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ABSTRACT

Life is driven by a set of biological events that are naturally dynamic

and tightly orchestrated from the single molecule to entire organisms.

Although biochemistry and molecular biology have been essential in

deciphering signaling at a cellular and organismal level, biological

imaging has been instrumental for unraveling life processes across

multiple scales. Imaging methods have considerably improved over

the past decades and now allow to grasp the inner workings of

proteins, organelles, cells, organs and whole organisms. Not only do

they allow us to visualize these events in their most-relevant context

but also to accurately quantify underlying biomechanical features

and, so, provide essential information for their understanding. In this

Commentary, we review a palette of imaging (and biophysical)

methods that are available to the scientific community for elucidating

a wide array of biological events. We cover the most-recent

developments in intravital imaging, light-sheet microscopy, super-

resolution imaging, and correlative light and electron microscopy. In

addition, we illustrate how these technologies have led to important

insights in cell biology, from the molecular to the whole-organism

resolution. Altogether, this review offers a snapshot of the current and

state-of-the-art imaging methods that will contribute to the

understanding of life and disease.

KEY WORDS: Cell biology, Imaging, In vivo imaging, 1PEM, 2PEM,
CLEM, LSFM, SIM, SPIM, STED microscopy

Introduction

Understanding complex and integrated cellular behaviors can be

performed at various levels. The post-genomic era led to the

development of numerous ‘omics’ efforts with the ambitious goal of

predicting and, thereby, anticipating the treatment of clinical

phenotypes by integrating multi-scale information from the

patient. This concept of personalized and precision medicine faces

the challenge to integrate the extremely large amount of available

‘omics’ biomedical data for the development of personalized

treatments to cure patients in a routine day-to-day clinical practice.

Cell biology is playing a main role in the understanding of clinical

phenotype at a cellular scale. Performing in vivo cell biology aims to

understand a disease at a subcellular scale and to integrate this

information into the wider context of a tissue or an organ. Although

multi-omic approaches can grasp snapshots of a disease at multiple

scales, they are often restricted to a selected time-point that does not

fully represent the dynamics of cells and tissues. Thanks to the

recent development of fast and high-resolution imaging approaches,

in vivo models, gene editing, cell and biomaterial engineering, as

well as high-throughput procedures, it is now possible to probe and

understand – at multiple scales – the link between subcellular

phenomenon and cell phenotype, both in normal or

pathophysiological contexts. Because pathologies often emanate

from subcellular and dynamic events that are then integrated in

tissues, access to the full cellular organization is required, in 3D and

in real-time, and within its most relevant context.

In this Commentary, we aim to provide a snapshot of existing as

well as recent developments in live-cell imaging, which now makes

the concept of in vivo cell biology a reachable target. Here, in vivo

refers to imaging performed in whole living animals. Because

animal models are central in understanding cellular phenotypes that

are essential to development or disease progression, we start by

summarizing the basics of intravital imaging, which aims to

visualize an event of interest in its most representative biological

context. We particularly emphasize recent developments in

nonlinear microscopy, which offers means to image cellular and

micro-environmental behaviors in a non-invasive manner. Because

phototoxicity is an important criterium in performing live in vivo

cell biology, we then summarize the recent development and

latest improvements in light-sheet microscopy, which offers

unprecedented information at the organismal scale for small

animals. Cell biology is tightly linked to biomechanics and has

led to the emergence of a widespread concept of mechanobiology

that aims to unravel the contribution of mechanical forces to

biological events and disease. We thus also provide a glimpse of the

existing biophysical methods that can be applied to in vivo cell

biology and highlight some of their applications (see Box 1). We

continue by describing the recent developments in super-resolution

imaging and illustrate the recent developments with some biological

applications that clearly suggest that in vivo super-resolution can be

reached within the next few years. Finally, because the highest

resolution can still not be obtained on living animals, we conclude

by discussing the recent progress made in correlative light and

electron microscopy (CLEM), including in the area of intravital

correlative microscopy, which offers access to high-resolution

imaging of cellular events in vivo. We also provide a summary table

that, for each technology, lists the advantages and limitations, the

resolution that can be achieved, the technical difficulties and the key

applications in cell biology (Table 1).

