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Abstarct: Our senses are constantly bombarded with a 

myriad of signals. To make sense of this cacophony, the 

brain needs to integrate signals emanating from a common 

source, but segregate signals originating from the different 

sources. Thus, multisensory perception relies critically on 

inferring the world’s causal structure (i.  e. one common 

vs. multiple independent sources). Behavioural research 

has shown that the brain arbitrates between sensory in

tegration and segregation consistent with the principles 

of Bayesian Causal Inference. At the neural level, recent 

functional magnetic resonance imaging (fMRI) and elec

troencephalography (EEG) studies have shown that the 

brain accomplishes Bayesian Causal Inference by dy

namically encoding multiple perceptual estimates across 

the sensory processing hierarchies. Only at the top of the 

hierarchy in anterior parietal cortices did the brain form 

perceptual estimates that take into account the observer’s 

uncertainty about the world’s causal structure consistent 

with Bayesian Causal Inference.

Zusammenfassung: Unsere Sinne werden fortwährend 

mit den unterschiedlichsten Signalen bombardiert. Um 

dieses Sinneschaos zu verstehen, muss das Gehirn Sin

nesreize integrieren, wenn sie von einer Quelle kommen, 

aber separate verarbeiten, wenn sie von unterschied

lichen Quellen kommen. Somit beruht multisensorische 

Wahrnehmung entscheidend auf dem Erfassen des kau

salen Struktur, die die Sinnesreize erzeugt hat. Verhal

tensstudien legen nahe, dass das Gehirn zwischen Inte

gration and Segregation wie von normativen Modellen der 

Bayesianischen kausalen Inferenz vorhergesagt abwägt. 

Neueste funktionelle Magnetresonanztomographie (fMRI) 

und Elektroenzephaligraphie (EEG) Studien zeigten, dass 

das Gehirn Bayesianische kausal Inferenz durchführt, 

indem es mehrere Wahrnehmungsschätzwerte dynamisch 

auf verschiedenen Ebenen der corticalen Hierarchie der 

Sinnesverabeitung enkodiert. Erst an der Spitze der Hie

rarchie in anterioren parietalen Arealen formt das Gehirn 

Wahrnehmungsschätzwerte, die die Ungewissheit des Be

obachters über die kausal Struktur der Umgebung berück

sichtigt, wie von Modellen der Bayesianischen kausalen 

Inferenz vorhergesagt.
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Computational challenges in multi-

sensory perception

In everyday life our senses are constantly bombarded with 

many different signals: the motor noise of the trucks, a 

sparkling motorbike passing by at high speed, the smell 

of smoke and fumes and the sight of other pedestrians. 

How does the human brain transform this sensory cacoph

ony into a veridical percept of the world? To misperceive 

the looming truck as talking and shiny, and your compan

ion as roaring and smelly could be disastrous! This illus

trates that multisensory integration and segregation is 

critical for our daily interactions. Information integration 

increases the salience of sensory signals thereby allow

ing us to detect and respond faster and more accurately 

to important events, such as an approaching truck (Died

erich & Colonius, 2004; Frassinetti et al., 2002; Gillmeister 

& Eimer, 2007; Noesselt et al., 2008). Further, combining 

complementary (for example object shape by viewing it 

from the front and touching it from the back) or redun

dant (for instance object location by vision and audition) 
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information across the senses enables a more robust and 

reliable percept (Ernst & Bülthoff, 2004).

The Bayesian framework in neuroscience posits that 

the brain forms a probabilistic generative model of the 

sensory inputs that is inverted during perceptual infer

ence (Kersten et al., 2004; Kersten & Yuille, 2003; Knill & 

Pouget, 2004). Bayesian probability theory offers a precise 

formulation of how observers should combine uncertain 

information to form a representation of the world. Criti

cally, multisensory perception relies on solving two fun

damental computational challenges. First, the brain needs 

solve the socalled ‘causal inference problem’ and infer 

whether or not signals come from a common source and 

should be integrated (Shams & Beierholm, 2010). Second, 

if signals come from a common source, the brain should 

integrate them into the most reliable or precise (i.  e. least 

variable or noisy) percept of the environment by weight

ing them according to their relative reliabilities (Alais & 

Burr, 2004; Ernst & Banks, 2002). Bayesian Causal Infer

ence models account for these two challenges by explicitly 

modelling the causal structure of the world (Körding et al., 

2007; see also Deroy et al., 2016; Rohe & Noppeney, 2015a, 

2015b; Shams & Beierholm, 2010; Wozny et al., 2010).

