F. J. & Gardner, T. W., 1994):
	The modelled lithosphere was split into eight cells, five 100 km wide cells representing the lithosphere offshore and three the lithosphere onshore (one 50 km wide cell seaward of the escarpment and two 100 km wide cells landward of the escarpment). The present day coast was taken as the boundary between the loaded offshore section of lithosphere and the unloaded onshore section of the lithosphere. Although the position of the coastline is largely a function of Holocene eustatic sea level rise it nonetheless marks the boundary between onshore denudation and offshore deposition. It is recognised that the position of the coast will have altered throughout the geological history of the Western Indian margin; however, there are no adequate constraints on coastal palaeoposition so the simplifying assumption is made that the coastline has, on average, effectively remained constant.
	The flexural responses for each of the cells in the cross-section (including the flexural effects on neighbouring cells) were modelled for both continuous and discontinuous plates. The Δxy values for each of the five cells loading the lithosphere offshore were obtained by taking the average decompacted sediment thicknesses along strike from their position offshore using the sediment isopach maps of Rao &  Srivastava (1984). The Δxy value for the cell seaward of the escarpment was obtained using the re-compacted total clastic sediment thickness from the mass balance estimates, and the Δxy values for the two cells landward of the escarpment were obtained by assuming that 500 m of lithosphere has been denuded from the interior plateau since the onset of rifting. This is a reasonable value because removal of ca. 500m Deccan lavas inland of the escarpment north of the study area has been estimated (Widdowson, 1997). The flexural effects from each loaded cell and the flexural effects from loaded neighbouring cells were then summed to provide the total deflection at a particular point along the modelled plate (fig. 9).Published constraints for the effective elastic thickness of the Indian sub-continent are rare and are summarised in Table 4. 
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