
Seeing Implicit Neural Representations as Fourier Series

Nuri Benbarka*, Timon Höfer†, Hamd ul-moqeet Riaz, Andreas Zell
University of Tübingen

Wilhelm-Schickard-Institute for Computer Science, Sand 1, 72076 Tübingen
firstname.lastname@uni-tuebingen.de

Abstract

Implicit Neural Representations (INR) use multilayer
perceptrons to represent high-frequency functions in low-
dimensional problem domains. Recently these representa-
tions achieved state-of-the-art results on tasks related to
complex 3D objects and scenes. A core problem is the rep-
resentation of highly detailed signals, which is tackled us-
ing networks with periodic activation functions (SIRENs)
or applying Fourier mappings to the input. This work an-
alyzes the connection between the two methods and shows
that a Fourier mapped perceptron is structurally like one
hidden layer SIREN. Furthermore, we identify the relation-
ship between the previously proposed Fourier mapping and
the general d-dimensional Fourier series, leading to an in-
teger lattice mapping. Moreover, we modify a progressive
training strategy to work on arbitrary Fourier mappings
and show that it improves the generalization of the inter-
polation task. Lastly, we compare the different mappings
on the image regression and novel view synthesis tasks. We
confirm the previous finding that the main contributor to
the mapping performance is the size of the embedding and
standard deviation of its elements.

1. Introduction

INR is a novel field of research in which the traditional
discrete signal representation (e.g., images as discrete grids
of pixels, 3D shapes as voxel grids or meshes) are replaced
with continuous functions that map the input domain of the
signal (e.g., coordinates of a specific pixel in the image) to
a representation of color, occupancy or density at the input
location. However, these functions typically are not analyti-
cally tractable; INRs approximate those functions with fully
connected neural networks (also called multi-layer percep-
trons (MLPs)).

INRs are not coupled to the spatial resolution (e.g., voxel

*nuri.benbarka@uni-tuebingen.de (equal contribution)
†timon.hoefer@uni-tuebingen.de (equal contribution)

Figure 1: Visualization of SIREN [29], Gauss ReLU [32]
and our method (INT SIN). The top row is the first pe-
riod and bottom row is the second period, which shows our
method enforcing periodicity.

size in a 3D scene) and theoretically have infinite resolution.
Therefore, these representations are naturally suited in ap-
plications with high-dimensional signals and heavy mem-
ory consumption. Also, since they are differentiable, they
are suitable for gradient-based optimization and machine
learning. In addition, the application of INRs for images
[10, 31], volume density [19], and occupancy [17] enhanced
the performance on various tasks such as shape representa-
tion [4, 5, 8, 7, 12, 18, 25], texture synthesis [10, 22], and
shape inference from images [16, 15].

However, early architectures lacked accuracy in high-
frequency details. Sitzmann et al. [29] proposed SIRENs,
which could represent high frequencies. They argued that
sinusoidal activations work better than ReLU networks be-
cause ReLU networks are piecewise linear, and their sec-
ond derivative is zero. As a result, they are incapable
of modeling data contained in higher-order derivatives of
signals. However, a concurrent work [19] proposed posi-
tional encoding, which also enabled the networks to learn
high-frequency information. The positional encoding uses

1

ar
X

iv
:2

10
9.

00
24

9v
1

 [
cs

.C
V

]
 1

 S
ep

 2
02

1

a heuristic sinusoidal mapping to input coordinates before
passing them through a ReLU network. They did follow-
up work [32] exploring the general Fourier mapping and
explaining why it worked using a Neural Tangent Kernel
(NTK) framework [11]. They found out that the Fourier
mapping transforms the NTK into a shift-invariant kernel.
And modifying the mapping parameters enables tuning the
NTK’s spectrum, therefore controlling the range of frequen-
cies the network can learn. They also showed that a ran-
dom Fourier mapping with low standard deviation learns
only low frequencies of the signal. On the contrary, a high
standard deviation lets the network learn high frequencies
only, which leads to over-fitting. They recommended a lin-
ear search to find the optimal value of the standard deviation
for the corresponding task. They also showed that increas-
ing the number of parameters in the mapping improves the
performance constantly.

However, we wonder what the difference between
SIRENs and Fourier mapping is? Will the performance be
saturated when we continue to increase the mapping param-
eters? Is there a way to avoid over-fitting when training
networks using Fourier mapping? And is random Fourier
mapping the optimal mapping?

