
 

Seed Encoding with LFSRs and Cellular Automata 
Ahmad A. Al-Yamani and Edward J. McCluskey 

Center for Reliable Computing 
Stanford University, Stanford, CA 

{alyamani, ejm}@crc.stanford.edu

Abstract 
Reseeding is used to improve fault coverage of pseudo-
random testing. The seed corresponds to the initial state of 
the PRPG before filling the scan chain. In this paper, we 
present a technique for encoding a given seed by the number 
of clock cycles that the PRPG needs to run to reach it. This 
encoding requires many fewer bits than the bits of the seed 
itself. The cost is the time to reach the intended seed. We 
reduce this cost using the degrees of freedom (due to don’t 
cares in test patterns) in solving the equations for the seeds. 
We show results for implementing our technique completely 
in on-chip hardware and for applying it from a tester. 
Simulations show that with low hardware overhead, the 
technique provides 100% single-stuck fault coverage. Also, 
when compared with conventional reseeding from an external 
tester or on-chip ROM, the technique reduces seed storage by 
up to 85%. We show how to apply the technique for both 
LFSRs and CA. 
 
Categories and Subject Descriptors 
B.8.1 [Integrated Circuits]: Reliability, Testing, and Fault 
Tolerance. 
General Terms 
Algorithms, Performance, Design, Reliability. 
Keywords 
VLSI Test, Built-In Self Test, Reseeding. 

1. Introduction 
Among the advantages of built-in self-test (BIST) are 

low cost compared to external testing using automatic test 
equipment (ATE), and applicability while the circuit is in the 
field. In BIST, on-chip circuitry is included to provide test 
vectors and to analyze output responses. One possible 
approach for BIST is pseudo-random testing using a linear 
feedback shift register (LFSR) [McCluskey 85, Bardell 87]. 

Many digital circuits contain random-pattern-resistant 
(r.p.r.) faults that limit the coverage of pseudo-random testing 
[Eichelberger 83].The r.p.r. faults are faults with low 
detectability (Few patterns detect them). 
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Several techniques have been suggested for improving 
BIST fault coverage. They are: (1) Modifying the circuit by 
test point insertion or by redesigning the circuit [Eichelberger 
83, Touba 96], (2) Weighted pseudorandom patterns, where 
the random patterns are biased using extra logic to increase 
the probability of detecting r.p.r. faults [Eichelberger 89, 
Wunderlich 90], and (3) Mixed-mode testing where the circuit 
is tested in two phases. In the first phase, pseudo-random 
patterns are applied. In the second phase, deterministic 
patterns are applied that target the undetected faults 
[Koenemann 91, Hellebrand 95, Touba 00]. Our 
technique is a mixed mode technique based on encoding the 
seeds in terms of the number of clock cycles required for the 
PRPG to reach them. 

Modifying the CUT is often not possible because of 
performance issues or intellectual property rights. Weighted 
pseudo-random sequences require multiple weight sets. 
Mixed mode testing is done in several ways; one is to apply 
deterministic test patterns from a tester. Another technique is 
to store the deterministic patterns (or the seeds) in an on-chip 
ROM. There needs to be additional circuitry to apply the 
patterns in the ROM to the circuit under test. 

Another technique for mixed-mode testing is mapping 
logic [Touba 00] where non-fault dropping patterns in the 
original set are mapped by hardware into deterministic 
patterns. 

Reseeding refers to loading the PRPG with a seed that 
expands into a precomputed test pattern. We presented a 
technique for built-in reseeding (encoding the seeds in 
hardware) in [Alyamani 03a]. The technique combines 
mapping logic and reseeding and applies pseudorandom 
patterns between the deterministic seeds because there is a 
chance more faults will be detected. 

A seed is a PRPG initial state. When the PRPG is 
loaded with this initial state, it loads the scan chains with the 
desired pattern after m clock cycles, where m is the length of 
the scan chains. We call the state of the PRPG after loading 
the scan chains the final state. 

In [Alyamani 03b], we presented a technique for 
minimizing the number of seeds to be loaded by ordering the 
seeds and by exploiting the degrees of freedom in solving for 
the seeds. In this paper, our contributions are: (1) A seed 
encoding technique that encodes the seeds in a much smaller 
vector that corresponds to the number of cycles to reach it. 
The technique also exploits the degrees of freedom in solving 
for the seed. (2) An architecture that implements the 
encoding technique. The technique is applicable for SSF and 
transition faults. (3) An improvement over the built-in 
reseeding and seed ordering techniques to make them valid 
for any linear machine i.e., for LFSRs or cellular automata 
with or without phase shifters. 

