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Abstract 

Background: Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and 
abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted 
to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was 
associated with proline-induced changes in photosystem II (PSII) activity. Seeds of four wheat varieties (S-24, Sehar-
06, Galaxy-13, and Pasban-90) were primed with different concentrations of proline (0, 5, 15 and 25 mM) for 12 h and 
allowed to grow under normal conditions. Biomass accumulation and photosynthetic performance, being two most 
sensitive features/indicators of plant growth, were selected to monitor proline modulated changes.

Results: Seed priming with proline increased the fresh and dry weights of shoots and roots, and plant height of all 
four wheat varieties. Maximum increase in growth attributes was observed in all four wheat varieties at 15 mM proline. 
Maximum growth improvement due to proline was found in var. Galaxy-13, whereas the reverse was true for S-24. 
Moreover, proline treatment changed the Fo, Fm, Fv/Fo,  PIABS,  PITot in wheat varieties indicating changes in PSII activity. 
Proline induced changes in energy fluxes for absorption, trapping, electron transport and heat dissipation per reac-
tion center indicated that var. Galaxy-13 had better ability to process absorbed light energy through photosynthetic 
machinery. Moreover, lesser PSII efficiency in var. S-24 was due to lower energy flux for electron transport and greater 
energy flux for heat dissipation. This was further supported by the fact that var. S-24 had disturbance at acceptor 
side of PSI as reflected by reduction in ∆VIP, probability and energy flux for electron transport at the PSI end electron 
acceptors.

Conclusion: Seed priming with proline improved the growth of wheat varieties, which depends on type of variety 
and concentration of proline applied. Seed priming with proline significantly changed the PSII activity in wheat varie-
ties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by 
electron acceptors of electron transport chain, particularly those present at PSI end.
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Background

In recent scenario of food security and climate change, 

there remains a constant urge to imply crop improve-

ment strategies. One of these strategies is exogenous 

use of plant growth regulators that are capable to pro-

mote plant growth e.g. hormones or compatible sol-

utes (glycine betaine and proline) as foliar spray or seed 
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priming [1]. Seed priming helps in early seedling growth 

by expediting the pre-occurrence of metabolic events 

necessary for seed germination and hence, reduces the 

time-gap between seed sowing and seedling emergence, 

improves tillering and grain yield [2, 3]. It cause the over-

expression of genes involved in biochemical pathways 

[4]. Priming mainly targets lag phase of seed germina-

tion and accelerates gene expression, rate of DNA repair, 

activation of enzymes and metabolite accumulation [4]. 

Seed priming initiates cross tolerance mechanisms which 

affects plant growth even at later stages of plant growth 

[3] as observed in wheat, canola, Capsicum annum. Some 

reports suggested that seed priming enhanced the seed-

ling growth by increasing proline and activity of super-

oxide dismutase (SOD) [5]. Seed priming with proline 

also improved the growth by improving uptake of min-

eral nutrients and photosynthesis in canola [2]. Similarly, 

seed priming alleviated the adverse effects of cadmium 

stress by enhancing photosystem II activity and anti-

oxidant potential of tomato plants [6]. Long ago, it has 

been reported that 26% proline pool out of total amino 

acids was found in seeds of Arabidopsis, whereas only 

1–3% proline pool was found in vegetative tissues indi-

cating that proline has major role in seed metabolism [7]. 

Moreover, additional supply of proline via seed priming 

can be more beneficial in resource management dur-

ing seed germination, seedling growth and even at later 

growth stages [8]. For example, exogenous application of 

L-proline increased the availability of nitrogen for cel-

lular metabolism that helps in plant growth [9]. Proline 

is involved in regulating photosynthetic machinery [10], 

and can avert stomatal limitation for fixation of  CO2. In 

addition, proline metabolism influence the oxygen pen-

tose phosphate pathway (OPPP), which is crucial for seed 

germination and seedling growth [11, 12].

