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ABSTRACT 
 
Recent advances in many multi-discipline technologies have allowed small, low-cost fixed wing unmanned air 

vehicles (UAV) or more complicated unmanned ground vehicles (UGV) to be a feasible solution in many scientific, civil 
and military applications.  Cameras can be mounted on-board of the unmanned vehicles for the purpose of scientific data 
gathering, surveillance for law enforcement and homeland security, as well as to provide visual information to detect and 
avoid imminent collisions for autonomous navigation. However, most current computer vision algorithms are highly 
complex computationally and usually constitute the bottleneck of the guidance and control loop. In this paper, we present 
a novel computer vision algorithm for collision detection and time-to-impact calculation based on feature density 
distribution (FDD) analysis. It does not require accurate feature extraction, tracking, or estimation of focus of expansion 
(FOE). Under a few reasonable assumptions, by calculating the expansion rate of the FDD in space, time-to-impact can 
be accurately estimated. A sequence of monocular images is studied, and different features are used simultaneously in 
FDD analysis to show that our algorithm can achieve a fairly good accuracy in collision detection. In this paper we also 
discuss reactive path planning and trajectory generation techniques that can be accomplished without violating the 
velocity and heading rate constraints of the UAV.   
 
Keywords: Unmanned Air Vehicle, Unmanned Ground Vehicle, Reactive Path Planning, Feature Tracking, Feature 
Density Distribution 
 

I. INTRODUCTION 
 
Recent advances in communications, solid state devices, and battery technology have made small, low-cost 

fixed wing unmanned air vehicles a feasible solution for many applications in the scientific, civil and military sectors.  
With the use of on-board cameras this technology can provide important information for low-altitude and high-resolution 
applications such scientific data gathering, surveillance for law enforcement and homeland security, precision 
agriculture, forest fire monitoring, geological survey, and military reconnaissance. 

The fixed wing UAVs that are currently used by the military (e.g., Preditor, Global Hawk) are large, expensive, 
special purpose vehicles with limited autonomy.  At the other end of the spectrum are small UAVs (less than six foot 
wingspan), and micro air vehicles (MAVs) (less than one foot wingspan), which are primarily being developed by 
universities and research laboratories.  Current FAA regulations limit the access of unmanned air vehicles in the national 
air space.  In particular, autonomous UAVs are currently banned from flying in the national air space.  The primary 
concern is safety.  Most UAVs are not equipped with on-board sensors that detect imminent collisions.   

The Multiple AGent Intelligent Coordination and Control (MAGICC) Laboratory at Brigham Young 
University (BYU) has recently developed innovative autopilot technologies for small UAVS.  Capabilities include 
autonomous take-off after a hand launch, autonomous landing, and the ability to follow a pre-determined trajectory, or to 
fly to specified waypoints. With an on-board video camera, these autonomous UAVs can be utilized to gather useful 
information for many low-altitude high-resolution applications. Unfortunately, these applications are not feasible without 
see and avoid capability that can detect and avoid collision with other UAVs or obstacles, such as trees and buildings.  
Our research objective is to combine novel computer vision algorithms with innovative trajectory planning techniques 
for UAVs so that the see and avoid problem can be solved in real time.   

An enabling technology for small and micro UAVs is see-and-avoid technology, i.e., the ability to detect 
imminent collisions and to maneuver the UAV to avoid them.  Sensing technologies such as radar and laser range finders 
are available to large and medium size UAVs.  However, the heavy weight and excessive power requirements of these 
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sensors make them infeasible for small and micro UAVs.  Since most applications of small UAVs require an on-board 
camera, it makes sense to use the camera to solve the see-and-avoid problem as well.  

The see-and-avoid problem is a unique computer vision task that does not require accurate measurement of 
object distance or 3-D scene reconstruction.  The objective is to see the objects, static or moving, that are rapidly 
approaching the UAV and to estimate the time-to-impact.  The trajectory generator is alerted if time-to-impact falls 
below a predetermined threshold and is required to plan a trajectory that avoids the obstacle.   

