
Journal of Software Engineering and Applications, 2012, 5, 664-670
http://dx.doi.org/10.4236/jsea.2012.59078 Published Online September 2012 (http://www.SciRP.org/journal/jsea)

SEDSR: Soft Error Detection Using Software Redundancy

Seyyed Amir Asghari1, Atena Abdi1, Hassan Taheri2, Hossein Pedram1, Saadat Pourmozaffari1

1Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran; 2Electrical
Engineering Department, Amirkabir University of Technology, Tehran, Iran.
Email: seyyed_asghari@aut.ac.ir, atena.abdi@aut.ac.ir, htaheri@aut.ac.ir, pedram@aut.ac.ir, saadat@aut.ac.ir

Received July 3rd, 2012; revised August 7th, 2012; accepted August 20th, 2012

ABSTRACT

This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect
transient faults. Soft errors damage the control flow and data of programs and designers usually use hardware-based
solutions to handle them. Software-based techniques for soft error detection force less cost and delay to systems and do
not change their configuration. Therefore, these kinds of methods are appropriate alternatives for hardware-based tech-
niques. SEDSR has two separate parts for data and control flow errors detection. Fault injection method is used to
compare SEDSR with previous methods of this field based on the new parameter of “Evaluation Factor” that takes in
account fault coverage, memory and performance overheads. These parameters are important in real time safety critical
applications. Experimental results on SPEC2000 and some traditional benchmarks of this field show that SEDSR is
much better than previous methods of this field. SEDSR’s evaluation factor is about 50% better than other methods of
this field. These results show its success in satisfaction of the existing tradeoff between fault coverage, performance and
memory overheads.

Keywords: Soft Error Detection; Control Flow Errors; Data Errors; Evaluation Factor; Fault Injection

1. Introduction

It is proved that decreasing in feature size of integrated
circuits and the increased complexity of computer archi-
tectures will lead to less reliable systems. The most
important kinds of errors that threat computer systems
and become more important with technology advances
are soft errors. Unlike manufacturing and design faults,
soft errors do not occur consistently and cannot be
predicted which are also called transient faults. Recent
researches show that soft errors damage control flow or
data of a program. It is proved that about 33% to 77% of
transient faults are converted to Control Flow Errors
(CFE) and the remained percentage is converted to data
errors [1,2]. The first and the most important step for
making systems tolerant against transient faults is fault
detection and success in this step can provide appropriate
fault coverage for the system. For transient faults detec-
tion, some techniques are presented that can be catego-
rized in two general classes of hardware and software-
based. The methods based on hardware redundancy have
better fault coverage but impose more cost and overhead
to the system and may not satisfy users in general
purpose applications because of system reconfiguration.
On the other hand, software-based methods have less
fault coverage and more delay; however, they have less
cost and do not change the configuration of the system

and are utilized in different applications due to their fle-
xibility [3-11].

For control flow checking, the program code is divided
into some basic blocks. Each block is consisted of ins-
tructions that are located among jumps. The errors that
should be analyzed in control flow checking methods are
classified into three general categories: 1) wrong occurred
jumps intra a basic block; 2) wrong occurred jumps inter
two basic blocks; and 3) wrong occurred jumps from a
basic block to the unused space of the memory. The
methods that are presented in this field, software or
hardware-based, should be able to handle these kinds of
errors as much as possible.

Hardware-based control flow checking methods moni-
tor the behavior of the program by using a watchdog pro-
cessor that compare the current flow of the program with
its correct one [3]. Software-based methods on the other
side assign a signature to each basic block and add some
instructions to compare the amount of run time signa-
tures with the pre-compile values which are saved in the
memory.

