

Seed Encoding with LFSRs and Cellular Automata
Ahmad A. Al-Yamani and Edward J. McCluskey

Center for Reliable Computing
Stanford University, Stanford, CA

{alyamani, ejm}@crc.stanford.edu

Abstract
Reseeding is used to improve fault coverage of pseudo-
random testing. The seed corresponds to the initial state of
the PRPG before filling the scan chain. In this paper, we
present a technique for encoding a given seed by the number
of clock cycles that the PRPG needs to run to reach it. This
encoding requires many fewer bits than the bits of the seed
itself. The cost is the time to reach the intended seed. We
reduce this cost using the degrees of freedom (due to don’t
cares in test patterns) in solving the equations for the seeds.
We show results for implementing our technique completely
in on-chip hardware and for applying it from a tester.
Simulations show that with low hardware overhead, the
technique provides 100% single-stuck fault coverage. Also,
when compared with conventional reseeding from an external
tester or on-chip ROM, the technique reduces seed storage by
up to 85%. We show how to apply the technique for both
LFSRs and CA.

Categories and Subject Descriptors
B.8.1 [Integrated Circuits]: Reliability, Testing, and Fault
Tolerance.
General Terms
Algorithms, Performance, Design, Reliability.
Keywords
VLSI Test, Built-In Self Test, Reseeding.

1. Introduction
Among the advantages of built-in self-test (BIST) are

low cost compared to external testing using automatic test
equipment (ATE), and applicability while the circuit is in the
field. In BIST, on-chip circuitry is included to provide test
vectors and to analyze output responses. One possible
approach for BIST is pseudo-random testing using a linear
feedback shift register (LFSR) [McCluskey 85, Bardell 87].

Many digital circuits contain random-pattern-resistant
(r.p.r.) faults that limit the coverage of pseudo-random testing
[Eichelberger 83].The r.p.r. faults are faults with low
detectability (Few patterns detect them).

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

Several techniques have been suggested for improving
BIST fault coverage. They are: (1) Modifying the circuit by
test point insertion or by redesigning the circuit [Eichelberger
83, Touba 96], (2) Weighted pseudorandom patterns, where
the random patterns are biased using extra logic to increase
the probability of detecting r.p.r. faults [Eichelberger 89,
Wunderlich 90], and (3) Mixed-mode testing where the circuit
is tested in two phases. In the first phase, pseudo-random
patterns are applied. In the second phase, deterministic
patterns are applied that target the undetected faults
[Koenemann 91, Hellebrand 95, Touba 00]. Our
technique is a mixed mode technique based on encoding the
seeds in terms of the number of clock cycles required for the
PRPG to reach them.

Modifying the CUT is often not possible because of
performance issues or intellectual property rights. Weighted
pseudo-random sequences require multiple weight sets.
Mixed mode testing is done in several ways; one is to apply
deterministic test patterns from a tester. Another technique is
to store the deterministic patterns (or the seeds) in an on-chip
ROM. There needs to be additional circuitry to apply the
patterns in the ROM to the circuit under test.

Another technique for mixed-mode testing is mapping
logic [Touba 00] where non-fault dropping patterns in the
original set are mapped by hardware into deterministic
patterns.

Reseeding refers to loading the PRPG with a seed that
expands into a precomputed test pattern. We presented a
technique for built-in reseeding (encoding the seeds in
hardware) in [Alyamani 03a]. The technique combines
mapping logic and reseeding and applies pseudorandom
patterns between the deterministic seeds because there is a
chance more faults will be detected.

A seed is a PRPG initial state. When the PRPG is
loaded with this initial state, it loads the scan chains with the
desired pattern after m clock cycles, where m is the length of
the scan chains. We call the state of the PRPG after loading
the scan chains the final state.

In [Alyamani 03b], we presented a technique for
minimizing the number of seeds to be loaded by ordering the
seeds and by exploiting the degrees of freedom in solving for
the seeds. In this paper, our contributions are: (1) A seed
encoding technique that encodes the seeds in a much smaller
vector that corresponds to the number of cycles to reach it.
The technique also exploits the degrees of freedom in solving
for the seed. (2) An architecture that implements the
encoding technique. The technique is applicable for SSF and
transition faults. (3) An improvement over the built-in
reseeding and seed ordering techniques to make them valid
for any linear machine i.e., for LFSRs or cellular automata
with or without phase shifters.

