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Seed germination is a very critical and important step for seedling establishment

under saline environments, as high level of salinity in the soil can prevent seed

germination. However halophytes exhibit an interesting mechanism to cope with salt

stress. Many halophytes produce heteromorphic seeds, which have different dormancy

and germination behavior under saline conditions. This characteristic is related to the

structural and physiological differences among heteromorphic seeds. It was unclear

that how heteromorphic seeds differently accumulate organic and inorganic substances

under saline conditions, and what are the physiological and molecular mechanisms

involved in the production of heteromorphic seeds, and in the development of

transgenerational plasticity in heteromorphic seeds. In the current brief review, dormancy

and germination and the possible role of seed coat and storage compounds in this

process of heteromorphic seeds development have been discussed. Moreover, the

role of maternal effects on heteromorphic seeds production under saline environments

and growth and reproduction capability of the descendants from them have been

highlighted.

Keywords: dormancy, halophyte, heteromorphism, salinity, seed germination

INTRODUCTION

More than 950 million hectares of land worldwide are salt-affected, which account for about
10% of total land worldwide (Shabala, 2013). Salinity affects utilization of soil and ground water,
particularly in arid and semiarid regions (Rozema and Flowers, 2008). Moreover, inevitable
conversion of arable land area into urban land has further forced to start the agricultural production
inmarginal areas (Shabala, 2013). One strategy to deal with salt-affected land is to utilize halophytes
for reclamation and productivity (Rozema and Flowers, 2008; Song and Wang, 2015). Halophytes
are plants which can survive and reproduce in saline environments where the salt concentration is
higher than 200 mM NaCl (Flowers and Colmer, 2008). Some halophytes are being used as edible
plants such as Chenopodium quinoa and some can also be used for removing extra salts from salt
affected lands such as Suaeda salsa (Song and Wang, 2015). Halophytes can survive and propagate
in a very complex way to ensure the production of their subsequent generation. Halophytes can
adapt to salinity with numerous adaptive mechanisms such as ion exclusion by the roots (Munns
and Tester, 2008; Song et al., 2011; Flower and Colmer, 2015; Chen et al., 2016; Liu et al., 2018),
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maintaining ion homeostasis in the leaves (Munns and Tester,
2008; Yang et al., 2010; Shao et al., 2014; Tanveer et al., 2018),
secretion of toxic ions such as Na+ and Cl− through the
salt glands (Ding et al., 2010; Deng et al., 2015; Feng et al.,
2015; Yuan et al., 2015, 2016a,b; Leng et al., 2018; Tanveer
and Shabala, 2018). However, halophytes can not adopt these
mechanisms during seed germination. Seed heteromorphism is
generally considered as an adaptive strategy that helps plants to
survive in changeable and unpredictable environments, especially
in deserts and/or in high saline soils (Gul et al., 2013; Xu
et al., 2016). Seed germination is critical in plant life cycle,
especially for halophytes in saline environments, as high levels
of salinity in the soil can prevent/limit seed germination (Guo
et al., 2012a,b; Gul et al., 2013; Zhang et al., 2015). Moreover,
heteromorphic seed production under salt stress could be a kind
of bet-hedging strategy for their next generations, becoming
naturally acclimated to adverse environment (Imbert, 2002;
Tanveer and Shah, 2017). Many halophytic species show seed
dimorphism or polymorphism (Figure 1 and Table 1) and
among these heteromorphic species, most of halophytic species
are annual, only a few species belong to perennials such as
Arthrocnemum indicum (Khan and Gul, 1998), and Tamarix
ramosissima (Yan et al., 2011). Up to now, many published
papers have been focused in characterizing the germination
pattern and dormancy mechanism in heteromorphic seeds of
halophytes, especially in Amaranthaceae. Recently, it has been
shown in a non-halophytic plant species- Aethionema arabicum
that seed dimorphism was associated with several physiological
and anatomical features and gene expression levels between the
fruit and seed morphs (Lenser et al., 2016) and latter it was
found that cytokinin, and transcripts of BRANCHED1 gene were
involved in governing fruit dimorphism (Lenser et al., 2018). In
this brief review, germination pattern of different dimorphs and
factors which influence seed germination of those dimorphs have
been discussed. Moreover, role of seed dormancy as adaptive
strategy in halophytes under saline conditions has also been
discussed.