Let us focus on one simple example: Imagine you are 

an enthusiastic ornithologist prowling through the forest 

at dawn in order to gather the best photos and sound re

cordings of birds. Suddenly, you spot a little robin sitting 

on a branch and you hear a little robin singing in the 

bush. How should you direct your camera and your mi

crophone? Should you integrate information from vision 

and audition in order to obtain a more reliable estimate 

of the bird’s location? Or should you use the information 

only from vision for directing your camera and only from 

audition when directing your microphone? The answer to 

this question depends on the hidden causal structure of 

the world. There are two hypotheses or models that the 

brain should entertain.

First, there may be one bird sitting on the branch 

that is the same bird that you hear singing in the bush. In 

this ‘common source’ case, you should indeed integrate 

signals from vision and audition weighted by their sensory 

reliabilities. This is the classical ‘forced or mandatory 

fusion’ model that has dominated the field of multisen

sory integration and cue combination over the past two 

decades (Alais & Burr, 2004; Ernst & Banks, 2002; Hillis 

et al., 2004). As described by maximum likelihood esti

mation (MLE) an observer obtains the most precise esti

mate in this common source case if s/he integrates signals 

weighted by their relative reliabilities, which is the inverse 

of variance or noise in the signal. For instance, you would 

assign a smaller weight to a weak unreliable visual signal 

at dawn than to a strong and clear visual signal during 

daylight. Critically, multisensory integration according 

to MLE principles should lead to a variance reduction of 

the multisensory relative to the least variable unisensory 

percept, which is greatest (i.  e. by a factor of 2) when the 

variances of the two unisensory signals are equal. Indeed, 

several psychophysics studies have shown that human 

observers integrate signals that are likely to come from a 

common source nearoptimally, close to the predictions of 

maximum likelihood estimation (Alais & Burr, 2004; Bres

ciani et al., 2006; Ernst & Banks, 2002; Hillis et al., 2004; 

Jacobs, 1999; Knill & Saunders, 2003). Yet, evidence is not 

unequivocal. Accumulating research has also highlighted 

situations where human observers overweight the sensory 

modality (Battaglia et al., 2003; Burr et al., 2009; Butler et 

al., 2010; Rosas et al., 2005) that is usually more reliable 

in everyday life for a particular task and property (Batta

glia et al., 2003) or show a smaller multisensory variance 

reduction than predicted by MLE (Battaglia et al., 2011; 

Bentvelzen et al., 2009).

Yet there is a second hypothesis about the signal’s 

causal structure: there may be two birds, one that you can 

see sitting on the branch and one that you can hear singing 

in the bush. In this ‘independent source’ or ‘full segrega

tion’ case, information integration would be detrimental. 

Instead, you should use only the auditory information for 

directing your microphone and the visual information for 

directing your camera.

Critically, the individual sensory signals do not di

rectly inform the brain whether they arise from common 

or independent events. Instead, we must actively infer 

the ‘hidden’ causal structure from a range of multisen

sory correspondences such as signals happening at the 

same time (‘temporal coincidence or correlations’: Lee & 

Noppeney, 2011a; Lewis & Noppeney, 2010; Magnotti et 

al., 2013; Maier et al., 2011; Munhall et al., 1996; Noesselt 

et al., 2007; Parise & Ernst, 2016; Parise et al., 2012; van 

Wassenhove et al., 2007), same space (‘spatial coloca

tion’: Lewald & Guski, 2003; Slutsky & Recanzone, 2001; 

Spence, 2013), semantic (Adam & Noppeney, 2010; Bishop 

& Miller, 2011; Kanaya & Yokosawa, 2011; Lee & Noppeney, 

2011b; Noppeney et al., 2010), metaphoric (Sadaghiani et 

al., 2009; Parise & Spence, 2009) and other higherorder 

statistical or learnt congruency cues. Yet some uncertainty 

about the world’s causal structure will remain. To account 

for this causal uncertainty, the brain computes a final 

spatial estimate by combining the estimates from the two 

causal structures using one of various decision functions 

(for details see: Wozny et al., 2010). For instance, using the 

computational strategy called model averaging, it should 

estimate the location for directing the microphone by com
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bining spatial estimates that are computed by the ‘forced 

fusion’ and the ‘full segregation’ models, weighted by the 

posterior probabilities that audiovisual signals were more 

likely caused by one single or two different birds (Körding 

et al., 2007).