In Sec. 2 of this paper, we review the related literature.
In Sec. 3, we present the seed encoding scheme. In Sec. 4, we
present the architecture for built-in seed encoding and

33.3

560

reseeding. Section 5 shows the simulation results and Sec. 6
concludes the paper.

2. Related Work
Konemann presented a technique for coding test patterns

into PRPGs of size Smax+20, where Smax is the maximum
number of specified bits in the ATPG patterns. By adding 20
to Smax as the size of the PRPG, the probability that test
patterns cannot be coded into seeds drops to 1 in a million
[Koenemann 91].

[Rajski 98] presented a reseeding-based technique
that improves the encoding efficiency by using variable-
length seeds. In [Krishna 01], the authors presented partial
dynamic reseeding to incrementally modify the LFSR
contents instead of modifying them all at once. This
technique achieves higher encoding efficiency than static
reseeding. The technique in [Alyamani 03a] encodes the
seeds in hardware.

The technique presented in this paper tries to exploit the
degrees of freedom in solving the linear system of equations
for the seed to encode a seed by the number of additional
clocks needed to reach it.

In [Lempel 95], an analytical method was presented for
computing seeds for random pattern resistant circuits based
on discrete logarithms. In [Fagot 99], a simulation scheme for
calculating seeds for LFSRs was presented. The scheme is
based on simulating several sequences that include a set of
ATPG vectors.

In [Koenemann 00], a technique for skipping useless
patterns is presented. The technique is based on having a
Seed Skip Data Storage (SSDS) inside the tester. Fault
simulation is performed to identify the useful (fault dropping)
and useless (non fault dropping) sequences of patterns. Using
additional control logic, the useless patterns are not loaded
from the PRPG to the scan chains.

3. Seed Encoding
The BIST architecture we assume is shown in Figure 1.

Our technique is applicable with any number of scan chains
and any phase shifter. The results shown in Sec. 5 are for a
single scan chain per circuit. However, the only difference if
multiple scan chains were used is in the seed calculation. The
way we calculate the seeds is explained in the appendix. The
seeds are then either loaded from the tester or encoded in
hardware on chip as explained in Sec. 4.

CUT
1 2 3 m

SI1 SO1

1 2 3 m
SI2 SO2

1 2 3 m
SIn SOn

L
F
S
R

M
I
S
R

Phase
Shifter

Figure 1: Multiple scan chains with a phase shifter

If the final state of the PRPG after loading the scan
chain matches another seed, then that seed doesn’t have to be
loaded into the PRPG. If the final state of the PRPG doesn’t
match another seed, we can clock the PRPG a few times until
we reach a match with one of the seeds. Also, instead of

relying completely on randomness, we can exploit the
degrees of freedom in solving the equations to generate the
seed so that we increase the chances of matching a seed with
the final state of the PRPG.

Let the state of the PRPG at time t be given by s(t), then
the PRPG state at time t+1 is given by () ()Htsts =+1 ,
where H is called the transition matrix, and
() () 101 +=+ tHsts . If the longest scan chain is of length

m, and seed i is si(0), then the contents of the PRPG after the
scan chains are loaded is given by si(m+1). The PRPG can be
a cellular automaton or an LFSR.

The encoding algorithm we present is based on looking
ahead in the sequence of the PRPG by finding si(m+1) for
seed i and trying to find whether it matches with any of the
other seeds sj(0), where j ≠ i. If they match, then sj(0) doesn’t
need to be loaded into the PRPG. If a match is not found, we
can search for a match with si(m+d), where 1≤d≤dmax. The
parameter dmax corresponds to the number of clock cycles we
are willing to continue running the PRPG before loading the
next seed. Choosing dmax = 1 means that if si(m+1) doesn’t
match any of the remaining seeds, we will load a new seed.

The technique explained above requires changes to the
BIST architecture to allow capturing after a different number
of clock cycles. The architecture is presented in Sec. 4.

Given a set of seeds and a user-specified dmax, we order
the seeds to minimize the number of seeds that need to be
loaded as explained in [Alyamani 03b].

4. Seed Encoding Architecture
A fundamental issue in applying our seed encoding

technique is how to make the PRPG run for a variable
number of cycles for different seeds. Normally, the PRPG,
runs for a number of cycles equal to the length of the longest
scan chain before a capture cycle. To use our encoding
technique, which represents the seed by the number of clock
cycles required to reach it, we need to have the PRPG run for
a variable number of cycles.

