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ABSTRACT: Naturally acid saline systems with pH values between 1.7 and 4 are common on the Yilgarn Craton of southern
Western Australia. A combination of physical and chemical processes here yield a previously undescribed type of modern
sedimentary environment. Flooding, evapoconcentration, desiccation, and eolian transport at the surface, as well as influx of acid
saline groundwaters, strongly influence these lakes. Halite, gypsum, kaolinite, and iron oxides precipitate from acid hypersaline
lake waters. Shallow acid saline groundwaters affect the sediments of the lakes and associated mudflats, sandflats, channels, and
dunes by precipitating early diagenetic halite, gypsum, iron oxides, clays, jarosite, and alunite. These modern environments would
likely yield a rock record composed mostly of bedded red siliciclastic and reworked gypsum sand, alternating with less common
beds of bottom-growth gypsum and halite, with alteration by early diagenetic features diagnostic of acid saline waters. This
documentation of sedimentary processes and products of modern acid saline environments is an addition to the comparative
sedimentology knowledge base and an expansion of the traditional models for classifying brines. Implications include better
interpretations of terrestrial redbeds and lithified martian strata, improved acid remediation methods, new models for the
formation and occlusion of pores, and the new setting for finding previously undescribed extremophiles.

INTRODUCTION

Hundreds of ephemeral saline lakes exist in southern Western

Australia. These lakes are shallow and deposit siliciclastic and chemical

sediments. Our studies show that a notable characteristic of this region is

the great diversity of pH in lakes in close proximity (Fig. 1).

Approximately 40% of these lakes have pH less than 4 (we call these

extremely acid), while nearby lakes are moderately acid (pH 4–6), neutral

(pH 6–8), or even moderately alkaline (pH greater than 8). Flooding,

evaporation, desiccation, winds, and groundwater-contributed acidity

determine the sedimentary characteristics of all of these lakes. These acid

saline lake waters and groundwaters do not fit the traditional classifica-

tions for brines. The combination of physical and chemical processes

yield a previously undescribed type of modern sedimentary system. Here,

we document the surface processes and resulting sedimentary facies of

extremely acid saline lake systems.

Implications of the sedimentology of acid saline lakes are varied and

abundant. First, these natural acid saline lakes and groundwaters in

Western Australia are an environmental hazard, necessitating the piping

of desalinized seawater hundreds of kilometers inland for residential and

industrial use. Clearing vegetation for cropland has caused the recent

rising of acid saline groundwaters, resulting in poor farming and ranching

conditions. Elsewhere in the world, man-made or man-influenced acid

waters, such as acid-mine drainage streams, also present a challenging

environmental problem. Abandoned sulfide pit mines in the western U.S.,

for example, are filled with sulfuric acid and pose a threat to migratory

birds. A better understanding of the various types of natural acid waters

may lead to improved remediation methods. Secondly, acid waters cause

dissolution and/or precipitation in host rocks, possibly leading to models

for secondary pore formation and occlusion of interest to the petroleum,

environmental, and mining industries. Thirdly, natural acid saline lakes

host unique microorganisms and, thus, can help in the study of the

diversity of life, biogeochemical processes, and bioremediation techniques

(Hong et al. 2006). Finally, mineralogical and geochemical data from

lithified martian strata suggest that acid saline waters may have once

acted there (Squyres et al. 2004). Thus, terrestrial acid saline lakes may be

analogs for past martian environments, as well as for some ancient

terrestrial red beds (Benison 2006; Benison and Bowen 2006; Benison and

Goldstein 2002; Benison and LaClair 2003). Although some intriguing

geochemical processes occur in the groundwaters to produce acidity and

yield dynamic early diagenesis, this paper focuses on the sedimentary

facies and the surface processes that produced them.

BACKGROUND

Acid Saline Lakes

Acid saline lakes have been recognized in both Western Australia

(Alpers et al. 1992; Mann 1988; McArthur et al. 1991) and northwestern
* Present address: Department of Geological Sciences and Environmental

Studies, Binghamton University, Binghamton, New York 13902, U.S.A.
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Victoria (Long et al. 1992a; Macumber 1992), as well as in Chile

(Risacher et al. 2002). Published work has focused on specific

mineralogical and chemical characteristics of these waters and their

adjacent groundwaters. However, the sedimentology of these lake systems

has not been described. Surface processes and resulting sediments are

important in terms of understanding these extreme environments and

identifying other acid saline lakes in the geologic record.

The acid saline lakes in northwestern Victoria have received the most

detailed study of the three known natural acid saline lake settings.

Detailed studies of the geochemistry and hydrogeology of the Lake

Tyrrell and adjacent groundwaters have been published (e.g., Long et al.

1992a; Long e al. 1992b; Macumber 1992). We have also conducted field

work at Lake Tyrrell and six other saline lakes in northwestern Victoria

in August 2001 and July 2005. We found all the lake waters to be in the

neutral range (pH 5.3–8.0), with only very localized acidity (pH 3.5–6.1)

in the shallow groundwaters adjacent to Lake Tyrrell. For this reason, we

consider the acid lakes in southern Western Australia, with lake-water

pH values of 1.7–4, to be better examples of acid sedimentary systems.

FIG. 1.—Approximate locations and relative
sizes of saline lakes in southern Western Aus-
tralia. Top: Landsat image. Bottom: Map of 58
lakes studied during austral winters of 2001 and
2005 and austral summer of 2006. Key shows
lake types based on pH range. Names of only 21
extremely acid lakes are labeled here (names are
for closest black dot) and only Lake Brown,
Lake Campian, Lake Gounter, Lake Magic, and
Walker Lake are formal names.
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Geological Setting of the Yilgarn Craton

The Yilgarn Craton comprises a large (, 1.78 million km2), tectonically
stable area of southern Western Australia (Figs. 1, 2). It is composed of
highly weathered Archean rocks with little or no sedimentary cover (Anand
and Paine 2002). Granites and gneisses dominate the bedrock, but
anorthosites, quartzites, and ironstones are found here as well. In and
near some lakes, we have observed highly weathered basement regolith at
shallow depths (0.5 m or less) below the surface. This regolith grades
stratigraphically upward into clastic sediments. This makes it difficult to
distinguish between the regolith and overlying fine-grained clastic
sediments. At some other lakes, the clastic sediments may be up to
100 m thick (Clarke 1994; Gray 2001; Salama 1997). Some lakes are hosted
by Archean bedrock outcrops. Although no Paleozoic or Mesozoic rocks
have been found on the Yilgarn Craton, there are some localized, relatively
thin Tertiary sedimentary units, including lignites, siltstones, sandstones,
and marine limestones, all interpreted as having been deposited by two
marine transgressions in the Eocene (Clarke et al. 1996).

Although most of the lakes have not been cored or studied for age
determination, Salama (1994) described 10 m of bedded halite, gypsum,
sand, and mud in a core taken from Lake Deborah West, a neutral lake at
present (shown in Fig. 1 as northernmost lake studied). Palynological
data from this core suggest a Quaternary age for lake sediments to a 2 m
depth, below which palynomorphs may be late Tertiary in age (Salama
1994). Our preliminary data from extremely acid lakes are similar, with
only Recent palynomorphs identified in shallow mid-lake cores to 50 cm
depth and AMS radiocarbon age of 2913 6 48 years for sediments at
, 30 cm depth (Story et al. 2006).

The terrain is relatively flat with elevations ranging from , 250 to
, 365 m above sea level. The modern climate is arid and warm. Air
temperatures average , 10–27uC, but can reach the extremes of 25uC to
50uC (Australia Bureau of Meteorology home page). Average rainfall is
between , 26 cm/yr and , 34 cm/yr, with the western and southwestern
parts of the Yilgarn Craton receiving the higher precipitation amounts.
Relative humidity averages , 25% during austral summers and , 70%
during austral winters. Average annual evaporation ranges from, 1800–
2800 mm/yr for the Yilgarn Craton. Multidirectional winds have an

average velocity of, 30 km/hr year round in southern Western Australia

(with gusts up to , 120 km/hr), but are strongest from the east and

southeast during austral summers and from the west and northwest

during austral winters (Australia Bureau of Meteorology home page).

Land use includes some cropland in the ‘‘wheatbelt’’ (southern and

western part of this region), as well as localized gold and salt mining.

However, sparse eucalyptus, wattle, and saltbush forests (‘‘malee’’-type

vegetation) and salt lakes cover most of the Yilgarn Craton. The lakes are

common and range in size and shape from tiny round lakes only , 0.4

hectares in area to large, elongated lakes that are , 81,000 hectares in

area. Although the lake depths fluctuate (Figs. 3, 4), we observed no lake

waters deeper than 48 cm. More typically, we observed lake waters from 2

to 14 cm deep. A regional view from an airplane or satellite shows that

many of the lakes are aligned along the remains of a dendritic branching

drainage system, suggesting that they occupy abandoned early Tertiary

river channels (Fig. 1; Clarke 1994; deBroekert and Sandiford 2005;

Salama 1994, 1997).