FIGURE 1 | Nature of seed heteromorphism in different plant families.

Numbers in parenthesis after the family are showing number of species, which

showed seed heteromorphic response (adapted from Imbert, 2002).

GERMINATION OF HETEROMORPHIC
SEEDS UNDER SALT STRESS

Role of Seed Size and Seed Parental
Material
Development of relatively large embryo or cotyledon is an
important feature of certain halophytes to ensure optimum
seedling establishment under high saline conditions (Zhang
et al., 2010; Li et al., 2012; Zhou et al., 2014). Studies showed
that halophytic species with bigger seed size exhibited better
germination percentage under saline conditions (Song et al.,
2008, 2016; Yao et al., 2010; Zhang et al., 2010; Gul et al.,
2013; Wang et al., 2018). Published literature reported that
halophytes produce larger seed with big storage capacity under
salt stress. For example, certain halophytic plants such as S. salsa
produce large seed and transfer more photo-assimilates to those
larger seed in order to ensure optimum germination for next
generation (Guo et al., 2015;Wang et al., 2015; Zhao et al., 2018a).
Nonetheless, molecular identification of such mechanism has not
been reported therefore, more research is required to further
elaborate this mechanism.

Seed maternal environment may also influence numerous
traits relating to seed germination (Wang L. et al., 2012;
Yang et al., 2015). Stress conditions may provide signals to
mother plants to produce subsequent generation with different
phenotypes (due to trans-generational effects) as an adaptive
strategy to survive under stress conditions. An experiment was
performed to examine such maternal effects and dimorphic
seed production in Suaeda corniculata subsp. mongolica under
different environmental conditions (Yang et al., 2015). They
found that seed maternal effects play an important role in the
ecological diversity and in salt stress tolerance seed production
under salt stress conditions along with numerous temporal and
spatial variations (Yang et al., 2015). High concentrations of salts
may also provide signals to plants to produce dimorphic seeds
with better seed germination. For instance, according to Wang
et al. (2015), with increasing salt stress levels, S. salsa produced
more brown seeds with better salt stress tolerance capacity
as compared with black seeds. Phosphatidylglycerol (PG) is a
glycerophospholipid. PG improves salt stress tolerance in seeds
via increasing high production of unsaturated fatty acids, for
instance,Arabidopsis, overexpressed with SsGPAT gene, exhibited
high contents of unsaturated fatty acid and showed significant salt
stress tolerance (Sui et al., 2017). It was found that PG contents
were higher in young seedlings derived from brown seeds from
high-salinity maternal plants (Zhou et al., 2016), and an increased
PG level may be related to salt tolerance in S. salsa (Sui et al., 2010;
Cheng et al., 2014), and in Thellungiella halophila (Sui and Han,
2014). The hereditary evidences relating to varied salt tolerance
capability of dimorphic seeds produced from salinity stressed
maternal plants, need to be further tested.

Role of Organic Osmolytes in Seed
Germination
Organic osmolytes play very important role in stress alleviation
(Anjum et al., 2016, 2017a). Halophytes (for example S. salsa)
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TABLE 1 | Reported examples of heteromorphic seed production and their different heteromorphs in halophytes under saline conditions.

Species Morphs Habitat Reference

Atriplex centralasiatica Brown; Black Desert, saline soil Li et al., 2008

Atriplex triangularris Large; Medium; Small Inland and coastal marshes Khan and Ungar, 1984

Atriplex aucher Brown; Black Desert, saline soil Wei et al., 2003

Atriplex patens Brown; Black Saline soil He and Li, 1995

Atriplex micrantha Brown; Black Desert, saline soil He and Li, 1995

Atriplex rosea Brown (larger); Black (smaller) Salt marshes Khan et al., 2004

Atriplex sagittata Large; Medium; Small Salt steppe and riparian habitats Mandák and Pyšek, 2005

Atriplex prostrata Large; Small Inland and coastal marshes Carter and Ungar, 2003