To answer these questions, we explored the mathemati-
cal connection between Fourier mappings and SIRENs and
showed that a Fourier mapped perceptron is structurally like
a one hidden layer SIREN. However, in the SIREN case, the
mapping is trainable, and it is represented in the amplitude-
phase form instead of the sine-cosine form in the case of
Fourier mappings.

Also, we looked at the functions we want to learn, and
we observed that they have a limited input domain (e.g., the
height and width of an image), and their values are defined
on a finite set. Hence, we can assume that they are con-
tinuous and periodic over their input bound, which satisfies
all the requirements to represent them with a Fourier series.
Furthermore, we determined the d-dimensional Fourier se-
ries’s trigonometric form and showed that it is precisely a
single perceptron with an integer lattice mapping applied to
its inputs. The weights of that perceptron are the Fourier
series coefficients. As the Fourier series can theoretically
represent any periodic signal, this perceptron can represent
any periodic signal if it has an infinite number of frequen-
cies in its mapping. However, in practice, the Fourier se-
ries coefficients are finite, and we can get them by sampling
the signal at the Nyquist rate (twice the bandwidth) and ap-
plying a fast Fourier transform (FFT) to the signal. Thus,
the number of Fourier coefficients is the theoretical upper
bound of the number of parameters needed in the mapping.

Moreover, we modified the progressive training strategy
of [13], where we train the lower frequencies in the initial
training phase and gradually add the higher frequency com-
ponents as the training progresses. As a result, we show

that our Progressive Training strategy avoids the problem
of over-fitting. Finally, we tested our proposed Integer Lat-
tice mapping in the image regression and novel view syn-
thesis tasks. We found out that the main contributor to the
mapping performance is the number of parameters and the
standard deviation, as was shown in [32]. In summary, we
offer the following contributions:

• We introduce an integer Fourier mapping and prove
that a perceptron with this mapping is equivalent to a
Fourier series.

• We explore the mathematical connection between
Fourier mappings and SIRENs and show that a Fourier
mapped perceptron is structurally like a one hidden
layer SIREN.

• We show that the integer mapping forces periodicity of
the network output.

• We modify the progressive training strategy of [13] and
show that it improves the generalization of the interpo-
lation task.

• We compare the different mappings on the image regres-
sion and novel view synthesis tasks and verify the pre-
vious findings of [32] that the main contributor to the
mapping performance is the number of elements and
standard deviation.

2. Related work
Inspired by INRs’ recent success, by outperforming grid-

, point- and mesh-based representations (for the first time in
2018 [25],[17],[3]), many works based on INRs achieved
state-of-the-art results in 3D computer vision [1, 9, 12, 26,
2, 29]. Moreover, impressive results are obtained across
different input domains, e.g., from 2D supervision [30, 21,
19], 3D supervision [27, 23], to dynamic scenes [20] which
can be represented by space-time INR.

In early architectures, there was a lack of accuracy in fine
details of signals. Mildenhall et al. [19] proposed positional
encodings to tackle this problem, then Tancik et al. [32]
further explored positional encodings in an NTK frame-
work, showing that mapping input coordinates to a repre-
sentation close to the actual Fourier representation before
passing them to the MLP lead to a good representation of
the high-frequency details. Furthermore, they showed that
random Fourier mappings achieved superior results than
if one takes the simple positional encoding. Sitzmann et
al. [29] also attempted to solve the problem of getting
high-frequency details. They proposed SIRENs and demon-
strated that SIRENs are suited for representing complex sig-
nals and their derivatives. In both solutions, they used a
variant of Fourier neural networks (FNN) for the first layer

2

of the MLP. FNN are neural networks that use either sine or
cosine activations to get their features [14].

The first attempt to build an FNN was by [6]. They
proposed a one-layer hidden neural network with a cosine
squasher activation function and showed if they hand-wire
certain weights, it will represent a Fourier series. Silvescu
[28] proposed a network that did not resemble a standard
feedforward neural network. However, they used a cosine
activation function to get the features. Liu et al. [14] in-
troduced the general form for Fourier neural networks in a
feedforward manner. They also proposed a strategy to ini-
tialize the frequencies of the embedding, which helped for
convergence. Our work will show another way to initial-
ize the embedding, which results in a neural network that is
precisely a Fourier series.

