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Abstract

We introduce a novel network, called CO-attention

Siamese Network (COSNet), to address the unsupervised

video object segmentation task from a holistic view. We em-

phasize the importance of inherent correlation among video

frames and incorporate a global co-attention mechanism

to improve further the state-of-the-art deep learning based

solutions that primarily focus on learning discriminative

foreground representations over appearance and motion in

short-term temporal segments. The co-attention layers in

our network provide efficient and competent stages for cap-

turing global correlations and scene context by jointly com-

puting and appending co-attention responses into a joint

feature space. We train COSNet with pairs of video frames,

which naturally augments training data and allows in-

creased learning capacity. During the segmentation stage,

the co-attention model encodes useful information by pro-

cessing multiple reference frames together, which is lever-

aged to infer the frequently reappearing and salient fore-

ground objects better. We propose a unified and end-to-end

trainable framework where different co-attention variants

can be derived for mining the rich context within videos.

Our extensive experiments over three large benchmarks

manifest that COSNet outperforms the current alternatives

by a large margin.

1. Introduction

Unsupervised video object segmentation (UVOS) aims

to automatically separate primary foreground object(s) from

their background in a video. Since UVOS does not require

manual interaction, it has significant value in both academic

∗The first two authors contribute equally to this work.
†Corresponding author: Jianbing Shen.

Figure 1. Illustration of our intuition. Given an input frame (b),

our method leverages information from multiple reference frames

(d) to better determine the foreground object (a), through a co-

attention mechanism. (c) An inferior result without co-attention.

and applied fields, especially in this era of information-

explosion. However, due to the lack of prior knowledge

about the primary object(s), in addition to the typical chal-

lenges for semi-supervised video object segmentation (e.g.,

object deformation, occlusion, and background clutters),

UVOS suffers from another difficult problem, i.e., how to

correctly distinguish the primary objects from a complex

and diverse background.

We argue that the primary objects in UVOS settings

should be the most (i) distinguishable in an individual frame

(locally salient), and (ii) frequently appearing throughout

the video sequence (globally consistent). These two prop-

erties are essential for determining the primary objects. For

instance, by only glimpsing a short video clip as illustrated

in Fig. 1(b), it is hard to determine the primary objects. In-

stead, if we view the entire video (or a sufficiently long se-

quence) as in Fig. 1(d), the foreground can be easily dis-

covered. Although primary objects tend to be highly cor-

related at a macro level (entire video), they often exhibit

different appearances at a micro level (shorter video clips)

due to articulated body motions, occlusions, out-of-view

movements, camera movements, and environment varia-
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tions. Clearly, micro level variations are the major sources

of challenges in video segmentation. Thus, it is desirable to

take advantage of the global consistency property and lever-

age the information from other frames.

By considering UVOS from a global perspective, we can

help to locate primary objects and alleviate the local am-

biguities. This notion also motivated the earlier heuristic

models for UVOS [14], yet it is largely ignored by current

deep learning based models.

Current deep learning based UVOS models typically fo-

cus on the intra-frame discrimination property of primary

objects in appearance or motion, while ignoring the valu-

able global-occurrence consistency across multiple frames.

These methods compute optical flows across a few consec-

utive frames [53, 24, 9, 32, 33], which is limited to a local

receptive window in the temporal domain. Although recur-

rent neural networks (RNNs) [49] are introduced to mem-

orize previous frames, this sequential processing strategy

may fail to explicitly explore the rich relations between dif-

ferent frames, hence does not attain a global perspective.

With these insights, we reformulate the UVOS task as

a co-attention procedure and propose a novel CO-attention

Siamese Network (COSNet) to model UVOS from a global

perspective. Specifically, during the training phase, COS-

Net takes a pair of frames from the same video as input and

learns to capture their rich correlations. This is achieved by

a differentiable, gated co-attention mechanism, which en-

ables the network to attend more to the correlated, informa-

tive regions, and produce further discriminative foreground

features. For a testing frame (Fig. 1(b)), COSNet is able

to produce more accurate results (Fig. 1(a)) from a global

view, i.e., utilize the correlations between the testing frame

and multiple reference frames. Fig. 1(c) shows the inferior

result when considering only the information from the test-

ing frame (Fig. 1(b)).