As mentioned earlier, the remained percentage of soft
errors damages the data variables that are used by appli-
cations. To manage this kind of errors, two approaches
are usually utilized: hardware-based and the methods
based on information redundancy. The former is utilizing

Copyright © 2012 SciRes. JSEA

SEDSR: Soft Error Detection Using Software Redundancy 665

N parallel modules in order to do the operation and
compare their results with each other. This technique has
about 100(N − 1)% memory and performance overhead
and its fault coverage is about 100% [4]. The later stores
multiple copies of the program in the memory and
compares their results with each other. Some solutions
based on information redundancy can be found in [5,6].
These methods generally replicate the whole program
and compare their results with each other. The com-
parison instructions are inserted in different places of the
program in various methods.

The mentioned methods are widely used for control
flow and data errors detection. These methods are eva-
luated and compared with each other by fault injection.
As mentioned, by the technology progress and reduction
of electronic equipment dimensions, delivering a method
that is able to have good fault coverage by an acceptable
overhead impose on memory and performance is very
important. The parameters of memory consumption and
execution time of a program is as important as fault
coverage of a method nowadays. Other methods of this
field do not meet these three parameters simultaneously.
To meet all of the parameters, in this paper, a factor that
is called “Evaluation Factor” is introduced and used for
different methods comparison.

SEDSR that is presented in this paper first uses a
control flow checking method that assigns a signature
and some redundant instructions to each basic block.
Then it duplicates a block which is called critical because
of its effect on the other blocks. This method has accept-
able fault coverage and its time/space overhead is less
than 100% which is better than the previous presented
methods of this field.

The reminder of this paper is organized as follows. In
the second section of this paper, our motivation of pre-
senting this method and the experimental conditions will
be explained. The third section introduces the proposed
method and the evaluation results and SEDSR compari-
son with other techniques is presented in the forth sec-
tion.

2. Motivation

Usually, transient faults that occur in computer systems
cause control flow checking or data errors. Data errors
change the value of a variable in the program and control
flow errors change the running flow of a program.

Soft errors which are mainly because of single event
upsets (SEUs) are caused because of electromagnetic
interference, power glitch or strikes on a chip. These
kinds of errors are very serious and can interrupt the
functionality of a program. So exploiting a method for
soft error detection is needed in many applications which
are using Commercial Off-The Shelf (COTS) equipment.

A control flow error occurrence in a program can be
modeled by the following situations:
 Branch deletion: in this case a branch in the program

will be missed.
 Branch modification: in this case the condition or

destination of a branch in the program is changed.
 Branch insertion: in this case the program jumps to

an illegal point.
 Program counter manipulation: in this case the

program counter of a program is changed randomly
and leads to random jumps.

The method of this paper can detect control flow and
data errors simultaneously and force less overhead on
memory and execution time of the program. The previ-
ous techniques have not considered these parameters
with each other and usually focus on fault coverage
rather than memory and performance overheads. Time/
space overhead is as important as fault coverage and
should be considered in different methods precisely. The
contributions of this paper can be listed as follows:
 Presenting a new control flow checking method

which has better fault coverage, memory and per-
formance overhead than other techniques.

 Presenting a new data error detection method that
limits the overhead of replication and repeats more
critical variables instead of the whole program. In this
way, the tradeoff between memory, performance
overhead and fault coverage will be satisfied better
than full duplication methods.

 Combining the former methods with each other to
construct a soft error tolerant system that detects
about 96.3% of the errors and forces less than 80%
memory and performance overhead to the system.

 Introducing a new parameter which is called “evalua-
tion factor” and considers fault coverage, memory
and performance overhead simultaneously.

In the next section, the proposed method of this paper
will be explained.

3. The Proposed Technique

3.1. Description of Control Flow Error Detection
Method

In the previous sections, the basic idea of control flow
checking methods is explained. Because of advantages of
software-based techniques, the method of this paper is in
this category. Like other control flow checking methods,
this technique divides the program into some basic
blocks and assigns a signature to each block based on its
location in control flow graph. A basic block is consisted
of maximum number of instructions which are run
continuously. Therefore, the instructions of basic blocks
are not branches or destination of branch instructions. In
this way the program P can be shown as a graph which

Copyright © 2012 SciRes. JSEA

SEDSR: Soft Error Detection Using Software Redundancy 666

contains some nodes and edge sand is called control flow
graph. Each node represents a basic block and the edges
show the transitions between blocks. Figure 1(a) shows
a sample program and Figure 1(b) is its control flow
graph.