3. Method
3.1. Integer lattice mapping

This section explains how a perceptron with an integer
lattice Fourier mapping applied to its inputs is equivalent
to a Fourier series. First, we present the Fourier mapped
perceptron equation and then link it to the Fourier series’s
general equation. The fundamental building block of any
neural network is the perceptron, and it is defined as

y(x,W′,b) = g(W′ · x + b). (1)

Here y ∈ Rdout is the perceptron’s output, g(·) is the acti-
vation function (usually non-linear), x ∈ Rdin is the input,
W′ ∈ Rdout×din is the weight matrix, and b ∈ Rdout is the
bias vector. Now, if we let g(·) to be the identity function
and apply a Fourier mapping to the input we get

y(x,W) = W · γ(x) + b, (2)

where γ(x) is the Fourier mapping defined as

γ(x) =
(

cos(2πB · x)
sin(2πB · x)

)
. (3)

W ∈ Rdout×2m, B ∈ Rm×din is the Fourier mapping
matrix, and m is the number of frequencies. Equation 2 is
the general equation of a Fourier mapped perceptron, and
we will relate it to the Fourier series’s general equation.

A Fourier series is a weighted sum of sines and cosines
with incrementally increasing frequencies that can recon-
struct any periodic function when its number of terms goes
to infinity. In applications that use coordinate-based MLPs,
the functions we want to learn are not periodic. However,
their inputs are naturally bounded (e.g., height and width of
an image). Accordingly, it doesn’t harm if we assume that
the input is periodic over its input’s bounds to represent it
as a Fourier series. We will explain later why this assump-
tion has many advantages. A function f : Rdin → Rdout is

periodic with a period p ∈ Rdin if

f(x + n ◦ p) = f(x) ∀n ∈ Zd, (4)

where ◦ is the Hadamard product. As it is plausible to nor-
malize the inputs to their bounds, we assume that each vari-
able’s period is 1. The Fourier series expansion of function
(4) with p = 1d is defined by [24]:

f(x) =
∑

n∈Zd

cne
2πin·x, (5)

where cn are the Fourier series coefficients, and they are
calculated by:

cn =

∫
[0,1]d

f(x)e−2πinxdx. (6)

For real-valued functions, it holds that cn = c∗-n where c∗n
is the conjugate of cn. Using Euler’s formula and mathemat-
ical induction we showed that equation (5) can be written as
(see supplementary material):

f(x) =
∑

n∈N0×Zd−1

an cos(2πn · x) + bn sin(2πn · x) (7)

a0 = c0,

an =

{
0 ∃j ∈ {2, . . . , d} : n1 = · · · = nj−1 = 0 ∧ nj < 0

2Re(cn) otherwise,

bn =

{
0 ∃j ∈ {2, . . . , d} : n1 = · · · = nj−1 = 0 ∧ nj < 0

−2Im(cn) otherwise.
(8)

And if we write equation (7) in vector form, we get

f(x) = (aB, bB) ·
(
cos(2πB · x)
sin(2πB · x)

)
, (9)

where aB = (an)n∈B, and bB = (bn)n∈B. Now, if we com-
pare 2 and 9, we find similarities. We see that (aB, bB) is
equivalent to W, b is zero and B = N0 × Zd−1, is the con-
catenation of all possible permutations of n. For practicality
we limit B to

B = {0, . . . , N} × {−N, . . . , N}d−1 \H, (10)

where N will be called the frequency of the mapping,
H = {n ∈ N0 × Zd−1| ∃j ∈ {2, . . . , d} : n1 = · · · =
nj−1 = 0 ∧ nj < 0}, then the perceptron represents a
Fourier series. Hence, we calculate the dimension m of all
possible permutations (see supplementary material)

m = (N + 1)(2N + 1)d−1 −
d−2∑
l=0

N(2N + 1)l. (11)

3

In practice, we can find the Fourier series coefficients by
sampling the function uniformly with a frequency higher
than the Nyquist frequency and apply a Fast Fourier Trans-
form (FFT) on the sampled signal. The resulting FFT coef-
ficients are the Fourier series coefficients multiplied by the
number of the sampled points. And in theory, if we initialize
the weights with the Fourier series coefficients, our network
should give the training target at iteration 0.