Intravital imaging – tracking biological events in vivo within

higher organisms

Dynamic visualization of biological processes in their natural

environment is an important challenge for cell biologists. There is

an obvious difference between the thickness of samples that are
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mounted on glass slides in vitro and whole living organisms. Here,

intravital imaging refers to in vivo imaging within higher organisms,

such as rats andmice. However, similar technologies can be used for

imaging embryos and, thereby, can exploit the advantages provided

by nonlinear microscopy (see below). The main drawback of

conventional widefield microscopy applied to voluminous samples

is that it is impossible to provide clear and sharp images. Indeed,

imaging quality within the focal plane is highly perturbed by out-of-

plane scattered light. To circumvent this problem, Marvin Minsky

developed – already more than fifty years ago – the first prototype of

a confocal scanning microscope (Minsky, 1961). Modern confocal

microscopes work on the principle of point scanning, whereby the

Box 1. A snapshot of the available biophysical tools for assessing cellular forces
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In addition to imaging cell behavior, awide palette of biophysical tools is available to cell biologists when assessing and quantifying cellularmechanical forces.

Whereas these toolsaremostly suited forassessing forces in vitro (for theoretical background, seee.g.NeumanandNagy, 2008; Kimet al., 2009;Ahmedet al.,

2015) (panels A and B), some can be applied in vivo and to offer detailed quantification of forces in living animals (panel C). (A) Magnetic tweezers originate

from the interaction of a magnetic bead fixed to the cell membrane with a magnetic field gradient (Tanase et al., 2007; Salerno et al., 2010). Historically used

in vitro tomeasuremechanical properties at the singlemolecule (Graves et al., 2015; Strick et al., 1996) or at the single cell level (Collins et al., 2014; Marjoram

et al., 2016), magnetic tweezers have recently shown their efficacy in measuring forces in vivo during embryonic development (Brunet et al., 2013; Desprat

et al., 2008).Optical tweezers require a strongly focused laser beam that generatesa 3D trap, which behaves as a spring (Ashkin, 1997). This optical technique

has originally been used for in vitromeasurement of viscoelastic properties of single molecules (Klajner et al., 2010; Smith et al., 1996) or single cells (Ashkin

andDziedzic, 1987; Ashkin et al., 1987;Dao et al., 2003). Recently, this technique has been applied in vivo for quantifying cell junction elasticity (Bambardekar

et al., 2015; Sugimura et al., 2016) and proepicardial cell adhesion (Peralta et al., 2013), as well as for trapping circulating blood cells, thereby addressing

haemodynamic forces in zebrafish (Anton et al., 2013) andmouse (Zhong et al., 2013). In atomic forcemicroscopy (AFM), a cantilever is transiently brought in

contact with the cell surface (Tartibi et al., 2015), cell nuclei (Lanzicher et al., 2015), or biological material such as cell-derivedmatrices (Tello et al., 2016). The

analysis of its deflection over contact is linked to the exerted force and themechanical response of the cell, which are mostly viscoelastic (Youngmodulus and

viscosity). Even though this contact technique is mostly adapted to in vitro samples obtained either through cell culture (Kuznetsova et al., 2007; Ossola et al.,

2015) or biopsies (Plodinec et al., 2012), AFM can be also used in vivo; for example, inmouse blood vessels (Mao et al., 2009). Micropipette pulling consists in

locally aspirating the cell through a microforged pipette and in following the deformation for single cells (Guilak et al., 2000; Hochmuth, 2000; Chivukula et al.,

2015) or for clusters of cells (Guevorkian et al., 2010, 2011). Traction force microscopy (Schwarz and Soiné, 2015) and pillar deformation (Khare et al., 2015)

use calibrated soft substrates. Upon spreading, cells exert forces, which subsequently deform the substrate; these deformations inform about the localization

and the amount of applied forces (Balaban et al., 2001; Gupta et al., 2015). (B) The development of improved micropatterning approaches allows the precise

assessment of how surface topography influences the behavior of intracellular organelles or the cytoskeleton (Théry et al., 2006; Versaevel et al., 2012). The

fast-evolving field ofmicrofluidics has recently been used to assess how fluid forces (Perrault et al., 2015; Vartanian et al., 2008), mechanical confinement (Liu

et al., 2015) or topological constrictions (Raab et al., 2016; Thiamet al., 2016) influence thebehavior of cells.Measuring themigration time through confined 3D

geometry provides information regarding cellularmigration over topological constrictions (Thiamet al., 2016). Thus, when combinedwith imaging approaches,

these biophysical tools offer a quantitative approach to the study of biomechanical events. (C) Optical tweezers can be applied in vivo on a zebrafish embryo.