In the control flow graph of Figure 1(b), the succes-
sors of node 1 are 2 and 3 so node I is the successor of
node J if there is a legal branch from node I to J.

In the proposed technique of this paper like other
software-based methods, for control flow checking, a
signature is assigned to each basic block. In SEDSR, this
signature is variable Si that shows successor blocks of the
present block. For control flow error detection in basic
blocks, four redundant instructions are also defined. The
first one is called control and inserts at the beginning of
each basic block to verify the correctness of branch
destination.

The second one is called check and confirms the
correctness of destination it also checks if the present
block is one of the successors of the source basic block.
For checking the correctness of the accessibility, Equa-
tion (1) is utilized:

 error S sel ; (1)

S is Si variable that is updated during the program
execution and sel shows the number of current basic
block. At the middle of each basic block, if selth bit of S
which shows the present basic block number equals 1,
the destination is assigned correctly. Otherwise, error
signal that shows the transient fault occurrence is acti-
vated and the program will be halted.

The third instruction is called update and updates S at
runtime. For updating control flow signature, Equation (2)
is designed which is run at the middle of each basic
block:

iS s (2)

Therefore, variable S is updated at the middle of basic
blocks and is prepared to go to the next destination. It
should be noted that S is set to 00000…1 the first time to

(a) (b)

Figure 1. (a) A sample program; (b) Its control flow graph.

go to the first basic block and other jumps become im-
permissible for it.

The last instruction is called exit and is run at the end
of each basic block. It updates the amount of sel variable
to the number that shows the current basic block.

Update instruction is placed at the middle of each
basic block and some of the errors caused by illegal intra
jumps in a specific basic block are detected. Putting the
redundant instructions at the middle of basic blocks is
similar to break each block into two parts. After error
detection, error signal equals 0 and the program will be
stopped.

If the illegal jump is occurred inter a basic block, this
error will be detected by the check and control instruc-
tions in the successor blocks. Figure 2 shows the first
basic block of sample program of Figure 1, after adding
redundant instructions.

This method is much simpler than the previous tech-
niques because it uses no logical operations like AND or
XOR for control flow checking. Its ability in intra block
control flow errors detection makes it more capable than
other methods of this field. In the next section, the ability
of this method is compared analytically and experimen-
tally with the previous techniques.

3.2. Description of Data Error Detection Method

A popular method for soft error detection in programs is
data and instructions replication. These kinds of methods
are generally expensive in terms of memory size, execu-
tion slow down and programming limitations. However,
they have enormous capability in fault detection. In many
applications like real time systems, the memory storage
size and the execution time are limited and if these
constraints don’t meet, the system’s performance de-
grades a lot and in many cases its output is not desired.

Figure 2. Sample basic block after adding redundant in-
structions.

Copyright © 2012 SciRes. JSEA

SEDSR: Soft Error Detection Using Software Redundancy 667

As it was explained in the previous sections, control
flow graph of each program shows its basic blocks and
the dependency between different parts of it. The method
that is proposed in this paper for data error detection
determines a critical block in the control flow graph that
has the most number of fan outs. This block is critical
because its results propagate to other parts of the prog-
ram and can affect other blocks in a faulty way. So
isolating this part can decrease the faults of the program.

It is mentioned that full program duplication methods
are not appropriate because of their overheads in execu-
tion time and memory. These days limiting the duplica-
tion scope is a good replacement for full duplication
methods in many classes of applications such as real time
and general purpose ones.