In Sec. 2 of this paper, we review the related literature. 
In Sec. 3, we present the seed encoding scheme. In Sec. 4, we 
present the architecture for built-in seed encoding and 
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reseeding. Section 5 shows the simulation results and Sec. 6 
concludes the paper. 

2. Related Work 
Konemann presented a technique for coding test patterns 

into PRPGs of size Smax+20, where Smax is the maximum 
number of specified bits in the ATPG patterns. By adding 20 
to Smax as the size of the PRPG, the probability that test 
patterns cannot be coded into seeds drops to 1 in a million 
[Koenemann 91]. 

[Rajski 98] presented a reseeding-based technique 
that improves the encoding efficiency by using variable-
length seeds. In [Krishna 01], the authors presented partial 
dynamic reseeding to incrementally modify the LFSR 
contents instead of modifying them all at once. This 
technique achieves higher encoding efficiency than static 
reseeding. The technique in [Alyamani 03a] encodes the 
seeds in hardware. 

The technique presented in this paper tries to exploit the 
degrees of freedom in solving the linear system of equations 
for the seed to encode a seed by the number of additional 
clocks needed to reach it. 

In [Lempel 95], an analytical method was presented for 
computing seeds for random pattern resistant circuits based 
on discrete logarithms. In [Fagot 99], a simulation scheme for 
calculating seeds for LFSRs was presented. The scheme is 
based on simulating several sequences that include a set of 
ATPG vectors. 

In [Koenemann 00], a technique for skipping useless 
patterns is presented. The technique is based on having a 
Seed Skip Data Storage (SSDS) inside the tester. Fault 
simulation is performed to identify the useful (fault dropping) 
and useless (non fault dropping) sequences of patterns. Using 
additional control logic, the useless patterns are not loaded 
from the PRPG to the scan chains. 

3. Seed Encoding 
The BIST architecture we assume is shown in Figure 1. 

Our technique is applicable with any number of scan chains 
and any phase shifter. The results shown in Sec. 5 are for a 
single scan chain per circuit. However, the only difference if 
multiple scan chains were used is in the seed calculation. The 
way we calculate the seeds is explained in the appendix. The 
seeds are then either loaded from the tester or encoded in 
hardware on chip as explained in Sec. 4. 
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Figure 1: Multiple scan chains with a phase shifter 

If the final state of the PRPG after loading the scan 
chain matches another seed, then that seed doesn’t have to be 
loaded into the PRPG. If the final state of the PRPG doesn’t 
match another seed, we can clock the PRPG a few times until 
we reach a match with one of the seeds. Also, instead of 

relying completely on randomness, we can exploit the 
degrees of freedom in solving the equations to generate the 
seed so that we increase the chances of matching a seed with 
the final state of the PRPG. 

Let the state of the PRPG at time t be given by s(t), then 
the PRPG state at time t+1 is given by ( ) ( )Htsts =+1 , 
where H is called the transition matrix, and 
( ) ( ) 101 +=+ tHsts . If the longest scan chain is of length 

m, and seed i is si(0), then the contents of the PRPG after the 
scan chains are loaded is given by si(m+1). The PRPG can be 
a cellular automaton or an LFSR. 

The encoding algorithm we present is based on looking 
ahead in the sequence of the PRPG by finding si(m+1) for 
seed i and trying to find whether it matches with any of the 
other seeds sj(0), where j ≠ i. If they match, then sj(0) doesn’t 
need to be loaded into the PRPG. If a match is not found, we 
can search for a match with si(m+d), where 1≤d≤dmax. The 
parameter dmax corresponds to the number of clock cycles we 
are willing to continue running the PRPG before loading the 
next seed. Choosing dmax = 1 means that if si(m+1) doesn’t 
match any of the remaining seeds, we will load a new seed. 

The technique explained above requires changes to the 
BIST architecture to allow capturing after a different number 
of clock cycles. The architecture is presented in Sec. 4. 

Given a set of seeds and a user-specified dmax, we order 
the seeds to minimize the number of seeds that need to be 
loaded as explained in [Alyamani 03b].  

4. Seed Encoding Architecture 
A fundamental issue in applying our seed encoding 

technique is how to make the PRPG run for a variable 
number of cycles for different seeds. Normally, the PRPG, 
runs for a number of cycles equal to the length of the longest 
scan chain before a capture cycle. To use our encoding 
technique, which represents the seed by the number of clock 
cycles required to reach it, we need to have the PRPG run for 
a variable number of cycles. 