Previous published reports suggested that efficacy of 

exogenously applied proline in enhancing plant growth 

is highly concentration dependent [13]. Generally, low 

concentrations of L-proline enhance plant growth while 

higher concentrations are found to be toxic [14]. Exog-

enous proline if supplied in higher concentration inhib-

its P5CS enzyme and generate reactive oxygen species 

resulting in inhibition of growth in Arabidopsis plants 

[15, 16]. Some studies suggested that endogenous 20 mM 

proline can completely deactivate singlet oxygen [17].

�ese reports suggested that exogenous application 

of proline can enhance the endogenous level of pro-

line which can modulate variety of physiological and 

biochemical processes thereby resulting in improved 

growth. However, it is not yet known which physiological 

process have major contribution in improving growth. 

Moreover, optimum proline concentration for seed prim-

ing in wheat is also not known. In view of these reports, 

it is hypothesized that exogenous supply of proline as 

seed priming can boost seedling growth by modulat-

ing photosynthetic capacity. �us, this study was aimed 

to optimize proline dose for seed priming in different 

wheat varieties. Moreover, as to whether proline induced 

changes in PSII activity (measured as fast chlorophyll a 

fluorescence, OJIP followed by JIP-test) translated in 

improved growth was also assessed.

Results

Seed priming with proline caused a significant effect on 

fresh and dry weights of shoots and roots of all four wheat 

varieties. Maximum increase in fresh and dry weights of 

shoots and roots was found in plants raised from seed 

priming with 15 mM proline. Varieties also differed sig-

nificantly in all these growth attributes. Variety Galaxy-13 

followed by Sehar-06 showed a maximal increase in 

shoot fresh weight at 15 mM proline. However, improv-

ing effect of 15 mM proline on shoot fresh weight was not 

observed in var. S-24. Since the interaction term var. x 

proline was only significant for shoot fresh weight, means 

of each variety at each proline level cannot be compared 

for other growth attributes. It is therefore, a separate one-

way ANOVA for each variety was carried out followed by 

comparison of means with LSD for proline. Seed prim-

ing with 15 mM proline caused a maximum increase in 

shoot dry weight of all four wheat varieties. However, 

seed priming with 25 mM proline had a similar increas-

ing effect on shoot dry weight of var. Sehar-06, whereas 

this dose of proline did not change the shoot dry weight 

of var. S-24 and Galaxy-13. Similarly, seed priming with 

15 mM proline caused a maximal increase in root fresh 

and dry weight of all four wheat varieties. However, max-

imum increase in root fresh and dry weight was found in 

variety Pasban-90 (Fig. 1).

Analysis of variance of the data for plant height showed 

that seed priming with proline caused a significant effect 

on plant height and varieties differed in this attribute at 

different proline treatments. Seed priming with proline 

did not change the plant height of var. Pasban-90 and 

Galaxy-13, whereas it increased the plant height of var. 

S-24 and var. Sehar-06. Proline treatment had greater 

increasing effect on plant height (21%) of var. Sehar-06 

than that in var. S-24. In addition, effect of 15 and 25 mM 

proline on plant height of Sehar-06 was similar (Fig. 2). 

Results for 2-way completely randomized ANOVA are 

presented in Table 1.

�e data presented for raw OJIP curves of four wheat 

varieties as influenced by seed priming with different 

concentrations of proline (Fig. 3). Seed priming with pro-

line did not change the Fo but changed fluorescence at J, 

I and P steps to varying extent in all four wheat varieties 

examined in this study. Moreover, the pattern of change 
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Fig. 1 Fresh and dry weight of shoots and roots of plants of four wheat varieties raised from seeds primed with 0, 5, 15 and 25 mM proline (n = 3)

Fig. 2 Height of plants of four wheat varieties raised from seeds primed with 0, 5, 15 and 25 mM proline (n = 3)
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in fluorescence at different step was different varieties. 