According to principle of locality in software, it is
proved that 90% of errors are embedded in 10% of the
program code [12]. Determining this critical section of
code that contains most of the faults is very complex and
dependent to the application. But by detecting this criti-
cal part, and duplicating it, the appropriate results in fault
coverage, performance and memory overhead will be
achieved simultaneously. There are many criteria for
critical region determination. In this paper, the critical
block of every program based on the number of fan outs
have been selected. Our evaluations show that the num-
ber of fan outs is a suitable parameter in lots of bench-
mark sand has an acceptable result in fault coverage,
performance and memory overhead.

In SEDSR, a block that has the most fan outs is
determined and duplicates in compile time. At this time,
the variables of the critical block are divided into two
categories: middle and final variables. The middle ones
are important in computing the other variables but final
variables are not participating in any computations. In the
critical block, a redundant instruction is inserted after
final variables to compare these parameters in the ori-
ginal and replicated blocks. If there is any mismatch
between these variables in two blocks, an error is re-
ported and the program execution will be stopped.

Critical block has the most connections with other
parts of the program and so an error in its output propa-
gates and infects other blocks. This block duplication can
detect a great percentage of errors and forces less over-
head in memory and execution time to the program.

Figure 3 shows a sample control flow graph. As
shown in this graph, block A is critical because it has the
most fan outs in the graph and its results propagate to
other parts and can defect them. By duplicating this
block and executing the redundant along with the origi-
nal version, faults are detected and the execution time
and memory space remain at an acceptable amount.

The data error detection of this paper is compared with
a full duplication method that is presented in [6]. Full

duplication method is prevalent because of its high fault
coverage and is used in RSCFCDV method too [8]. In
this technique, the full program is duplicated and the
comparison instruction is inserted after final variables as
it was explained before.

Figure 4 shows the process of this method in a sample
program. In this program, a, b, c are the middle variables
and d is the final one. In this way, the comparison in-
struction is placed after writing on final variable and a
great percentage of the occurred errors on data are de-
tectable. In this way overheads because of comparison
instruction will reduce in comparison to other methods
like [4,5]. So this method has the best overhead between
all of the full duplication methods and SEDSR will
compare with this technique in the next section.

4. Evaluation Results

In this section, the evaluation results of proposed me-
thods for control flow and data error are presented based
on the analysis and experiment. SEDSR is compared
with RSCFCDV method that has two parts for control
flow and data errors.

4.1. Analytical Evaluation

For analytical evaluation of control flow checking me-
thod, all possible jumps are considered and the capability

A

ED

B C

Figure 3. Control flow graph of a sample program.

C=f(b)

a=b+c

d=a-b*c

C1=f(b1)
C2=f(b2)

a1=b1+c1
a2=b2+c2

d1=a1-b1*c1
d2=a2-b2*c2

if (d1 !=d2)
Error

(a) (b)

Figure 4. (a) Usual execution of a sample program; (b)
Control flow graph of sample program after adding com-
parison and redundant instructions.

Copyright © 2012 SciRes. JSEA

SEDSR: Soft Error Detection Using Software Redundancy

Copyright © 2012 SciRes. JSEA

668

 OS (Operating System): the fault is detected by op-
erating systems and its exceptions.

of SEDSR and RSCFCDV for error detection is com-
pared with each other. There are nine different cases that
are shown in Table 1. seven cases out of nine are illegal
jumps that occur between basic blocks and the other ones
are in a specified block. In Table 1, Bi and Bj are basic
blocks of a sample program.

 WR (Wrong Result): the fault change the final result
of the program and produces a wrong output.

 TO (Time Out): the fault change program execution
time and it does not end in a specified amount of time.

 SD (Single Detection): the fault is detected by the
instructions that are used for control flow checking.

The fault coverage of every method is equal to its SD
percentage and the other kinds of detections like TO and
OS is not the part of technique’s detection capability.