METHODS

This study is the product of three field trips to 58 ephemeral saline lakes

in Western Australia, 21 of which had lake water pH less than 4. Mapping

of sedimentary facies was conducted with detailed attention paid to

sedimentary textures, sedimentary structures, authigenic minerals, and

environmental conditions such as basic lake and shallow ground water

chemistry (pH, temperature, and salinity), water depths, and climate and

weather conditions. Sediments and water samples, as well as water depth

and chemistry and GPS measurements, were collected along transects

across sandflats and lakes and around lake perimeters. To test for lake

stratification, an eye dropper was used to sample water from both the

bottom and the top of water columns in lakes and then the water samples

were tested in the field for salinity and pH. No differences in salinity or

pH were found for specific depths within the same water column at

individual lakes, showing that lake water was not stratified. Shallow

groundwaters were studied in the field by digging into the sandflats/

mudflats and immediately measuring groundwater pH, salinity, and

FIG. 2.—Schematic cross sections of geologic
settings for saline lakes. Top: Common closed
basins formed in fault block valleys. Bottom:
Yilgarn Craton setting on deformed, faulted
Archean metamorphic rocks and igneous intru-
sions with varying amounts of regolith (highly
weathered bedrock; vertical stripes pattern).
A, B) Some lakes are hosted by thin, laterally-
discontinuous Tertiary sandstones. C) Some
lakes are situated directly on Archean bedrock.
D, E) Other lakes are hosted by loose sediment.
Highly localized limestones in the subsurface (as
under lake E) may locally neutralize regional
acid groundwaters to result in the neutral and
moderately alkaline lakes.

R

FIG. 3.—Photographs of acid saline lakes at different stages. A1, A2) Cumulate Raceway, part of Lake Cowan basin, near Norseman. A1) July 2001, at end of
evapoconcentration stage and beginning of desiccation stage. Note dry lake in middle of photo with thin white halite crust and shallow lake water (, 2 cm deep) in
background, actively precipitating halite and gypsum. A2) January 2006 in flooding stage (, 1 hour after heavy rainstorm). Lake water is 5–6 cm deep. B1, B2) Dead
Kangaroo Lake, part of the Bandee Lakes system, near Kellerberrin. B1) June 2005, during flooding stage. Water depth , 20 cm deep. B2) January 2006 during
desiccation stage. C1, C2) Lake Brown, north of Merredin. C1) June 2005, during flooding stage. C2) January 2006, during evapoconcentration stage. D1, D2) Lake
Aerodrome, part of Lake Cowan basin, near Norseman. D1) During rainstorm in January 2006. D2) , 1 hour after rainstorm.
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temperature. Any bedrock observed was also noted and sampled. Shovels
and trowels were used to expose shallow sedimentary cross sections (up to
50 cm deep) and PVC pipes, metal cans, and a box corer were used to
take shallow (up to 30 cm deep) core samples. Field instruments included
pH meters and pH strips, optical salinity refractometers, thermometers,
and a GPS unit. Digital cameras and a videocamcorder were used to
document field observations.

Field work was conducted in July and August of 2001, in June and July
of 2005, and in January of 2006 (Table 1). We observed the lakes during
a three-year drought and just as the drought ended (austral winter of
2001) and after the wettest season in , 30 years (austral winter, 2005), as
well as during an austral summer (2006). Because specific sedimentary
processes and products in these environments are greatly influenced by
climate and weather conditions, we noted time of day we sampled and

FIG. 4.—Maps of Aerodrome Lake, part of Lake Cowan basin, illustrating changes in water chemistry and sedimentary features over time. A and C show the lake
system based on field work conducted from July 27–30, 2001 at the end of a three-year drought. B and D show the lake system on June 26, 2005, after a particularly wet
season. Numbers in A and B represent groundwater pH. Note that lake water pH, salinity, and depth changed over time, but groundwater pH stayed relatively constant.
C and D show major sedimentary facies, sedimentary structures, and plants. During evapoconcentration stages, evapoconcentration, desiccation, and winds are the
dominant sedimentary processes. During flooding stages, sediment transport by water and dissolution of evaporites are common processes.
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made repeated visits to some of the lakes on several consecutive days, at

night time, and before, during, and after rainstorms. Evidence of previous

conditions could occasionally be seen during some field trips. For

example, lake beds composed of polygon-cracked subaqueous halite

crusts suggested previous desiccation periods. In addition, anecdotal data
from other scientists who visited the lakes or region at other times

supplement our observations (David Gray, Sarah Stewart Johnson, Fiona

Takulis, Bob Whittam, personal communications).

Laboratory work included cutting cores and making thin and thick

sections. Additional descriptions of sedimentary textures and structures

were made in the laboratory by examination of cores, thin sections, and

loose sediments. Identification of minerals was conducted by optical
petrography, X-ray powder diffraction, and reflectance spectroscopy.

Samples of loose sand from nine acid lakes (namely lakes Aerodrome,

Cumulate Raceway, Brown, Bullfinch, Gneiss, Magic, Prado, Twin East,

Twin West) were examined petrographically. Depositional environment,

sample depth, minerals, grain size, sorting, grain shape, color, and any

other distinctive features were noted. Over fifty sediment samples were
examined from the various facies in acid-saline-lake systems (including

dunes, channels, outwash sheet deposits, sandflats, mudflats, and lakes).

The samples included surface sediments from each of these environments,

and samples from individual beds down to 35 cm below the surface.

LAKE TYPES

We studied 58 lakes in Western Australia. Fifty-seven of these lakes are

continental and one is a marginal marine lake, separated from the ocean

only by sand dunes (Fig. 1). Twelve lakes in southern Western Australia

were visited in 2001, 22 in 2005, and 47 in 2006. Six of these lakes were

visited in all three field seasons, and 16 were visited in two field seasons.

Based on our field observations, we identified four lake types defined by

pH. These are: (1) extremely acid lakes, with pH values less than 4;

(2) moderately acid lakes, with pH between 4 and 6; (3) neutral lakes, with

pH between 6 and 8; and (4) moderately alkaline lakes, with pH greater

than 8 (Fig. 1). Of the 58 lakes we studied, 21 are extremely acid (see

Table 1 for summary of field data for these lakes). Regardless of lake

water pH, shallow groundwaters tend to be acid throughout the region.
Some lakes were in contact with outcrops of older rocks (including
Archean felsic–ultramafic igneous and metamorphic rocks and Tertiary
sandstone; Fig. 5). However, all the lakes we visited contained evaporites
and were hosted by at least some siliciclastic component (Figs. 6, 7). The
same general physical sedimentary processes and evaporative products
exist in all these lakes, regardless of pH. However, because the
sedimentology of modern acid saline systems has not before been
described in detail and have unusual geochemical processes that
contribute to the sedimentological and mineralogical features, the
extremely acid lakes are the focus of this paper.

GEOCHEMICAL CHARACTERISTICS OF EXTREMELY ACID SALINE LAKES IN

WESTERN AUSTRALIA

Lake and ground waters range in salinity from 10 to . 280 ppth (more
commonly 100–280 ppth; Table 1) and are typically Na–Mg–Cl–SO4

brines with variable yet locally high amounts of Ca, K, Al, Fe, Si, and Br
(Bowen and Benison 2006). The fluid compositions are unusual, complex,
and variable through space and time. For example, in some waters, the
amount of Al .. Ca, the amount of Br . K, and comparison of total
S to SO4

22 values suggest the presence of uncommon S-bearing species.
Bicarbonate is not detected in any of the waters with pH less than , 5.
These waters are enriched in 18O and D, suggesting that they are highly
evaporated (Bowen and Benison 2006).
Element concentrations are variable in both lake water and ground-

water. For example, K ranges from 61 to 4516 ppm in lake waters and
from 89 to 1559 ppm in groundwaters at these 21 extremely acid lakes.
Aluminum ranges from 105 to 3057 ppm in acid lake waters and from 234
to 8017 ppm in acid groundwaters. Iron ranges from 0 to 403 ppm in acid
lake waters and 0 to 459 ppm in acid groundwaters (Bowen and Benison
2006). There are greater temporal variations in the lake waters, but
greater spatial variations in the groundwaters (see Fig. 4A and B for pH
variations; elemental constituents of waters have similar temporal
variation for lake waters and spatial variations for groundwaters). This
suggests to us that flooding and evapoconcentration have a greater effect
on the lake waters and localized interaction with host rocks may have

TABLE 1.—Summary of field data for 21 extremely acid saline lakes (with lake water pHs less than 4) in southern Western Australia. Columns labeled
‘‘01,’’ ‘‘05,’’ and ‘‘06’’ denote year that lakes were visited. ‘‘F,’’ ‘‘E,’’ and ‘‘D’’ represent flooding, evapoconcentration, and desiccation stages, respectively.
‘‘LW pH’’ is range measured for lake waters. ‘‘LW TDS’’ is range of measured salinities as total dissolved solids in parts per thousand. ‘‘GW pH’’ and

‘‘GW TDS’’ are the pHs and salinities for shallow groundwaters near the lakes.