For example, seed priming with proline increased the 

fluorescence level at J, I and P steps in var. S-24 and Pas-

ban-90. However, the extent of increase in fluorescence 

was higher in var. Pasban-90. In contrast, in var. sehar-

06 and Galaxy-13, the effect of seed priming with 15 mM 

proline increased the fluorescence at I and/or P steps. In 

addition, seed priming with 25 mM proline reduced the 

fluorescence at J-I and I-P phase in var. Sehar, while in 

var. Galaxy-13 it reduced at O-J, J-I and I-P phase sub-

stantially (Fig. 3).

�e results for JIP-test parameters also showed that 

some of the parameters were substantially changed due 

to seed priming with proline, however, such changes 

were varietal specific. For example, seed priming with 

proline did not changed the basic fluorescence param-

eters (Fo, Fj, Fi, Fm, Fv) and ratios of fluorescence (Fv/

Fm, Fm/Fo, Fv/Fo) in var. S-24, whereas in var. Sehar-

06, only seed priming with 25 mM proline caused a 

significant decline in Fo. Likewise, seed priming with 

25 mM proline caused a significant reduction in basic 

and ratio of fluorescence parameters. In contrast, in 

Table 1 Mean square values from ANOVA for shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and plant 
height of four cultivars of wheat (Triticum aestivum L.) when raised from seed primed with proline (0, 5, 15 and 25 mM proline)

ns, non-signi�cant; *, ** and *** signi�cant at 0.05, 0.01 and 0.001 respectively

SOV df Shoot fwt. Shoot dwt Root fwt. Root dwt. Plant height

Proline 3 1003.8** 126.42*** 783.43*** 57.66*** 26.81*

Variety 3 2132.0*** 42.96** 705.24*** 47.39*** 87.55***

Proline ×Variety 9 1227.4*** 12.78 ns 8.91 ns 2.27 ns 5.8 ns

Error 32 212.068 7.08 39.1 4.6 6.3

Fig. 3 Chlorophyll fluorescence (Rel. units) of leaves of four wheat varieties (S-24, Sehar-06, Pasban-90 and Galaxy-13) raised from seeds primed 
with 0, 5, 15 and 25 mM proline
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var. Pasban-90, seed priming with 5 and 15 mM proline 

enhanced Fo and Fj. Of relative variable fluorescence 

at J and I steps  (VJ and  VI), seed priming with proline 

significantly increased the  VJ in var. S-24, Sehar-06 and 

Pasban-90, whereas  VJ was reduced in var. Galaxy-13 

at 25 mM proline (Fig.  3). Structural stability and 

functional activity of PSII is reflected by performance 

indices  (PIABS,  PITot). Both performance indices were 

reduced due to seed priming with proline in all four 

wheat varieties, except that in Galaxy-13 where  PIABS 

increased at 15 and 25 mM proline treatment (Fig.  4). 

Energy flux for absorbance (ABS/RC) and trapping 

(TRo/RC) remained unchanged due to seed priming 

with proline in plants of all four wheat varieties except 

those of Sehar-06 and Galaxy-13 plants raised from 

seeds primed with 25 mM proline, where both energy 

flux for absorbance and trapping decreased. Energy flux 

for electron transport (ETo/RC) decreased with seed 

priming with proline in var. S-24, Sehar-06 and Gal-

axy-13 while in var. Pasban-90 it remained unchanged. 

However, seed priming with proline reduced the energy 

flux for heat dissipation (DIo/RC) in var. S-24, whereas 

it increased in var. Pasban-90, Sehar-06 and Galxy-13 

(Fig. 4).

To assess the changes electron transport flux from PSII 

to PSI, changes in ΔVIP, probability of electron transport 

flux from reduced QB to PSI end electron acceptors, and 

quantum efficiency of electron flux until PSI acceptors 

were calculated and found that all these JIP-test param-

eters were reduced due to seed priming with proline in 

only var. S-24. However, in other varieties either these 

remained unchanged or slightly increased.