Fault injection operation is applied to seven bench-
mark programs to compare the proposed method of this
paper with RSCFCDV [8] which considers control flow
and data errors simultaneously. These benchmarks are
Bubble Sort (BS), Quick Sort (QS), Matrix Multipli-
cation (MM) and Linked List Insertion (LLI) which are
typical benchmarks that are used in previous researches
of this field [1,7,9] and gzip, parser and earthquake that
are standardized integers and floating pointSPEC2000
programs [14].

Three main parameters are computed based on fault
injection results which are fault coverage, memory and
performance overheads. Fault coverage is defined as the
percentage of detected faults that do not damage the final
outputs of the program. Performance overhead represents
the execution time of fault tolerant version of the pro-
gram to this parameter in original one. On the other hand,
memory overhead is defined as memory capacity of the
program with redundant instructions to this parameter at
original code.

For experimental evaluation 1000 faults are injected to
each of the mentioned benchmarks and the detection
capabilities of methods are compared to each other.
Every fault that is injected to the program will have one
of the following effects on the final output of the pro-
gram: 1) CR: the fault that is injected to the program do

As it can be derived from this table, the control flow
checking method that is proposed in this paper is much
more capable in error detection than RSCFC [7]. The
new method inserts a control instruction at the beginning
of each basic block and in this way detects all illegal
jumps to the beginning of the blocks. But in RSCFC, the
detection of illegal jumps to the beginning of a basic
block requires SET instruction execution. On the other
hand, the proposed control flow checking can detect
some percentages of intra block illegal jumps. So from
all nine cases which are shown in Table 1, the proposed
technique of this paper can do right at seven of them and
RSCFCDV at three of them. This analytical evaluation of
two methods shows that the proposed method of this pa-
per does much better for control flow checking because
of its design and redundant instructions which are placed
in efficient places of basic blocks.

4.2. Experimental Evaluation

For experimental evaluation of the proposed method,
fault injection is used. Figure 5 shows the fault injection
environment that contains the following elements:
 A Background Debug Mode module that can be uti-

lized for both programming and debugging. It can
also be used for fault injection like [13].

 Development board phyCORE-MPC555 [14].
 A personal computer.

The fault injection methods are divided into three main
categories as follows:
 Direct fault injection on to processor registers by us-

ing BDM module.

 Deletion of existing jumps instruction of the program.

B ackgrou nd D ebug Module

Evaluation
Board

(M PC555)

BD M Interface

 Applying redundant jump instructions to the program.
 Changing jump instructions of the program or their

operands.
According to the effects of injected faults in the pro-

gram, five different cases are produced:
 CR (Correct Result): the fault doesn’t change the

final result of the program.
Figure 5. Fault injection mechanism structure by the use of
BDM.

Table 1. Detection capabilities comparison between SEDSR method and RSCFC (BEG: begin; MID: middle).

Beg-Beg
Bi → Bj

Beg-Mid
Bi → Bj

Beg-End
Bi → Bj

Mid-Beg
Bi → Bj

Mid-Mid
Bi → Bj

Mid-End
Bi → Bj

End-Beg
Bi → Bj

End-Mid
Bi → Bj

End-End
Bi → Bj

Beg-End
Bi → Bi

End-Beg
Bi → Bi

RSCFC

SEDSR

SEDSR: Soft Error Detection Using Software Redundancy 669

not change the final result of the program; 2) OS: the
fault is detected by an operating system exception; 3)
WR: the fault makes final output of the program in-
correct; 4) TO: the fault creates an infinitive loop in the
program and the program times out; and 5) SD: the fault
is detected by redundant instructions that are added to the
program.

Table 2 shows the results of this fault injection and
Table 3 represents the memory and performance over-
head of different methods.

As it can be derived from the tables, the overall me-
mory and performance overhead of the proposed method
of this paper is less than these parameters in RSCFCDV.
Memory and performance overheads are very critical in
systems that have limited memory and their execution
time is very critical because of their real time tasks. Fault
coverage of the proposed technique is very close to this
parameter in RSCFCDV because of the capability of
control flow checking method of this paper that operates
better than RSCFC and the data error detection technique
detects the great percentage of faults with very less over-
head.