Accumulating evidence suggests that human observ

ers arbitrate between sensory integration and segregation 

qualitatively in line with the principles of Bayesian causal 

inference (Beierholm et al., 2009; Bertelson & Radeau, 

1981; Landy et al., 1995; Roach et al., 2006; Shams & Beier

holm, 2010; Wallace et al., 2004). In the laboratory this has 

been shown in particular for spatial localization (Körding 

et al., 2007; Rohe & Noppeney, 2015a, 2015b; Wozny et al., 

2010) and speech recognition tasks (Magnotti & Beau

champ, 2017; Magnotti et al., 2013). In spatial localization 

experiments, observers are presented concurrently with 

auditory signals (for example, bursts of white noise) and 

visual signals (for instance flashes) at the same or different 

locations with variable audiovisual spatial disparities. On 

each trial observers report the location of the flash and/or 

the location of the noise burst. The results show that an 

observer’s perceived sound location is shifted towards a 

spatially displaced but synchronous visual flash and vice 

versa depending on the relative auditory and visual reli

abilities. In line with Bayesian Causal Inference these au

diovisual spatial biases are attenuated or even abolished 

for large audiovisual spatial disparities when it is unlikely 

that auditory and visual signals come from a common 

source. In other words, audiovisual spatial disparity is a 

critical cue that observers use to determine whether or not 

to integrate sensory signals (Körding et al., 2007; Rohe & 

Noppeney, 2015a, 2015b; Wozny et al., 2010).

The audiovisual spatial bias that emerges for small 

spatial disparities is in fact the socalled ventriloquist 

effect (Bertelson & Radeau, 1981; Bonath et al., 2007; 

Driver, 1996), a perceptual illusion that was used for re

Figure 1: A. Bayesian Causal Inference model: The generative model of Bayesian Causal Inference for spatial localization determines whether 

the ‘sight of the bird’ and the ‘singing’ are generated by common (C=1) or independent (C=2) sources (Körding et al., 2007). For common 

source, the ‘true’ audio-visual location (SAV) is drawn from one prior spatial distribution. For independent sources, the ‘true’ auditory (SA) 

and ‘true’ visual (SV) locations are drawn independently from this prior spatial distribution. We then introduce independent sensory noise to 

generate auditory (XA) and visual (XV) inputs.

B. Visual bias on perceived sound location as a function of audio-visual spatial disparity. As predicted by Bayesian Causal Inference the 

audio-visual spatial bias depends non-linearly on spatial location. For small spatial disparities, the observer integrates auditory and visual 

spatial estimates weighted approximately in proportion to their relative reliabilities. For large spatial disparities audio-visual interactions 

and biases are reduced (Rohe & Noppeney, 2015b).

C. Bayesian Causal Inference within the cortical hierarchy: Primary sensory areas represent predominantly the location of their preferred 

sensory signals (for example sound location in auditory regions). Posterior intraparietal cortex integrates sensory signals weighted by their 

reliabilities approximately according to forced fusion principles. Anterior intraparietal sulcus computes the final Bayesian Causal Inference 

estimate that takes into account the observer’s uncertainty about the causal structures that could have generated the sensory signals (Rohe 

& Noppeney, 2015a).
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ligious purposes already in ancient times and later for 

entertainment at travelling fun fairs (Vox, 1981). To create 

the ventriloquist illusion the puppeteer speaks without 

making any articulatory movements. Further, he holds 

the puppet close to his own face and moves the lips of 

the puppet in synchrony with his own speech. As a result 

of the temporal correlations of the auditory (i.  e. puppe

teer’s speech) and visual (i.  e. puppet’s facial movements) 

signals the observer infers that auditory and visual signals 

are generated by a common source and integrates them 

into a coherent percept weighted by the relative auditory 

and visual reliabilities. As the spatial reliability of sound 

perception is usually inferior to the precise visual spatial 

estimates, the observer most commonly misallocates the 

speech of the puppeteer to the puppet (Alais & Burr, 2004). 