In a usual logic BIST architecture, a bit counter is used
to choose when to disable the Scan Enable (SE) signal for
capturing. One way to implement this is to have the bit
counter loaded with the value that corresponds to the length
of the longest scan chain for every pattern. The bit counter is
then decremented by 1 at each clock cycle. When the bit
counter reaches zero, it means that the test pattern is loaded
into the scan chains, so SE is disabled for one clock cycle,
and so on. The length of the scan chains is stored in a register
and loaded into the bit counter with every pattern. Our
technique is based on running the PRPG for a number of
cycles to reach the desired seed. To implement this, we need
to load the bit counter register with different values
corresponding to the number of cycles before the next
capture. Unloading the scan chains starts right after the
capture cycle. So, for encoded seeds, there are extra cycles
after unloading the response to pattern i and before capturing
the response for pattern i+1.

561

4.1 Running the technique from an ATE
To run our technique from an external tester, we have

two types of seeds, seeds that need to be loaded into the scan
chain, loaded seeds, and seeds that can be reached by
continuing to run the PRPG for additional cycles after
loading the scan chains, encoded seeds. We use the name
encoded seeds because these seeds are encoded into the
number of cycles the PRPG needs to run to reach them.

Seed size: How efficient is this encoding? Why not just
load all seeds? This question can be answered by a simple
example, take a circuit of 10,000 flip flops that has 10 scan
chains of length 1000 each. If the maximum number of care
bits in the test patterns is 500 (5%), we need a PRPG of size
520 [Koenemann 91]. Since the length of the scan chain is
1000, the bit counter needs to have only 10 bits. So, by
encoding the seed into the number of cycles to reach it we get
a 98% (52×) reduction in seed storage. Even if we decide to
run the PRPG for up to 1000 additional cycles before
reaching the next desired seed, then impact on the size of the
bit counter is a single bit.

Test time: In terms of test length, for the example above,
loading the PRPG with a new seed takes 520 cycles. Loading
the bit counter register takes 11 clock cycles. This means that
we can search for a match with another seed in up to 508
cycles while saving on the test time and at the same time
saving on tester storage.

If we only rely on luck in finding a match by clocking
the PRPG, then we may not have a very good chance. That’s
why we exploit the degrees of freedom in solving the linear
system of equations to force such a match as explained in the
appendix.

4.2 Full BIST Implementation
Our technique can be applied for full on-chip BIST with

100% SSF fault coverage. For that, we need to have a
reseeding circuit for loaded seeds and a seed encoding circuit
for encoded seeds.

Loaded seeds: We use the built-in reseeding architecture
presented in [Alyamani 03a]. The operation of the reseeding
circuit is as follows: the PRPG starts running in autonomous
mode according to the reseeding algorithm [Alyamani 03a].
Once it is time for reseeding, a seed is loaded into the PRPG,
which then goes back to the autonomous mode and so on and
so forth until the desired coverage is achieved. The new seed
is loaded by putting the PRPG in the state that precedes the
seed value, so that at the next clock pulse, the new seed is in
the PRPG.

Error! Reference source not found.(b) shows the
structure of the PRPG and its interaction with the reseeding
circuit. For our technique, we use muxed flip-flops. By
activating the select line of a given mux, the logic value in
the corresponding stage is inverted. The muxed flip-flops are
similar to those used for scan chains. The output of the
reseeding circuit activates the select lines of the muxes to
invert certain stages of the LFSR such that the desired seed is
loaded in the next cycle.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Reseeding Logic

CLK

M
U

X

M
U

X

M
U

X

M
U

X

⊕

⊕

(a)

(b)
Figure 2: Reseeding circuit connection to LFSR: (a) A

standard LFSR (b) LFSR with reseeding ckt.

As seen in the figure, the only modification to the LFSR

compared to a regular LFSR are the muxes. The LFSR flip-
flops are replaced by muxed flip-flops just like the scan
chain. In case of cellular automata, the same muxes structure
can be used. The muxes should be placed right at the outputs
of the flip flops before any XOR gates that are fed by the
scan chain flip-flops. This way both polarities are available at
the inputs of the muxes. Since XORs are linear gates, their
outputs will be complemented by complementing any of the
inputs, which satisfies the requirement for the above
architecture to work. The connection of the reseeding logic to
CA is shown in Figure 3.