Lake Name 01 05 06 F E D LW pH LW TDS GW pH GW TDS

Aerodrome X X X X X 2.7–3.7 60–150 2.5–3.7 60–240
Bottle X X X 2.9 200 3 110
Brown X X X X 3.9–4.5 130–250 3.1–3.7 150–160
Bullfinch X X 3.5 70
Campian X X X X 3.7–5.1 150–250
Crusty X X X 3 270
Cum. Raceway X X X X X X 3.1–3.7 90–100 3.0–3.3 100–200
Dead Kangaroo X X X X 3.3–4.3 40–130
Dead Tree X X X 2.9–3.5
Gneiss X X X X 2.7–3.3 80–83 3.3–3.7 75–90
Gounter X X 2.5 280 4.1 115
Hobby X X 3.9 140 5.9 150
Magic X X X X 1.7–2.5 240–280 3.3 70–150
Pete’s Piggery X X 3.8 150
Picnic X X 3.5 55
Prado X X X X X 2.5–3.9 100–240 3.2–3.7 65–225
Roo X X 3.9 52
Twin Lake East X X X X X 2.7–3.6 100–215 2.9–3.3 60–200
Twin Lake West X X X X X 2.7–3.8 115–210 2.4–5.4 50–240
Walker X X X 3.5–4.1 10–30 3.1 50–60
Yellow X X 2.6 280 2.8–2.9 230
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a greater effect on the groundwaters. Lack of NO3
2, NO2

2, and PO4
32 in

the lake waters and groundwaters, along with their geographic
distribution, has allowed us to rule out geochemical input from
agriculture or mining. The compositions of these fluids suggest an
extensive and spatially diverse history of brine evolution. Influences of
host-rock mineralogy and weathering, and possible microbiological
activity on water geochemistry are as yet not completely understood.

Models of brine evolution have been established based upon globally
prevalent geochemical conditions (Hardie and Eugster 1970). Most

evaporite systems that have been studied are alkaline and neutral, have
HCO3

2 as an important component, precipitate some carbonate
minerals, and do not have high Fe and Al. Therefore, evaporative
systems are commonly described in terms of chemical divides based on

the high solubility of salt minerals relative to the moderate solubility of
calcium sulfate and low solubility of calcium carbonate minerals (e.g.,
Hardie and Eugster 1970; Lowenstein et al. 1989; Li et al. 1997). In
Western Australia, acid saline lake waters and groundwaters do not fit

these traditional brine classifications.

FIG. 5.—Photographs showing geologic settings of acid saline lakes in southern Western Australia. A) Air photo showing lakes west of Kalgoorlie in July 2001; various
colors represent salt crusts, red mud, and/or shallow water in lakes in close proximity. B) Outcrops of ironstone and sandstone along shore of Twin Lake West. C) Vertical
exposure of regolith and overlying sediment at Royal North mine, Croesus gold mine, near Norseman. D) Lake Magic, with halite and yellow water, hosted by coarse
sand composed of quartz and granite clasts. E) Warrachuppen Rock, an Archean granite dome. Drainage waters here had pH 2.8 in January 2006. F) Outcrop of black
amphibolite at Twin Lake West. G) Tertiary (?) sandstone outcrop at Prado Lake. H) Archean metamorphic outcrop in lake water at Twin Lake East. I) Archean gneiss
outcrop at Gneiss Lake.
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FACIES

Individual facies at acid saline lakes in Western Australia include lake,

mudflat/sandflat, ephemeral channel, and dune facies. These facies

change spatial position and character over relatively short time periods

(Figs. 3, 4). For example, during flooding, a lake facies has its greatest

areal extent, but during desiccation, the facies is essentially absent at the

surface and simply becomes an extension of the dry sandflat facies. At

times of great drought, when lakes are dry and wind processes dominate,

sandflats and sand dunes migrate across the former lake facies. Because
the positions of facies migrate over short periods of time, we describe the
facies here in terms of the three major sedimentological stages: flooding,
evapoconcentration, and desiccation.

Lake Facies

The lake facies here is described as the subenvironment that is, at times,
subaqueous. Although it might be technically considered a ‘‘saline pan’’

FIG. 6.—Sediments from acid saline lake systems in Western Australia. All scale bars 5 1 mm. A) Lake Aerodrome sandflat sediment sampled from 13 to 15 cm
below surface; composed of quartz, gypsum, and hematite; reflected light. B) Lake Cowan West basin dune sediment sampled from surface; composed of reworked
gypsum sand and gravel; crossed polars. C) Gneiss Lake sandflat sediment sampled from surface; composed of very fine quartz sand grains coated with hematite; crossed
polars. D) Lake Magic sandflat sediment sampled from surface; composed of quartz and coarse granite sand; reflected light.
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FIG. 7.—Photographs of acid-saline-lake facies in Western Australia. A)Halite cumulate rafts at Lake Brown. White rafts with shadows are floating on surface of water
, 6 cm deep. White rafts without shadows have sunk to lake bottom. B) Subaqueous halite crystal crust growing in lake water 8 cm deep at Twin Lake West. Trowel for
scale. C) Cross-sectional view of halite crust taken from triangular hole shown in photograph B. Smaller bottom crystals are cumulates. Larger crystals at top are chevron
crystals, which grew upward from lake bed.D) Partially dissolved subaqueous halite crust in Twin Lake East in lake water 20 cm deep. Field of view is approximately 0.75 m.
E) Thin-section view of halite chevron crystal fromTwin LakeWest. Dark growth bands are composed of high concentrations of primary fluid inclusions. Note truncation of
growth bands at top of photo by dissolution surface. F) Lake halite (white) and Gypsum (orange) crystals with red-brown mud on trowel from bottom Cumulate Raceway.
G) Subaqueous crust of halite (white) and clear needle-shaped gypsum crystals from Lake Brown. H) Subaqueous gypsum crust growing in lake water 7 cm deep in Lake
Aerodrome. I) Cross-sectional view of shallow core sample taken at photograph H location. Note large gypsum crystals underlain by red mud. J) Partially dissolved
subaqueous gypsum crust in Lake Aerodrome in lake water 9 cm deep. Field of view is approximately 0.75 m. K) Cross-sectional view of single gypsum crystal. Red bands
are composed of hematite mud. L) Ripples in subaqueous sand in Lake Brown in lake water 3 cm deep. Trowel for scale.
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(Lowenstein and Hardie 1985), we have chosen to call it ‘‘lake’’ to reflect

the fact that, over the course of three field trips, we have seen these lakes

wet more often than dry. The lake facies changes dramatically over time,

depending upon whether the lake is undergoing flooding, evaporative

concentration, or desiccation (Figs. 3, 4).

Lake Facies at Flooding Stage

During and soon after any precipitation on the Yilgarn Craton,

rainwaters run off the surface and towards the lowest topography:

shallow circular and oval depressions that serve as lake basins. The soil of

the Yilgarn Craton is thin, composed mostly of siliciclastic sand and little

organic matter, mostly eucalyptus debris. Therefore, rains promote flash

floods (Fig. 3D1).

Flooding causes lake levels to rise by several centimeters. However, the

lakes are still considered shallow; the deepest water depths we recorded

are 48 cm. Lake shape and areal extent change during flooding because of

the low relief of the lake basins. Coarse-grained sediments, mostly sand

and some localized gravel weathered from Archean outcrops, are

transported short distances by flood waters in the form of sheet floods

and are eventually deposited in the lakes (Fig. 6). These siliciclastics leave

planar laminae, thin beds, and cross-laminae on the sandflats and in the

lakes (Fig. 8E, G, H, I).

The floodwaters carry fresh water into the lakes, diluting the lake water

and resulting in initially lower salinities and slightly higher pHs (Fig. 4).

Evaporite crystals formed previously in the lakes begin to dissolve,

making the halite and gypsum crusts thinner, less laterally extensive, and

pockmarked with both lateral and vertical holes (‘‘dissolution pipes;’’

Fig. 7D). The extent of this evaporite dissolution depends upon the

dominant type of evaporite mineral at the specific lake (halite is dissolved

more readily than gypsum), the amount of flood water (more flood water

causes more dissolution), and the previous lake depth (shallower lakes are

more easily affected by flooding). This dissolution of evaporite minerals

greatly affects the lake-water chemistry. Some of the most saline waters

we observed (, 240 ppth total dissolved solids [TDS]) were at the end of

a flooding stage in the austral winter of 2005 when water was relatively

deep and halite crusts had partially to completely dissolved, adding to the

total dissolved salinity of the lake water. pH rose only slightly, by, 1 pH

unit, as a result of flooding.

Flooding stages of various magnitudes may occur at different temporal

scales. The greatest flooding on a regional scale may occur during times

of exceptionally wet weather (, 10–100 years; for example, the austral

winter of 2005 was the wettest season in 30 years in southern Western

Australia). Flooding may occur depending upon seasonal precipitation

variations. In addition, an individual heavy rainstorm, regardless of the

season, may yield efficient flash floods at a local scale, as we witnessed

during July 2001 and January 2006 (Fig. 3D1), while nearby lakes

remained dry.

In these lake facies, the grain size ranges from clay (relatively rare) to

coarse sand. Individual beds are moderately to poorly sorted. The

coarse-grained samples tend to be more poorly sorted and angular and

the fine-grained samples tend to be well sorted, indicating an overall

greater maturity. Coarse-grained minerals tend to directly reflect the

proximal host-rock environment and tend to be dominated by a specific

mineralogy (quartz or gypsum), while finer grains tend to be a more

even mix of quartz and gypsum (Fig. 6). We also noted that lakes

surrounded by sandflats with outcrops had coarse grains trapped on the

sandflats and, therefore, tended to have finer-grained lake facies

(Fig. 5F, G). During late stages of flooding and early stages of

evapoconcentration, small-scale wave ripples form where lake water is

shallow and wind-produced water waves move silt- and fine sand-size

grains (Fig. 7L).