3.2. SIRENs and Fourier mapping comparison

In this section we want show that a Fourier mapped per-
ceptron is structurally like a SIREN with one hidden layer.
If we evaluate W · γ(x) in equation (2), using (3) and com-
bine the Sine and Cosine terms, we get:

y(x,W) = W · sin(2πC · x + φ) + b, (12)

where φ := (π/2, . . . , π/2, 0, . . . , 0)T ∈ R2m and C :=
(B,B)T (see supplementary material). Here we see that C
is acting as the weight matrix applied to the input, φ is like
the first bias vector and sin(·) is the activation function.
Hence, the initial Fourier mapping can be represented by
an extra initial SIREN layer, with the difference that B and
φ are trainable in the SIREN case. This finding closes the
bridge between Fourier frequency mappings and sinusoidal
activation functions which have recently attracted a lot of
attention.

3.3. Progressive training

Chen-Hsuan et al. [13] introduced a training strategy
for coarse-to-fine registration for NeRFs which they called
BARF. Their idea is to mask out the positional encoding’s
high-frequency activations at the start of training and gradu-
ally allow them during training. Their work showed how to
use this strategy on positional encodings only to improve
camera registration. In our work, we will show how to
run this strategy on an arbitrary Fourier mapping and show
that it improves generalization of the interpolation task. We
weigh the frequencies of γ as follows:

γα(x) :=
(
wαB
wαB

)
◦ γ(x) (13)

where wαB is the element wise application of the function
wα(z) on the vector of Norms of B on the input dimension:

wαB := wα

 ||B1||2
...

||Bm||2

 . (14)

where wα(z) is defined as:

wα(z) =

0 if α− z < 0
1−cos((α−z)π)

2 if 0 ≤ α− z ≤ 1

1 if α− z > 1

(15)

Here, α ∈ [0,max((||Bi||din)i∈{1,...,m})] is a parameter
which is linearly increased during training. This strategy
forces the network to train the low frequencies at the start of
training, ensuring that the network will produce smooth out-
puts. Later, when high-frequency activations are allowed,
the low-frequency components are trained, and the network
can focus on the left details. This strategy should reduce the
effect of overfitting, which was introduced by Tancik et al.
[32] when using mappings with large standard deviations.

3.4. Pruning

The standard way of using equation (10) is by defining
a value N and taking the whole set BN . High-dimensional
tasks lead to high memory consumption, and it is not clear
whether this subset of Zd brings best performance. We,
therefore, propose a way to select a more appropriate sub-
set through data pruning. A pruning pr(N,M) is done as
follows: Assume we have N,M ∈ N with M >> N and
|BN | = n, |BM | = m. We train a perceptron with an inte-
ger mapping given by BM . After training we define D such
that D contains only those elements of BM where the re-
spective weights are greater than a margin, that is chosen to
yield |D| = n. While BN and D now have the same size,
we believe that D will yield better performance because it
contains the most relevant frequencies of the signal we want
to reconstruct.

3.5. Integer lattice mapping applied to MLPs

Although we showed in section 3.1 that we can represent
any bounded input function with only one Fourier mapped
perceptron, in practice, these networks can become very
wide to give high performance. As a result, the number of
calculations will increase. To compromise between perfor-
mance and speed, one can add depth and reduce the width
of the network.

First, it is natural that using MLPs rather than percep-
trons increases the performance. However, it remains un-
clear why our proposed integer mapping should perform
better than competing mappings for multilayer networks.

One could argue that if a mapping gives the perceptron a
high representation power, it will also provide a high repre-
sentation power to the MLP and vice versa. First, however,
we should verify this claim with experiments. In addition,
we remind the reader that a periodic function has integer
frequencies. And because our assumption that the signal
we want to reconstruct is periodic, it will have only inte-
ger frequencies. Also, the activation functions we are using
only introduce integer frequencies when applied to a peri-
odic function, as shown for the 1D case in the supplemen-
tary material. With this, we reduce the search space for fre-
quencies from R to Z, which could make the optimization
easier as the search space is more compact and approach-
able.

4

(a) PT=F, WI=F (b) PT=F, WI=T (c) PT=T, WI=F (d) PT=T, WI=T (e) GT

Figure 2: A visualization of the outputs of Fourier mapped perceptrons of N = 128. PT stands for progressive training and
WI stands for weight initialization. T/F stands for True/False, respectively.