Focusing the laser spot in the vasculature allows the trapping of red blood cells (RBC). Pulsatility of the blood flow is visible upon kymographic analysis of the

RBC displacement in the trap. This displacement is proportional to the drag force that RBCs are subjected to.
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sample is scanned by a laser spot, i.e. confocal laser scanning

microscopy (CLSM) (Fig. 1A). The emitted light from the focal

plane is selected through a pinhole and optically conjugated with the

focal plane before being detected on sensitive photodetectors.

Although this technology has provided a tremendous amount of

biological insights, it was limited by its acquisition speed, which

was not sufficiently fast to capture dynamic subcellular events.

Acquisition speed has recently been improved by the coupled

development of resonant scanners and sensitive detectors.

Accelerated acquisition regimes can also be achieved by using

spinning disk confocal microscopy (SDCM). Instead of scanning

the sample point-by-point, SDCM is capable of acquiring multiple

points at the same time (Fig. 1A), on a charge-coupled device

(CCD) camera, thus increasing the data acquisition rate. The main

drawback of SDCM is the cross-talk between pinholes; this can be

circumvented by increasing the inter-pinhole distance or by

decreasing the out-of-focus light by using two-photon excitation

(Shimozawa et al., 2013). Both CLSM and SDCM have been

ground-breaking for imaging in vitro as well as in vivo; for instance,

relatively thin model systems (Fig. 1C), such as tissue explants and

organoids, or small organisms, such as Caenoerhabditis elegans

(Nguyen et al., 2016) or zebrafish embryos (Kissa and Herbomel,

2010). Recent advances in CLSM have led to the development of

the so-called Airyscan concept (Zeiss), whose detector array allows

to efficiently collect the photons from the entire Airy diffraction

image with confocal resolution owing to the intrinsic size of each

detector. Thus, when coupled to ultra-sensitive detectors, Airyscan

exploits an increase in photon yield to improve sensitivity,

speed or resolution (http://blogs.zeiss.com/microscopy/news/en/

zeiss-lsm-880-airyscan-introducing-fast-acquisition-mode/).

CLSM has been successfully used for imaging microcirculation

in the rat brain (Villringer et al., 1994) and astrocytes in the mouse

brain (Pérez-Alvarez et al., 2013). SDCM has been used to describe

the recruitment of platelets in several mouse organs, including brain,

Table 1. Pros and cons of current imaging technologies

1/2PEM LSFM Super Resolution CLEM

Sample type Fixed and/or live single cells

up to higher organisms

(mouse, rat)

Fixed and/or live single

cells to embryos (ZF,

fly, etc.)

Fixed and/or live

single cells to embryos

(ZF, fly, etc.)

Live to fixed sample

Single cells to higher

organisms (mouse, rat)

Resolution 200–2 nm

Cellular to subcellular Cellular to subcellular Subcellular to single molecule nanometer

Speed High High to very high Low Very low

Penetration Very high when using 2PEM High Low Limited by light microscopy

Data volume Small Large Large for PALM/STORM

Small for SIM and STED

Large

Technical

difficulty

Animal handling under the

microscope

Data acquisition and

processing

Data processing for PALM/

STORM and SIM

Finding the ROI again

between imaging

modalities, time-

consuming

Main advantage Most-established method,

easy, versatile

Best compromise

between resolution

and speed ratio

Best localization (sub-

diffraction limited)