In a usual logic BIST architecture, a bit counter is used 
to choose when to disable the Scan Enable (SE) signal for 
capturing. One way to implement this is to have the bit 
counter loaded with the value that corresponds to the length 
of the longest scan chain for every pattern. The bit counter is 
then decremented by 1 at each clock cycle. When the bit 
counter reaches zero, it means that the test pattern is loaded 
into the scan chains, so SE is disabled for one clock cycle, 
and so on. The length of the scan chains is stored in a register 
and loaded into the bit counter with every pattern. Our 
technique is based on running the PRPG for a number of 
cycles to reach the desired seed. To implement this, we need 
to load the bit counter register with different values 
corresponding to the number of cycles before the next 
capture. Unloading the scan chains starts right after the 
capture cycle. So, for encoded seeds, there are extra cycles 
after unloading the response to pattern i and before capturing 
the response for pattern i+1. 
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4.1 Running the technique from an ATE 
To run our technique from an external tester, we have 

two types of seeds, seeds that need to be loaded into the scan 
chain, loaded seeds, and seeds that can be reached by 
continuing to run the PRPG for additional cycles after 
loading the scan chains, encoded seeds. We use the name 
encoded seeds because these seeds are encoded into the 
number of cycles the PRPG needs to run to reach them. 

Seed size: How efficient is this encoding? Why not just 
load all seeds? This question can be answered by a simple 
example, take a circuit of 10,000 flip flops that has 10 scan 
chains of length 1000 each. If the maximum number of care 
bits in the test patterns is 500 (5%), we need a PRPG of size 
520 [Koenemann 91]. Since the length of the scan chain is 
1000, the bit counter needs to have only 10 bits. So, by 
encoding the seed into the number of cycles to reach it we get 
a 98% (52×) reduction in seed storage. Even if we decide to 
run the PRPG for up to 1000 additional cycles before 
reaching the next desired seed, then impact on the size of the 
bit counter is a single bit. 

Test time: In terms of test length, for the example above, 
loading the PRPG with a new seed takes 520 cycles. Loading 
the bit counter register takes 11 clock cycles. This means that 
we can search for a match with another seed in up to 508 
cycles while saving on the test time and at the same time 
saving on tester storage. 

If we only rely on luck in finding a match by clocking 
the PRPG, then we may not have a very good chance. That’s 
why we exploit the degrees of freedom in solving the linear 
system of equations to force such a match as explained in the 
appendix. 

4.2 Full BIST Implementation 
Our technique can be applied for full on-chip BIST with 

100% SSF fault coverage. For that, we need to have a 
reseeding circuit for loaded seeds and a seed encoding circuit 
for encoded seeds. 

Loaded seeds: We use the built-in reseeding architecture 
presented in [Alyamani 03a]. The operation of the reseeding 
circuit is as follows: the PRPG starts running in autonomous 
mode according to the reseeding algorithm [Alyamani 03a]. 
Once it is time for reseeding, a seed is loaded into the PRPG, 
which then goes back to the autonomous mode and so on and 
so forth until the desired coverage is achieved. The new seed 
is loaded by putting the PRPG in the state that precedes the 
seed value, so that at the next clock pulse, the new seed is in 
the PRPG. 

Error! Reference source not found.(b) shows the 
structure of the PRPG and its interaction with the reseeding 
circuit. For our technique, we use muxed flip-flops. By 
activating the select line of a given mux, the logic value in 
the corresponding stage is inverted. The muxed flip-flops are 
similar to those used for scan chains. The output of the 
reseeding circuit activates the select lines of the muxes to 
invert certain stages of the LFSR such that the desired seed is 
loaded in the next cycle. 
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Figure 2: Reseeding circuit connection to LFSR:   (a) A 

standard LFSR (b) LFSR with reseeding ckt. 
 
As seen in the figure, the only modification to the LFSR 

compared to a regular LFSR are the muxes. The LFSR flip-
flops are replaced by muxed flip-flops just like the scan 
chain. In case of cellular automata, the same muxes structure 
can be used. The muxes should be placed right at the outputs 
of the flip flops before any XOR gates that are fed by the 
scan chain flip-flops. This way both polarities are available at 
the inputs of the muxes. Since XORs are linear gates, their 
outputs will be complemented by complementing any of the 
inputs, which satisfies the requirement for the above 
architecture to work. The connection of the reseeding logic to 
CA is shown in Figure 3. 