0 100 200 300 400 500
Training Iteration

25

50

75

100

125

150

PS
NR

PT=T, WI=T
PT=F, WI=T
PT=T, WI=F
PT=F, WI=F

0 100 200 300 400 500
Training Iteration

10

15

20

25

PS
NR

Figure 3: The training progress of Fourier mapped percep-
trons with N = 128. The left and the right figures report
the train and test PSNR, respectively. Weight initialization
without PT yields a PSNR of 160 which one can consider
as the ground truth proving that the perceptron is a Fourier
series. Note: The y-axis limits are different in both plots.

4. Experiments
4.1. Weight initialization and progressive training

In this section, we want to prove our mathematical
claims by experiments. First, we will show that the deriva-
tion of the integer mapping indeed represents the Fourier
series. Secondly, we want to check whether progressive
training helps with generalization.

We conducted our experiments on the image regression
task. This task aims to make a neural network memorize
an image by predicting the color at each pixel location. We
use ten images with a resolution of 512 × 512, which can
be found in the supplementary material, and report the mean
peak signal-to-noise ratio (PSNR). We divide the image into
train and test sets, where we use every second pixel for
training and take the complete image for testing. We uti-
lize 3 Fourier-mapped perceptrons with N = 128 (Nyquist
frequency), one for each image channel. We normalize the
input (x) to have an interval between [0,1] in both width (x)
and height (y) dimensions.

In this experiment, we made an ablation: With and with-
out weight initialization using the normalized FFT coeffi-
cients of the image’s training pixels, with and without the

progressive training scheme explained in section 3.3. For
progressive training, α was linearly increased from 0 to its
maximum value at 75% of training iterations. In training,
we only make an update step after we accumulate the gradi-
ents of the whole image. We did not study learning sched-
ules in this work, and the reader is encouraged to try differ-
ent schedules. Figure 2 shows a visualization of one of the
images, and figure 3 shows the training progress, where the
solid line is the mean PSNR and the shaded area shows the
standard deviation.

As can be deducted from figure 3, one can see that the
train PSNR starts at an optimum at the start of training when
we use weight initialization (WI), and we don’t use progres-
sive training (PT). This fact underlines our claim that a per-
ceptron with an integer lattice mapping is indeed a Fourier
series. Note that in case both WI and PT are used, the train
PSNR is not optimal at the start because the PT masks out
high-frequency activations.

We can also see from figure 3 that whenever we use pro-
gressive training, it always shows a higher test PSNR, which
certifies that progressive training helps with generalization.
Lastly, when we did not employ both PT and WI, the per-
ceptron overfits to the training pixels, and this can be seen
quantitatively with a very low test PSNR (red line in figure
3) and qualitatively with grid-like artifacts (in figure 2a)).

4.2. Perceptron experiments

In this experiment, we want to compare the representa-
tion power of the different mappings in the single percep-
tron case. We conducted our experiments in the same set-
ting as in section 4.1, where we used progressive training
and did not use weight initialization.

In the integer mapping, we increased N ’s value from 4
until half the training image dimension (Nyquist frequency)
and calculated all possible permutations BN , as discussed
in section 3.1. For the Gaussian mapping, we sample
m = |BN | parameters from a Gaussian distribution with
a standard deviation of 10 (which was the best value for this
task in our experiments). Also, we test a one-layer SIREN

5

22 23 24 25 26 27

Mapping Frequency

10

15

20

25

30

35

PS
NR

SIREN
PE
GAUSS RELU
FOURIER

22 23 24 25 26 27

Mapping Frequency

10

15

20

25

30

35

PS
NR

SIREN
PE
GAUSS RELU
FOURIER

Figure 4: Perceptron experiments with different values for the mapping frequency N . We report the train PSNR on the left
and the test PSNR on the right. For high values of N our integer mapping outperforms all competing mappings.

(a) Network predictions using N = 8

(b) Network predictions using N = 16

(c) Network predictions using N = 128

Figure 5: The visualization of the Fourier mapped perceptrons and the one layer SIREN with different values of N .

with one hidden layer having the same size m. Finally, we
adopt the positional encoding (PE) scheme from [19] and
limit its values to N . Figure 4 shows our experiments’
results on the train and test pixels, respectively. Figure 5
shows the networks’ outputs trained on one of the images.