Lake Facies at Evapoconcentration Stage

Evapoconcentration is the process of surface water evaporating due to

arid conditions, promoting higher salinity and the precipitation of

evaporite minerals such as halite and gypsum. The arid climate of

Western Australia results in evapoconcentration of lake waters through-

out much of the year.

All extremely acid lakes of the Yilgarn Craton precipitate both halite

and gypsum, although lakes tend to be dominated by one evaporite

mineral over the other. That is, some lakes are halite-rich, with only small

amounts of gypsum, while gypsum is the primary precipitate in other

lakes with minor halite.

Halite grows several different ways in the lakes. Some halite crystals

precipitate from lake water along the shoreline, making a white ‘‘bathtub

ring’’ (Fig. 9E). Initial halite growth, especially, seems to be at the air–

water interface, where tiny cubic halite crystals grow. Eventually, they

either sink to the lake bottom as they become larger or several crystals

grow together into a ‘‘raft’’ which floats on the water surface until it

eventually sinks as well (Fig. 7A; Arthurton 1973; Shearman 1970). Most

of these rafts are approximately 1–2 cm in diameter, but we observed

some as large as 32 cm across. Rafts may be pushed along the lake water

surface by winds and accumulate at the leeward shore. The sunken

surface-grown cumulate crystals, either individually or as rafts, make

beds of cumulate halite. Halite growth continues at the bottom of the

lake, where chevron crystals grow upward, often using the cumulate

crystals as growth nuclei (Fig. 7C; Arthurton 1973; Shearman 1970).

Chevron crystal growth is competitive; larger crystals incorporate smaller

ones as they grow upward. Eventually, the halite forms hard crusts, some

up to , 40 cm thick, on the lake floors (Fig. 7B, C, D, E). These halite

crusts can accumulate quickly in the lakes. For example, in July 2005, we

visited Lake Magic and observed no halite in the lake. Six months later, in

January 2006, the same lake had a halite crust 45 cm-thick (Fig. 5D).

Gypsum-dominated extremely acid saline lakes also form hard,

subaqueous, evaporite crusts during the evapoconcentration stage

(Fig. 7H). We observed two such lakes actively precipitating bottom-

growth gypsum: Aerodrome Lake and Walker Lake. Bottom-growth

gypsum crystals also display a competitive crystal growth, with individual

crystals enlarging as they grow upward (Fig. 7I). Twinned ‘‘swallow-tail’’

crystals are common (Fig. 7I). We have observed gypsum crystal crusts

up to 15 cm thick. Individual crystals up to 12 cm long are not

uncommon.

These bottom-growth gypsum crystals have alternating clear and

orange growth bands (Fig. 7K). The orange bands are rich in pure iron

oxide mud (mostly hematite, but some goethite has been detected as well).

It is possible that this iron oxide mud may have been transported into the

lakes by wind or by floods. However, these iron oxide bands in gypsum

crystals are not associated with grains that are coarser or of a different

composition, as might be expected if flooding or wind had been the

transporting agent. The iron oxide bands are not associated with any

dissolution features within the gypsum crystals that would suggest

flooding. We hypothesize that the iron oxides were trapped in the gypsum

crystals at times when hematite, as well as gypsum, was precipitating

directly from the lake waters. Our field work during the austral winter of

2001 coincided with an evapoconcentration stage, interrupted by flooding

induced by a heavy rainstorm at Lake Aerodrome, one of these gypsum-

dominated acid lakes. During evapoconcentration, the lake water pH was

2.7–2.9, had 150 ppth TDS, and was red and almost opaque, presumably

due to active precipitation of iron oxide mud. During flooding, the water

cleared and salinity dropped to 65 ppth TDS, but the pH rose only to 3.0.

Later laboratory filtering of the lake water sampled during evapoconcen-

tration resulted in abundant hematite mud. However, the flood-water

filter residue consisted of only a small amount of quartz sand and silt and

no hematite mud. The hematite mud grains are found in the gypsum lakes
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FIG. 8.—Photographs of sandflats/mudflats after flooding. A) Sandflat at Twin Lake East with a sheet-flood deposit with a wet surface and outcrops of Archean rocks.
B) Sandflat at Lake Aerodrome showing ripples in wet sand. C) Sandflat at Cumulate Raceway , 2 hours after rainstorm. Note accumulations of black plant debris
carried by floodwaters from vegetated dunes toward lake. D) Close-up view of thin, laterally-discontinuous bed of plant debris from photo C. E) Shallow core from
sandflat at Lake Aerodrome. Black laminae are rich in decayed plant material, such as that in photos C and D. F) Highly-altered interference ripples, raindrop imprints,
and small ephemeral streams at Twin Lake West sandflat. G) Cross section of sandflat at Lake Aerodrome. H) Box core from Lake Brown sandflat. I) Cross-section of
sandflat at Lake Aerodrome.
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FIG. 9.—Photographs of sandflats/mudflats during dry times. A) Peak Charles Road dry lake. Flood lag in foreground is composed of quartzite cobbles and quartz
sand coated on the bottom with hematite. White in background is thin halite crust of desiccated lake. B) Lake Aerodrome mudflat. C) Sheet-flood deposit on sandflat at
Lake Aerodrome. D) Mudcracks and root remnants on mudflat at Lake Campian. Lateral field of view is , 0.75 m. E) ‘‘Bathtub ring’’ of halite around former shoreline
of Lake Aerodrome. F) Halite crystals growing on Lake Aerodrome sandflat. G) Gypsum crystal crust with polygonal expansion ridges on Lake Aerodrome sandflat. H)
Wind ripples composed of quartz grains and gypsum clasts and truncated by expansion cracks at Cumulate Raceway. I) Close-up of photograph H showing efflourescent
gypsum crystals growing from evaporating groundwater. J) Wind lineation formed in reworked gypsum clasts on desiccated lake bed at Dead Kangaroo Lake. Although
this is technically lake facies, sandflat processes have taken over after desiccation. K) Reworked gypsum crystals that have been blown by wind to partially bury ruby salt
bush at Lake Aerodrome. L) White gypsum crystals form hard crust over loose hematite-coated quartz grains and reworked gypsum clasts at Lake Aerodrome.
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only in direct contact with bottom-growth gypsum crystals. These Lake

Aerodrome waters had relatively low dissolved Fe concentrations (15–

32 ppm; at lower end of range during flooding and at higher end during

evapoconcentration) compared to waters at other lakes without any red

muds (lakes Gounter, Magic, and Yellow have 127–403 ppm Fe; Bowen

and Benison, 2006). The pH of 2.7 to 3.0 at Lake Aerodrome puts these

highly oxidized lake waters on the boundary between the stability fields

for dissolved Fe2+ (and Fe3+ at higher Eh) and hematite precipitation

(Drever 1988; Garrels and Christ 1965). We hypothesize that the increase

in aqueous Fe during evaporation and the decrease in aqueous Fe during

flooding drive the iron oxide precipitation–dissolution reactions back and

forth across the boundary between the stability fields, resulting in periods

of direct precipitation of hematite from lake water.

Another direct precipitate of lake waters during evapoconcentration

may be kaolinite. We find localized white kaolinite layers along the beds

of at least two lakes, Lake Aerodrome and Twin Lake West. It has a soft,

sticky texture similar to that of wet toothpaste. Kaolinite is not found in

the surface sediments of the sandflats/mudflats, ephemeral channels, or

sand dunes, suggesting that it is not being transported into the lakes by

flooding. The dissolved Al measured in these lake waters ranges from 105

to 242 ppm at Lake Aerodrome and from 242 to 1903 ppm at Twin Lake

West (the range of Al in other extremely acid lake waters ranges from 169

to 2516 ppm Al). Dissolved Si is also variable and sometimes of very high

concentrations (44–3730 ppm) in these extremely acid lakes. The aqueous

geochemistry of these lakes, including dissolved Al and Si and pH of, 3,

seems to satisfy the conditions required for direct kaolinite precipitation

from water (Drever 1988).

Lake Facies at Desiccation Stage

The lakes dry up at different time scales. During the austral winter of

2001, at the end of a drought 2–3 years-long, some of the extremely acid

lakes we visited were dry, while others nearby contained surface water but

were shallow (less than , 15 cm) and actively precipitating evaporite

crystals. Some of the largest lake basins in the region, such as Lake Lefroy

(just south of Kalgoorlie), Lake Cowan (near Norseman), and Lake

Gilmore (near Salmon Gums), were mostly dry, with small shallow lakes

(such as Lake Aerodrome and Cumulate Raceway in Lake Cowan basin)

in isolated spots. Similar observations were made in the austral summer

of 2006 when dry, highly evaporated, and flooded lakes were in close

proximity. Highly localized rainstorms may have been responsible for this

selective flooding in a season that had been dry with a predominance of

dry lakes before the rainstorms. Additionally, some lakes may have

greater groundwater input than others.

During periods of desiccation, lake-water-precipitated evaporite

crystals are exposed to the air. In addition, during early stages of

desiccation, shallow groundwater just below (1–8 cm depth) the dry lake

bed still is undergoing evaporation, causing millimeter-scale efflorescent

evaporite halite and gypsum crystals to coat the lake bed surface. Many

efflorescent halite crystals have a popcorn texture, forming a thin, white,

crinkly surface crust (Fig. 9G). Efflorescent gypsum is composed of

randomly oriented, needle-like crystals (Fig. 9I). During more extensive

desiccation events, groundwater below the lakes is deeper (at least 15 cm

below the surface) and wind processes play a larger role on the surface

sediments of the dry lake bed.