⊕ 1

Reseeding Logic

⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 6

Figure 3: Reseeding circuit connection to CA

Encoded seeds: For the encoded seeds, we need a
combinational circuit that takes as its input the value of the
PRPG; the output of this circuit should be loaded into the bit
counter register. In logic BIST architectures, a pattern
counter is used to count the patterns applied to the circuit.
Instead of reading the values of the PRPG stages as input to
the seed encoding circuit, the value of the pattern counter can
be used as input. The majority of the input combinations for
the seed encoding circuit will load the bit counter register
with the length of the scan chains. The pattern counter input
combinations that correspond to seeds to be encoded will
load a different value in the bit counter register. That value
corresponds to the length of the scan chains plus the number
of clock pulses that need to be applied before reaching the
desired seed.

We can synthesize the seed encoding circuit from a table
of combinations. The input combinations that correspond to
normally loaded seeds should have the scan chains length as
the output value. The input combinations that correspond to
encoded seeds should have the output as the scan chains
length in addition to the number of the clock cycles needed to
reach to the seed. Just as in the circuit for built-in reseeding,
all input combinations that won’t occur in the desired test
sequence can be treated as don’t cares to help minimize the
seed encoding circuit.

Figure 4 shows where the reseeding and seed encoding
circuits fit in a system level view of a circuit with an LBIST

562

controller, which includes the additional control circuitry
added for logic BIST.

LBIST
Controller

Combinational Logic M
I
S
R

Pattern CounterControl
Signal

Generator

SE & TM

PIs POs

R
eseeding C

ircuit

L
F
S
R

Scan Chain(s)

Bit Counter

Seed
Encoding

Circuit

Figure 4: Reseeding and seed encoding circuits in a
system view of BIST environment

If the CUT or the scan chain is changed, then the
reseeding circuit and the seed encoding circuit need to be re-
synthesized based on the new design and the new test
patterns. However, if the seed encoding technique is applied
from a tester, then changing the design only results in
changes in the test patterns and accordingly the seeds that are
stored. If it's preferable to apply the technique with full BIST,
then it may be better to apply it after the design is stable and
no more changes are applied to the circuit or the scan chain.

5. Simulation Results
In this section we present the results of some simulation

experiments to evaluate our seed encoding technique. We
performed our experiments on some of the ISCAS 89
benchmarks. The characteristics of the benchmarks we used
are shown in Table 1. The table shows the number of primary
inputs, primary outputs, flip-flops in the scan chain, and in
the LFSR. The BC column lists the sizes of the bit counters.
We took into account the maximum number of additional
clock cycles to calculate the size of the bit counter. The table
also shows the cell-area of the circuits in LSI library cells
area units. The library used for technology mapping is LSI
Logic G.Flex library, which is a 0.13 µ technology library.

The experiment was designed such that pseudo random
patterns are applied first. Then, test patterns are generated for
the undetected faults and the seeds are calculated from the
test patterns.

Table 1: ISCAS 89 Circuits Used in Experiments.

CUT
Name

PIs POs FFs LFSR BC Cell
Area

s953 16 23 29 21 7 2,286
s1196 14 14 18 15 6 2,722
s1238 14 14 18 15 6 2,740
s1423 17 5 74 50 8 4,531
s1488 8 19 6 6 6 3,555
s1494 8 19 6 6 6 3,563
s5378 35 49 179 61 9 14,377
s9234 36 39 211 80 10 25,840

s13207 62 152 638 45 10 44,255
s35932 35 320 1728 60 11 106,198

In [Koenemann 91, Hellebrand 95, Touba 00,
Rajski 98, and Krishna 01] a single seed per pattern is
assumed. In our technique, we encode as many of the seeds

as we can by the number of additional clock cycles to reach
them. The remaining seeds have to be loaded from the tester
or encoded on-chip. Table 2 shows the number of test
patterns generated for the undetected faults. The seed per
pattern column shows the number of seeds that must be
stored if a single seed per pattern is assumed as it is the case
in most of the previous work. The table shows the number of
seeds that must be stored and the seeds that need to be
encoded with our technique.

Table 3 shows the seed storage needed for the seed per
pattern scheme and the seed storage needed for our scheme.
The storage is calculated by multiplying the number of
loaded seeds by the PRPG size and the number of encoded
seeds by the bit counter size. The table also shows the
reduction gained by using our scheme. The reduction varies
from 25% to 85%.