Another advantage of our COSNet is that it is remark-

ably efficient for augmenting training data, as it allows us-

ing a large number of arbitrary frame pairs within the same

video. Additionally, as we explicitly model the relations

between video frames, the proposed model does not need to

compute optical flow, which is time-consuming and com-

putationally expensive. Finally, the COSNet offers a uni-

fied, end-to-end trainable framework that efficiently mines

rich contextual information within video sequences. We im-

plement different co-attention mechanisms such as vanilla

co-attention, symmetric co-attention, and channel-wise co-

attention, which offers a more insightful glimpse into the

task of UVOS. We quantitatively demonstrate that our co-

attention mechanism is able to bring large improvement in

performance, which confirms its effectiveness and the value

of global information for UVOS. The proposed COSNet

shows superior performance over the current state-of-the-art

methods across three popular benchmarks: DAVIS16 [45],

FBMS [41] and Youtube-Objects [47].

2. Related Work

We start by providing an overview of representative work

on video object segmentation (§2.1), followed by a brief

overview of differentiable neural attention (§2.2).

2.1. Video Object Segmentation

According to its supervision type, video object seg-

mentation can be broadly categorized into unsupervised

(UVOS) and semi-supervised video object segmentation. In

this paper, we focus on the UVOS task, which extracts pri-

mary object(s) without manual annotation.

Early UVOS models typically analyzed long-term mo-

tion information (trajectories) [4, 40, 17, 42, 28, 41], lever-

aged object proposals [31, 37, 70, 30, 18, 27] or utilized

saliency information [60, 14, 55, 21], to infer the target.

Later, inspired by the success of deep learning, several

methods [16, 54, 43] began to approach UVOS using deep

learning features. These were typically limited due to their

lack of end-to-end learning ability [54] and use of heavy-

weight fully-connected network architectures [16, 43]. Re-

cently, more research efforts have focused on the fully con-

volutional neural network based UVOS models. For exam-

ple, Tokmakov et al. [52] proposed to separate independent

object and camera motion using a learnable motion pattern

network [52]. Li et al. learned an instance embedding net-

work [32] from static images to better locate the object(s),

and later they combined motion-based bilateral networks

for identifying the background [33]. Two-stream fully con-

volution networks are also a popular choice [9, 24, 53, 32]

to fuse motion and appearance information together for ob-

ject inference. An alternative way to segment an object is

through video salient object detection [49]. This method

fine-tunes the pre-trained semantic segmentation network

for extracting spatial saliency features, then trains ConvL-

STM to capture temporal dynamics.

These deep UVOS models generally achieved promising

results, which demonstrates well the advantages of applying

neural networks to this task. However, they only consider

the sequential nature of UVOS and short-term temporal in-

formation, lacking a global view and comprehensive use of

the rich, inherent correlation information within videos.

For SVOS methods, the target object(s) is provided in

the first frame and tracked automatically [60, 8, 5, 68,

2, 69, 64, 71] or interactively by users [1] in the subse-

quent frames. Numerous algorithms were proposed based

on graphical models [54], object proposals [46], super-

trajectories [61], etc. Recently, deep learning based meth-

ods achieved promising results. Some algorithms treated

video object segmentation as a static segmentation task

without using any temporal information [44], built a deep
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Figure 2. Overview of COSNet in the training phase. A pair of frames {Fa,Fb} is fed into a feature embedding module to obtain the

feature representations {Va, Vb}. Then, the co-attention module computes the attention summaries that encode the correlations between

Va and Vb. Finally, Z and V are concatenated and handed over to a segmentation module to produce segmentation predictions.

one-shot learning framework [5, 59], or used a mask-

propagation network [25]. In addition, both object track-

ing [29, 8, 12, 36] and person re-identification [34, 66]

have been fused into SVOS task to handle deformation and

occlusion issues. Hu et al. [22] proposed a Siamese net-

work based SVOS model. Compared with our COSNet,

the differences are distinct, rather than their dissimilar su-

pervision manners. First, since [22] was proposed based

on image matching strategy, they used a Siamese network

to propagate the first-frame annotation to the subsequent

frames. Our method substantially differs in that we learn

the Siamese network to capture rich and global correspon-

dences within videos to further assist automatic primary ob-

ject discovery and segmentation. Second, we provide the

first approach that uses a co-attention scheme to facilitate

correspondence learning for video object segmentation.

2.2. Attention Mechanisms in Neural Networks

Differentiable attentions, which are inspired by human

perception [13, 58], have been widely studied in deep neu-

ral networks [26, 56, 38, 23, 57, 62, 15]. With end-to-end

training, neural attention allows networks to selectively pay

attention to a subset of inputs. For example, Chu et al. [11]

exploited multi-context attention for human pose estima-

tion. In [7], spatial and channel-wise attention were pro-

posed to dynamically select an image part for captioning.