At low N values (figure 5a), we see that the Gaussian
mapped perceptrons do not work because the number of

sampled frequencies is low, so there is a low chance that
samples will be near the image’s critical frequencies. On
the other hand, the integer mapped perceptrons give a blurry
image because they can only learn low frequencies. The
SIREN performs relatively well in this case, and we think
this is because SIRENs naturally inherit a learnable Fourier
mapping that is not restricted to the initial sampling, as de-

6

Activ. Map. N=8 m=113 N=16 m=481 N=32 m=1985
d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine
No 16.65 22.15 23.26 24.07 17.07 22.09 23.84 19.76 17.22 14.90 14.67 13.63
Int. 15.68 22.31 22.41 20.94 17.33 27.66 27.06 27.33 19.84 33.78 26.98 23.60
Pr. 15.28 21.03 22.40 23.00 16.76 28.17 27.68 24.66 18.48 37.34 30.41 19.74

Relu

P.E. 11.78 16.61 17.37 17.77 11.78 16.87 17.79 17.95 11.78 17.05 18.15 18.15
Gs. σ10 11.93 21.90 21.68 21.69 17.01 24.53 24.26 25.13 18.48 26.10 26.30 27.48
Gs. σpr 14.06 20.23 20.78 20.88 12.69 26.02 26.40 26.72 13.01 37.69 37.90 37.74

Int. 15.68 20.51 20.65 20.62 17.33 24.42 24.09 24.49 19.84 31.57 32.14 32.79
Pr. 15.28 20.35 20.92 20.96 16.76 25.87 26.23 26.33 18.48 37.70 36.81 37.48

Table 1: The mean train PSNR results of network type comparison experiment with varying network depth (d), number of
frequencies (N). We use the following abbreviations: Activ. = Activation function, Map. = Mapping type, Int. = Integer,
Pr.= Pruned Integer, P.E. = Positional Encoding, Gs. = Gaussian. Here, m is the mapping size and σ is the standard deviation.

Activ. Map. N=8 m=113 N=16 m=481 N=32 m=1985
d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine
No 16.65 21.63 21.85 21.99 17.06 21.28 22.03 18.50 17.22 13.57 13.29 12.37
Int. 15.68 21.75 21.53 20.06 17.31 23.48 22.67 22.28 19.70 16.85 17.89 16.36
Pr. 15.28 20.49 21.22 21.45 16.75 22.00 21.39 22.17 18.39 20.49 15.15 13.13

Relu

P.E. 11.78 16.60 17.33 17.70 11.78 16.85 17.73 17.87 11.79 17.02 18.06 18.02
Gs. σ10 11.93 20.67 21.06 20.90 17.00 22.96 22.78 23.04 18.45 23.66 23.61 23.73
Gs. σpr 14.06 19.89 20.22 20.21 12.69 22.46 22.48 22.16 12.99 23.12 23.48 23.33

Int. 15.68 20.27 20.35 20.23 17.31 22.93 22.65 22.50 19.70 24.36 24.02 23.73
Pr. 15.28 19.98 20.33 20.21 16.75 22.31 22.26 22.09 18.39 23.24 23.18 23.30

Table 2: The mean test PSNR results of network type comparison experiment. For abbreviations see table 1.

scribed in section 3.2. PE can only produce horizontal and
vertical lines because it has diagonal frequencies (only one
non-zero frequency is allowed), and this effect is persistent
at any value of N .

As N increases, SIREN, Gauss, and integer mapping
performance increase giving similar performance around
N = 16 (figure 5b). For high values of N , we see that
in figure 5c, the integer lattice mapping of the Fourier coef-
ficients outperforms the competing mappings, clearly dis-
playing more details in the reconstruction. On the other
hand, the PSNR of the SIREN and the Gaussian mapped
perceptrons saturates. We think this is because both map-
pings rely on sampling the frequencies. Although we can
get many of the critical frequencies of the image with sam-
pling, it is improbable to get all of them simultaneously.
Even the trainability of the SIREN mapping did not help in
this case.