Since the major changes occurred due to 15 mM pro-

line seed priming treatment in all four wheat varieties, 

PSII activity in all four wheat varieties was compared. 

Differential kinetics of double normalized OJIP curves 

from O-P of four wheat varieties is presented in Fig.  6. 

Both varieties S-24 and Pasban-90 were significantly 

higher in differential double normalized fluorescence at 

L, K, J and I steps, whereas in var. Sehar-06 only J step 

appeared. In addition, positive band at P step appeared 

in var. Galaxy-13 (Fig. 5A). Differential kinetics for O-K 

Fig. 4 Different JIP-test parameters computed from OJIP raw curves data of plants of four wheat varieties (S-24, Sehar-06, Pasban-90, Galaxy-13) 
raised from seeds primed with 0, 5, 15 and 25 mM proline
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as L band showed that there is no L-band appeared in 

all four wheat varieties (Fig.  5B). However, seed prim-

ing with 15 mM proline caused appearance of positive K 

band (O-J) in Pasban-90 and a negative K-band in Sehar-

06, whereas there is no significant change in this attribute 

of plants of var. S-24 and Galaxy-13 (Fig. 5C). Differen-

tial kinetics at O-I phase indicated oxidation/reduction 

status of PQ pool and a positive peak was found in this 

region with seed priming with 15 mM proline in the three 

wheat varieties S-24, Sehar-06 and Pasban-90, whereas it 

almost unchanged in Galaxy-13 (Fig. 5D). �e differential 

kinetics at I-P, which indicated electron transport flux 

from reduced PQ pool to PSI end electron acceptors, 

reduced due to seed priming with 15 mM proline in var. 

S-24, Sehar-06 and Pasban-90, whereas it increased in 

Galaxy-13 (Fig. 5E).

Changes in JIP-test parameters of the four wheat varie-

ties when primed with 15 mM proline was presented in 

Fig. 6. Among all basic fluorescence parameters, only Fo, 

Fm and Fv were significantly increased in var. Pasban-90 

and Fm in var. S-24 (Fig. 6). Ratios of basic fluorescence 

parameters were almost remained unchanged in all four 

Fig. 5 Differences in data curves normalized at O and P (A), O and K (B), O and J (C), O and I (D), I and P (E) points in four wheat varieties when 
primed with 15 mM proline
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wheat varieties due to seed priming with 15 mM pro-

line. Although quantum efficiencies of energy trapping 

and electron transport significantly decreased in var. 

Pasban-90 and S-24, energy flux for trapping remained 

unchanged due to proline seed priming in all four wheat 

varieties. However, energy flux for electron transport 

was significantly reduced in var. Sehar-06 and S-24. Like-

wise, seed priming with 15 mM proline reduced the  PIABS 

in three wheat varieties i.e. S-24, Sehar-06, Pasban-90, 

whereas it remain unchanged in Galaxy-13. In addition, 

JIP-test parameters reflecting quantum efficiencies and 

probabilities with which PSII trapped excitons is trans-

ferred until PSI acceptors, and electron transport flux for 

PSI end electron acceptors per PSII all were significantly 

reduced on in var. S-24, whereas these remained almost 

unchanged in all other three wheat varieties (Fig. 6). Cor-

relation matrix among different parameters is shown as 

Fig. 7.

Fig. 6 Comparison of JIP-test parameters of four wheat varieties (S-24, Sehar-06, Pasban-90, Galaxy-13) primed with 15 mM proline

Fig. 7 Correlation plot for assessment of the growth and stability of PSII in proline primed plants of different wheat varieties
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Discussion

Proline application through seed-priming, in this study, 

improved the plant growth of all four wheat cultivars. 