Atriplex inflata Brown; Black Saline soil Abdallah et al., 2011

Suaeda glauca Brown; Black Saline soil Duan et al., 2018

Suaeda linifolia Suaeda paradoxa
Suaeda kossinskyi

Brown; Black Saline soil Zhang, 2010

Suaeda splendens Brown; Black Saline soil Redondo-Gómez et al., 2008

Suaeda salsa Brown (larger); Black (smaller) Saline soil Li et al., 2005

Suaeda aralocaspica Brown (larger), Black (smaller) Salinized desert Wang et al., 2008

Suaeda moquinii Brown (soft); Black (hard) Salt marshes Khan et al., 2001

Suaeda acuminata Brown; Black Salinized desert Wang L. et al., 2012

Salicornia europaea Large; Small Inland and coastal marshes Ungar, 1979

Salicornia ramosissima Large (central); Small (lateral) Saline soil, coastal marshes Ameixa et al., 2016

Chenopodium album Brown (larger); Black (smaller) Light-saline soil Yao et al., 2010

Halogeton glomeratus Green; Yellow Inland salt deserts Yu, 2008

Tamarix ramosissima Spring; Summer Piedmont Gobi desert, valleys, saline soil Yan et al., 2011

Salsola komarovii Long winged; Short winged Coastal regions Yamaguchi et al., 1990

Salsola affinis ∗Types A, B, C Gravel desert, saline soil Wei et al., 2007

Salsola ferganica Large with or without winged

perianth (WP); Medium with or

without WP; Small with or

without WP

Cold desert Ma et al., 2018

Arthrocnemum indicum Brown; Black Inland and coastal marshes Khan and Gul, 1998

Cakile edentula Large; Small Coastal dune Zhang, 1993

∗Type A fruits have lignified perianths with long wings and green utricles; Type B fruits have lignified perianths with short wings, or no wings, and green utricles; Type C
fruits have tepals without wings and yellow utricles.

produce/accumulate more organic osmolytes such as starch,
soluble sugar, and protein in their large seeds as compared with
small seeds to ensure optimum seed germination under salt
stress (Guo et al., 2015, 2018; Wang et al., 2015; Zhao et al.,
2018a). These osmolytes such as soluble sugars can help in ROS
detoxification or can also act as signaling compounds that may
trigger other stress alleviation mechanisms (Gibson, 2005; Couée
et al., 2006; Anjum et al., 2017b).

Among different kinds of osmolytes, betaine is an important
osmotic regulation substance, and accumulation of betain could
be a defensive strategy by halophytes to cope with high salt
stress levels. Halophytes can produce salt tolerant seeds with
more betain and can ensure good seed germination under salt
stress (Tanveer and Shah, 2017). Expression analysis of betaine
aldehyde dehydrogenase gene (SsBADH) in S. salsa showed that
brown seeds have higher expression of SsBADH and exhibit better
seed germination as compared with black seeds (Xu et al., 2017).
Proline is generally regarded as another important osmoregulator
(Flowers and Colmer, 2008), nonetheless studies showed that
proline also acts as signaling compound, which induces delayed
germination process by keeping embryo in resting state under

stress conditions (Thakur and Sharma, 2005). According to Xu
et al. (2017) proline not only increases osmotic adjustment in
brown seeds but also protects seeds from being damaged under
salt stress.

Soluble sugars play very crucial role in the process of osmotic
adjustment during seed germination under salt stress. It was
reported that halophytes (e.g., S. salsa) accumulate more soluble
sugars in brown seeds as compared with the black seeds (Guo
et al., 2015; Zhao et al., 2018a). The embryos of large seeds,
especially the cotyledons, are better developed than that of small
seeds, such as S. salsa (Song et al., 2008). The embryos of fresh
premature seeds contained chlorophyll and the embryos could
take the function of photosynthesis (Li et al., 2012). Therefore,
better developed embryos in brown seeds may help brown
seeds to provide more soluble sugar during seed germination,
and soluble sugar may play an important role in their rapid
germination for brown seeds compared to black seed in S. salsa.