4.3. MLP experiments

Our theory for integer mapping assumes an underlying
function that is periodic. However, it is not clear that we
will end up with a periodic function if we go the other way,
using an integer mapping. In this experiment, we want to
check if applying an integer mapping forces periodicity.
Secondly, we want to validate our claim (in section 3.5)

that if a mapping gives the perceptron a high representation
power, it will also give a high representation power to the
MLP and vice versa. We compared ReLU networks with
integer, Gaussian, PE, and pruned integer mapping (section
3.4). We also compared SIRENS with no mapping (extra
layer), integer, pruned mapping. We made a grid search of
the parameters N=[8, 16, 32], depth=[0, 2, 4, 6] (depth=0
represents a perceptron), and fixed the width to 32. For the
pruned mapping, we used a pr(N, 128). And for the Gaus-
sian mapping, we had two settings. The first one had a stan-
dard deviation of 10 (σ10), which had the best performance
in the perceptron experiments. In the second one, we set
the standard deviation the same as the pruned integer map-
ping’s standard deviation (σpr) to check its effect. Tables 1
and 2 show the mean train and test PSNRs respectively.

Figure 1 shows a visualization of the network’s outputs at
N = 16, depth = 4 and width = 32 for the first period and next
period in the height and width directions (f([x+1, y+1])).
And we see that the integer mapping forces the network’s
underlying function to be periodic unlike the SIREN and
ReLU network with Gauss mapping, which proves our first
hypothesis.

From the table 1 we see that if a mapping at d = 0 gives
the highest PSNR, this does not mean that it will give the
highest PSNR for d > 0 and vice versa. One clear exam-

7

(a) ReLu without pruning. (b) ReLu with pruning. (c) Sine without pruning. (d) Sine with pruning. (e) GT

Figure 6: View synthesis results using a simplified Nerf. A small MLP with a depth of 4, width of 64 and integer mapping
with a frequency of 4 is used. The pruning is done with pr(4,8). The pruning technique shows qualitative improvements.

Act. Map. N = 4 N=8
d=0 d=2 d=4 d=6 d=0

Sine
No 20.37 23.08 23.55 23.35 OM
Int. 18.42 22.22 22.95 22.97 19.31
Pr. 19.15 23.12 23.58 23.36 -

Relu

P.E. 16.30 21.48 22.64 23.51 16.40
Gs. 18.93 22.81 23.64 23.82 19.29
Int. 18.42 21.81 22.68 23.28 19.31
Pr. 19.15 22.78 23.61 23.89 -

Table 3: Validation PSNR scores of Nerf experiments using
a mapping of frequency 4. OM stands for out of memory.
For other abbreviations see table 1.

ple at N = 32 is the Gauss σpr, where it has a PSNR of
13.01 dB at d = 0, which is lower than integer mapping
(19.84 dB), but has the highest PSNR at d = [4, 6]. This re-
sult disproves our initial assumption that if a mapping gives
the perceptron a high representation power, it will also give
a high representation power to the MLP. We see also that
the pruned integer mapping has comparable results with the
Gauss σpr, and this shows that the main contributor to the
performance is the mappings’ standard deviation.

From the tables, we can also observe some trends. First,
networks with sine activations and large mappings collapse
during perform worse than Relu networks. Second, the inte-
ger mapping usually gives the best test PSNR, demonstrat-
ing its effectiveness in the MLP case. Third, the pruned
integer mapping shows consistently better train PSNR than
the normal integer mapping at d > 0. We believe this is
because pruned mapping has a higher standard deviation.
Finally, the PE is worse in every case because we cannot
easily control the standard deviation, and it has very few
parameters.

4.4. Novel view synthesis experiments

This section wants to see if our findings in the image
regression task transfer to the novel view synthesis (NVS)
task. In NVS, we are given a set of 2D images of a scene,
and we try to find its 3D representation. With this represen-

tation, one can render images from new viewpoints. In con-
trast to the 2D experiments, the inputs are (x, y, z) coordi-
nates that are mapped to a 4-dimensional output, the RGB-
values, and a volume density. For this experiment, a sim-
plified version of the official NeRF [19] is used, where the
view dependency and hierarchical sampling are removed.
Here, we experiment with the input mappings used in sec-
tion 4.3. Unless otherwise stated, we adopt the settings from
the image regression task. We set the network width to be
64.