Proline-induced improvement in seedling growth of 

wheat cultivars can be explained in view of proline role 

in activation of seed metabolism for mobilization of 

food reserves toward growing plumule and radical dur-

ing seed germination, which speed up seed germination 

and growth, particularly oxidative pentose phosphate 

pathway (OPPP) [18]. Our thorough studies suggested 

that the growth improvement due to seed priming with 

proline was concentration dependent and varietal spe-

cific, which is line with some of earlier studies with 

canola [2], wheat [19]. Seed priming with 15 mM pro-

line was most effective in growth enhancement. Wheat 

variety Galaxy-13 followed by Sehar-06 were found to 

be most proline responsive. �ese results are in accord-

ance with some other reports stating that growth 

improvement due to exogenous proline treatment was 

cultivar specific [2]. In addition, optimum proline dose 

for seed priming varied with type of species or even 

with type of cultivar of a same species. For example, 

0.02% proline (~ 1.735 mM proline) as seed priming 

treatment was optimal for improving seed germination 

and seedling growth of rice, whereas higher concentra-

tion of proline (0.05% ~ 4.33 mM proline) proved to be 

inhibitory [20]. However, while working with canola 

cultivars Athar et  al. [2] found that 5 mM proline was 

the most effective dose for growth improvement. In 

another study with wheat, it was found that seed prim-

ing with proline less than 10 mM did not improve the 

growth of wheat under non-saline or saline conditions 

[21], and they also reported that growth improve-

ment in wheat occurred when seeds were primed with 

10–30 mM proline. In comprehensive review literature, 

it has been reported that seed priming with 40 mM 

proline or greater than this caused adverse effects on 

plant growth in different crops [22–24]. �ese reports 

and results from the present study suggested that dif-

ference in optimum proline dose might have been due 

to differences in absorption of proline in seeds of dif-

ferent crops as well as genetic differences in seed met-

abolic machinery. �is can be further explained by 

some of analogous studies in which it has been found 

that seed priming with salicylic acid improved the seed 

germination and seedling growth of Solanum lycoper-

sicum (tomato), Capsicum annuum (Chili) but not in 

Corylus avellana [25, 26]. Studies revealed that applied 

salicylic acid bind with 7S globulin protein (vicilin pro-

teins) having superoxide dismutase (SOD) activity and 

changes the redox state of the cell, which may act as 

down-stream signal for activation of various metabolic 

pathways for growth and stress tolerance [25, 26]. �ey 

also found that vicilin protein from Corylus avellana 

did not have functional salicylic binding pocket due to 

point mutation, and poor copper binding loop due to 

which it do not possess SOD activity. �us, differential 

response of wheat varieties to seed priming with pro-

line might have been due to proline induced differential 

activation of seed metabolism. Moreover, such proline 

induced growth response was dose specific, which can 

be explained as higher proline dose may initiate a signal 

of stress [27].

Previous studies suggested that exogenous application 

of proline as seed priming or as foliar spray improved the 

growth by improving photosynthetic activity [22, 28–31]. 

In the present study, priority targets of proline-induced 

PSII activity were assessed in four wheat varieties using 

fast chlorophyll a kinetic analysis i.e. OJIP analysis fol-

lowed by JIP-test. From the ratios of basic chlorophyll 

fluorescence parameters such as Fv/Fo, it is clear that 

seed-priming with 15 mM proline improved the Fv/Fm 

and Fv/Fo in cvs. Sehar-06 and S-24. It may probably 

result from photoinhibition [32] occurring either due to 

decrease in its rate constant of photochemistry (leading 

to rise in Fo) or by increase in rate constant of non-radi-

ative dissipation of excitation energy (leading to decrease 

in both Fo and Fm) [33]. �ese results and arguments are 

similar to those of [34] who also reported that application 

of higher proline dose caused a decline in Fv/Fm in maize 

plants.