In short, the ventriloquist illusion tricks the brain based 

on the computational principles of Bayesian Causal Infer

ence: it artificially brings auditory and visual signals into 

spatial conflict while maintaining temporal synchrony to 

enable integration (see excursion box 1 for perceptual illu

sions in multisensory perception).

Multisensory interactions are 

 ubiquitous in neocortex

Traditionally, it was thought that multisensory integra

tion is deferred until later processing stages in higher 

order association areas such as parietal or prefrontal cor

tices (Avillac et al., 2007; Barraclough et al., 2005; Beau

champ et al., 2004; Calvert et al., 2000; Driver & Noesselt, 

2008; Ghazanfar et al., 2008; Macaluso et al., 2003; Miller 

& D’Esposito, 2005; Sadaghiani et al., 2009; Schroeder 

& Foxe, 2002; Stevenson & James, 2009). However, over 

the past two decades neuroimaging in humans (Foxe et 

al., 2002; Lee & Noppeney, 2011a, 2014; Lehmann et al., 

2006; Martuzzi et al., 2007; Molholm et al., 2002; Noesselt 

et al., 2007; Werner & Noppeney, 2010a), neurophysiology 

in nonhuman primates or rodents (Atilgan et al., 2018; 

Bieler et al., 2017; Bizley et al., 2006; Bizley & King, 2009; 

Foxe & Schroeder, 2005; Ghazanfar et al., 2005; Ibrahim et 

al., 2016; Iurilli et al., 2012; Lakatos et al., 2007; Schroeder 

& Foxe, 2002; Kayser & Logothetis, 2007); and neuroana

tomical (Falchier et al., 2002; Rockland & Ojima, 2003; 

Schroeder et al., 2003) research have accumulated evi

dence suggesting that multisensory integration emerges 

already in early sensory and even primary sensory areas 

and then progressively increases across the cortical hier

archy. Provocatively, it was even proposed that ‘the entire 

neocortex is multisensory’ (Ghazanfar & Schroeder, 2006).

In support of lowlevel integration, numerous fMRI 

and EEG studies in humans have shown that multisensory 

interactions can be observed in primary sensory areas and 

at early processing stages even before 100 ms poststimu

lus (Besle et al., 2008; Foxe et al., 2000; Molholm et al., 

2002; Molholm et al., 2004). Likewise, neurophysiological 

recordings in nonhuman primates (Kayser et al., 2008, 

2010; Lakatos et al., 2009; Schroeder & Foxe, 2005) or 

rodents (Atilgan et al., 2018; Bieler et al., 2017; Bizley & 

King, 2009; Bizley et al., 2007) revealed that the response 

to the preferred stimulus in sensory areas, for instance 

auditory belt and parabelt areas, can be enhanced or 

suppressed or gain in information content by a concur

rent stimulus in a nonpreferred sensory modality. While 

multisensory interactions in lowlevel sensory areas may 

be due to topdown influences from superior temporal or 

parietal cortices (Seltzer & Pandya, 1994), they may also be 

mediated via thalamocortical mechanisms (for example 

pulvinar) or direct connectivity between sensory areas 

(Musacchia et al., 2014; Schroeder et al., 2003). Indeed, 

neuroanatomical tracer studies have shown sparse direct 

connectivity from early or even primary auditory to visual 

cortices and vice versa in primates (Falchier et al., 2002; 

Rockland & Ojima, 2003) and rodents (Bizley et al., 2007; 

Budinger et al., 2006; Campi et al., 2009; Ibrahim et al., 

2016).

This ubiquity of multisensory interplay at all stages 

of cortical processing challenges traditional hierarchical 

models of late integration. It suggests that multisensory 

interactions emerge at multiple cortical levels and within 

several circuitries including thalamocortical, corticocor

tical and higher order association cortices (Musacchia & 

Schroeder, 2009; Schroeder et al., 2003). Hence, we need 

to move beyond identifying multisensory regions towards 

characterizing their functional properties and behavioural 

relevance.