Phytohormones sometimes also act as osmoregulaters, as in
an endogenous hormones analysis, it was examined that brown
seeds exhibited more ABA (abscisic acid), IAA (indole-3-acetic
acid), and ZR (zeatin riboside) as compared with black seeds,
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and these hormones acted as osmoregulater (Wang et al., 2015).
According to Karssen et al. (1983), during seed development
ABA induces the accumulation of numerous storage proteins,
which contribute in increasing the embryo size and seed weight
of brown seeds under salt stress (Wang et al., 2015).

Role of Inorganic Ions in Seed
Germination
Besides organic compounds, inorganic ions also improve seed
germination by improving imbibition process during seed
germination (Song et al., 2005; Xu et al., 2017). In the brown
seeds of S. salsa, the contents of Na+, K+, Cl−, and Ca2+

were higher as compared with black seeds, and may be due to
the higher activity of relative transporters in brown seeds such
as vacuolar Na+/H+ antiporter (NHX), potassium transporter
(HAK), chloride channel protein (CLC) and Ca2+/H+ antiporter
at tonoplast (CAX) as compared with black seeds which were
involved in maintaining ion homeostasis and improving water
uptake for seeds during germination under salt stress (Xu et al.,
2017). It is well-documented that maintaining ion homeostasis
plays a critical role in plant salt tolerance (Munns and Tester,
2008; Chen et al., 2010; Zhao et al., 2010; Han et al., 2011, 2012;
Flower and Colmer, 2015). It is not surprising that brown seeds

had higher germination rate than black seeds under high saline
conditions (Song et al., 2008).

The micronutrients such as iron, zinc, or copper are essential
micronutrients for all living organisms (Waters and Sankaran,
2011). Halophytes accumulate more micronutrients in salt
tolerant seeds than salt sensitive seeds. For instance, S. salsa
accumulates high amount of Fe, Mn and Zn, especially Fe in
brown seeds as compared with black seeds, i.e., the Fe contents
were 6.6 and 2.2 µmol g−1 DW (rather than mmol g−1 DW)
in brown and black seeds, respectively (Zhao et al., 2018b).
Micronutrients pass through leaves and seed covering tissues to
reach seeds. Therefore, certain genes with increased expression in
these tissues during seed fill may be important for translocation of
relative micronutrients to seeds. However no molecular evidence
has been reported so far, showing how seed-heteromorphic
halophytes differently load or unload or transfer micronutrients
in heteromorphic seeds in the same maternal environment.

Role of Seed Coat in Adaptation of
Heteromorphic Seeds to Saline
Environments
Seed coat is very crucial during seed germination, and seed
survival (Figure 2; Souza and Marcos-Filho, 2001). Few studies

FIGURE 2 | Possible role of seed coat in the dormancy and germination behavior of heteromorphic seeds in halophytes, using dimorphic seeds.
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reported the structure and chemical reactions in the seeds of
halophytic species may be related to their dormancy/germination
behavior (Souza and Marcos-Filho, 2001; Himi et al., 2002;
Shepherd et al., 2005; Yang et al., 2012). Normally, dormant seeds
have hard seed coat, and due to hard seed coat, dormancy persists
until a portion of the coat becomes ruptured and permeable to
water, and then seeds start imbibition process. Seeds may lose
this coat-imposed dormancy during a several-year period in the
field (Egley et al., 1986). In seed coat, accumulation of numerous
hydrophobic compounds such as lipids, callose, and lignin in the
palisade cells, makes seed impermeable to water and limit seed
germination (Kelly et al., 1992). Moreover seed coat permeability
in dimorphic seeds is linked with the seed coat thickness, which is
usually lower in non-dormant (tolerant) seeds as compared with
dormant (sensitive) seeds. Seed coat permeability also depends
on the accumulation of phenolics contents, suberin and cellulose
in palaside cells (Serrato-Valenti et al., 1990). However it is
still unknown that how these substances interact with water
permeability, therefore physiological and molecular evidences in
the process of seed coat development in heteromorphic seeds
are needed to explore in future work. Delay in germination
could be an adaptive strategy to stay under shade until external
environment becomes favorable for seed germination. Li et al.
(2005) showed that dormant seeds such as black seeds in S. salsa
take up water more slowly than non-dormant brown seeds (Li
et al., 2005). Recently, it has been showed that mucilage in seed
coat also increases dormancy and delays germination by reducing
the diffusion of oxygen through seed coat (Yang et al., 2012).