Wind subaerially reworks the lake facies sediments, including any

siliciclastics remaining from previous flooding events and any bottom-

growth and efflorescent evaporites formed during evapoconcentration

and desiccation, respectively (Smoot and Castens-Seidell 1994). The effect

of wind on siliciclastic sediments (mostly quartz here) is likely constrained

mainly to sorting by grain size, redeposition on the dry lake bed, and

transportation to adjacent subenvironments, such as sand flats and dunes.

Lake evaporite crystals likely are more vulnerable than siliciclastic grains

to reworking by wind. Halite and gypsum are soft minerals of low
density, so they may easily be broken up into smaller clasts and entrained
(Figs. 6B, 9K). Linear accumulations of detrital gypsum crystals have
been observed forming at a dry lake facies as reworked gypsum crystals
are blown along the dry lake bed (Fig. 9J). These evaporites then act as
siliciclastics and may be transported easily as fine sand and silt and
redeposited on the dry lake bed, in adjacent environments, or even in
different lakes.

Sandflat/Mudflat Facies

Sandflats and mudflats are the relatively flat, vegetation-free areas
around the lakes (Smoot and Lowenstein 1991). GPS resolution was not
high enough to give accurate slope angles in this relatively flat region, but
we estimate slope angles of 0–5u. Traditionally, as the names imply,
a sandflat is composed of sand and a mudflat is composed of mud;
mudflats are typically closer to the lake. However, we observed that these
subenvironments encircling the acid saline lakes on the Yilgarn Craton
change sediment grain size temporally, depending upon lake stage and the
associated physical processes. Therefore, we use the ‘‘sandflat/mudflat’’
term here.
The sandflats/mudflats encircling the extremely acid lakes vary in

width, depending upon the individual lake and the sedimentological
stage. At the narrowest, there is only , 1–2 meters of sandflat/mudflat
between the lakeshore and dune facies. But, at some lakes, we measured
sandflats/mudflats up to , 40 meters wide. During flooding, when lake
levels rise, sandflats/mudflats are narrowest; they are wider upon lake
lowering due to evaporation, and essentially override lake facies during
desiccation.

Most sandflat/mudflat deposits range in composition from entirely
quartz to entirely gypsum to a gypsum-quartz mix, and commonly
these grains are coated with orange hematite (Fig. 6C). At Lake
Brown, several different surface sediments from sandflats have
a consistent mineralogy and commonly are composed of , 50%
quartz and , 50% gypsum. Localized outwash sands sourced from
soils rich in iron oxide concretions (as at some sandflat localities at
Lake Brown) or diverse lithology outcrops (as at Twin Lake West)
may contain up to 40% of grains composed of other materials (such as
ironstone or granite). At Aerodrome and Cumulate Raceway, certain
sandflat areas contain up to 10% of a black, opaque, slightly magnetic
mineral (likely, hematite; Fig. 6A). Grain size ranges from very fine to
coarse sand and sorting ranges from well sorted to very poorly sorted,
suggesting a variety of grain transport histories for these now-similar
environments. Several lakes have sandflat areas with rounded, well-
sorted grains with bimodal very fine to fine sand size distributions,
suggesting an eolian input.

At lakes with onshore outcrops, the coarse-grained sands tend to
become trapped in the crevices of the outcrops of Archean and Tertiary
bedrock, preventing the formation of sandy channels and sand-sheet
outwash deposits along the lake margin. These lakes tend to have fine-
grained shore sediments (silty mudflats versus sandflats) and more mixed-
lithology sediments, depending on the type of outcrop (sandstone,
ironstone, gneiss, granite, etc.).

Sandflat/Mudflat Facies at Flooding Stage

Sands dominate on the surface of a sandflat/mudflat during and after
flooding. Fan-shaped sheet-flood deposits can be seen covering most of
the sandflat (Fig. 8A). Some have discernible small distributary
channels. Flooding-stage sandflats are commonly covered with medium-
to large-scale (up to 8 cm wavelength) interference ripples, raindrop
impressions, and some plant debris, including eucalyptus woody parts
left stranded on the sandflat, and black decaying eucalyptus leaves
accumulated along the shoreline (Fig. 8). Few, if any evaporites are
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found on the surface. During and after flooding, sandflats typically have

a tan or brown color. During flooding, the groundwater table is at or

just below the sandflat/mudflat surface (, 1 cm depth). Approximately

1–2 hours after flooding, groundwater is found at depths of , 1–10 cm

below the sandflat surface.

Sandflat/Mudflat Facies at Evapoconcentration Stage

During the evapoconcentration stage, the sandflat/mudflat has more of

a silty than a sandy texture (Fig. 4). Its color is orange, likely due to iron

oxide precipitation. Some mudcracks have been observed crosscutting

wave ripples. Some evaporite minerals are found on the surface. These

include both millimeter- to centimeter-scale, isolated white halite cubic

crystals and millimeter-scale needle-shaped gypsum crystals (Fig. 9F).

Some halite and gypsum crystals encrust roots and sticks on the sandflat/

mudflat. Dead snakes and frogs have been observed on sandflat/mudflats,

especially during evapoconcentration stages. The groundwater is a bit

deeper below the surface, at 10+ cm depth.

Sandflat/Mudflat Facies at Desiccation Stage

During the desiccation stage, sandflat/mudflat and lake facies merge,

causing these two facies to be more similar sedimentologically than in

flooding and evapoconcentration stages. Loose surface sediments are

mostly of a silt size. Evaporites are common on the surface and include

efflorescent crusts (Fig. 9G, H, I) and reworked crystals of gypsum and

halite (Fig. 9J, K). Some coarse sand lag from previous sheet floods

remains after finer grains are deflated. There are some orange iron oxide

coatings on the undersides of the lag sand (Fig. 9A). This combination of

siliciclastic grains with iron oxide coatings and evaporite crystals give the

sandflats/mudflats pale orange and white colors during the desiccation

stage. Eolian processes form asymmetrical ripples and parting lineations.

Mudcracked polygons formed by expansion of effluorescent evaporite

crust growth are common. Groundwater is deeper below surface (, 40+

cm depth and sometimes not reachable by shovel).

Channel Facies

Several ephemeral channels are found at each of the acid saline lakes.

They are typically shallow (, 1–15 cm deep), short (, 1–20 meters

long), and relatively straight, and they crosscut siliciclastic sediment at the

transitional areas between dunes and sandflat/mudflats (Fig. 10). It is

presumed that these are dry at most times and that water flows in them

only during and immediately after a heavy rainfall, as rainwater runs off

bedrock, dunes, desert soils, agricultural fields, and roads. Most of these

ephemeral channels end in fan-shaped sheet-flood deposits on the

sandflats. They, along with sheet-flood runoff and rain, are the only

ways freshwater is transported to the lakes.

Channel Facies at Flooding Stage

The channels carry water only during the flooding stage. Some

channels are shallow, but they have steep sides, suggesting high-energy

flow and that more erosion than deposition occurs here (Fig. 10B).

Grains deposited are typically of medium–coarse sand size. Medium-scale

asymmetrical ripples form here (Fig. 10D).

Channel Facies at Evapoconcentration and Desiccation Stages

Channels are dry and inactive during the evapoconcentration and

desiccation stages, when no runoff water is available. Some channels may

become partially buried or eroded by eolian deposition during this time.

In addition, gravity may cause avalanching of dry channel walls.

Dune Facies

A variety of sand dunes are found near all of the acid saline lakes

(Fig. 11). We might call the lakes ‘‘interdune lakes’’ because of this

relationship. Dunes are adjacent to sandflat facies, and the margin

between the two facies types is easily distinguished by a break in slope and

change in vegetation (Fig. 11A, B). Whereas sandflats are fairly flat, the

dune facies are characterized by gentle slopes. Whereas sandflats are

fairly free of vegetation (or may only contain sparse salt bush), most

dunes are vegetated.

Dunes are composed mainly of medium sand-size quartz and/or

gypsum grains, typically coated with a thin layer of iron oxide. Digging

into the dunes to expose a vertical profile shows either massive, well-

sorted sand or faintly defined cross bedding (Fig. 11C, D).

Some dunes are free of vegetation, but most are vegetated with the

sparse ‘‘malee.’’ This results in a litter of dry eucalyptus trunks, branches,

and leaves on the dune surface. Ant hills and snake and spider burrows

are common here (Hudson 2005).

We estimate that approximately half of the lakes are surrounded by

inactive dunes, recognized as such by their abundant vegetation and

patches of microbial crusts.

In some places, there are patches of a centimeter-thick layer of desert

soil, composed mostly of sand and a microbial crust. Some microbial

crusts contain polygonal desiccation cracks. Associated with some sand

dunes and sandy soils are thin calcretes, silcretes, gypcretes, or ferricretes,

both on the surface and at shallow depths (up to , 0.5 m below the

surface). Many of these duricrusts have a nodular or columnal ped

texture. Although the surface crusts seem to be relatively recent,

subsurface crusts may be older (early Quaternary? late Tertiary?).