Best overall resolution when

combined with electron

tomography

Specific feature 1PEM: Better resolution
compared to widefield

microscopy

Long-term 3D imaging

with high-speed or

high 3D resolution

STED: Increased resolution for

any 1PEM and 2PEM

sample compatible with

confocal imaging

Compatible with any in vivo

model

2PEM: In-depth long-term

imaging of mice,

fluorescent imaging and

label-free imaging

SPIM: Multiview

imaging increases 3D

acquisition speed

SIM: Fast 2D and 3D

sub-diffraction imaging

Requires manpower

Requires access to

sophisticated EM

technologies for 3DEM

DSLM: More suitable

for super-resolution

technologies

PALM/STORM: single-
molecule resolution, single-

particle tracking

Biological

application

Cancer biology,

developmental biology,

neurosciences, stem cell

biology

Cell biology,

developmental

biology,

neurosciences

Cell biology, developmental

biology, neurosciences,

biophysics

Cancer biology,

developmental biology,

neurosciences, stem cell

biology

Commerciallly

available

Yes Yes Yes No (in vivo), Yes (in vitro)

1PEM, one-photon excitation microscopy; 2PEM, two-photon excitation microscopy; 3DEM, 3-dimension electron microscopy; CLEM, correlative light and

electron microscopy; DSLM, digitally scanned light-sheet microscopy; LSFM, light-sheet fluorescence microscopy; PALM, photo-activated localization

microscopy; ROI, region of interest; SIM, structured illumination microscopy; SPIM, single plane illumination microscopy; STED, stimulated emission depletion;

STORM, stochastic optical reconstruction microscopy; ZF, zebrafish.
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Fig. 1. Technical considerations and biological applications of intravital imaging. (A) Comparison between one-photon excitation microscopy (1PEM) and

two-photon excitation microscopy (2PEM). In 1PEM, the excitation light illuminates the focus (pink line) and out-of-focus planes, and a pinhole is needed to

eliminate the signal originating from the out-of-focus planes. In 2PEM, excitation occurs only at the focus plane (pink line) and a pinhole is not required

because the excitation is already confocal. As shown in the illustrations at the bottom, 1PEM and 2PEM point scanning create the image of the sample by

imaging one point at a time, whereas the spinning disk performs multiple acquisitions simultaneously. (B) Jablonski diagram of linear and nonlinear processes.

1PEM: the molecule is excited by absorbing a photon; after internal conversion the molecule returns to its ground state and emits a red-shifted photon. 2PEM: the

molecule is excited by absorbing two photons at the same time; it returns to the ground state by emitting one photon of energy that is higher than that of the

excitation photons. Second harmonic generation (SHG): two photons are scattered by a molecule and emit one photon of half the excitation wavelength. Third

harmonic generation (THG): three photons are scattered by a molecule and produce one photon of a third of the excitation wavelength. Coherent anti-stokes

Raman spectrocopy (CARS): a pump photon (first red arrow, pointing up) excites the molecule to a virtual state before a second photon (referred to as Stokes

photon; brown arrow pointing down), forces the de-excitation of the molecule to above ground state. A third photon from the pump beam (second red arrow,

pointing up) is used to elevate the molecule to a new virtual state, from which it will relax and emit a blue-shifted photon (orange arrow pointing down).

(C) Biological applications of linear and nonlinear microscopy processes. Left: spinning disk confocal microscopy (SDCM) is used for ultra-fast neuronal

calcium imaging in a freely moving C. elegans. (Red: neuronal nuclei; green: the protein calcium sensor GCaMP6s). Scale bar:10 µm. Adapted with permission

from Nguyen et al., 2016. Middle: confocal laser scanning microscope (CLSM) used for long-term (>70 h) time-lapse imaging of zebrafish vasculature,

highlighting the emergence of a hematopoietic stem cell in the ventral wall of the dorsal aorta (green). Scale bars: 25 µm (left panel), 10 µm (right panel). Adapted

with permission from Kissa and Herbomel, 2010. Right: multimodal nonlinear microscopy used to study tumor mass and vascularization within a skinfold dorsal

chamber in mouse. Red, erythrocytes imaged by using CARS; green, cancer cells imaged by using 2PEM. Scale bar: 15 µm. Adapted with permission from Lee