The area overhead required of our technique
implemented completely on chip with reseeding and seed
encoding circuits is comparable to the areas shown in
[Alyamani 03b] where the overhead ranged between 0.3%
and 10% and mostly less than 3%.

Table 2: Number of Seeds for Our Technique Compared
to One Seed per Pattern.

Our Technique Circuit Seed
per

Pattern
Loaded
Seeds

Encoded
Seeds

Total

s953 47 9 16 25
s1196 92 13 16 29
s1238 97 12 12 24
s1423 17 9 0 9
s1488 89 4 9 13
s1494 85 3 11 14
s5378 35 26 1 27
s9234 117 82 6 88

s13207 182 30 16 46
s35932 7 1 0 1

6. Conclusion
In this paper, we presented a seed encoding technique

based on running a variable number of clock cycles before
loading the seed.

The simulation experiments showed that the storage
needed is reduced by 25%-85% when our encoding technique
is used compared to storing a single seed per pattern. The
main characteristics that make our technique effective are: (1)
Running pseudorandom patterns after loading the seeds (2)
Ordering the seeds to load the minimum number of seeds, (3)
Encoding the seeds by the number of cycles needed to reach
them, and (4) Exploiting the degrees of freedom in solving
for the seeds to match them with the current contents of the
LFSR.

References
[Alyamani 03a] Al-Yamani A., and E. J. McCluskey, “Built-
In Reseeding for Serial BIST”, VLSI Test Symposium, Apr.,
2003.
[Alyamani 03b] Al-Yamani A., S. Mitra, and E.J.
McCluskey, “BIST Reseeding with Very Few Seeds”, VLSI
Test Symposium, Apr., 2003.

563

[Bardell 87] Bardell, P.H., W. McAnney, and J. Savir, “Built-
In Test for VLSI”, John Wiley, New York, 1987.
[Eichelberger 83] Eichelberger, E. B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and Diagnosis for
LSSD Logic Self-Test”, IBM Journal of Research and
Development, Vol. 27, No. 3, pp. 265-272, May 1983.
[Eichelberger 89] Eichelberger, E., E. Lindbloom, F. Motica,
and J. Waicukauski, “Weigted Random Pattern Testing
Apparatus and Method,” US Patent 4,801,870, Jan. 1989.
[Fagot 99] Fagot, C., O. Gascuel, P. Girard and C. Landrault,
“On Calculating Efficient LFSR Seeds for Built-In Self
Test,” Proc. of European Test Workshop, pp. 7-14, 1999.
[Hellebrand 95] Hellebrand, S., J. Rajski, S. Tarnick, S.
Venkataraman and B. Courtois, “Built-in Test for Circuits
with Scan Based on Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers,” IEEE Transactions on
Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.
[Koenemann 91] Koenemann, B., “LFSR-Coded Test
Patterns for Scan Designs,” Proc. of European Test
Conference, pp. 237-242, 1991.
[Koenemann 00] Koenemann, B., “System for Test Data
Storage Reduction,” US Patent 6,041,429, Mar. 2000.

[Krishna 01] Krishna, C. V., A. Jas, and N. Touba, “Test
Vector Encoding Using Partial LFSR Reseeding” Proc. of
International Test Conference, pp. 885-893, 2001.
[Lempel 95] Lempel, M., S. Gupta and M. Breuer, “Test
Embedding with Discrete Logarithms,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 14, No. 5, pp. 554-566, May 1995.
[McCluskey 85] McCluskey, E.J., “Built-In Self-Test
Techniques,” IEEE Design & Test, pp. 21-28, Apr. 1985.
[Rajski 98] Rajski, J., J. Tyszer and N. Zacharia , “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan,” IEEE Transactions on Computers, Vol. 47, No. 11,
pp. 1188-1200, Nov. 1998.
[Touba 96] Touba, N.A., and E.J. McCluskey, “Test Point
Insertion Based on Path Tracing,” Proc. of VLSI Test
Symposium, pp. 2-8, 1996.
[Touba 00] Touba, N. and E.J. McCluskey, “Altering Bit
Sequence to Contain Predetermined Patterns,” US Patent
6,061,818, May, 2000.
[Wunderlich 90] Wunderlich, H.-J., “Multiple Distributions
for Biased Random Test Patterns,” IEEE Transactions on
CAD, Vol. 9, No. 6, pp.584-593, Jun. 1990.

Table 3: Seed Storage Needed by our Technique Compared to Seed per Pattern.