In S. salsa, it has been noted that hard seed coat in black seeds
contribute to temporal dispersion of germination (Li et al., 2005),
thus avoiding the risk of simultaneous germination of the entire
seed bank (Souza and Marcos-Filho, 2001). In wheat (Triticum
aestivum L.), grain color gene (R) in red-grained line did not
appear to increase the dormancy by accumulating germination
inhibitors in bran, while sensitivity of embryo to ABA was
higher in grains collected from red-grained and red-grained
near-isogenic lines compared to white-grained and white-grained
mutant lines (Himi et al., 2002). Similarly, it was found
that under dry conditions, there was no significant difference
between red-grained varieties Kitakei1354 (red dormant) and
white-grained varieties AUS1408 (white dormant) in regard to
seed dormancy, while a high correlation coefficient was detected
between dormancy and embryonic sensitivity to ABA (Torada
and Amano, 2002). However, under humid conditions, a red
seed coat might be essential for maintaining high level of seed
dormancy in wheat (Torada and Amano, 2002). These reports
indicated that grain color gene should have a significant effect on
seed dormancy by changing embryo sensitivity to ABA in wheat.

Besides the role of seed coat in a physical barrier, the
impermeable seed coat may also play as a critical role in reducing
the influx of numerous minerals and essential inorganic ions
during seed germination and seed dormancy (Poljakoff-Mayber
et al., 1994; Souza and Marcos-Filho, 2001). In a halophytic plant
Suaeda physophora, it was observed that seed coat did not only
restrict water uptake, but also reduced the influx of Na+ and Cl−

into embryo to prevent ionic toxicity (Song et al., 2007). Waxes
are also important in making seedcoat impermeable to gasses

and water, thus halophytes used waxes as impermeable substance
that can prevent seed germination under stress conditions. In
the black seeds of S. salsa, significant accumulation of waxes
in seed coat was noted as compared with seed coats of brown
seed, suggesting the protective role of waxes in protecting embryo
from ionic toxicity (Song et al., 2017). The control of water
absorption is also related to the hydrophobic nature of the testa
(Souza and Marcos-Filho, 2001). Moreover waxy substances in
black seeds inhibit water uptake and concomitantly, maintain
seed viability for longer time than in brown seeds under high
saline environment (Song et al., 2017).

Suberin is one of major lipid plyesters in seed coat that
plays a very primitive role in seed germination. Beisson et al.
(2007) reported that seed coats of Arabidopsis suberin mutants
gpat5 (Glycerol-3-phosphate acyltransferase 5) showed an abrupt
increase in suberin accumulation in response to tetrazolium salt
as compared with wild-type seed coats, which showed poor seed
germination under salt stress. This provided the explicit role of
GPAT5 gene in suberin accumulation in seed coat and in seed
germination under salt stress. In conclusion, seed coat is very
important trait in understanding the seed germination pattern
of dimorphic seeds under salt stress and halophytic species
accumulate and deposit numerous inorganic and hydrophobic
substances outside seed coat and/or in pallaside cells either to
delay seed germination or to prevent seed germination under
salt stress. Nonetheless, it has never been studied, how plants
give signals to reproductive part to produce dimorphic seeds with
thick seed coat. Therefore, future research should be considered
this aspect and it will help to understand the role of seed coats
in the adaptation of seed-heteromorphic halophytes to variable
saline environments.