Radar is an excellent candidate for collision detection, however for small UAVs, antenna weight and the weight 
of the associated power supply are prohibitive.  Sonars are inexpensive and light weight but with less than thirty foot 
sensing radius, are inadequate to detect collisions.  In addition, they have very poor lateral resolution and are sensitive to 
false echoes caused by specular reflections.  Laser rangefinders are large and bulky and therefore not suited to small and 
micro UAVs.   

As an alternative, small, light-weight cameras are readily available and consume minimal power.  In addition, 
cameras are usually employed in small UAV applications as part of the payload package.  Therefore the addition of 
computer vision for collision detection does not introduce an additional sensor package.  The biggest drawback of the 
vision technology is computational overhead that is required to process video signals in real time. Existing computer 
vision algorithms are complicated and require extensive computation capacity.  Our research aims precisely at the 
development of simple yet efficient and robust algorithms to address this drawback. 

The three enabling technologies needed to solve the see-and-avoid problem are  
1.  Real-time vision algorithms for collision detection, 
2.  Real-time guidance algorithms for collision avoidance, and 
3.  Autopilot technologies to maneuver the UAV. 

It is unlikely that the see-and-avoid problem can be solved by finding independent solutions to these three challenges: an 
integrated approach is essential.  The vision algorithms must robustly estimate the time-to-impact even with a low 
quality, noisy video signal.  The vision algorithms must be simple and efficient to provide real-time updates at various 
altitudes and ground speeds.  The guidance algorithms must be able to utilize the time-to-impact and object size 
information from the vision algorithms to plan the new trajectories and to avoid collision.  In addition, the guidance 
algorithms must guide the UAV around the obstacle, deviating from the original path as little as possible.  The autopilot 
technologies must be able to track and respond to guidance algorithms and maneuver the UAV to a smooth and stable 
transition for temporary changes of the path. 

The remainder of this paper is organized as follows. The state-of-the-art in computer vision and UAV path 
planning are reviewed in Section 2. This is followed, in Section 3, with a description of the vision and guidance 
algorithms. Results are presented in Section 4. The proposal then ends with a brief discussion in Section 5. 

 
2. STATE-OF-THE ART 

2.1 Collision detection (See) 

Depth perception capability is what the vision system uses to detect collisions.  It can be categorized into two 
major approaches: stereo vision and motion analysis.  Stereo vision needs to solve the correspondence problem which 
can be a complicated and time-consuming process.  Research work has been done using Dynamic Programming (DP) for 
finding the correspondences points for 3-D reconstruction and robotic vision applications [1-3]. The matching problem 
can be stated as an optimization task where an objective function, representing the constraints on the solution, is to be 
minimized.  The optimization process can also be performed by means of Genetic Algorithms (GA) [4].   Genetic 
Algorithms belong to stochastic search methods.  They are randomized search and optimization techniques guided by the 
principles of evolution and natural genetic [5-8].  Both require very complicated processing and may not be able to 
update the measurements in real time even with a line scan image sensor [4].  Recent work also includes using stereo 
vision to estimate the camera ego-motion in order to track the robot position [9-10].   

Because of the payload limitation and power requirement, stereo vision techniques may not be a good candidate 
for UAV applications, especially for small and micro UAVs.  Other active technologies such as radar, sonar, and laser 
rangefinder, etc., are also excluded for this application because of the limitations discussed in introduction section. 
Motion analysis, on the other hand, uses a sequence of monocular images to extract 3-D motion and structure. Motion 
analysis can be broadly categorized into two groups, optical flow and feature tracking.  Optical flow can be seen as an 
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intensity-based method.  Techniques based on optical flow have been developed in the past decade [11-18].  Images from 
the onboard camera can sometimes be very noisy, especially after going through the wireless transmission.  Also, the low 
quality of the long range image, the nature of UAV applications, the attitude changes (rolls, pitches, and yaws), and large 
depth of field requirements prevent us from using intensity-based techniques.  