⊕ 1

Reseeding Logic

⊕  2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕  6

 
Figure 3: Reseeding circuit connection to CA 

Encoded seeds: For the encoded seeds, we need a 
combinational circuit that takes as its input the value of the 
PRPG; the output of this circuit should be loaded into the bit 
counter register. In logic BIST architectures, a pattern 
counter is used to count the patterns applied to the circuit. 
Instead of reading the values of the PRPG stages as input to 
the seed encoding circuit, the value of the pattern counter can 
be used as input. The majority of the input combinations for 
the seed encoding circuit will load the bit counter register 
with the length of the scan chains. The pattern counter input 
combinations that correspond to seeds to be encoded will 
load a different value in the bit counter register. That value 
corresponds to the length of the scan chains plus the number 
of clock pulses that need to be applied before reaching the 
desired seed. 

We can synthesize the seed encoding circuit from a table 
of combinations. The input combinations that correspond to 
normally loaded seeds should have the scan chains length as 
the output value. The input combinations that correspond to 
encoded seeds should have the output as the scan chains 
length in addition to the number of the clock cycles needed to 
reach to the seed. Just as in the circuit for built-in reseeding, 
all input combinations that won’t occur in the desired test 
sequence can be treated as don’t cares to help minimize the 
seed encoding circuit. 

Figure 4 shows where the reseeding and seed encoding 
circuits fit in a system level view of a circuit with an LBIST 
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controller, which includes the additional control circuitry 
added for logic BIST. 
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Figure 4: Reseeding and seed encoding circuits in a 
system view of BIST environment 

If the CUT or the scan chain is changed, then the 
reseeding circuit and the seed encoding circuit need to be re-
synthesized based on the new design and the new test 
patterns. However, if the seed encoding technique is applied 
from a tester, then changing the design only results in 
changes in the test patterns and accordingly the seeds that are 
stored. If it's preferable to apply the technique with full BIST, 
then it may be better to apply it after the design is stable and 
no more changes are applied to the circuit or the scan chain. 

5. Simulation Results 
In this section we present the results of some simulation 

experiments to evaluate our seed encoding technique. We 
performed our experiments on some of the ISCAS 89 
benchmarks. The characteristics of the benchmarks we used 
are shown in Table 1. The table shows the number of primary 
inputs, primary outputs, flip-flops in the scan chain, and in 
the LFSR. The BC column lists the sizes of the bit counters. 
We took into account the maximum number of additional 
clock cycles to calculate the size of the bit counter. The table 
also shows the cell-area of the circuits in LSI library cells 
area units. The library used for technology mapping is LSI 
Logic G.Flex library, which is a 0.13 µ technology library. 

The experiment was designed such that pseudo random 
patterns are applied first. Then, test patterns are generated for 
the undetected faults and the seeds are calculated from the 
test patterns. 

Table 1: ISCAS 89 Circuits Used in Experiments. 

CUT 
Name 

PIs POs FFs LFSR BC Cell 
Area 

s953 16 23 29 21 7 2,286 
s1196 14 14 18 15 6 2,722 
s1238 14 14 18 15 6 2,740 
s1423 17 5 74 50 8 4,531 
s1488 8 19 6 6 6 3,555 
s1494 8 19 6 6 6 3,563 
s5378 35 49 179 61 9 14,377 
s9234 36 39 211 80 10 25,840 

s13207 62 152 638 45 10 44,255 
s35932 35 320 1728 60 11 106,198 

In [Koenemann 91, Hellebrand 95, Touba 00, 
Rajski 98, and Krishna 01] a single seed per pattern is 
assumed. In our technique, we encode as many of the seeds 

as we can by the number of additional clock cycles to reach 
them. The remaining seeds have to be loaded from the tester 
or encoded on-chip. Table 2 shows the number of test 
patterns generated for the undetected faults. The seed per 
pattern column shows the number of seeds that must be 
stored if a single seed per pattern is assumed as it is the case 
in most of the previous work. The table shows the number of 
seeds that must be stored and the seeds that need to be 
encoded with our technique. 

Table 3 shows the seed storage needed for the seed per 
pattern scheme and the seed storage needed for our scheme. 
The storage is calculated by multiplying the number of 
loaded seeds by the PRPG size and the number of encoded 
seeds by the bit counter size. The table also shows the 
reduction gained by using our scheme. The reduction varies 
from 25% to 85%. 

The area overhead required of our technique 
implemented completely on chip with reseeding and seed 
encoding circuits is comparable to the areas shown in 
[Alyamani 03b] where the overhead ranged between 0.3% 
and 10% and mostly less than 3%. 

Table 2: Number of Seeds for Our Technique Compared 
to One Seed per Pattern. 

Our Technique Circuit Seed 
per 

Pattern 
Loaded 
Seeds 

Encoded 
Seeds 

Total 

s953 47 9 16 25 
s1196 92 13 16 29 
s1238 97 12 12 24 
s1423 17 9 0 9 
s1488 89 4 9 13 
s1494 85 3 11 14 
s5378 35 26 1 27 
s9234 117 82 6 88 

s13207 182 30 16 46 
s35932 7 1 0 1 

6. Conclusion 
In this paper, we presented a seed encoding technique 

based on running a variable number of clock cycles before 
loading the seed. 