As the mapping size increases exponentially, we do our
experiments with lower frequencies than in the 2D case.
Specifically, we used the integer mapping on four frequen-
cies. The frequencies of our mapping were limited to the
maximum network size which we could fit on NVIDIA
GTX-2080Ti. The pruning is given by pr(4, 8). We con-
duct our experiments on the bulldozer scene, which is com-
monly used for Nerf experiments. For training, we used
a batch size of 128, 50.000 epochs and a learning rate of
5× 10−4.

As seen in Table 3, in the perceptron case (d = 0),
SIREN provides the best performance, which aligns with
our image regression results at low values of N . We ob-
serve that the pruned mapping increases the performance
compared to normal mapping for both Relu and sinusoidal
activation. This increase in performance is because pruned
mapping has a higher standard deviation than normal map-
ping. Qualitative improvements of the pruning can be seen
in Figure 6. Gauss gives comparable results to pruned inte-
ger mapping because they have the same standard deviation.
These findings align with our conclusions from image re-
gression experiments. However, due to memory limitations,
we could not test a perceptron with frequencies higher than
8, which was superior in image regression.

5. Conclusion

In this work, we identified a relationship between the
Fourier mapping and the general d-dimensional Fourier se-
ries, which led to the integer lattice mapping. We also
showed that this mapping forces periodicity of the neu-

8

ral network underlying function. From experiments, we
showed that one perceptron with frequencies equal to the
Nyquist rate of the signal is enough to reconstruct it. Fur-
thermore, we showed that the progressive training strat-
egy improves the generalization of the interpolation task.
Lastly, we confirmed the previous findings that the main
contributor to the mapping performance is its size and the
standard deviation of its elements.

References
[1] Matan Atzmon and Yaron Lipman. Sal: Sign agnos-

tic learning of shapes from raw data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565–2574, 2020.

[2] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In European Conference on Computer Vi-
sion, pages 608–625. Springer, 2020.

[3] Zhiqin Chen. IM-NET: Learning implicit fields for genera-
tive shape modeling. PhD thesis, Applied Sciences: School
of Computing Science, 2019.

[4] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5939–5948, 2019.

[5] Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. Nasa neural articulated shape approxi-
mation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part VII 16, pages 612–628. Springer, 2020.

[6] A Ronald Gallant and Halbert White. There exists a neural
network that does not make avoidable mistakes. In ICNN,
pages 657–664, 1988.

[7] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4857–
4866, 2020.

[8] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7154–7164, 2019.

[9] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning,
pages 3789–3799. PMLR, 2020.

[10] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learn-
ing a neural 3d texture space from 2d exemplars. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8356–8364, 2020.

[11] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neu-
ral tangent kernel: Convergence and generalization in neural
networks. In NeurIPS, 2018.

[12] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Local
implicit grid representations for 3d scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6001–6010, 2020.

[13] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
arXiv preprint arXiv:2104.06405, 2021.

[14] Shuang Liu. Fourier neural network for machine learning.
In 2013 International Conference on Machine Learning and
Cybernetics, volume 1, pages 285–290. IEEE, 2013.

[15] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li.
Learning to infer implicit surfaces without 3d supervi-
sion. Advances in Neural Information Processing Systems,
32:8295–8306, 2019.

[16] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2019–2028, 2020.

[17] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019.

[18] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-
face representations as layers in neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4743–4752, 2019.

[19] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020.

[20] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In International Conference on
Computer Vision, Oct. 2019.

[21] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3504–3515, 2020.

[22] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4531–4540, 2019.

[23] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In International Con-
ference on Computer Vision, Oct. 2019.

[24] Brad G Osgood. Lectures on the Fourier transform and
its applications, volume 33. American Mathematical Soc.,
2019.

9

[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019.

[26] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part III 16, pages 523–540. Springer, 2020.

[27] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2304–2314, 2019.

[28] Adrian Silvescu. Fourier neural networks. In IJCNN’99.
International Joint Conference on Neural Networks. Pro-
ceedings (Cat. No. 99CH36339), volume 1, pages 488–491.
IEEE, 1999.

[29] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33, 2020.

[30] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: continuous 3d-
structure-aware neural scene representations. In Proceedings
of the 33rd International Conference on Neural Information
Processing Systems, pages 1121–1132, 2019.

[31] Kenneth O Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic pro-
gramming and evolvable machines, 8(2):131–162, 2007.

[32] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 2020.

10