In this part we will define a new parameter that is
called “Evaluation Factor” which considers fault cover-
age, memory and performance overheads simultaneously.
As we know the best method has high fault coverage and
low overheads. The evaluation factor is defined as fol-
lows:

Table 2. Fault injection results of RSCFCDV and SEDSR
methods (CR: correct results; OS: operating system; WR:
wrong results; TO: time out; SD: single detection).

 CR OS WR TO SD

RSCFCDV-BS 48.12 24.87 0.61 0.52 25.88

RSCFCDV-QS 43.46 28.76 0.45 0.41 26.92

RSCFCDV-MM 45.78 26.12 0.76 0.66 26.68

RSCFCDV-LLI 46.82 23.07 0.34 0.76 29.01

RSCFCDV-gzip 39.16 29.78 1.89 029 28.88

RSCFCDV-parser 40.51 28.34 0.67 0.35 30.13

RSCFCDV-earth 36.48 30.93 1.06 0.41 31.12

SMSD-BS 42.34 25.12 4.56 0.43 27.55

SMSD-QS 49.65 19.76 3.76 0.65 26.18

SMSD-MM 44.28 20.45 5.12 0.93 29.22

SMSD-LLI 43.32 25.09 4.08 0.65 26.86

SMSD-gzip 39.03 28.34 3.16 0.92 28.55

SMSD-parser 48.12 21.54 2.48 0.16 27.7

SMSD-earth 44.05 22.89 3.03 0.39 29.64

Table 3. Memory and performance overhead of SEDSR and
RSCFCDV methods.

Memory Overhead Performance Overhead
Program

RSCFCDV SMSD RSCFCDV SMSD

BS 1.83 1.27 1.67 1.12

QS 2.02 1.31 1.84 1.04

MM 1.98 1.46 1.71 1.21

LLI 2.01 1.16 2.12 1.02

gzip 2.11 1.45 1.98 1.32

parser 2.21 1.32 1.91 1.09

Earthquake 2.14 SMSD RSCFCDV SMSD

Evaluation Factor

Fault coverage

Memory overhead Performance overhead

The method which has greater Evaluation Factor is
better because it considers the tradeoff between different
parameters. A good soft error tolerance method should
have a high fault coverage and low space and time over-
heads. Figure 6 shows the Evaluation Factor of two
mentioned methods. As it can be derived from this figure,
the method that is proposed in this paper has greater
Evaluation Factor than RSCFCDV and is more appropri-
ate for using in safety-critical applications.

5. Conclusion

This paper presents a new software-based method for
soft error detection. Transient faults cause control flow
and data errors in systems that violate the final outputs of
a system. The method of this paper considers both con-
trol flow and data errors by dividing the program to some
basic blocks and duplicating execution in a specified
block. A new metric that is called “evaluation factor” is
introduced in this paper that considers fault coverage,
memory and performance overheads simultaneously.
Experimental results of fault injection show that the pro-
posed method of this paper has better in evaluation pa-
rameter than other methods of this field. The main nov-
elty of this paper is presenting a software based soft error
detection method that is able to detect control flow and
data errors. This technique has much less memory and
performance overheads than other methods of this field
and is an appropriate choice for real time safety critical
applications which have limitations in memory and exe-
cution time.

6. Acknowledgements

This paper was supported by the Research Institute for

Copyright © 2012 SciRes. JSEA

SEDSR: Soft Error Detection Using Software Redundancy 670

0.32
0.27 0.29

0.23 0.23 0.24 0.22

0.67 0.7

0.54

0.81

0.5

0.68

0.51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BS QS MM LLI gzip parser earth

Ev
al

ua
tio

n
Fa

ct
or

Benchmarks

RSCFCDV

SEDSR

Figure 6. Evaluation factor of RSCFCDV and SEDSR.

ICT-ITRC.