The simulation experiments showed that the storage 
needed is reduced by 25%-85% when our encoding technique 
is used compared to storing a single seed per pattern. The 
main characteristics that make our technique effective are: (1) 
Running pseudorandom patterns after loading the seeds (2) 
Ordering the seeds to load the minimum number of seeds, (3) 
Encoding the seeds by the number of cycles needed to reach 
them, and (4) Exploiting the degrees of freedom in solving 
for the seeds to match them with the current contents of the 
LFSR. 
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Table 3: Seed Storage Needed by our Technique Compared to Seed per Pattern. 

Storage for Our Technique Circuit Circuit 
Cell Area Seed per 

Pattern 
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Total Storage 
Rduction % 
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Appendix 
In [Alyamani 03b], we presented seed calculation for 

LFSRs. In this section, we show how to apply the algorithm 
to cellular automata. Figure 5 shows an example for a 6-stage 
Cellular Automaton. 

 

⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 6
 

Figure 5: A 6-stage Cellular Automaton. 

For every flip-flop in the scan chains, there is a 
corresponding equation in terms of the bits of the PRPG. 
Let’s label the flip-flops of a given scan chain by S0 → Sm-1 

where m is the length of the scan chain. Also, let’s label the 
stages of the PRPG by L0 → Ln-1 where n is the size of the 
PRPG. In the example above, assume that the CA is 
connected to a scan chain at the output of stage 6 of the CA. 
Also assume that the scan chain has 9 stages S0 – S8. The 
equation for the deepest stage of the scan chain is S8 = L5, 
because after m clock cycles the most significant bit of the 
seed ends up in the most significant bit of the scan chain. The 
reader is invited to verify the remaining equations: 

S7 = L4  S6 = L3 ⊕ L5 
S5 = L2  S4 = L1 ⊕ L3 
S3 = L0 ⊕ L4  S2 = L0 ⊕ L1 ⊕ L2 ⊕ L4 
S1 = L2 ⊕ L5  S0 = L1 ⊕ L3 ⊕ L4 
 
We can represent the above equations by an m×n matrix 

in which the rows correspond to the scan chain flip-flops and 
the columns correspond to the PRPG stages. An entry (i,j) is 
1 if and only if Lj appears in the equation of Si. According to 
this system, the following matrix shows the equations for all 
the flip-flops in the scan chain of the example above: 
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In the case of multiple scan chains, the outputs of the 

PRPG stages may need to go through a phase shifter to avoid 
structural dependencies that cause undesired correlation 
between patterns in different chains. 

The phase shifter for a given scan chain is a linear sum 
of some stages from the PRPG. The phase shifter for chain i 
can be represented by a vector 

[ ]iiii
n

i
n

i pppppp 01221 −−= . pi
j is one if the 

XOR feeding scan chain i has the output of stage j of the 
PRPG as one of its inputs. 

The algorithm that generates the equations for a scan 
chain S that is fed through a phase shifter ps starts with the 
vector ps. Algorithm 1 is used to generate the equation matrix 
Es. 

The algorithm starts by assigning the vector ps to the last 
row of Es. The other rows are generated bottom up by 
multiplying the transition matrix H by the following row of 
E. This algorithm can be used with any number of scan 
chains. 

The algorithm works with any PRPG and phase shifter. 
It depends on the transition matrix and the phase shifting 
vector, so it works with any linear machine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. m: depth of the scan chains 
2. n: size of PRPG 
3. ps: the phase shifter for the current scan chain 
4. Es: equations matrix for the current scan chain 
5. Es-Generator (m, n, h, Es) 
6.  E( m-1) = ps 
7.  for i=m-2 to 0 
8.   Ei = H × (E(i+1))T 
9.  endfor 
10. end 

Algorithm 1: Generating equations matrix Es for scan 
chain s fed through a phase shifter 

We exploit the degrees of freedom in solving the 
equations to increase the probability of finding a match 
between s(m+1) and the remaining seeds. The degrees of 
freedom are caused by the fact that the number of equations 
is less than the number of unknowns. This is a consequence 
of don't care bits in test patterns and the fact that the size of 
the PRPG depends on the maximum number of care bits. 

The methodology for utilizing the degrees of freedom to 
increase the chances of finding a match between the final 
state of the PRPG and one of the remaining seeds is 
explained with an example in [Alyamani 03b]. 
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