 There are works emphasizing feature tracking that are very robust and avoid the problem of optical flow [19-
20]. However, because of the high-speed requirement, low image quality, and rapidly changing UAV attitude, feature 
tracking may not be reliable.  Accurately detecting significant features and tracking them through frames is not a trivial 
task.  Detecting significant features for tracking usually requires a priori knowledge of the scene which is not possible for 
UAV applications.  For similar reasons, a couple of recent developments are not suitable for UAV applications [21-22].  
Another very unique method worth evaluation is the measurement of defocus [23].  This approach also posts the biggest 
challenge, how to measure the defocus. Some alternatives include recovering depth by measuring defocus using the 
relative blurring between two images of the same scene [24] and using multiple images at different levels of focus and 
interpolating the sharpness of objects over distance [25].  Shinning illumination patterns on the scene and measuring the 
defocus of the patterns that have a known sharpness [26] was also studied.  The method has drawbacks such as distance 
range limitation, recovering depth only for only one window in the image, restriction to static environments, and shallow 
range of depth.  Other works attempt to analyze motion using focus of expansion, including using velocity field, neural 
networks, and connected regions [27-30].  All of these methods require complex computations and are not suitable for 
UAV applications. 

Based on the literature review and the restrictions posed by UAV applications, we developed a simple yet 
efficient method to detect collisions and estimate the time-to-impact without solving a correspondence problem or 
accurately detecting and tracking significant features.  The method is reliable and easy to use and requires minimal 
camera calibration.  It has no intrusive component, no interference problem, and no physical anomalies such as specular 
reflection.  Most importantly, the method works well with low image quality and is robust with respect to UAV attitude. 

2.2 Collision Avoidance (Avoid) 

In the mobile robotics literature, 
there are roughly two different approaches 
to motion planning: deliberative motion 
planning where explicit paths and 
trajectories are computed based on global 
world knowledge [31-33], and reactive 
motion planning which uses behavioral 
methods to react to local sensor information 
[34,35].  In general, deliberative motion 
planning is useful when the environment is 
known a priori, but can become 
computationally intensive in highly dynamic 
environments. Reactive motion planning, on 
the other hand, is well suited for dynamic 
environments, particularly collision 
avoidance, where information is incomplete 
and uncertain, but lacks the ability to specify 
and direct motion plans. 

The hierarchical trajectory generation techniques used is summarized in the architecture flowchart shown in 
Fig. 1.    At the highest level of the architecture is the waypoint path planner (WPP), which generates waypoint paths 
given the UAV and the target positions and a world map.  Our baseline approach to the WPP is to use a Voronoi [36, 37] 
algorithm to generate a graph through an obstacle field to the target, and then to search the graph using an Eppstein 
search [38].  This approach has been used extensively to solve cooperative timing and cooperative control problems [39-
45].  The WPP generates a set of waypoints and a target velocity for the dynamic trajectory smoother (DTS).  The DTS 
converts the set of waypoints to a time-parameterized trajectory that satisfies the kinematic, heading-rate, and velocity 
constraints of the UAV.  Our approach to the design of the DTS is to give the trajectory generator the same kinematic 
structure as the UAV with similar heading-rate and velocity constraints.  The trajectories are propagated on-the-fly by 
selecting the (constrained) reference heading rate to minimize the time deviation from the waypoint path and, optionally, 

Fig. 1.  Architecture of the hierarchical trajectory generation techniques. 
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to match the path length of the waypoint path.  Our approach to the DTS is documented in [40, 46-48].  The advantage of 
this approach is that it is computationally efficient, spreading the computation over the trajectory transition time.  In fact, 
the DTS algorithm reduces to a three-state ODE propagation, a series of half-plane checks, and a root-finding problem 
for each waypoint segment.  The WPP and DTS algorithms have been implemented and tested on a small UAV at BYU 
[49, 50]. 

 
3. ALGORITHMS 

 
3.1 Feature density distribution analysis 

As mentioned in Section 1, using computer vision techniques, depth perception can be achieved by either stereo 
vision or motion analysis of a sequence of monocular images. Motion analysis is more suitable for small UAV 
applications than stereo vision because of payload and power consumption requirements. Motion analysis can be further 
categorized into intensity-based (optical flow) and feature-based (feature tracking) techniques.  Because of the 
drawbacks of both categories, we propose a novel computer vision algorithm to achieve the goal of detecting collisions 
and determining the time-to-impact. When using a method that involves feature point tracking, the feature points are 
selected based on how easily they can be tracked.  However this restriction is no longer necessary when we do not have 
to track the feature points.   