REFERENCES
[1] N. Oh, P. P. Shirvani and E. J. McClusky, “Control Flow

Checking by Software Signature,” IEEE Transaction on
Reliability, Vol. 51, No. 2, 2002, pp. 111-122.
doi:10.1109/24.994926

[2] A. Mahmood, “Concurrent Error Detection Using Watch-
dog Processors—A Survey,” IEEE Transaction on
Computers, Vol. 37, No. 2, 1988, pp. 160-174.
doi:10.1109/12.2145

[3] A. Rajabzadeh and G. Miremadi, “CFCET: A Hardware
Based Control Flow Checking Technique in COTS Proc-
essors Using Execution Training,” Elsevier Journal on
Computer Microelectronics and Reliability, Vol. 46, 2006,
pp. 959-972.

[4] N. Oh, P. P. Shirvani and E. J. McCluskey, “Error
Detection by Duplicated Instructions in Super-Scalar
Processors,” IEEE Transaction on Reliability, Vol. 51,
No. 1, 2002, pp. 63-75. doi:10.1109/24.994913

[5] N. Oh, M. Subhasish and E. J. McCluskey, “ED4I: Error
Detection by Diverse Data and Duplicated Instructions,”
IEEE Transaction on Computers, Vol. 51, No. 2, 2002,
pp. 180-199. doi:10.1109/12.980007

[6] B. Nicolescu and R. Velazco, “Detecting Soft Errors by a
Purely Software Approach: Method, Tools and
Experimental Results,” Proceedings of the Design,
Automation and Test in Europe Conference and
Exhibition, Munich, 3-7 March 2003.

[7] A. Li and B. Hong, “On-Line Control Flow Error Detec-
tion Using Relationship Signatures among Basic Blocks,”

Elsevier Computers and Electrical Engineering, Vol. 36,
No. 1, 2010, pp. 132-141.
doi:10.1016/j.compeleceng.2008.08.010

[8] A. Li and B. Hong, “Software Implemented Transient
Fault Detection in Space Environments,” Elsevier
Aerospace science and technology, Vol. 11, No. 2-3,
2007, pp. 245-252.

[9] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy and J. A.
Abraham, “Design and Evaluation of System-Level
Checks for On-Line Control Flow Error Detection,” IEEE
Transactions on Parallel Distributed Systems, Vol. 10,
No. 6, 1999, pp. 627-641. doi:10.1109/71.774911

[10] J. L. Li, Q. P. Tan and J. J. Xu, “A Software-Implemented
Configurable Control Flow Checking Method,”
International Symposium on Parallel Archirectures,
Algorithmes and Programming, IEEE Computer Society,
Washington, 2010, pp. 199-205.

[11] A. Vemu and J. Abraham, “CEDA: Control-Flow Error
Detection through Assertions,” IEEE Transaction on
Compuer, Vol. 60, No. 9, 2011, pp. 1233-1245.
doi:10.1109/TC.2011.101

[12] A. S. Tanenbaum, J. N. Herder and H. Bos, “Can We
Make Operating System Reliable and Secure?” IEEE
Magazine, Vol. 39, No. 5, 2006, pp. 44-51.

[13] S. A. Asghari, H. Pedram, H. Taheri and M Khademi, “A
New Background Debug Mode Based Technique for
Fault Injection in Embedded Systems,” International
Review on Modeling and Simulation, Vol. 3, No. 3, 2010,
pp. 415-422.

[14] J. Henning, “SPEC CPU2000: Measuring CPU Perform-
ance in the new Millennium,” Computer, Vol. 33, No. 7,
2000, pp. 28-35. doi:10.1109/2.869367

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/12.2145
http://dx.doi.org/10.1109/24.994913
http://dx.doi.org/10.1109/12.980007
http://dx.doi.org/10.1016/j.compeleceng.2008.08.010
http://dx.doi.org/10.1109/71.774911
http://dx.doi.org/10.1109/TC.2011.101
http://dx.doi.org/10.1109/2.869367