et al., 2015.
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liver and cremaster muscle (Jenne et al., 2011). Nevertheless, most

of the visible light is absorbed (Boulnois, 1986) and scattered by

tissues, thus limiting depth in intravital confocal microscopy to the

organ surface of an animal (<100 µm in thickness) (Masedunskas

et al., 2012; see also Fig. 1C). In order to be able to image relevant

biological events deeper in tissues, researchers took advantage of

the optical transparency of the tissues in the near-infrared or infrared

wavelengths (Boulnois, 1986) and of the discovery of pulsed lasers

to develop two-photon microscopy (Helmchen and Denk, 2005),

thereby making it possible to image deeper into the tissues of living

animals.

Multiphoton microscopy for imaging in vivo

The principle of two-photon absorption was originally described in

1931 (Göppert-Mayer, 1931) but it took until 1963 for the first

pulsed laser to be developed (Peticolas et al., 1963); later on, this

turned into the first two-photon laser scanning microscope (Denk

et al., 1990). In classic CLSM, the energy carried by a single laser

photon allows the excitation of fluorophores, whereas in two-photon

excitation microscopy (2PEM), each photon carries half the energy

and, thus, the excitation requires the simultaneous absorption of two

photons (Fig. 1B). For this purpose, the photon density has to be

high, both in time (femtosecond laser pulses) and in space (through

the usage of lenses with high numerical aperture). Compared to

classic CLSM, 2PEM can achieve non-invasive, deep imaging in

voluminous live samples owing to several properties. First, the

nonlinear properties of the multiphoton absorption confine the

excitation to a small volume (Fig. 1A), resulting in an enhanced

signal-to-background-noise ratio and a lesser phototoxicity

(Helmchen and Denk, 2005). Second, infrared light is less-well

absorbed and scattered by biological tissues, and allows deeper

imaging than when regular one-photon excitation (1PE) microscopy

(hereafter referred to as 1PEM) is applied. Because the excitation is

limited to the focal plane, the photo-toxicity typically induced by

1PEM is drastically reduced. Pinholes are not required in two-

photon excitation (2PE) microscopy (hereafter referred to as 2PEM),

which makes it possible to use non-descanned detectors that can be

placed closer to the sample, thereby enhancing the signal. Together,

these advantages allow imaging of biological phenomena that take

place deep within a living organism. For example, 2PEM can easily

image through the skin of living mice, and has been used for

tracking xenografted cancer cells and their immune responses in

mouse ear skin (Li et al., 2012), and for tracking features of muscle

diseases in neuromuscular junctions (Mercier et al., 2016). Skin

pigmentation can be – owing to light absorption – a major barrier in

optimized imaging, and imaging windows have been developed for

rodents to reach the deeper organs. This technique has been

particularly useful in cancer biology for the imaging of

subcutaneous tumors (using the dorsal skin-fold chamber), lungs

(Headley et al., 2016), brain (Kienast et al., 2010) and abdominal

organs, such as the intestine (Ritsma et al., 2014) or the liver (Ritsma

et al., 2012), as well as mammary tumors (Zomer et al., 2015).

Although regular 2PEM allows penetration of up to 1 mm into

tissues (Theer et al., 2003), improved imaging depths through

scattering tissues (the heterogeneity of biological tissues leads to

photon absorption and re-direction, without any loss in energy, that

can create imaging artifacts) can be obtained by increasing the

wavelength of excitation to >1000 nm with optical parametric

oscillators (Kobat et al., 2011). Furthermore, the use of powerful

pulsed femtosecond lasers opened the door to nonlinear

microscopy, which has the unique ability to provide endogenous

signals from living non-labeled scattering tissues (discussed below).

Label-free intravital imaging
The most-commonly used techniques to perform intravital

imaging require the presence of fluorescently labeled molecules

and, therefore, do not allow the imaging of endogenous non-

labeled structures and their physiological environment. Below, we

discuss several nonlinear microcopy methods that exploit the

physical and optical properties of molecules, as well as advanced

optics, for the imaging of non-labeled material within living

tissues.