SEED DORMANCY IN HETEROMORPHIC
SEEDS

Seed dormancy is an important defense strategy in the
heteromorphic seeds in halophytes. Seed dormancy governs
germination pattern and germination timing under different
environments, which also plays an important role in seed plant
evolution and adaptation to environmental changes (Linkies
et al., 2010). In halophytes, production of dormant seeds is also an
important mechanism for survival under adverse environments
and they produce dormant small seeds, which remain in soil
un-germinated until salt concentration in the immediate vicinity
of seed does not come under permissible salt concentration
for optimum seed germination (Mandák and Pyšek, 2001; Li
et al., 2005; Wang H.L. et al., 2012). One of the reasons
could be associated with salt stress induced some signaling
cascades which may trigger dormant seed production as an
adaptive strategy in halophytes. Moreover under salt stress,
high concentration of toxic ions (e.g., Na+) or production
of reactive oxygen species may act as signaling molecules
which may signal halophytic plants to produce heteromorphic
seeds. A recent study highlighted this aspect and showed that
with an increase in salt concentration from 1 to 500 mM
NaCl stress level, S. salsa produced more brown seeds as
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compared with black seeds (Wang et al., 2015, 2018). Some
external factors such as light and temperature and endogenous
hormones level influence seed dormancy and germination in
halophytes.

Endogenous Phytohormones
Especially, ABA and GA (gibberellic acid), play important roles
in seed dormancy. Generally, it is regarded that ABA and
GA act antagonistically to each other; means ABA inhibits
seed germination while GA improves seed germination (Kucera
et al., 2005). Significant research has been conducted so
far regarding exogenous application of hormones and seed
germination-dormancy in plants under different environments

(Li et al., 2005; Finch-Savage and Leubner-Metzger, 2006;
Davies, 2010). However, little work has been done so far,
showing the relation between endogenous hormones and
dormancy/germination in heteromorphic seeds. In a study, it
was observed that ZR, and ABA were more in brown seeds
than black seeds in Suaeda acuminata; while IAA contents
were higher in black seeds than brown seeds, which clearly
suggested S. acuminata species accumulated ZR and ABA in
tolerant seeds to delay seed germination under stress conditions
for the survival of next generation (Wang H.L. et al., 2012).
However this was not in case of S. salsa, in this halophytic species
IAA, ZR, and ABA were more in brown seeds as compared
with black seeds, and there was no significant difference in the

FIGURE 3 | Conceptual model of the production of heteromorphic seeds for adaptation to saline environments in many halophytes, using dimorphic seeds as an

example, which was modified from Wang et al. (2008). CS, cold tratification; CD, conditional dormancy; SS, salt stress; H2O, dilution by water. Up arrow indicates

the increase and down arrow indicates the decrease.
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content of GA between black and brown seeds (Wang et al.,
2015). These results suggested that endogenous role of these
hormones are not plant species specific, moreover different
halophytic plant species may adopt different signaling pathways
to interact with these hormones. It was also speculated that
low germination in black seeds might be attributed to their
higher ABA sensitivity rather than the difference in ABA content
between black and brown seeds in S. salsa (Li et al., 2016).
This indicates that interaction among endogenous hormones,
especially ABA and GAs may play an important role in the
dormancy status of heteromorphic seeds in these halophytes
(Wang H.L. et al., 2012). Besides ABA and GA, other endogenous
hormones also play roles in seed germination/dormancy. For
example, ethylene may promote seed germination through the
antagonism of ABA signaling (Xu et al., 2017). Likewise, BR
(brassinosteroids) may also interact with other hormones and
can influence seed dormancy. According to Steber and McCourt
(2001) BR can increase seed germination by reducing ABA
sensitivity. Therefore, the dormancy and germination trait was
regulated by the interaction of these endogenous hormones in
heteromorphic seeds.

Light
It is an important factor which affects seed germination. Seed
size also interferes with light. For example, small seeds are
light sensitive which indicates that light acts as a depth-sensing
mechanism, which usually avoids limited germination of seeds
buried deep inside soil (Schutz et al., 2002). In S. salsa, black
seeds germinated better in light as compared with brown seeds
(Li et al., 2005). Rainfall in late summer may bring black seeds
on the soil surface, and the germination of black seeds may start
in S. corniculata (Cao et al., 2012). For S. salsa, brown seeds may
germinate in spring when soil salinity is high, while black seeds
may stay in soil and then germinate in later summer when rainfall
can bring them on the soil surface (Li et al., 2005).