Our approach is based on feature density and distribution (FDD) analysis. It does not require accurate feature 
detection or feature tracking. Complicated focus of expansion (FOE) calculation is not necessary. It calculates accurate 
time-to-impact based on the expansion rate of feature density and distribution. Many types of feature points were 
considered for our approach.  Possible feature points include pixels with horizontal edges, vertical edges, corners, and 
points of a particular color, etc.  Some types of feature points may be more useful then others depending on the 
application.  By using different types of feature points simultaneously, it should be possible to achieve better results.  

There are several different ways to calculate horizontal and vertical edge pixels.  The following method was 
chosen for its simplicity and its speed.  To find pixels on the horizontal and vertical edges simply compute the gradient at 
each pixel.  If the absolute value of gradient in the vertical direction is higher then a threshold, then that point is a 
horizontal line feature.  If the horizontal gradient is above the threshold, then the point is a vertical line feature.  Corners 
are points where there is a change in both the horizontal and vertical directions. Other features such as lines, curves, 
contours, or specific shapes and models can be used for the FDD analysis but may be complicated and computationally 
expensive.  We chose horizontal and vertical edges for simplicity. 

Once the feature points have been selected, we then analyze the distribution of the feature points in space.   The 
see-and-avoid problem mandates that the camera face the direction of motion.  We assume that the objects are large 
enough and close enough that they fill most of the image or the rows on the image that represent the areas in the path. 
This is a safe assumption as long as the camera does not move very fast compared to the frame rate and the objects are 
reasonably large. Based on these assumptions, we know that if the camera is approaching an object, the distribution of 
the feature points will expand.  For collision detection, only the approaching objects will be considered.  The rate of 
expansion can be used to estimate the speed at which we are approaching the object and can be used to estimate the time-
to-impact.  Another assumption is that the rotational variation is minimal between two consecutive frames compared to 
the translation.  

3.2 Rate of Feature Distribution Expansion 

To calculate the rate of expansion of the feature distribution in the x-direction, we first compute the number of 
feature points across the image at every value of x at a particular time value t, this will be denoted by F(x,t).  F(x,t) can 
also be viewed as the vertical projection of the feature points or the histogram of feature points on each image column. If 
the image expands (objects are getting closer) and there is a motion in the x-direction, then there will be a scale and an 
offset in the next frame.  Ideally, the feature point projection of the frame at t+dt should be 

),(),( txFdttdaxF =++  (1) 

, where a is the rate of expansion and d is the movement in the x-direction.  To estimate a and d we minimize the mean-
squared error over the x-values 0 through N (number of image columns): 
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For convenience, let Ft be the time-derivative and Fx be the spatial-derivative of the feature point function and let D = a-
1: 
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 The quantities a = D+1 and d can be computed from Equation (5).  This method can be iteratively refined as 
follows.  If we define a new function F1(x, t + dt) = F(ax + d, t + dt) and then apply the same procedure but replacing 
the function F(x, t + dt) by F1(x, t + dt), then we can calculate values of a and d for each iteration.  For three iterations, 
we use the following calculations 
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where  012 aaaa =   and  212012 ddadaad ++= . 

 
3.3 Time-to-Impact 

After calculating the expansion rate of the object, 
a, we can calculate the amount of time we have before we 
will impact the object at the current velocity.  This is a 
useful calculation for obstacle avoidance. Fig. 2 shows a 
diagram of a point moving toward the camera and its 
projection onto the image plane.  (It makes no difference 
if the object is moving toward the camera or the camera is 
moving towards the object, since the relative velocity is 
all that matters.)  

 For a calibrated camera we also know the focal 
length f and other intrinsic parameters.  The object size, 
X’ and X, and the object distance, z’, and z are unknown.  
We know that the points on the image plane, x’ and x are 
related as axx =' , where a is the expansion rate.  From 
the geometry we know that 

Fig. 2. Diagram of an object moving towards the 
camera. 
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The time to impact, τ, is the distance, z, divided by the velocity, v: 
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 Because we know the speed that the camera is approaching the object (from onboard GPS), we can also 
calculate the distance to the object from the expansion rate. The expansion rate is not constant over time: for an object 
approaching the camera at a fixed velocity, v, a(t) is given by 

vtz

tvz
ta

)1(
)(

0

0

+−
−= , where z0 is the value of z at t = 0.   (9) 

 
3.4 Real-time Obstacle Avoidance 

In this section we will describe our approach to trajectory generation for the see-and-avoid problem.  The 
essential insight is to note that the kinematic structure of a UAV flying at a constant altitude is given by  

,
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=
=

&

&

&
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where maxmax ωωω ≤≤− , and maxmin0 vvv ≤≤< .   