NEAR-SURFACE STRATIGRAPHY OF LAKE AND ASSOCIATED FACIES

Although surface dynamics are driven by flooding, evaporation, and

desiccation (F–E–D) cycles (Fig. 12), features distinctive to individual

cycles are not always preserved in the strata observed in short cores and

shallow holes. Mid-lake facies preserve the best record of past F–E–D

cycles. Beds of bottom-growth halite and/or gypsum indicate evapocon-

centration stages, whereas sand beds and thin black organic laminae, as

well as dissolution features in evaporites, represent past flooding. Detrital

gypsum, mudcracks, and rare buried efflorescent halite crusts, are

preserved from past desiccation events. For example, the mid-lake facies

of Lake Brown has distinct beds of halite chevron crystals and gypsum

bottom-growth crystals separated by beds of sand, silt, and organics. At

some other lakes, we see no halite beds under the lake facies (within

, 40 cm depth from the lake beds). Evaporites, especially halite, are

vulnerable to dissolution, and we have observed dissolution of halite and

gypsum during flood events. It seems most likely that this ‘‘missing’’

halite was later dissolved and consequently is not preserved in the

subsurface strata.

Sandflat/mudflat facies show little evidence of past F–E–D cycles. The

strata here are thick laminae and thin beds of sand, defined mainly by

color variations (Fig. 8). Lighter colored (tan, orange, white) strata are

composed mostly of sand grains. Black silty laminae are composed of

decayed plant material, most likely deposited at past shorelines during

flooding events (Fig. 8). In addition, early diagenetic features, especially

at depths below , 15 cm, mask some depositional features, making

many earlier F–E–D stages difficult to interpret (Figs. 8E, 13).

These observations suggest that acid-lake environments would yield

a rock record composed mostly of bedded siliciclastic and reworked

gypsum sand, alternating with less common beds of bottom-growth

gypsum and halite, with some alteration by early diagenetic features

diagnostic of acid-saline-water environments.
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EARLY DIAGENETIC FEATURES

The unusual geochemistry of the lake and shallow ground waters in
southern Western Australia make these sedimentary environments unlike
other complexes of ephemeral-saline-lakes. Because the groundwaters are
shallow and influenced by surface processes such as flooding and
evaporation, they promote early diagenesis here. The sedimentology
cannot be fully characterized without including a description of these
early diagenetic minerals and textures.

Many of the same minerals precipitated from acid lake waters are also
precipitated from acid groundwaters. Halite and gypsum, and likely
hematite and kaolinite as well, precipitate directly from lake waters. Acid
saline groundwaters in intergranular pore spaces in the sediment of the
lakes and the sandflats/mudflats precipitate these same minerals, as well
as goethite, illite, jarosite ((K, Na)Fe3(OH)6(SO4)2) and alunite ((K,
Na)Al3(OH)6(SO4)2; Figs. 13, 14).
Early diagenetic minerals take several forms. Halite and gypsum grow

displacively from groundwater, producing randomly oriented cubic halite
crystals and needle-, lath-, or rosette-shaped gypsum crystals in sand and
mud (Fig. 13A, B; Casas and Lowenstein 1989). Hematite, goethite,
jarosite, alunite, kaolinite, and illite grow from shallow acid ground-

waters to make a variety of features. All grow in pore spaces in sand and

silt in patches or ‘‘blebs,’’ causing preferential early cementation of grains

and color changes. Red blebs are caused by hematite and goethite

cements, bright yellow-orange blebs are formed by jarosite and goethite

cements, pale gray-blue blebs are made by alunite cements, and white

blebs are composed of kaolinite cements (Fig. 13). A complex mixture of

these colors (red, orange-yellow, gray-blue, and white) is common

(Fig. 13E). Many of these minerals also coat grains. Hematite coatings

are common on quartz and gypsum grains throughout the different

facies. ‘‘Stringers’’ or veins of hematite, goethite, jarosite, and alunite

have been observed in the subsurface just below lake and sandflat/

mudflat facies (Fig. 13H).

Nearly all of the acid lakes exhibited some form of iron oxide

precipitate within the shallow subsurface. Ferric iron in solution may be

precipitated as ferric hydroxide (ferrihydrite) and then converted to more

stable iron oxides such as goethite and hematite. Jarosite is also

commonly precipitated within the pore spaces, and could also, much

later, be converted to goethite and gypsum. Besides features such as grain

coatings and pore-filling cements in bleb- and stringer-shaped patches,

iron oxides also form concretions.

FIG. 10.—Photographs of ephemeral channels leading to acid saline lakes. A) Prado Lake, looking downstream (lake is in upper left of photo). B) Cross-sectional view
of dry channel at Twin Lake East. Note embedded beer can to right of field book for relative age of channel. C) Shallow channel at Lake Aerodrome, looking upstream
toward vegetated sand dune. D) Relatively large dry channel at Bullfinch Lake.
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Well-developed spheroidal iron oxide concretions have been found

forming in situ in sediments below one acid lake and in shallow sandflat

sediment at another, and are abundant in the ferruginous soils regionally

(Fig. 14). At a depth of , 20 cm below Lake Brown, concretions were

actively precipitating in an , 10 cm thick bed of coarse-grained quartz

sand and gypsum and halite ooids (Fig. 14C, D). The concretions appear

to form as smaller (millimeter-scale) blebs of pore-filling iron oxides and

consolidate from isolated zones into a larger concretion. Unlike most

other sands in the acid-lake facies, the host grains in this concretion-rich

bed did not have iron oxide grain coatings, suggesting that all of the

available iron had been mobilized and consolidated as part of the

concretionary precipitates. AMS radiocarbon dates of organic-rich mud

beds several centimeters above and below the concretion bed constrain its

age to between 2,913 6 48 years and 1,410 6 100 years.

The spatial relationship of most of these minerals within the sediments

and the young AMS radiocarbon dates indicate that diagenetic processes

occur early. Diagenetic minerals precipitate after clastic sediment

deposition in areas where sediments are saturated with hypersaline acid

groundwaters in the top portion of the water table (which fluctuates over

time from , 0.1 to , 0.5 m below the surface). Evapoconcentration,

which decreases water pH and increases water salinity, likely promotes

this precipitation from shallow groundwaters. However, floodwaters

affect the lakes much more than they do the already acid saline regional

groundwaters (see Figure 4A, B). Therefore, much of this early diagenesis

likely continues during flooding, but perhaps at a slower rate than during

periods of high evaporation.

DISCUSSION

Summary of Sedimentary Processes at Various Temporal and Spatial Scales

Acid-saline-lake systems are the result of a rare combination of

physical and chemical processes that act on different time scales. Saline-

pan processes, as described by Lowenstein and Hardie (1985), occur here.

However, winds and acidity also contribute greatly to the sedimentary

features in these Western Australian lakes. Although the saline-pan stages

(flooding, evapoconcentration, and desiccation) are asynchronous in each

lake, there is a continuous, but slow, input to the lake systems by the

shallow acid saline groundwater.

Our visits to specific lakes during different years, seasons, and times of

day have allowed us to see the dynamic aspects of both physical and

chemical processes operating in these environments. For example, Lake

Aerodrome, a very small gypsum-dominated lake in Lake Cowan basin

FIG. 11.—Photographs of eolian dunes in the vicinity of acid saline lakes. A) Dunes at Gneiss Lake. B) Vegetated dunes at Prado Lake. C) Cross section of dune sand
with roots near Gneiss Lake. D) Cross section of dune near Lake Aerodrome. Grains are hematite-coated quartz and gypsum eolian sand grains.
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on the southwestern outskirts of the town of Norseman, was visited

during July 2001, June 2005, and January 2006. During all three trips, we

made multiple visits to assess any daily changes. We found no discernible

changes based upon time of day or night, except for variations in air and

surface water temperatures. On two of the three field trips, we observed

the lake before, during, and after rainstorms (Fig. 3D1, D2). Individual

rainstorms affected the surface temporarily. During a rainstorm, the

entire sandflat/mudflat surface floods and the lake appears larger in area.

Water runs into the lake from all directions. Only approximately one

hour after a rainstorm, the size and shape of the sandflat/mudflat and

lake look the same as they did before the storm began. However, a close

inspection shows that some sedimentary and geochemical characteristics

differ. For example, new ripples and raindrop imprints were seen after the

rain in places on the sandflat previously covered with wind-blown,

partially broken gypsum crystals. Lake waters were only slightly less

saline and less acidic immediately after a single rainstorm.

More obvious differences in sedimentology and geochemistry were

observed when contrasting Lake Aerodrome and other lakes from one

year to another. Our July 2001 field work took place at the end of a three-

year-long drought. We noted evapoconcentration at the lakes during

much of that trip, with localized flooding due to a rainstorm at the end of

that field trip. Our June 2005 trip coincided with the wettest year in three

decades. We saw flooding stages at all lakes during this time. By the time

of our January 2006 field trip, there had been several dry months followed

by rainy days during our field work.

Lake Brown, north of Merredin, was very different at the times of our

2005 and 2006 trips, although only six months separated these visits

(Fig. 3C1, C2). In June 2005, Lake Brown was in a flooding stage. Lake

FIG. 12.— Schematic diagrams showing idealized cross sections for acid saline lakes in Western Australia and summarizing major sedimentary processes during
flooding, evapoconcentration, and desiccation stages. Sedimentary processes and geochemical responses are shown to the right and correspond with the saline-lake stages.
The pH range represents , 1 pH unit decrease from the flooding to desiccation stage, and the salinity range represents up to 140 ppth TDS increase from flooding to
desiccation. These changes in pH and salinity affect the lake water more so than the groundwater. The bold lines under pH and salinity show the typical changes in lake
water. During desiccation stages of the lakes, when there is no lake water, evaporation causes changes in pH and salinity of shallow groundwaters. These changes pH and
salinity in shallow groundwater are represented with dashed lines. Under salinity, the circled pathway shows an alternate salinity curve that occurs in lakes that have
a thick halite bed at the lake bottom when flooding occurs. In this case, the flooding actually causes an increase in salinity (but no similar change in pH) as the more dilute
fresh waters dissolve the halite. When these brines start to evaporate, halite is precipitated rapidly, causing a sharp decrease in lake-water salinity before a gradual salinity
increase occurs with further evaporation.