More recently, co-attention mechanisms have been stud-

ied in vision-and-language tasks, such as visual question an-

swering [35, 65, 63, 39] and visual dialogue [63]. In these

works, co-attention mechanisms were used to mine the un-

derlying correlations between different modalities. For ex-

ample, Lu et al. [35] created a model that jointly performs

question-guided visual attention and image-guided question

attention. In this way, the learned model can selectively fo-

cus on image regions and segments of documents. Our co-

attention model is inspired by these works, but it is used to

capture the coherence across different frames with a more

elegant network architecture.

3. Proposed Algorithm

Our COSNet formulates UVOS as a co-attention pro-

cedure. A co-attention module learns to explicitly encode

correlations between video frames. This enables COSNet

to attend to the frequently coherent regions, thus further

helping to discover the foreground object(s) and produce

reasonable UVOS results. Specifically, during training, co-

attention procedure can be decomposed into the correlation

learning between any frame pairs from the same video (see

Fig. 2). During testing, COSNet infers the primary target

with a global view, i.e., takes advantage of the co-attention

information between the testing frame and multiple refer-

ence frames. We will elaborate the co-attention mecha-

nisms in COSNet in §3.1, and detail the whole architecture

of COSNet in §3.2. In §3.3, we will provide more imple-

mentation details.

3.1. Coattention Mechanisms in COSNet

Vanilla co-attention. As shown in Fig. 2, given two video

frames Fa and Fb from the same video, Va∈R
W×H×C and

Vb ∈ R
W×H×C denote the corresponding feature represen-

tations from a feature embedding network. Va and Vb are

3D-tensors with the width W , height H and C channels.

We leverage the co-attention mechanism [65, 35] to mine

the correlations between Fa and Fb in their feature embed-

ding space. More specifically, we first compute the affinity

matrix S between Va and Vb:

S = V
⊤
b WVa ∈ R

(WH)×(WH)
, (1)

where W∈R
C×C is a weight matrix. Here Va∈R

C×(WH)

and Vb ∈ R
C×(WH) are flattened into matrix representa-

tions. Each column V
(i)
a in Va represents the feature vector

at position i∈{1, ...,WH} with C dimensions. As a result,

each entry of S reflects the similarity between each row of

V
⊤

b and each column of Va. Since the weight matrix W is a

square matrix, the diagonalization of W can be represented

as follows:
W = P

−1
DP, (2)
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Figure 3. Illustration of our co-attention operation.

where P is an invertible matrix and D is a diagonal matrix.

Then, as shown in the gray area in Fig. 3, Eq. 1 can be re-

written as:
S = V

⊤
b P

−1
DPVa. (3)

Through the vanilla co-attention in Eq. 3, the feature rep-

resentation of each frame first undergoes linear transforma-

tions, and then calculates the distance between any locations

of themselves.

Symmetric co-attention. If we further constrain the weight

matrix to be a symmetric matrix, the project matrix P be-

comes an orthogonal matrix: P⊤
P= I , where I is a C×C

identity matrix. A symmetric co-attention can be derived

from Eq. 3:

S = V
⊤
b P

⊤
DPVa = (PVb)

⊤
DPVa. (4)

Eq. 4 indicates that we project the feature embeddings Va

and Vb into an orthogonal common space and maintain

their norm of Va and Vb. This property has proved valu-

able for eliminating the correlation between different chan-

nels (i.e., C- dimension) [50] and improving the network’s

generalization ability [3, 48].

Channel-wise co-attention. Furthermore, the project ma-

trix P can be simplified into an identity matrix I (i.e., with-

out space transformation), and then the weight matrix W

becomes a diagonal matrix. In this case, W (i.e., D) can be

further diagonalized into two diagonal matrices Da and Db.

Thus, Eq. 3 can be re-written as channel-wise co-attention:

S = V
⊤
b I

−1
DIVa = V

⊤
b D

⊤
a DbVa = (DaVb)

⊤
DbVa. (5)

This operation is equal to applying a channel-wise weight

to Va and Vb before computing the similarity. This helps to

alleviate channel-wise redundancy, which shares a similar

spirit to Squeeze-and-Excitation mechanism [7, 20]. During

ablation studies (§4.2), we perform detailed experiments to

assess the effect of the different co-attention mechanisms,

i.e., vanilla co-attention (Eq. 3), symmetric co-attention

(Eq. 4) and channel-wise co-attention (Eq. 5).

After obtaining the similarity matrix S, as shown in the

green and red areas in Fig. 3, we normalize S row-wise and

column-wise with a softmax function:

S
c = softmax(S), S

r = softmax(S⊤) , (6)

where softmax(·) normalizes each column of the input.