Functional activity and structural stability of PSII is 

reflected by a multiple JIP-test parameter performance 

index  (PIABS). Performance index is product of reaction 

center density (light energy absorption), trapping and 

conversion efficiency of trapped excitons to electron 

transport. �e improvement in  PIABS in cv. Galaxy-13 

due to 15 mM proline treatment and reduction in  PIABS 

in other wheat cultivars might have been occurred due 

to reduction in any one or more than one component 

of  PIABS. �ese results are similar to the findings of pre-

vious studies with canola [35, 36] and wheat [37], who 

reported that  PIABS is potential indicator of PSII activity 

for growth and stress tolerance, thus it can be used to 

screen genotypes with better photosynthetic capacity 

or growth under normal or stress conditions. Moreo-

ver, Mehta et  al. [38] reported that the application of 

higher concentration of sucrose solution caused simi-

lar decrease in  PIABS in wheat by decreasing efficiency 

of light reaction ((ɸPo)/(1-ɸPo)) and rate of biochemi-

cal reaction (ΨEo)/(1-ΨEo). In addition, such adverse 

effects were reversed by treating with water. �ese 

report and results from our study proposed that treat-

ment with higher concentration of compatible solute 

might have adverse effects on energy fluxes in electron 

transport chain.
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Seed priming with proline reduced energy flux for 

absorption per reaction centers, hence, showing that less 

energy was absorbed by antenna chlorophyll molecules 

in PSII [39] i.e. more active reaction centers were avail-

able as compared to the control. Moreover, energy flux 

for absorption and trapping become synchronized with 

energy flux for electron transport beyond  QA by adjust-

ing the energy flux for dissipation of heat as reported by 

Demitriou (2007). �us, seed priming with 15 mM pro-

line improved the primary photochemistry [40]. Further-

more, seed priming with higher concentration of proline 

increased the energy flux for absorption and quantum 

yield of primary photochemistry, but it decreased quan-

tum yield of electron transfer which showed that treat-

ment with higher dose caused inhibition of electron 

transfer beyond  QA in these wheat varieties [41]. �e 

increase in energy absorption and trapping with lower 

electron transport resulted in increase in energy dissipa-

tion in form of heat [40].

Raw OJIP curves and semi-quantitative analysis of nor-

malized OJIP curves indicated that proline treatment 

changed fluorescence at J, I and P steps in all four wheat 

varieties but it did not cause a reduction Fv/Fm or photo-

chemistry, which indicated that proline treatment caused 

substantial changes in energy fluxes at various points of 

PSII and/or electron transport chain. Increase in fluores-

cence at O-K phase or L-band in cvs. Pasban-90 and S-24 

(Fig.  5A and B) indicated that proline treatment caused 

(to some extent) loss of energetic connectivity of light 

harvesting complex (LHCII) and reaction center in these 

two wheat varieties or in other words absorbed photons 

by antennae were poorly managed by the PSII reaction 

centers [41–43]. In addition, proline treated plants of var. 

Galaxy-13 were better in energetic connectivity between 

LHCII and PSII reaction center than in other wheat 

varieties.

Proline treatment caused an increase fluorescence at J 

step and appearance of positive K-band in the three wheat 

varieties S-24, Sehar-06 and Pasban-90 (except in Gal-

axy-13) indicating proline treatment might have caused 

a disturbance to some extent at donor or acceptor end of 

PSII. �is can be explained as imbalance in electron flow 

from oxygen evolving complex (OEC) to PSII reaction 

center, acceptor end of PSII and its subsequent transfer 

towards PSI as discussed elsewhere [41, 42]. However, 

proline induced changes in fluorescence at J-I phase par-

ticularly in Pasban-90 and S-24 depicted increased re-

oxidation of  QA by  QB and other electron acceptors [40, 

44]. Negative bands for changes in O-I region of proline 

treated wheat plants in three wheat varieties except than 

in Galaxy-13 also indicated that incidents starting from 

exciton trapping to PQ reduction were faster in proline 

treated plants than in control, particularly in Galaxy-13. 