R

FIG. 13.—Early diagenetic features from acid-saline-lake systems in Western Australia. A) Displacive gypsum needle crystals from silt bed below Twin lake West.
Fingertip for scale. B) Displacive halite crystals in brown silt below bottom-growth halite bed; Twin Lake East. Hand for scale. C) Cross-sectional view of Twin Lake
West sandflat sediment and orange acid groundwater. Red blebs are hematite and yellow blebs are jarosite. Trowel for scale. D) Iron oxides line mudcracks just below
surface of desiccated lake facies of Dead Kangaroo Lake. Hands for scale. E) Hematite and goethite (red), jarosite (orange/yellow), and alunite (white) from , 15–20 cm
below the surface of Twin Lake West sandflat. Hand for scale. F–I) Shallow cores. Top of each core represents surface. F) Lake Aerodrome sandflat core, showing
siliciclastic sand that has been diagenetically altered by iron oxide precipitation from shallow groundwaters. G) Twin Lake West mid-lake core, halite bed at top
(crumbled by coring) overlying thin brown siliciclastic sediment and regolith (highly weathered bedrock; note metamorphic foliation; now containing jaosite and iron
oxides). H) Twin Lake East mid-lake core, halite bed at top (crumbled by coring) overlying thin brown siliciclastic sediment that grades into regolith with iron oxide
‘‘stringer.’’ I) Prado sandflat core composed entirely of siliciclastic sediments with patches of diagenetic iron oxide and jarosite.
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water was up to 30 cm deep, temperature was 12–22 uC, and pH was 4.5.

A halite crystal bed, containing both vertical and horizontal dissolution

pipes, constituted the floor of the lake. Although the lake was in
a flooding stage due to a season of heavy rainfall, the lake-water salinity

was still rather high, with 130 ppth TDS, including 548 ppm Al, 55 ppm
Fe, and 544 pm Si (Bowen and Benison 2006). During this flooding stage,

groundwater was just below the surface of the sandflat and had pH values
down to 3 and salinity of 150–160 ppth TDS. In contrast, we saw Lake

Brown in an evapoconcentration stage in January 2006, with shallower

lake water (5–7 cm), warmer lake-water temperatures (47uC), lower pH
(3.9), and higher salinity (250 ppth TDS, including 1815 ppm Al,

291 ppm Fe, and 2640 ppm Si; Bowen and Benison 2006). There was
a halite crust on the lake floor, composed of a bed, 5–6 mm-thick, of new

halite cumulate crystals and rafts overlying an older halite cumulate and
chevron halite crust with some dissolution features. A lamina (, 2 mm

thick) of red mud separated these two halite beds. There were also rafts of

cumulate halite floating on the lake surface halite (Fig. 7A) and halite on
the sandflat surface (Fig. 3C2). Groundwaters were also deeper below the

sandflat surface, yet still had pH values down to 3 and salinities of 150–
160 ppth TDS.

Lake Magic, near Hyden, was also observed at different stages. In June
2005, it was 15–20 cm deep, and was siliciclastic-rich, but it also

contained a thin (, 5 cm thick) crust of alternating halite and gypsum

at its shoreline. Lake waters were clear and had pH 2.5, temperature of
, 4 uC, and salinity of 230 ppth TDS, including 927 ppm Al, 127 ppm

Fe, and 74 ppm Si (Bowen and Benison 2006). Sampled groundwaters
had pH of 3.2–3.4 and salinity of 150 ppth TDS. In January 2006, Lake

Magic was only 1–3 cm deep, had bright yellow water, and was underlain

by a thick (at least 45 cm thick) bed of halite, with gypsum along the
shoreline. These yellow lake waters had a pH of 1.7, temperature of

, 24uC, and salinity of 280 ppth TDS, including 1774 ppm Al, 331 ppm
Fe, and 510 ppm Si (Bowen and Benison 2006). Groundwaters had pH of

3.3 and salinity of 70–75 ppth TDS.

The above data from Lake Brown and Lake Magic suggest that seasons

play a role in the sedimentology and geochemistry at the lakes. However,

seasons are clearly not the driving influence in F–E–D cycles. An
examination of Lake Aerodrome shows that, during the same season

(austral winter) but different years, F–E–D stages were different. Figure 4
shows both facies maps and water-chemistry maps made during the

austral winters of 2001 (evapoconcentration) and 2005 (flooding).
Comparison of lake waters show that, during evapoconcentration, the

lake had lower pH, by approximately 1 pH unit, higher salinity, and

slightly shallower water (only 2 cm difference). Alternately, groundwater
pH values were the same during the two times (Fig. 4A, B). In addition,

sedimentary characteristics differed. During evapoconcentration, the lake
was completely underlain by a bottom-growth gypsum crystal crust, and

the sandflat/mudflat was finer grained and contained mudcracks, wind-

blown gypsum crystal clasts, and efflorescent gypsum crusts (Fig. 4C).
During flooding, Lake Aerodrome’s bottom-growth gypsum crust only

covered approximately half of the lake floor (Fig. 4D) and showed signs
of dissolution (Fig. 7J). Much of the surface of the sandflat was covered

with sandy sheet-flood deposits (Fig. 4D). These observations at Lake
Aerodrome show that: (1) the specific saline-pan stage is not dictated

solely by season; (2) groundwater acidity remains consistent, regardless of

saline pan stage; and (3) multiple field trips undertaken at different times

are necessary for understanding the sedimentology, as well as the
geochemistry, of these acid-saline-lake systems.

We also noted contemporaneous diversity in saline-pan stages in lakes

in close proximity, showing that local conditions must play some role in
processes. We observed two saline-pan stages at different lakes within
individual days during both July 2001 and January 2006. At the same

time that Lake Brown was evaporating in January 2006, Dead Kangaroo
Lake (one of the Bandee Lakes east of Kellerberrin and only
approximately 50 km from Lake Brown) was dry. In July 2001, Lake
Aerodrome was in an evapoconcentration stage while the greater part of

Cumulate Raceway, in approximately the same size basin and only
several hundred meters to the south, was dry. We also observed all three
saline-pan stages in different lakes within only two days. In these cases,

local rain, or lack of it, played the dominant role in determining lake
stage.

The specific geochemistry of the waters, besides yielding evaporite

minerals and early diagenetic features, also affects the sedimentary facies
and how they fluctuate temporally and spatially. For example, at the
times of our field work, gypsum was the dominant evaporite mineral in

only two of the 21 extremely acid saline lakes studied. However, some
halite-dominant lakes we observed have bottom-growth gypsum beds in
the shallow subsurface, indicating past gypsum dominance. The lakes

dominated by halite are most vulnerable to dissolution during flooding.
Therefore, their salinities have a much wider range through time than do
the gypsum lakes. In the halite lakes, some of the highest salinities occur
just after flooding, when halite has dissolved to enrich the flood waters in

sodium and chloride. Halite and gypsum lakes can be quite close together,
as in the case of gypsum-rich Lake Aerodrome and its neighbor, halite-
rich Cumulate Raceway.

HOW ARE THESE SYSTEMS DIFFERENT FROM OTHER NON-ACID, MODERN,

CONTINENTAL EVAPORITIC ENVIRONMENTS?

Comparison with Nearby Neutral Saline Lakes on the Yilgarn Craton

Although this paper has focused on the sedimentology of the extremely

acid saline lakes of the Yilgarn Craton, we have also studied moderately
acid (pH 4–6), neutral (pH 6–8), and moderately alkaline (pH 8+) saline
lakes in the same region (Fig. 1). Although there is a great range of lake

water pH, shallow groundwater near the lakes tends to be acid (average
pH , 3–3.5), due to a regional acid saline groundwater body throughout
the Yilgarn.

The sedimentary processes are very similar among the different-pH
lakes. The main difference is in the assemblage of minerals produced,
both as lake water precipitates and as early diagenetic features. Acid-lake

systems tend to have a red sediment color, due to iron oxide coatings on
grains in the lakes and on the sandflats/mudflats. In general, the neutral
and less common moderately alkaline lake settings have a tan or brown
surface because siliciclastics are not coated by iron oxides. Some neutral

lakes have white sediments, composed of uncoated gypsum. Gypsum is
also commonly found in abundance in lake, sandflat, and dune sediments
at acid lakes, but most acid lake-associated gypsum is orange due to

hematite that coats gypsum grains and/or is incorporated as solid
inclusions along the growth bands of the crystals.