In Eq. 6, the i-th column of S
c is a vector with length

WH . This vector reflects the relevance of each feature

(1, ...,WH) in Va to the i-th feature in Vb. Next, the at-

tention summaries for the feature embedding Va w.r.t. Vb

can be computed as (see the blue areas in Fig. 3):

Za=VbS
c=

[

Z
(1)
a Z

(2)
a ... Z

(i)
a ... Z

(WH)
a

]

∈ R
C×(WH)

,

Z
(i)
a =Vb ⊗ S

c(i) =
∑WH

j=1
V

(j)
b · scij ∈ R

C
,

(7)

where Z
(i)
a denotes the i-th column of Za, ‘⊗’ denotes the

matrix times vector, Sc(i) is the i-th column of Sc, V
(j)
b in-

dicates the j-th column of V(j) and s
c
ij is the j-th element

in S
c(i). Similarly, for frame Fb, we compute the corre-

sponding co-attention enhanced feature as: Zb = VaS
r.

Gated co-attention. Considering the underlying appear-

ance variations between input pairs, occlusions, and back-

ground noise, it is better to weight the information from dif-

ferent input frames, instead of treating all the co-attention

information equally. To this end, a self-gate mechanism is

introduced to allocate a co-attention confidence to each at-

tention summary. The gate is formulated as follows:

fg(Za) = σ(wfZa + bf ) ∈ [0, 1]WH
,

fg(Zb) = σ(wfZb + bf ) ∈ [0, 1]WH
,

(8)

where σ is the logistic sigmoid activation function, and wf

and bf are the convolution kernel and bias, respectively. The

gate fg determines how much information from the refer-

ence frame will be preserved and can be learned automat-

ically. After calculating the gate confidences, the attention

summaries are updated by:

Za = Za ⋆ fg(Za), Zb = Zb ⋆ fg(Zb), (9)

where ‘⋆’ denotes channel-wise Hadamard product. These

operations lead to a gated co-attention framework.

Then we concatenate the final co-attention representa-

tion Z and the original feature V together:

Xa=[Za,Va]∈R
W×H×2C

, Xb=[Zb,Vb]∈R
W×H×2C

, (10)

where ‘[·]’ denotes the concatenation operation. Finally, the

co-attention enhanced feature X can be fed into a segmen-

tation network to produce a final result Y ∈ [0, 1]W×H .

3.2. Full COSNet Architecture

Fig. 4 shows the training and testing pipelines of the pro-

posed COSNet. Basically, COSNet is a Siamese network

which consists of three cascaded parts: a DeepLabv3 [6]

based feature embedding module, a co-attention module

(detailed in §3.1) and a segmentation module.

Network architecture during training phase. In the train-

ing phase, the Siamese network based COSNet takes two
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Figure 4. Schematic illustration of training pipeline (a) and testing pipeline (b) of COSNet.

streams as input, i.e., a pair of the frame images {Fa,Fb}
which are randomly sampled from the same video. First,

the feature embedding module is used to build their feature

representations: {Va,Vb}. Next, {Va,Vb} are refined by

the co-attention module and the co-attention enhanced fea-

ture {Xa,Xb} are computed through Eq. 10. Finally, the

corresponding segmentation predictions {Ya,Yb} are pro-

duced by the segmentation module which consists of multi-

ple small kernel convolution layers. Detailed configurations

of the three modules can be found in the next section.

As we discussed in §1, primary objects in videos have

two essential properties: (i) intra-frame discriminabil-

ity, and (ii) inter-frame consistency. To distinguish the

foreground target(s) from the background (property (i)),

we utilize data from existing salient object segmentation

datasets [10, 67] to train our backbone feature embedding

module. As primary salient object instances are annotated

in each image of these datasets, the learned feature embed-

ding can catch and discriminate the objects of most interest.

Meanwhile, to ensure COSNet is able to capture the global

inter-frame coherence of the primary video objects (prop-

erty (ii)), we train the whole COSNet with video segmen-

tation data, where the co-attention module plays a key role

in capturing the correlations between video frames. Specif-

ically, we take two randomly selected frames in a video se-

quence to build training pairs. It is worth mentioning that

this operation naturally and effectively augments training

data, compared to previous recurrent neural network based

UVOS models that take only consecutive frames.