Second harmonic generation microscopy (SHG) (Fig. 1B) is the

most popular nonlinear imaging technique and has first been

described in 1963 (Franken et al., 1961). SHG allows to visualize

endogenous, non-centrosymmetric molecules, such as collagen and

myosin, which upon light scattering produce a photon at half the

incident wavelength. SHG has been proven to be a highly useful

technology for the non-invasive intravital imaging of the collagen-

rich microenvironment during tumor invasion (Wang et al., 2002),

of muscle defects in the mouse ear (Mercier et al., 2016) and of

zebrafish embryos (Ramspacher et al., 2015). Furthermore,

nanoparticles generating second harmonics have been used in vivo

and represent new imaging tools (Grange et al., 2011; Pantazis et al.,

2010).

Third harmonic generation (THG) microscopy (Fig. 1B) is a

non-linear scattering process that originates from the polarization

properties of the excited volume and from variations of the

refraction index in that volume, such as in water–lipid and water–

protein interfaces found, for instance, in cellular membranes and

extracellular matrix structures (Weigelin et al., 2016). THG is

mostly used in tumor biology to visualize ECM structures

(Alexander et al., 2013) but has also been used to image lipid

bodies in Drosophila melanogaster embryos (Débarre et al.,

2006). Another label-free imaging approach relies on the Raman

effect (also known as Raman scattering), i.e. the inelastic

scattering of a photon upon interaction with matter, which has

first been described in 1928 by Raman and Krishnan, 1928.

Coherent anti-Stokes Raman scattering (CARS) microscopy

detects structures by simultaneously illuminating a sample with

a pump and a Stokes beam, upon which a pump and a Stokes

photon match the energy of the excited vibrational state of a

molecule within the sample. A second pump photon is used to

elevate the molecule to another virtual state before relaxation of

the molecule causes an emission of photons (anti-Stokes emission)

that is shifted into the blue spectrum (Fig. 1B). Intravital CARS

microscopy has been applied to C. elegans to examine the impact

of genetic variations in metabolic pathways on lipid storage

(Hellerer et al., 2007) (Fig. 1C). One of the great advantages of

using nonlinear microscopy in vivo is the possibility of combining

fluorescent signals with information obtained from endogenous,

unlabeled structures. For example, SHG and CARS have been

combined with 2PEM in the imaging of tumors within dorsal skin-

fold chambers, and have provided access to tissue structures

(SHG), cancer cell behavior (2PEM) and blood flow measurement

(CARS) in vivo (Lee et al., 2015).

Yet, although the field of intravital imaging in higher organisms

has expanded tremendously in the past few years, this approach,

nevertheless, suffers from drawbacks associated with light

absorption and scattering that impair its use for high-resolution

imaging of subcellular events of interest. These limitations can be

circumvented by using the CLEM approaches we discuss in the last

section of this review. However, imaging of less voluminous

samples or organisms can be performed with several approaches

described in the following sections.
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Light-sheet fluorescence microscopy (LSFM)

An important concern in modern cell biology is the ability to

perform observations over long periods of time to follow, for

example, processes during embryonic development. This can now

be achieved by using light-sheet fluorescence microscopy

(LSFM). LSFM was originally developed to overcome the

resolution limitations of conventional fluorescence microscopy,

in which the resolution is diffraction limited, with the axial

resolution being about twice that of the lateral resolution. LSFM is

an optical imaging technique, initially based on a plane excitation

that is obtained by focusing a laser beam through a cylindrical

lens, while the detection is performed in an orthogonal plane

(Reynaud et al., 2008). This optical geometry retains the same

diffraction resolution limitation in the detection plane but offers

the same resolution in the excitation axis. Nowadays,

complementary metal oxide semiconductor (cMOS) cameras are

used to ensure a detection of the entire field at high speed and high

resolution, way beyond the detection obtained with scanning

technologies. Thus, owing to a reduced acquisition time as well as

the simultaneous and selective illumination of the detection

plane, LSFM significantly decreases the phototoxicity and

photobleaching compared to classic confocal microscopy (Keller

and Ahrens, 2015; Lim et al., 2014; Pampaloni et al., 2015; Weber

and Huisken, 2011); it is therefore highly useful in imaging

dynamic events that take place in small and transparent organisms

and embryos. In this section, we briefly focus on the two main

technological strategies that have been developed to achieve this

specific illumination, single plane illumination microscopy

(SPIM) and digitally scanned light-sheet microscopy (DSLM).