R

FIG. 14.—Iron oxide concretions in southern Western Australia. A) High concentration of iron oxide concretions in desert soil , 100 km west of Hyden. Field book
for scale. B) Iron oxide concretions in young tan quartz sandstone near Kelleberrin. Finger for scale. C) On trowel, semi-soft and hard concretions from tan sand bed
under Lake Brown. D) Photomicrograph of interior of single Lake Brown concretion, showing that the concretion is composed of quartz grains and gypsum and halite
ooids coated with and cemented by iron oxides. Large grain in center of photo is an ooid with a halite subcubic (edges were rounded) crystal core that has been mostly
replaced by gypsum; transmitted, polarized light. E) Photomicrograph of interior of single Lake Brown concretion, showing iron oxide ooids with cores of quartz grains,
halite cubes, and gypsum clumps. Ooids are cemented by iron oxide meniscus cements; transmitted, polarized light. F) Concretion in Lake Aerodrome sandflat sediment
, 4 cm below surface. Finger for scale.
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Early diagenetic features characteristic of acid saline lakes are also

found at some neutral saline lakes, due to the acid groundwater.

However, below the sandflats of neutral lakes, these ‘‘acid’’ diagenetic

features, including jarosite and iron oxide blebs, are far less abundant and

more localized than at the acid lakes.

Another question that arises is: why the great range of pH among

lakes? Although the distribution of acid lakes and neutral lakes seems

random on the Yilgarn Craton (Fig. 1), we have noted that the lakes with

larger lake surface areas and drainage basins are more likely to have

neutral pH. We note this cautiously, though, because we have recorded

extremely acid lake waters at some large lakes such as Lake Brown, as

well as some neutral and moderately alkaline lake waters at small lakes

such as the Gastropod Lakes, less than three kilometers south of

extremely acid Twin Lake East and West. We hypothesize that the larger

lakes have a greater input from rainwater and runoff, making their lake

waters more neutral and diminishing the influence of regional acid

groundwaters. In addition, some neutral lakes seem to be perched

aquifers, in which the lake water is underlain by impermeable mud that

keeps the acid groundwater from seeping into the lake. These two

explanations may account for the many neutral lakes that have acid

groundwaters, but a few neutral lakes do have neutral groundwaters. At

specific lakes, the pH may be neutralized by varying amounts of buffers in

subsurface host rocks, including isolated Eocene limestones (Clarke et al.

1996; see Fig. 2B, lake E). We have observed focused zones of neutral

surface and shallow water in the central and northern parts of the Lake

Cowan basin that are directly above cores containing limestone.

However, other parts of Lake Cowan basin have extremely acid lake

waters and groundwaters.

Comparison with ‘‘Closed’’ Basins Elsewhere in the World

Many traditionally-named ‘‘closed basins,’’ such as those in the western

U.S. (e.g. Death Valley and Great Salt Lake), east Africa (e.g. Lake

Magadi), and China (e.g. Qaidam Basin), host ephemeral saline lakes and

may be among the closest sedimentological relatives to the acid-saline-

lake systems (e.g., Lowenstein and Hardie 1985). However, there are

some major differences that lead to questions about how to define a true

closed basin and whether the acid saline lakes in Western Australia are

closed or semi-closed basins.

The AGI Glossary of Geology (Jackson 1997) defines a closed basin as

an ‘‘enclosed area having no drainage outlet, from which water escapes

only by evaporation.’’ The classic closed basins are tectonically produced

basins with mountains that separate them from one another (e.g.

Handford 1982; Lowenstein and Hardie 1985; Schubel and Lowenstein

1997). In such lakes, springs and ephemeral channels transport waters

into the basin. These closed basins are further isolated because wind does

not blow sediments efficiently from one basin to another and there is no

shallow groundwater table connecting the individual closed basins.

The acid saline lakes in Western Australia are closed basins in one

sense; they have no surface drainage outlets by which water can escape.

However, their geologic setting in a low-relief, tectonically stable region

may actually allow these lakes to exchange materials with one another.

Sediments, including mineral grains, plant debris, and even microscopic

organisms, may be carried from one lake system to another by winds

(Pelletier and Cook 2005). The shallow regional acid groundwater may be

another connection between two or more lakes. Although the ground-

waters seem to flow very slowly here (D. Gray, personal communication),

it is still possible for groundwater chemistry produced in one basin to be

transferred to another by regional groundwater flow. It has also been

hypothesized that rains contribute salts to the lakes of the Yilgarn Craton

(Hingston and Gailitis 1976; Alpers et al. 1992). It is possible that local

evaporation of one lake produces some salt aerosols that later rain out

over another lake. For these reasons, although there is no surface water

outflow, these acid saline lakes may be more accurately called ‘‘semi-

closed’’ basins.

How Are These Systems Different from other Acid Water Environments?

The lowest pH values on Earth have been recorded in volcanic acid

waters and in acid mine drainage. Many of these two acid water types

have the same pH range as the acid lakes in Western Australia. However,

the Australian acid lakes are somewhat different in mineralogy and very

different in sedimentology. In fact, the sedimentology of these acid

systems is rarely studied in detail.

Comparison with Volcanic Acid Lakes

Volcanic acid lakes have been relatively well studied (e.g., Sriwana et al.

2000; Varekamp et al. 2001) and differ dramatically, geologically, from

the acid saline lakes in Western Australia. Volcanic crater lakes can be

extremely acid and highly saline, but, unlike the Western Australian

lakes, they are hosted by young volcanic rocks. In addition, since their

geochemistry does not tend to be rich in Na, Cl, and Ca, they do not form

bedded halite and gypsum, which are so common in the Australian

settings. Some acid crater-lake waters do flow down volcanoes in streams,

springs, and, sometimes, into lakes at the foot of the volcanoes

(Varekamp et al. 2001). However, some so-called ‘‘acid saline’’ lakes

are closer to fresh water than to brines. For example, Lake Caviahue,

which is fed by acid water from the crater lake atop Volcan Copahue on

the Argentina–Chile border, has a salinity of 3 ppth TDS and pH of 4. As

a result, this lake does not precipitate saline minerals. Most importantly,

no F–E–D cycles have been documented at any volcanic acid lakes, as

they are on the Yilgarn Craton. Therefore, the Australian acid saline

lakes and volcanic acid lakes differ in both mineralogy and sedimentol-

ogy.

Comparison with Acid Mine Drainage

Negative pH values have been recorded in acid mine drainage (AMD;

Nordstrom et al. 2003). AMD tends to flow as streams from sites where

sulfide ores at the earth’s surface are oxidized and yield sulfuric acid

solutions. Commonly, AMD sites have been influenced heavily by human

mining activity (e.g., Nordstrom et al. 2003; Fernandez-Remolar et al.

2005). Some of the minerals produced at these sites, such as iron oxides

and jarosite, are the same as those at the Western Australian lakes.

However, AMD sites only rarely precipitate halite or abundant gypsum.

In addition, their deposits tend to show fluvial sedimentary features and

not ephemeral-lake and associated facies.

How Will These Sediments Be Preserved in the Rock Record?

The Yilgarn Craton provides an ideal setting for making a significant

deposit of acid saline sediments now and into the future, due to

a combination of: (1) the continued weathering of bedrock containing few

buffers (Long and Lyons 1992); (2) the arid climate appropriate for

chemical precipitates by evapoconcentration; (3) the relative longevity of

reworked gypsum due to iron oxide coatings (which protect them from

dissolution); and (4) the large-scale regional setting. We suggest that, over

time, the saline lake systems of the Yilgarn Craton will produce

a regionally extensive deposit of red beds composed of mixed siliciclastics

and evaporites.

Recognizing ancient acid-saline-lake deposits may be challenging.

Dissolution and wind often rework and destroy some original facies,

especially bedded halite and gypsum of the lake facies. Ephemeral lake

deposits, whether acid, neutral, or alkaline, look very different from the

traditional black shale or carbonate mudstone lake facies of many

perennial-lake deposits. Acid-lake systems are dominated by sandy

386 K.C. BENISON ET AL. J S R



sediments lacking in carbonate minerals. In addition, early diagenetic

features obliterate some sedimentary structures and textures. However,

the early diagenetic minerals may be part of the key to recognizing past

acid-lake deposits (Benison and Goldstein 2002).

Are other red bed/evaporite deposits made by acid waters? The mid

Permian Nippewalla Group and Opeche Shale of the mid-continent,

U.S.A., serve as two documented ancient acid lake deposits (Benison et

al. 1998). They are composed primarily of red bed sandstones and

siltstones with some laterally discontinuous thin beds of halite and thin

and medium beds of gypsum (Benison and Goldstein 2000, 2001). Recent

data on the sedimentology and mineralogy of lithified strata on Mars are

strikingly similar to the Western Australian acid-saline-lake systems,

suggesting that acid saline surface waters and shallow groundwaters once

existed there (Benison and Bowen 2006). Many other ancient terrestrial

red beds contain evaporite minerals and should be investigated as possible

acid-lake deposits.

CONCLUSIONS

A combination of physical and chemical processes, including flooding,

evapoconcentration, desiccation, and winds, determine the sedimentary

characteristics of the extremely acid saline lakes and surrounding

mudflats, sandflats, channels, and dunes in southern Western Australia.

Although surface processes are similar to those of some other hypersaline

lakes elsewhere in the world, acidity contributed from groundwater

results in some unusual processes, such as direct precipitation of hematite

from lake water, and a rare assemblage of depositional and early

diagenetic products. This knowledge of natural acid saline lakes expands

our understanding of the range of terrestrial extreme environments and

serves as a foundation for identifying acid lake deposits elsewhere on the

earth and in the Solar System.
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