Storage for Our Technique Circuit Circuit
Cell Area Seed per

Pattern
storage

Loaded
Seeds

Encoded
Seeds

Total Storage
Rduction %

s953 2,286 987 189 112 301 69.50
s1196 2,722 1380 195 96 291 78.91
s1238 2,740 1455 180 72 252 82.68
s1423 4,531 850 450 0 450 47.06
s1488 3,555 534 24 54 78 85.39
s1494 3,563 510 18 66 84 83.53
s5378 14,377 2135 1586 9 1595 25.29
s9234 25,840 9360 6560 60 6620 29.27

s13207 44,255 14560 2400 160 2560 82.42
s35932 106,198 420 60 0 60 85.71

Acknowledgement
This work was supported by King Fahd University of
Petroleum and Minerals and by LSI Logic under contract No.
16517.

Appendix
In [Alyamani 03b], we presented seed calculation for

LFSRs. In this section, we show how to apply the algorithm
to cellular automata. Figure 5 shows an example for a 6-stage
Cellular Automaton.

⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 6

Figure 5: A 6-stage Cellular Automaton.

For every flip-flop in the scan chains, there is a
corresponding equation in terms of the bits of the PRPG.
Let’s label the flip-flops of a given scan chain by S0 → Sm-1

where m is the length of the scan chain. Also, let’s label the
stages of the PRPG by L0 → Ln-1 where n is the size of the
PRPG. In the example above, assume that the CA is
connected to a scan chain at the output of stage 6 of the CA.
Also assume that the scan chain has 9 stages S0 – S8. The
equation for the deepest stage of the scan chain is S8 = L5,
because after m clock cycles the most significant bit of the
seed ends up in the most significant bit of the scan chain. The
reader is invited to verify the remaining equations:

S7 = L4 S6 = L3 ⊕ L5
S5 = L2 S4 = L1 ⊕ L3
S3 = L0 ⊕ L4 S2 = L0 ⊕ L1 ⊕ L2 ⊕ L4
S1 = L2 ⊕ L5 S0 = L1 ⊕ L3 ⊕ L4

We can represent the above equations by an m×n matrix

in which the rows correspond to the scan chain flip-flops and
the columns correspond to the PRPG stages. An entry (i,j) is
1 if and only if Lj appears in the equation of Si. According to
this system, the following matrix shows the equations for all
the flip-flops in the scan chain of the example above:

564

=

100000
010000
101000
000100
001010
010001
010111
100100
011010

E

8

7

6

5

4

3

2

1

0

S
S
S
S
S
S
S
S
S

543210 LLLLLL

In the case of multiple scan chains, the outputs of the

PRPG stages may need to go through a phase shifter to avoid
structural dependencies that cause undesired correlation
between patterns in different chains.

The phase shifter for a given scan chain is a linear sum
of some stages from the PRPG. The phase shifter for chain i
can be represented by a vector

[]iiii
n

i
n

i pppppp 01221 −−= . pi
j is one if the

XOR feeding scan chain i has the output of stage j of the
PRPG as one of its inputs.

The algorithm that generates the equations for a scan
chain S that is fed through a phase shifter ps starts with the
vector ps. Algorithm 1 is used to generate the equation matrix
Es.

The algorithm starts by assigning the vector ps to the last
row of Es. The other rows are generated bottom up by
multiplying the transition matrix H by the following row of
E. This algorithm can be used with any number of scan
chains.

The algorithm works with any PRPG and phase shifter.
It depends on the transition matrix and the phase shifting
vector, so it works with any linear machine.

1. m: depth of the scan chains
2. n: size of PRPG
3. ps: the phase shifter for the current scan chain
4. Es: equations matrix for the current scan chain
5. Es-Generator (m, n, h, Es)
6. E(m-1) = ps
7. for i=m-2 to 0
8. Ei = H × (E(i+1))T
9. endfor
10. end

Algorithm 1: Generating equations matrix Es for scan
chain s fed through a phase shifter

We exploit the degrees of freedom in solving the
equations to increase the probability of finding a match
between s(m+1) and the remaining seeds. The degrees of
freedom are caused by the fact that the number of equations
is less than the number of unknowns. This is a consequence
of don't care bits in test patterns and the fact that the size of
the PRPG depends on the maximum number of care bits.

The methodology for utilizing the degrees of freedom to
increase the chances of finding a match between the final
state of the PRPG and one of the remaining seeds is
explained with an example in [Alyamani 03b].

565