In this way, the COSNet is alternatively trained with

static image data and dynamic video data. When using

image data, we only train the feature embedding module,

where an extra 1×1 convolution layer with sigmoid acti-

vation is added to generate intermediate segmentation side-

output. The video data is used to train the whole COSNet,

including the feature embedding module, the co-attention

module as well as the segmentation module. We employ

the weighted binary cross entropy loss to train the network:

LC(Y,O)=−
∑

x
(1−η)ox log(yx)+η(1−ox) log(1−yx), (11)

where O ∈ {0, 1}W×H denotes the binary ground-truth, yx
is the intermediate or final segment prediction Y at pixel x,

and η is the foreground-background pixel number ratio.

In addition, for the symmetric co-attention in Eq. 4, we

add an extra orthogonal regularization into the loss function

to maintain the symmetry of weight matrix W:

L=LC + λ
∣

∣

∣
WW

⊤− I

∣

∣

∣
, (12)

where λ is the regularization parameter.

Network architecture during testing phase. Once the net-

work is trained, we apply the COSNet to unseen videos.

Intuitively, given a test video, we can feed each frame to

be segmented, along with only one reference frame sam-

pled from the same video, into the COSNet successively.

Performing this operation frame-by-frame, we can obtain

all the segmentation results. However, with such a sim-

ple strategy, the segmentation results still contain consider-

able noise, since the rich and global correlation information

in the videos is not fully explored. Therefore, it is criti-

cal to include more references during the testing phase (see

Fig. 4 (b)). One intuitive solution is to feed a set of N dif-

ferent reference frames (uniformly sampled from the same

video) into the inference branches and average all predic-

tions. A more favored way is that for the query frame Fa,

with the reference frame set {Fbn}
N
n=1 containing N ref-

erence frames, Eq. 9 is further reformulated by considering

more attention summaries {Zan
}Nn=1:

Za ←
1

N

∑N

n=1
Zan

⋆ fg(Zan
). (13)

In this way, during the testing phase, the co-attention based

feature Za is able to efficiently capture the foreground in-

formation from a global view by considering more reference

frames. Then we feed Za into the segmentation module to

generate the final output Ya. Following the widely used

protocol [53, 52, 49], we apply CRF as a post-processing

step. In §4.2, we will quantitatively demonstrate the per-

formance improvement with the increasing number of ref-

erence frames.

3.3. Implementation Details

Detailed network architecture. The backbone network of

our COSNet is DeepLabv3 [6], which consists of the first

five convolution blocks from ResNet [19] and an atrous spa-

tial pyramid pooling (ASPP) module [6]. For the vanilla co-

attention module (Eq. 3), we implement the weight matrix

W using a fully connected layer with 512×512 parame-

ters. In addition, the channel-wise co-attention in Eq. 5 is

built on a Squeeze-and-Excitation (SE)-like module [20].

Specifically, the channel weights generated through fully
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Figure 5. Performance improvement for an increasing number of reference frames (§4.2). (a) Testing frames with ground-truths overlaid.

(b)-(e) Primary object predictions with considering different number of reference frames (N=0, 1, 2, and 5). (f) Binary segments through

applying CRF to (e). We can see that without co-attention, the COSNet degrades to a frame-by-frame segmentation model ((b): N =0).

Once co-attention is added ((c): N =1), similar foreground distraction can be suppressed efficiently. Furthermore, more inference frames

contribute to better segmentation performance ((c)-(e)).

connected layer with 512 nodes in one branch are applied

to the feature embedding of the other branch [20]. Eq. 8 is

implemented with 1×1 convolution layer with sigmoid ac-

tivation function. The segmentation module consists of two

3×3 convolutional layers (with 256 filters and batch norm

) and a 1×1 convolutional layer (with 1 filter and sigmoid

activation) for final segmentation prediction.

Training settings. The whole training procedure of our

COSNet consists of two alternated steps. When using static

data to fine-tune the DeepLabV3 based feature embed-

ding module, we take advantage of image saliency datasets:

MSRA10K [10] and DUT [67]. In this way, the pixels be-

long to the foreground target tend to close to each other.

Meanwhile, we train the whole model with the training

videos in DAVIS16 [45]. In this step, two randomly se-

lected frames from the same sequence are fed into COSNet

as training pairs. Given the input RGB frame images of size

473×473×3, the size of the feature embeddings Va and

Vb are (W = 60, H = 60, C = 512). The entire network

is trained using the SGD optimizer with an initial learning

rate of 2.5×10−4. During training, the batch size is set to

8 and the hyper-parameter λ in Eq. 12 is set to 10−4. We

implement the whole algorithm with Pytorch. All experi-

ments and analyses are conducted on a Nvidia TITAN Xp

GPU and an Intel (R) Xeon E5 CPU. The ove

4. Experiments

4.1. Experimental Setup

We conduct experiments on the three most famous

UVOS datasets: DAVIS16 [45], FBMS [41] and Youtube-

Objects [47] datasets.