We also provide a snapshot of their current use by describing

some of the biological insights that LSFM have made possible.

Single plane illumination microscopy (SPIM)
Single plane illumination microscopy (SPIM) is the first version of

LSFM; here, a cylindrical lens focusing light orthogonally to the

observation plane creates the light sheet (Fig. 2A). This technology

is suitable for imaging of entire animals and was highlighted already

in 2004 as a means to image deep inside living zebrafish and

Drosophila embryos. Indeed, LSFM turned out to be highly

efficient in following morphogenetic events for several hours at

high resolution, high speed and without photo-damaging the

embryos (Huisken et al., 2004). LSFM has since continuously

evolved, resulting in the development of optical systems that use

several illumination and detection paths, such as multiview (MuVi)-

SPIM (Krzic et al., 2012) or SimView SPIM (Tomer et al., 2012).

These techniques are based on a dual light-sheet system that can

switch between four different light pathways in less than 50 ms.

This setup allows the acquisition of four, nearly simultaneous

images from different regions in the sample (scanned in one

dimension by using a piezo stage), thus making it possible to image

a large-volume sample for instance a Drosophila embryo in 35 s

(Tomer et al., 2012) (Fig. 2B). Alternatively, if the acquisition rate is

not limiting, LSFM can be coupled to a sample holder mounted on a

rotational stage (Jakob et al., 2016).

The potential of SPIM for high-speed in vivo imaging has been

elegantly demonstrated for the developing Zebrafish heart – this

being a very challenging task owing to its small size (250 µm) and its

high beat frequency of 2–4 Hz (Mickoleit et al., 2014).

Subsequently, multi-view SPIM strategy (named here ‘IsoView’)

was successfully used to study the development of the Drosophila

embryo and the brain of Zebrafish larvae, with an unprecedented

spatio-temporal resolution (Fig. 2C). Here, the authors compared

their setup with lattice light-sheet microscopy (see below) to

emphasize the superior imaging depth and acquisition speed

their particular approach can afford (Chhetri et al., 2015). In

addition, SPIM has been combined with laser ablation (optical

damaging of cells or intracellular region by using a powerful and

focused laser) to unravel mechanical coupling of two important

morphogenetic events in Drosophila: endoderm invagination and

axis extension (Lye et al., 2015). In addition, several groups have

implemented SPIM to accelerate commonly performed imaging. For

example, MuVi-SPIM together with a customized software package

can be used to increase acquisition speed and analysis by several

orders of magnitude, which allows to – almost instantaneously –

record individual cell shapes over an entire embryo (Stegmaier et al.,

2016).

Digitally scanned light-sheet microscopy (DSLM)
In DSLM, the illumination plane is obtained by deflecting the beam

with a galvanometric mirror through the excitation objective

(Fig. 2D). Here, 3D volumes are obtained by 2D scanning

methods. This method was pioneered by the Stelzer group in

2008 and has been applied for imaging the early stages of

development of zebrafish embryos (Keller et al., 2008). In this

study, the authors successfully reconstructed in 3D the collective

migration patterns of several cell type precursors during gastrulation

with an unprecedented temporal and x/y resolution.When combined

with Bessel beams and/or multiphoton illumination, an increase in

spatial resolution can be obtained. Bessel beam illumination is an

alternative method to the typical Gaussian beam illumination and

consists of feeding back the focal plane of the excitation objective

with an annular illumination (Planchon et al., 2011). However,

Bessel illumination creates side lobes (i.e. lateral intensity peaks) in

the illumination plane, which impair reaching the desired resolution.