In primary and lowlevel sensory cortices, previous 

research has described driving and modulatory multi

sensory influences (Atilgan et al., 2018; Bieler et al., 2017; 

Bizley & King, 2009; BIzley et al., 2007; Kayser et al., 2008; 

Lakatos et al., 2009; Meijer et al., 2017; Meredith & Allman, 

2015). First, both neuroimaging studies in humans (Leitão 

et al., 2012; Werner & Noppeney, 2011) and electrophysi

ology in rodents (Ibrahim et al., 2016; Iurilli et al., 2012) 

have suggested that unisensory stimuli induce deactiva

tions or synaptic inhibition in noncorresponding sensory 

cortices. For instance, visual stimuli have been shown to 

elicit a negative BOLDresponse in auditory cortices, while 

auditory stimuli induce synaptic inhibition and fMRI de

activations in visual cortices (Ibrahim et al., 2016; Iurilli 

et al., 2012; Leitão et al., 2012). Second, a stimulus of a 
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nonpreferred sensory modality may not necessarily elicit 

a reliable response in itself, but instead modulate the re

sponse to a stimulus of the preferred sensory modality. 

For instance, auditory core and belt areas are predomi

nantly responsive to auditory rather than visual signals, 

yet their auditory response and information can be mod

ulated by a concurrent visual input (Kayser et al., 2010). 

Lakatos and colleagues suggested that these modulatory 

interactions may rely on mechanisms of phase resetting 

of theta oscillations (Lakatos et al., 2009; see also Sieben 

et al., 2012 for related research in rodents). Because in 

our natural environment the visual signal often precedes 

the auditory signal (for instance facial articulatory move

ments often precede speech output), it can modulate the 

soundinduced activity by resetting the phase of ongoing 

oscillations (Lakatos et al., 2009; Schroeder et al., 2008). 

This may be an important mechanism whereby multisen

sory integration can increase the salience of multisensory 

events and facilitate their detection. In support of a tem

porallysensitive mechanism, recent neurophysiological 

(Kayser et al., 2010) and fMRI studies (Lewis & Noppeney, 

2010; Werner & Noppeney, 2011) have also shown that 

audiovisual interactions in Heschl’s gyrus and planum 

temporale were sensitive to temporal coincidence or cor

relations over time. Critically, multisensory response en

hancements at the primary cortical level were then gated 

into higher order association cortices (for instance ventral 

object vs. dorsal motion recognition system) depending on 

task context, suggesting that lowlevel integration effects 

can propagate to influence higherorder processing to 

guide behavioural responses (Lewis & Noppeney, 2010).

Multisensory interactions in higherorder association 

areas such as superior temporal or parietal sulcus are 

usually less sensitive to the exact timing of the sensory 

inputs and are characterized by larger temporal binding 

windows (Werner & Noppeney, 2011). Rather than salience 

detection, these areas may thus be involved in integrating 

signals into taskrelevant representations (for example 

spatial, object, speech etc.). In support of this conjecture, 

the profile of multisensory interactions in STS and IPS di

rectly predicted whether human observers benefitted from 

multisensory integration: the greater their multisensory 

enhancement in superior temporal and parietal cortices, 

the greater was observers’ audiovisual benefit for object 

categorization (Werner & Noppeney, 2010a, 2010b).

Finally, even if sensory signals cannot be integrated 

into a unified percept because they are incongruent, they 

can still interact at a decisional level and influence re

sponse selection. Using selective intersensory attention 

tasks a myriad of studies have demonstrated that a taskir

relevant yet incongruent visual stimulus can interfere with 

observers’ decisions on a taskrelevant auditory stimulus 

(Noppeney et al., 2008) and vice versa (Krugliak & Nop

peney, 2015; Marks, 1987). Combining a Compatibility 

Bias model and fMRI we have previously suggested that 

the prefrontal cortex accumulates sensory evidence from 

multiple senses until a decisional threshold is reached 

and a response elicited (Noppeney et al., 2010). Further, 

in situations of congruent sensory signals the prefrontal 

cortex shows suppressed responses to audiovisual rela

tive to unisensory signals in line with response facilita

tion at the decisional level (Sugihara et al., 2006; Werner 

& Noppeney, 2010a). Interestingly, in line with research in 

rodents showing multisensory interactions predominantly 

in transition zones between sensory cortices (Wallace et 

al., 2004), the suppressive interactions were predomi

nantly found in border zone between auditory and visual 

dominant regions (Werner & Noppeney, 2010a).