Similar results has already been observed in canola plants 

treated with glycine betaine [42]. Interestingly, changes 

in fluorescence at I-P phase in proline treated plants of 

cv. S-24 showed a significant decline in capacity of PSI 

functionality (i.e., production of NADPH and  CO2 fixa-

tion) [45]. Such decline in PSI functionality can be related 

to poor electron transport from PSII as reflected from 

reduced values of quantum efficiencies and probability 

with which trapped exciton by PSII is transferred to PSI 

end acceptors [46, 47].

Conclusion

Seed priming with 15 mM proline proved to be optimum 

dose for growth improvement of all four wheat cultivars 

examined in this study. Higher dose of proline was not 

effective in improving growth of wheat plants. Maxi-

mum growth improvement due to seed priming with 

proline was found in var. Galaxy-13 followed by Sehar-

06. Proline-induced growth improvement of wheat was 

positively associated with proline induced increase in 

primary photochemistry of PSII. Changes in primary 

photochemistry of PSII was due to better management of 

absorbed energy in electron transport by electron accep-

tors of electron transport, particularly those present at 

PSI end.

Materials and methods

�e experiment was conducted in natural conditions in 

the wire-net house of the Botanic Gardens of Bahaud-

din Zakariya University, Multan, Pakistan. �e plastic 

pots (1.8 ft. in height and 1.2 ft. diameter) were filled 

with ordinary river sand washed with water. Seeds of 

four different wheat varieties; S-24, Sehar-06, Galaxy-13 

and Pasban-90, were obtained from Ayyub Agricul-

ture Research Center Faisalabad, Pakistan. �e S-24 is 

claimed to be high yielding-salt tolerant, and other three 

wheat varieties are high yielding and cultivated on large 

areas of Pakistan in the recent past. �e seeds of all vari-

eties were primed with four different concentrations of 

proline (Merck) i.e. 0, 5, 15 and 25 mM for 12 h. Seeds 

were slightly dried and sown in pots filled with sand at 

equal distances. Seedlings were nurtured with Hoagland 

nutrient solution every week. After 1 week, seedlings 

were thinned to six per pot. Plants were allowed to grow 

in full daylight for 4 weeks. Fast chlorophyll a kinetic 

analysis or OJIP curves were recorded on dark adapted 

leaves following Strasser [48]. �e detailed protocol is 

given below in a separate section. Plants were harvested 

at 6-week-old stage. Before harvest, plant height of each 

variety was recorded. At the time of harvest, plants were 

carefully uprooted from pots and roots were washed. 

Plants of each wheat variety were separated into shoots 

and roots and their fresh weights were recorded using 
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sensitive balance. Samples were then oven dried at 70 C 

for 3 days and their dry weights were recorded.

Chlorophyll a �uorescence

Chlorophyll a fluorescence (OJIP curves) analysis was 

performed using handheld continuous chlorophyll 

fluorescence meter or non-modulated fluorometer 

(PAR-Fluorpen FP 100-Max-LM). Leaves were dark 

adapted for 30 min. A weak light (1 μmol  m− 2  s− 1) was 

applied to measure Fo and then a saturation pulse of 

3000 μmol  m− 2  s− 1 was applied to measure fluores-

cence over 1  s. Fluorescence induction curve (OJIP) 

was plotted on log scale. OJIP curve, known as Katusky 

curves, divides whole processes occurring at PSII com-

plexes in four steps: O, J, I and P. From OJIP curves, 

semi-quantitative analysis was also carried out follow-

ing Kalaji et  al. 2016. �e raw OJIP-curves were nor-

malized and double normalized for fine depiction of 

variations among different treatments. Formulas used 

were:  FoNorm = (Ft/Fo),  FmNorm = (Ft/Fm),  VOP = (Ft-

Fo/Fm-Fo),  VOK = (Ft-Fo/Ft300-Fo),  VOJ = (Ft-Fo/Fj-Fo), 

 VOI = (Ft-Fo/Fi-Fo), and  VIP = (Ft-Fi/Fp-Fi). Differences 

in these curves (treated-control) were plotted to ana-

lyze differential response of varieties to variations in 

proline dose. Initial shape of curve depends upon O-J 

(L-band; PSII grouping) and K-band (balance between 

electron donation from OEC and electron accept-

ance from  QA-). J-I phase of the curve shows reduc-

tion of secondary electron acceptor  QB, plastoquinone, 

cytochrome b6f and plastocyanin. I-P phase shows 

reduction of electron transporters of PSI acceptor side. 