Temperature
It is another environmental factor which interacts with salinity
and affects seed germination. For example, in Atriplex rosea,
black seeds are more sensitive to the change of temperature
(Khan et al., 2004). Seed germination in black seeds decreased at
lower temperature regimes regardless of salinity concentration,
but brown seeds are more tolerant to temperature and salinity
at cooler conditions (5/15◦C). This was suggested that brown
seeds may germinate early in the growing season to preempt
the habitat for A. rosea (Khan et al., 2004). In Salsola ferganica,
relatively lower daily temperature range, i.e., 5/15, 10/20, or
15/25◦C could enhance germination of heteromorphic seeds
(Ma et al., 2018). In Atriplex centralasiatica, the optimal
temperature regime for black seed germination was 15◦C while
for brown seeds, it was 25◦C. Moreover low salinity level did
not influence the seed germination of black seeds under different
temperature regimes (25/35◦C), which showed that black seeds
can germinate in the rainy summer season (Li et al., 2008).
These results suggest that the response of dimorphic seeds
to combined temperature and salinity could be an important

strategy for dimorphic halophytes to survive in changeable saline
environments.

GROWTH AND REPRODUCTION TRAITS
IN THE DESCENDANTS FROM
HETEROMORPHIC SEEDS

Chenopodium album (a halophytic species) did not show any
difference in germination and growth of plants developed from
different seed dimorphs (Yao et al., 2010). In Suaeda aralocaspica,
the descendants from heteromorphic seeds presented no
significant difference in the osmolytes accumulation, activities
of antioxidant enzymes, phosphoenolpyruvate carboxylase and
the expression patterns of corresponding genes in performance
with or without salinity (Cao et al., 2015). Moreover, shoot
dry weight and the number of side branches along the main
stem of plants from brown seeds were much higher than
those of plants from black seeds in S. salsa under salinity
(Liu et al., 2013). Atriplex centralasiatica produced two kinds
of seed dimorphs such as yellow colored (which are tolerant
to salt stress) and brown colored (which are salt sensitive)
(Xu et al., 2011). Xu et al. (2011) showed that seedlings from
yellow seeds exhibited better growth as compared with seedlings
from brown seeds under salt stress and salt stress tolerance in
seedlings from yellow colored seeds was associated with higher
expressions of numerous genes relating to ion homeostasis,
redox regulation, and hormones production. Moreover they also
noted that seedlings developed from yellow seeds accumulated
more nitric oxide (NO) as compared with seedlings from brown
seeds and this was another reason how yellow seeds showed
tolerance to salt stress as compared with brown seeds. Therefore,
research is required to test the growth and reproduction traits
in the descendants from heteromorphic seeds, using more
seed-heteromorphic halophytes and providing more evidences
whether there is carry-over of seed heteromorphism to plants.
The conceptual model of the production of heteromorphic seeds
for adaptation to saline environments in halophytes was shown
in Figure 3.

CONCLUSION

A series of papersmainly focus on the characteristics of dormancy
and germination in heteromorphic seeds of halophytes.
Only a few studies reported the different characteristics
of heteromorphic seed development under different saline
conditions, and the molecular evidence is scarce. Many
halophytic plant species produce dimorphic seeds to ensure
safe propagation of their subsequent generation. To do so,
these species adopt different adaptive strategies and modify
seed characteristics. Seed dormancy is one of major strategies
in halophytes while producing dimorphic seeds, which makes
them to stay longer under stress conditions. Maternal effects
or transgenerational plasticity may also provide ecological
diversity in the regenerative strategy for seed-heteromorphic
halophytes. Role of seed coat and endogenous hormones is
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also very important relating to seed germination and seed
dormancy. As future research perspective, we suggested
to consider (1) electrophysiology of seed germination and
cross talk between hormones and seed germination, and
molecular evidences would be quite useful in understanding
heteromorphism in halophytes, (2) it is interesting and unclear
how an individual halophytic plant produces different types of
seeds, and how environmental factors such as salinity affect
their development, and (3) how heteromorphic seeds differently
unload and release certain macroelements and micronutrients in
the same maternal environment in halophytic species.
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