In summary, accumulating evidence suggests that 

multisensory integration is a multifaceted process emerg

Figure 2: Late and multistage integration models: Traditionally it was thought that multisensory integration emerges at later processing 

stages in association cortices. We propose that different types of multisensory interactions occur at multiple stage of the cortical processing 

hierarchy.
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ing at multiple stages across the cortical hierarchy. While 

some sensory interactions take place early and even in 

primary sensory areas, it is likely that other information 

may also propagate to higher cortical levels prior to being 

integrated. Potentially, multisensory interactions in low

level sensory areas serve to amplify the signal strength 

and salience of multisensory events, which in turn impacts 

representational integration processes and decisionmak

ing in higher levels of the cortical hierarchy (Werner & 

Noppeney, 2010a).

How the brain performs causal 

inference and reliability weighted 

integration

At the beginning we discussed that the brain faces two crit

ical challenges in a multisensory world. First, it needs to 

identify and bind signals that come from a common source 

based on a range of correspondence cues such as tempo

ral coincidence or spatial colocation. Second, if signals 

come from a common source they should be integrated, 

weighted in proportion to their relative reliabilities. While 

section 1 summarized the behavioural evidence, in the fol

lowing we will review neurophysiology and neuroimaging 

research that provides insight into the underlying neural 

basis.

Since the seminal work by Stein and colleagues on 

multisensory integration in the superior colliculus (Mer

edith & Stein, 1983; Wallace et al., 1996; Stein & Meredith, 

1993) a vast number of neurophysiological and neuroim

aging studies have shown that the multisensory interac

tions depend on spatial colocation, temporal synchrony 

and correlations, as expected for causal inference (Stein 

& Stanford, 2008). More specifically, Stein and others 

demonstrated that audiovisual interactions were su

peradditive (i.  e. neural response for the audiovisual 

stimulus was greater than the sum of the unisensory re

sponses) for spatially collocated audiovisual signals, but 

turned additive, subadditive or even suppressive when 

auditory and visual signals were presented at different lo

cations and one signal fell outside the receptive field for 

the other signal (Stanford, 2005; Stanford & Stein, 2007; 

Wallace et al., 1996). Thus, organization into receptive 

fields may enable causal inference based on spatial cor

respondence cues.

Similar to the role of spatial concordance, audiovi

sual interactions of transient signals in superior colliculus 

were limited to a temporal window of approximately 500 

ms. Recent modelling approaches suggest that temporal 

binding windows for naturalistic continuous signals such 

as speech may rely on detecting multisensory correlations 

based on the HassensteinReichardtdetector as a rela

tively simple, yet physiologically plausible model com

ponent (Parise & Ernst, 2016). One interesting question 

that has recently been asked is whether temporal binding 

may be related to the brain’s internal rhythms, i.  e. neural 

oscillations. First, crossmodal phase resetting was put 

forward as a temporal mechanism that would allow a 

signal from one sensory modality to modulate the pro

cessing of another sensory signal as a function of oscil

latory cycle length and audiovisual asynchrony (Lakatos 

et al., 2009). Second, more recent studies even suggested 

that the timevarying cycle length of the alpha oscillations 

in individual observers may determine their audiovisual 

binding window. Human observers with faster oscillations 

were associated with a smaller temporal binding window 

(Cecere et al., 2015; Samaha & Postle, 2015). While the idea 

that oscillation cycles may serve a similar function for tem

poral binding windows as receptive fields do for spatial 

binding windows is intriguing, future studies and more 

detailed and specific theoretical models are needed.

Recent neurophysiological studies in nonhuman pri

mates focused on how single neurons and neuronal popu

lations integrate signals weighted by their reliabilities. In 

a visuovestibular heading discrimination task Fetsch and 

colleagues demonstrated that macaques showed similar 

nearoptimal performance to human observers (Fetsch et 

al., 2012). Concurrent recording from neurons in dorsal 

motion area MSTd showed that congruent neurons com

bined the visual and vestibular inputs subadditively (Gu 

et al., 2008) and weighted by their relative reliabilities 

(Fetsch et al., 2012), giving a higher weight to the more 

reliable sensory signal (Fetsch et al., 2012) on a trialby

trial basis. As predicted by maximum likelihood estima

tion under forced fusion assumptions, neurons were more 

sensitive to heading direction under visuovestibular than 

unisensory stimulation (Gu et al., 2008) in line with be

havioural performance (see also Nikbakht et al., 2018 for 

a related study in rodents). Further, neural population 

decoding revealed neural sensory weights that corre

sponded closely to the sensory weights computed from the 

monkeys’ behavioural performance (Fetsch et al., 2012). 