Maximum fluorescence intensity or point P shows satu-

ration of all reaction centers when strong light ensures 

a balance of oxidation and reduction [43]. �is phase 

also provides an insight into cyclic electron flow and 

ultimately ratio of ATP and NADPH [49]. O-P is also 

known as relative variable fluorescence i.e. V=Variable 

fluorescence/Maximal variable fluorescence [47].

JIP-test parameters were calculated following Strasser 

[50]. JIP-test is based upon basic theory of energy flow 

across thylakoid membranes and total energy inflows 

and outflows from light harvesting complex. �e prob-

able distribution of absorbed energy between PSII com-

plexes helps to study any changes in structure of PSII. 

Basic fluorescence parameters and ratio of basic fluo-

rescence parameters were also recorded as:

Symbol Formula Description

Fo Fluorescence at 
0.05 ms

Fluorescence at initial 
point

Fk Fluorescence at 
0.3 ms

Fluorescence at K point

Fj Fluorescence at 2 ms Fluorescence at J point

Fi Fluorescence at 30 ms Fluorescence at I point

Fm Fluorescence at 
300 ms

Fluorescence at P point

Fv Fv = Fm-Fo indicates the variation 
in fluorescence from 
initial to final point of 
OJIP transient curve

PItotal =PIABS × δRo / (1- 
δRo)

Fv/Fm quantum yield of pri-
mary PSII photochemis-
try at t = 0

ɸEo =ETo/ABS or 
φETo = 1-Fj/
Fm = φPo·(1-Vj)

the quantum yield of 
electron transport

Vj =(Fj-Fo)/(Fm-Fo) relative variable fluores-
cence at t = 2 ms

Vi =(Fi-Fo)/(Fm-Fo) relative variable fluores-
cence at t = 30 ms.

ψEo =(1-Vj) efficiency/probability 
with which an electron 
trapped in PSII RC is 
transferred beyond  QA.

RC/ABS =φPo·Vj/Mo number of  QA reducing 
RCs per PSII antenna 
chlorophyll.

TRo/RC =Mo·(1/Vj) trapped energy flux per 
RC at t = 0

ETo/RC =Mo·(1/Vj) · ψEo) electron transport flux 
further than  QA- per RC

PIABS =(RC/ABS)·(φPo/1-
φPo)·(ψEo/1- ψEo)

performance index 
(potential) for energy 
conservation from 
photons absorbed by 
PSII antenna to the 
reduction of  QB

ΔVIP = 1- Vi Changes in IP phase

REo/RC =Mo(1/Vj)(1-Vi) energy flux reducing 
end electron acceptor 
of PSI

dRo =REo/ETo = (1-Vi)/
(1-Vj)

probability to reduce 
E-acceptors at acceptor 
side of PSI

jRo =[1- (Fo/Fm)] × (1-Vi) quantum yield to 
reduce E-acceptors at 
acceptor side of PSI

Strasser et  al. [50]. It also relates reduction of inter-

system electron acceptors and is based upon density of 

active centers trapping probability and efficient electron 

transmittance beyond  QA [50, 51].

Statistical analysis

�e data obtained were subjected to two-way analysis 

of variance. For ANOVA, CoStat 6.5 was used (CoHort, 

California, USA). If the interaction term was significant, 

means were compared with LSD. �e JIP-test param-

eters were transformed a percent of control and plotted 

as radar plot. Originpro-20 was used for deriving Pearson 
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correlation coefficients to find out correlation among 

various parameters of growth and OJIP.

Abbreviations
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index.
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