If the UAV is flying at constant velocity, then the local 
reachability region up to time T is shown in grey in the 
Fig. 3.  The turning rate constraint translates into the 
minimum turn radius shown in the figure.  In our previous 
work with path planning and trajectory generation, we 
have used a deliberative approach to path planning and 
trajectory generation [40-50].  When dynamic and pop-up 
threats would occur, our approach has been to re-plan the 
associated trajectories.  However, in highly dynamic 
environments, the computational resources associated 
with complete re-planning may not allow fast enough 
reaction time to threats and obstacles detected by the 
computer vision algorithms.  

We integrated reactive path planning and trajectory generation techniques with our current (deliberative) 
approach.  As with our deliberative approach, this will be accomplished without violating the velocity and heading rate 
constraints of the UAV.  A reactive planning phase will be added at both the WPP (low-bandwidth) level and the DTS 
(high-bandwidth) level.  At the low bandwidth level, our basic approach is to use the incremental Voronoi construction 
techniques introduced in [51] to add edges to the Voronoi diagrams as the computer vision algorithms detect obstacles 
and threats that were not included in an a priori known low resolution world map, which is assumed to be available for 
deliberative planning.   The addition of new edges will initiate a re-plan of the waypoint paths.  It the time-to-impact is 
large enough, then re-planning is feasible.  However, if the time-to-impact is small, then the UAV needs to react 
instantaneously.   

Turning radius constraints

Obstacle

Turning radius constraints

Obstacle

Fig 3. Turning radius constraints for path planning. 
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Our basic approach to high bandwidth reaction is shown in Fig. 4.  Suppose that the UAV is tracking a 

waypoint path segment as shown in the figure, and that an obstacle is suddenly detected by the vision algorithm.  A 
constant time-to-impact curve is indicated by the boarder of the shaded half circle.  The trajectory generator must select a 
heading rate that is both dynamically feasible, and also steers the UAV around the obstacle as illustrated in the figure.  If 
we quantize the heading rate command and let the DTS flow a time T  into the future, we obtain a set of locally 
reachable points denoted by )(TR  and indicated by dots in the figure.  A simple reactive scheme is to select a point in 

)(TR  that does not intersect the obstacle and minimizes the distance from the desired waypoint line segment.   

 
4. RESULTS 

  
The proposed method was tested on a video sequence with total of 32 frames.  The video sequence was made in 

a controlled environment with a bottle approaching the camera at a fixed speed. Figure 5 shows three frames (#0, #15, 
and #30) of the original image sequence for proof of concept.  Each frame was taken at a fixed speed when approaching 
the camera. It can be seen that the image size increases as the object moves closer. The rate of expansion measured by 
the feature density and distribution as we proposed can be used to calculate the time of impact as discussed in previous 
sections. Figure 6 shows three types of features proposed to be used for feature density and distribution analysis for the 
calculation of the rate of expansion.  

Fig. 5. Frames 0, 15, and 30 of the original image sequence that is used for the proof of concept. 

Fig. 4. Trajectory generation. 
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Figure 7 shows the horizontal projections (projected to the y-axis) of the horizontal feature points of frames 0 

and 5 as an example. Because the rate of expansion between two consecutive frames is very small in this case, we show 
the results from frames 0 and 5 to show the effect of expansion over several frames.  Similarly, Figure 8 shows the 
vertical projections (projected to the x-axis) of the vertical feature points of Frames 0 and 5.  The feature point density 
and distribution has a slight expansion between the two frames.   