Additional electrical microstimulation and chemical inac

tivation of MSTd provided a causal link between the neural 

computations in MSTd and behavioural performance in a 

heading discrimination task (Gu et al., 2012). Collectively, 

this elegant and extensive body of work suggests that neu

ronal populations and single neurons in MSTd integrate 

visual and vestibular signals weighted by their relative 
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reliabilities in representations of heading direction that 

guide behavioural decisions. While these computations 

are in line with maximum likelihood estimation, they can 

be obtained through mechanisms of divisive normaliza

tion (Ohshiro et al., 2011, 2017), a canonical neural com

putation that has previously been proposed for visual pro

cessing and attentional modulation (Carandini & Heeger, 

2012). Moreover, divisive normalization can also explain a 

response enhancement that is maximal when the strength 

of individual signals is weak – a principle referred to as 

inverse effectiveness since the seminal studies by Stein 

and colleagues (Stein & Meredith, 1993). Consistently 

across species and methodologies research has shown 

that the operational (i.  e. super vs. subadditive) modes of 

multisensory integration depend on the signal strength as 

well as a neuron’s or voxel’s response to unisensory stimuli 

(Kayser et al., 2008; Siemann et al., 2015; Stanford et al., 

2005; Stein & Meredith, 1993; Stein et al., 2014; Werner & 

Noppeney, 2010b).

At the neural systems level functional imaging studies 

in humans have shown that higher order association cor

tices such as parietal or superior temporal sulci integrate 

sensory signals weighted by their reliabilities in speech 

recognition (Nath & Beauchamp, 2011), spatial localization 

(Rohe & Noppeney, 2018) and shape discrimination tasks 

(Beauchamp et al., 2010; Helbig et al., 2012). Two recent 

studies moved beyond reliabilityweighted integration 

and investigated how the human brain performs Bayes

ian Causal Inference in a spatial ventriloquist paradigm at 

the neural systems level using functional imaging (Rohe 

& Noppeney, 2015a, 2016). Inside the scanner, observers 

were presented with audiovisual signals that varied in the 

spatial disparity and visual reliability. On each trial, they 

either located the sound or the visual stimulus. Combining 

psychophysics, fMRI, Bayesian modelling and multivariate 

decoding the study showed that the brain accomplishes 

Bayesian Causal Inference by encoding multiple spatial 

estimates across the cortical hierarchy. At the bottom of 

the hierarchy, auditory areas encoded predominantly the 

location of the sound and visual areas the location of the 

visual stimulus (= segregation). In posterior intrapari

etal sulcus, location is estimated under the assumption 

that the two signals are from a common source (= forced 

fusion). Only at the top of the hierarchy, in anterior intra

parietal sulcus, is the uncertainty about the world’s causal 

structure taken into account. As predicted by Bayesian 

Causal Inference, location is estimated by combining the 

segregation and the forced fusion estimates weighted by 

the posterior probabilities of common and independent 

sources. Thus, anterior IPS forms a spatial estimate that 

gracefully transitions from integration to segregation as 

a function of spatial disparity (Rohe & Noppeney, 2015a, 

2016).

Conclusions

In our natural environment our senses are constantly 

bombarded with many different signals. Ideally, the brain 

should integrate signals weighted by their reliabilities 

when they come from a common source, but process them 

independently when they come from different sources. 

Human observers have been shown to arbitrate between 

integration and segregation in line with Bayesian Causal 

Inference. At the neural level neurophysiological studies 

in nonhuman primates and other species have unravelled 

how the brain integrates signals from common events 

weighted by their relative reliabilities into a unified rep

resentation. Initial neuroimaging studies in human ob

servers suggest that the brain integrates sensory signals in 

line with Bayesian Causal Inference by encoding multiple 

perceptual estimates along the cortical hierarchy. Future 

research combining psychophysics, computational mod

elling, neurophysiology and neuroimaging across differ

ent species is needed to bridge the gap between neural 

mechanisms, computational operations and behaviour 

and explore the functional consequences of multisensory 

integration.