DAVIS16 is a recent dataset which consists of 50 videos in

total (30 videos for training and 20 for testing). Per-frame

pixel-wise annotations are offered. For quantitative evalua-

tion, following the standard evaluation protocol from [45],

we adopt three metrics, namely region similarity J , bound-

ary accuracy F , and time stability T .

FBMS is comprised of 59 video sequences. Different from

Network Variant
DAVIS FBMS Youtube-Objects

mean J ∆J mean J ∆J mean J ∆J
Co-attention Mechanism

Vanilla co-attention (Eq. 3) 80.0 -0.5 75.2 -0.4 70.3 -0.2

Symmetric co-attention (Eq. 4) 80.5 - 75.6 - 70.5 -

Channel-wise co-attention (Eq. 5) 77.2 -3.3 72.7 -2.9 67.5 -3.0

w/o. Co-attention 71.3 -9.2 70.1 -5.5 62.9 -7.6

Fusion Strategy

Attention summary fusion (Eq. 13) 80.5 - 75.6 - 70.5 -

Prediction segmentation fusion 79.5 -1.0 74.2 -1.4 69.9 -0.6

Frames Selection Strategy

Global uniform sampling 80.53 - 75.61 - 70.54 -0.01

Global random sampling 80.52 -0.01 75.54 -0.02 70.55 -

Local consecutive sampling 80.26 -0.27 75.52 -0.09 70.43 -0.12

Table 1. Ablation study (§4.2) of COSNet on DAVIS16 [45],

FBMS [41] and Youtube-Objects [47] datasets with different co-

attention mechanisms, fusion strategies and sampling strategies.

Dataset
Number of reference frames (N )

0 1 2 5 7

DAVIS 71.3 77.6 79.7 80.5 80.5

FBMS 70.2 74.8 75.3 75.6 75.6

Youtube-Objects 62.9 67.7 70.5 70.5 70.5

Table 2. Comparisons with different numbers of reference frames

during the testing stage on DAVIS16 [45], FBMS [41] and

Youtube-Objects [47] datasets (§4.2). The mean J is adopted.

the DAVIS dataset, the ground-truth of FBMS is sparsely la-

beled (only 720 frames are annotated). Following the com-

mon setting [53, 52, 30, 32, 33, 49, 9], we validate the pro-

posed method on the testing split which consists of 30 se-

quences. The region similarity J is used for evaluation.

Youtube-Objects contains 126 video sequences which be-

long to 10 objects categories with more than 20,000 frames

in total. We use the region similarity J to measure the seg-

mentation performance.

4.2. Diagnostic Experiments

In this section, we focus on exploration studies to assess

the important setups and components of COSNet. The ex-

periments were performed on the test sets of DAVIS16 [45]

and FBMS [41] as well as the whole Youtube-Objects [47].

The evaluation criterion is mean region similarity (J ).

Comparison of different co-attention mechanisms. We
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TRC CVOS KEY MSG NLC CUT FST SFL LMP FSEG LVO ARP PDB
Method

[17] [51] [31] [40] [14] [9] [42] [28] [52] [24] [53] [30] [49]
COSNet

J
Mean 47.3 48.2 49.8 53.3 55.1 55.2 55.8 67.4 70.0 70.7 75.9 76.2 77.2 80.5

Recall 49.3 54.0 59.1 61.6 55.8 57.5 64.9 81.4 85.0 83.0 89.1 91.1 90.1 94.0

Decay 8.3 10.5 14.1 2.4 12.6 2.2 0.0 6.2 1.3 1.5 0.0 7.0 0.9 0.0

F
Mean 44.1 44.7 42.7 50.8 52.3 55.2 51.1 66.7 65.9 65.3 72.1 70.6 74.5 79.4

F Recall 43.6 52.6 37.5 60.0 61.0 51.9 51.6 77.1 79.2 73.8 83.4 83.5 84.4 90.4

Decay 12.9 11.7 10.6 5.1 11.4 3.4 2.9 5.1 2.5 1.8 1.3 7.9 -0.2 0.0

T Mean 39.1 25.0 26.9 30.2 42.5 27.7 36.6 28.2 57.2 32.8 26.5 39.3 29.1 31.9

Table 3. Quantitative results on the test set of DAVIS16 [45]1 (see §4.3), using the region similarity J , boundary accuracy F and time

stability T . We also report the recall and the decay performance over time for both J and F . The best scores are marked in bold.

first study the effect of different co-attention mechanisms

in COSNet, i.e., vanilla co-attention (Eq. 3), symmetric co-

attention (Eq. 4) and channel-wise co-attention (Eq. 5). In

Table 1, both the fully connected method and the symmetric

method achieve better performance than the channel atten-

tion mechanism. This proves the importance of space trans-

formation in co-attention. Furthermore, compared with

vanilla co-attention, we find symmetric co-attention per-

forms slightly better. We attribute this to the orthogonal

constraint which reduces feature redundancy while preserv-

ing the norm of the features unchanged.