Besides the rate of feature distribution expansion (a), there also exists a slight shift (d) in the horizontal 
projection in Figure 7 and the vertical projection in Figure 8.  This shift may be caused by several different factors.  If 
the UAV rolls, the image will rotate.  If the UAV pitches or yaws, the image will move vertically or horizontally.  Each 
of these factors will cause a small shift in the feature distribution.  The shift is calculated to reduce the inaccuracies 
introduced by these factors.  

 

 
The scale factor, a, was calculated at each frame to track the change in time-to-impact. We calculated the scale 

factor (or the rate of expansion) for both horizontal and vertical features to verify the accuracy.  The results, after ten 
iterations of our method, are shown in Figure 9.  The results after 3 to 5 iterations do not show any significant 
improvement in accuracy with further iterations.  The dotted line in Figure 9 shows the expected rate of expansion and 
the solid curve indicates the expansion calculated using our method. Both horizontal and vertical feature expansions are 
very close to the expected values.  

Fig. 8. The vertical line feature points projected to the x-axis (column) of the image.  

Fig. 6. Horizontal, vertical, and corner features of Frame 0. 

Fig. 7. The horizontal line feature points projected to the y-axis (row) of the image.  
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From the expansion rate, the time to impact can be 
calculated at each frame using Equation (8).  The time to impact 
results are shown in Figure 10.  They are represented as the number 
of frames.  Based on a 30 frames/second frame rate, the time to 
impact can be calculated by multiplying the number of frames by 
33.3 milliseconds.  If the camera moving velocity is known, which is 
true for our UAV applications, the actual distance to impact can be 
calculated.  As shown in Figure 10, the numbers are fairly close to 
the correct value, but with a slight variation.  Better results can be 
obtained by averaging the expansion rates over several frames. 
 

Figure 11 shows an example of two image frames (Frames 
103 and 108) from an image sequence of a real scene acquired with a 
camera on-board a small UAV. The UAV’s roll, pitch, and yaw 
cause a small rotation as well as a slight shift in both horizontal and 
vertical directions between the two frames. This effect can be seen by comparing the location of the tree in two frames 
and the level of the horizon. Horizontal and vertical feature points of Frame 103 are shown in Figure 12. The horizontal 
and vertical projections of these feature points of Frame 103 are shown in Figure 13.  Preliminary results show that the 
features of the tree standing in the path can be detected and the proposed method can be used to detect the time to impact 
of the tree. 

 

 
The proposed reactive scheme has been implemented in Simulink, and the results at several instances of time 

are shown in the figure above.  Note that the algorithm effectively avoids obstacles, while minimizing the deviation from 
the original waypoint line. The computations associated with the proposed scheme include point-intersection checks, the 
inversion of a 2×2 matrix, and a one-dimensional line search, and can therefore be implemented in a computationally 
efficient manner suitable for real-time implementation. 

Fig. 11. Examples of real scenes from camera on-board a UAV and their feature points. 

Fig. 10.  Expected and measured time to 
impact (measured as # of frames). 

Fig. 9. The horizontal and vertical feature distribution expansion rates of all 32 frames. 
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The advantages of the proposed see-and-avoid scheme is that it is computationally feasible, explicitly satisfies 

velocity and heading rate constraints, and includes the advantages of both reactive and deliberative methods.  That is, 
deliberative methods are used to exploit a priori and medium-to-long-range vision information when it is available, and 
reactive methods are used to quickly respond to dynamically moving and sudden pop-up obstacles. 

 
5. CONCLUSION 

 
 The objective of this paper is to investigate a novel approach to the see-and-avoid problem for small UAVs.  
The essential idea is to estimate the time-to-impact from a sequence of monocular images.  It is a simple but efficient 
method that circumvents the correspondence problem by not requiring accurate feature detection and tracking.  It is 
robust to low image quality. Further work is needed to better estimate and compensate for the UAV attitude changes 
(rolls, pitches, and yaws) and consider the existence of feature points at oblique angles.  Other types of feature points 
may be more suitable for different applications and may be worth further investigation.  One significant challenge that is 
introduced by this new method is how to separate and effectively deal with images in which there may be objects in the 
foreground, close to the camera and objects in the background that are further away.  The problem is that there are two 
different expansion rates and so it may not be possible to accurately describe the scene with a single expansion rate.  
Further work is needed in this area.   
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