Excursion: Multisensory binding 

as a mechanism for perceptual 

illusions

The computations of our perceptual system are optimised 

for effective interactions with our natural environment. In 

the laboratory, we can play tricks on observers’ percep

tion by placing them in situations that violate the natural 

statistics for which their perceptual system has been op

timized. Particularly, in multisensory integration we can 

bring sensory signals artificially into conflict along one 

particular dimension (for example space, time, number, 

phoneme), while providing sufficient multisensory cor

respondence cues along another dimension. Thereby, we 

can persuade the brain to integrate conflicting signals into 

one unified illusory percept. Multisensory integration has 

been used to create a myriad of perceptual illusions. In the 

following we will highlight the most prominent examples.

In the doubleflash illusion (Shams et al., 2000) ob

servers are presented with a single flash of light temporally 
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sandwiched between two beeps. In such cases observers 

will usually report seeing two flashes, indicating that their 

final percept placed more weight on the temporallyprecise 

sound signal than on the relatively unreliable flash. Thus, 

while the ventriloquist illusion exploits the spatial uncer

tainty of hearing (we can in most circumstances locate an 

object better by vision than audition), the doubleflash 

illusion exploits the temporal uncertainty of vision (the 

ears are more reliable than the eyes at determining when 

something happened). In that respect the doubleflash 

illusion may be considered a temporal equivalent of the 

ventriloquist effect. But, of course, temporal and spatial 

dimensions are not quite comparable. While spatial ven

triloquism illustrates how the brain estimates the spatial 

location of an event (i.  e. estimation task), the doubleflash 

illusion reveals how it determines the number of events 

(i.  e. detection task).

Multisensory speech signals can also be manipulated 

to produce illusory percepts. In the socalled McGurkMc

Donald illusion (Mcgurk & Macdonald, 1976) the observer 

is presented in synchrony with a video clip of a speaker 

articulating /ga/ and a sound recording of the phoneme /

ba/. Because of the synchrony cues the observer integrates 

these conflicting audiovisual phonemes into an illusory /

da/ percept. This illusory percept can again be explained 

by reliabilityweighted integration. Using a speech synthe

sizer, one can generate an artificial ‘phoneme’ dimension 

and progressively morph from a /ba/ to a /ga/ phoneme. 

The perception of ‘ba’ – ‘da’ – ‘ga’ phoneme categories 

emerges as a result of human categorical perception 

(Liberman et al., 1957).

The rubberhand illusion (Botvinick & Cohen, 1998) 

is an example of our own bodily perception being tricked. 

In order to track our body’s position in space, humans 

rely on proprioception – the sense that allows us to, for 

instance, clap with our eyes closed. The rubberhand illu

sion overrides this sense by utilising visual and proprio

ceptive cues that conflict with our understanding of our 

body’s position. The participant is seated with one hand 

placed on a table. This hand is then concealed from them 

using a divider, and a replacement rubber hand placed in 

clear view. The person performing the illusion then pro

ceeds to simultaneously stroke both real and rubber hands 

with paint brushes, taking care to match the strokes as 

closely as possible. As the participant continues to see 

the strokes on the rubber hand but feel them on their real 

hand, the brain is presented with increasing evidence 

that these signals are perfectly temporally matched and 

should be integrated, despite conflicting information from 

the proprioceptive system that their hand is actually far 

to the right. The result, in the majority of participants, is 

a growing belief that the rubber hand has replaced their 

real one. Such demonstrations often conclude with the 

experimenter unexpectedly hitting the rubber hand with 

a hammer.

Finally, even our sense of taste is not exempt from multi

sensory illusions. Professor Charles Spence specialises in 

the sensory perception of food, and his lab has demon

strated a variety of ways in which other senses can influ

ence what we taste. The weight and material of cutlery 

(Harrar & Spence, 2013), the colour and shape of the plate 

(PiquerasFiszman et al., 2012), and the texture of pack

aging (PiquerasFiszman et al., 2012) have all been shown 

to influence our experience of food. In 2008, Professor 

Spence (alongside his colleague Massimiliano Zampini) 

was presented with the Ig Nobel prize for the novel demon

stration that digital sound manipulations can make potato 

crisps seem crunchier (Zampini & Spence, 2004).
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Figure 3: The rubber hand illusion. The participant is seated at a 

table, with their right hand obscured by a divider, and looks at a 

rubber hand. The experimenter strokes the participant’s hand and 

the rubber hand simultaneously with paintbrushes, using varied but 

matching strokes that suggest these haptic and visual signals have 

the same source and should be integrated. The resulting illusory 

percept usually manifests as a sense that the rubber hand is a part 

of one’s own body.
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