Effect of co-attention mechanism. When excluding the

co-attention module and only using the base feature embed-

ding network (DeepLabv3), we observe a significant perfor-

mance drop (mean J : 80.5→71.3 in DAVIS), clearly show-

ing the effectiveness of our strategy, which leverages co-

attention mechanism to model UVOS from a global view.

Attention summary fusion vs prediction fusion. In

Eq. 13, we fuse the information from other reference frames

by averaging the corresponding co-attention summaries. To

verify its effectiveness, we implement another alternative

baseline Prediction Fusion: Ya = 1
N

∑N

n=1 Yan
, i.e., di-

rectly average the predictions by considering different ref-

erence frames. The results in Table 1 demonstrate the supe-

riority of fusion in the feature embedding space.

Comparison of different frame selection strategies. To

investigate frame selection strategy during the testing phase

on the final prediction, we further conduct a series of ex-

periments using different sampling methods. Specifically,

we adopt global random sampling, global uniform sam-

pling as well as local consecutive sampling. From Table 1,

it can be observed that both global-level sampling strategy

achieve approximate performance but better than local sam-

pling method. Meanwhile, local sampling-based results are

still superior to the results obtained from the backbone net-

work. Overall comparisons further prove the importance of

incorporating global context.

Influence of the number of reference frames. It is also of

interest to assess the influence of the number of reference

frames N on the final performance. Table 2 shows the re-

sults for this. When N is equal to 0, this means that there

is no co-attention for segmentation. We observe a large per-

formance improvement when N changes from 0 to 1, which

Method NLC [14] FST [42] FSEG [24] MSTP [21] ARP [30]

Mean J 44.5 55.5 68.4 60.8 59.8

Method IET [32] OBN [33] PDB [49] SFL [9] COSNet

Mean J 71.9 73.9 74.0 56.0 75.6

Table 4. Quantitative performance on the test sequences of

FBMS [41] (§4.3) using region similarity (mean J ).

proves the importance of co-attention. Furthermore, when

N changes from 2 to 5, the quantitative results show in-

creased performance. When we further increase N , the final

performance does not change obviously. We set the value of

N to 5 in the evaluation experiments.

Fig. 5 further visualizes the qualitative segmentation re-

sult for an increasing number of inference frames. When

N = 0, the feature embedding module has learned to dis-

criminate the foreground target from the background. How-

ever, when a similar object distractor appears (e.g., the small

camel in the first row, or the red car in the second row),

the feature embedding module fails to capture the primary

target, since no ground-truth is given. In this case, the

proposed co-attention mechanism can refer to long-range

frames and capture the primary object, thus effectively sup-

pressing the similar target distraction.

4.3. Quantitative and Qualitative Results

Evaluation on DAVIS16 [45]. Table 3 shows the overall

results, with all the top performance methods taken from the

DAVIS 2016 benchmark1 [45]. COSNet outperforms all the

reported methods across most metrics. Compared with the

second best method, PDB [49], our COSNet achieves gains

of 2.6% and 4.9% on J Mean and F Mean, respectively.

In Table 3, several other deep learning based state-of-

the-art UVOS methods [9, 52, 24, 53, 33] leverage both ap-

pearance as well as extra motion information to improve the

performance. Different from these methods, the proposed

COSNet only utilizes appearance information but achieves

superior performance. We attribute our performance im-

provement to the consideration of more temporal informa-

tion through the co-attention mechanism. Compared with

these methods using optical flow to catch successive tem-

poral information, the advantage of exploiting the temporal

1https://davischallenge.org/davis2016/soa_compare.html
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Figure 6. Qualitative results on three datasets (§4.3). From top to bottom: dance-twirl from the DAVIS16 dataset [45], horses05 from the

FBMS dataset [41], and bird0014 from the Youtube-Objects dataset [47].

FST COSEG ARP LVO PDB FSEG SFL
Method

[42] [55] [30] [53] [49] [24] [9]
COSNet

Airplane (6) 70.9 69.3 73.6 86.2 78.0 81.7 65.6 81.1

Bird (6) 70.6 76.0 56.1 81.0 80.0 63.8 65.4 75.7

Boat (15) 42.5 53.5 57.8 68.5 58.9 72.3 59.9 71.3

Car (7) 65.2 70.4 33.9 69.3 76.5 74.9 64.0 77.6

Cat (16) 52.1 66.8 30.5 58.8 63.0 68.4 58.9 66.5

Cow (20) 44.5 49.0 41.8 68.5 64.1 68.0 51.1 69.8

Dog (27) 65.3 47.5 36.8 61.7 70.1 69.4 54.1 76.8

Horse (14) 53.5 55.7 44.3 53.9 67.6 60.4 64.8 67.4

Motorbike (10) 44.2 39.5 48.9 60.8 58.3 62.7 52.6 67.7

Train (5) 29.6 53.4 39.2 66.3 35.2 62.2 34.0 46.8

Mean J 53.8 58.1 46.2 67.5 65.4 68.4 57.0 70.5

Table 5. Quantitative performance of each category on Youtube-

Objects [47] (§4.3) with the region similarity (mean J ). We show

the average performance for each of the 10 categories from the

dataset and the final row shows an average over all the videos.

correlation from a global view is clear when dealing with

similar target distractions.

Evaluation on FBMS [41]. We also perform experiments

on the FBMS dataset for completeness. Table 4 shows that

our COSNet performs better (75.6% in mean J ) than state-

of-the-art methods [14, 42, 24, 21, 30, 32, 33, 49, 9]. In

most competing methods, except for the RGB input, ad-

ditional optical flow information is utilized to estimate the

segmentation mask. Considering lots of foreground objects

in FBMS share similar appearance with the background

but have different motion patterns, optical flow information

clearly benefits the prediction. By contrast, our COSNet

only takes advantage of the original RGB information and

achieves better performance.

Evaluation on Youtube-Objects [47]. Table 5 illustrates

the results of all compared methods for different cate-

gories. Our approach outperforms all compared meth-

ods [42, 55, 30, 53, 49, 24, 9] by a large margin. FSEG

performs second best under the mean J metric. It is worth

noting that the Youtube-Objects dataset shares categories

with the training samples in FSEG, which contributes to the

enhanced performance [24]. In addition, all the categories

in Youtube-Objects can be divided into two types: grid ob-

jects (e.g., Airplane, Train) and non-grid objects (e.g., Bird,

Cat). Despite the objects in the latter class often under-

going shape deformation and quick appearance variation,

the COSNet can capture long-term dependency and handle

these scenarios better than all compared methods.

Qualitative Results. Fig. 6 shows the qualitative results

across three datasets. DAVIS16 [45] contains many chal-

lenging videos with fast motion, deformation and multiple

instances of the same category. We can see that the pro-

posed COSNet can track the primary region or target tightly

by leveraging a co-attention scheme to consider global tem-

poral information. The co-attention mechanism helps the

proposed COSNet to segment out primary objects from the

cluttered background. The effectiveness can also be seen in

the bird0014 sequence of the Youtue-Objects dataset. In ad-

dition, we observe that some videos contain multiple mov-

ing targets (e.g., horses05) in the FBMS dataset, and the

proposed COSNet can deal with such scenarios well.

5. Conclusion

By regarding UVOS as a temporal coherence capturing

task, we proposed a novel model, COSNet, to estimate the

primary target(s). Through an alternated network training

strategy with saliency image and video pairs, the proposed

network learns to discriminate primary objects from the

background in each frame and capture the temporal corre-

lation across frames. The proposed method achieved su-

perior performance on three representative video segmen-

tation datasets. Extensive experimental results proved that

our method can effectively suppress similar target distrac-

tion despite no annotation being given during the segmenta-

tion. The COSNet is a general framework for handling se-

quential data learning, and can be readily extended to other

video analysis tasks, such as video saliency detection and

optical flow estimation.

Acknowledgements This work was supported in part by

the National Key Research and Development Program of

China (2016YFB1001003), STCSM(18DZ1112300), and

the Australian Research Council’s Discovery Projects fund-

ing scheme (DP150104645).

3630



References

[1] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro.

Video SnapCut: robust video object cutout using localized

classifiers. TOG, 28(3):70, 2009. 2

[2] Linchao Bao, Baoyuan Wu, and Wei Liu. CNN in MRF:

Video object segmentation via inference in a CNN-based

higher-order spatio-temporal MRF. In CVPR, 2018. 2

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Neural photo editing with introspective adversarial

networks. In ICLR, 2017. 4

[4] Thomas Brox and Jitendra Malik. Object segmentation by

long term analysis of point trajectories. In ECCV, 2010. 2

[5] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset,
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