Therefore, in addition to the Bessel illumination, it is currently

possible to use diffractive optics that generate a structured

illumination convoluted to the Bessel beam (Gustafsson et al.,

2008); this allows image acquisition below the diffraction limit

(Gao et al., 2012). Moreover, this setup strongly benefits from a

two-photon illumination with associated increased penetration and

decreased photobleaching and/or phototoxicity (Truong et al.,

2011); this drastically reduces the risk of adversely affecting the

physiology of the event studied (Ahrens et al., 2013; Wolf et al.,

2015). A recent, but main update in this field was provided by the

group of Eric Betzig with the demonstration of the lattice light-sheet

microscopy (Chen et al., 2014) as an improvement of Bessel beam

LSFM. In this setup, a fast-switching, spatial light modulator is used

to generate the Bessel beam mask before it enters in the excitation

objective. This permits a tremendous gain of speed at a resolution

that is equivalent to that obtained with SIM (Chen et al., 2014; see

below). More recently, by using the same strategy of coupling

super-resolution and LSFM, lattice light-sheet–point accumulation

for imaging of nanoscale topography (PAINT) microscopy has been

introduced (Fig. 2E). Although image acquisition may take several

days, this technique makes it possible to extend the 3D visualization

of single-molecule localizations in thicker and more voluminous

samples, such as in dividing cells (Legant et al., 2016).

At the moment, there are only few examples for biological

applications of the latest versions of DSLM. For example, lattice

light-sheet microscopy has been used to study the microtubule

organization during HeLa cell division in vitro (Yamashita et al.,

2015). Owing to the superior temporal and spatial resolution that

can be achieved (below the diffraction limit and with a time interval

of <1 s), the authors provided new insights into the growth
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mechanisms of microtubules. In addition, by imaging living

zebrafish embryos with LSFM, the interaction between Schwann

cells and axons during neuron damage repair was observed in vivo

(Xiao et al., 2015). More recently, two-photon Bessel beam

light-sheet microscopy was optimized to study how cells

maintained in a 3D culture mechanically react to changes in their

microenvironment, at a subcellular level and without spatial

constraint (Welf et al., 2016). Taken together, these recent studies

demonstrate that LFSM is a particularly promising tool for studying

mechano- and cell biology.
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Fig. 2. Light-sheet microscopy and examples of biological applications. (A) Optics setup for SPIM. A cylindrical lens induces the formation of the light-sheet

that can be scanned in 1D for volumetric imaging. Arrows indicate the detection axes (black arrow, usual 90° detection axis; gray arrow, potential second

objective position for multiview SPIM. (B) SIMView SPIM imaging of nuclei during the development of Drosophila embryo, illustrating the possibility to carry out

long-term image acquisition without photo-damage or photobleaching; adapted with permission from Tomer et al., 2012. (C) IsoView SPIM of zebrafish embryo

brain (using a nuclear GCaMP6Ca
2+

probe), illustrating the power of this technique to record volumetric data in vivo at high speed and high resolution. Scale bars:

50 μm. Adapted with permission from Chhetri et al., 2015. (D) Illustration of the optical setup for Bessel beam digitally scanned light miscroscopy (DSLM),

for which the beam is scanned in 2D for imaging in three dimensions. Laser source can be either one or two photons. The insets show the evolution of the laser

intensity profile (Gaussian beam) through the axicon (a type of lens with a conical surface), leading to annular illumination, as well as the beam profile after being

focused through the excitation objective. The Bessel profile is created at that step. (E) Imaging of dividing porcine kidney cells by using PAINT DSLM. DNA is

labeled with Hoechst-JF646, intracellular membranes are labeled with AzepRh. At cost of acquisition speed and a complex post-processing procedure, this

technology allows so-far-unprecedented 3D resolution of a wide field of view. Adapted with permission from Legant et al., 2016.
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Requirements for LSFM
It is important to emphasize here that LSFM is extremely

demanding with regard to computing resources owing to the large

datasets that need to be handled. Image acquisition generates

hundreds of gigabytes that need to be stored quickly. Thereafter,

post-processing and reconstructions in three dimensions require

enormous computer resources. These computing demands need to

be consciously addressed in the future to ensure LSFM is amenable

to cell biologists. In addition, only few commercial systems that are

available for the wider scientific community currently exist for

LSFM. This is mainly due to the fact that optical setups are typically

designed and mounted in order to address a specific biological

question of interest.

Taken together, there is, however, no doubt that LSFM will

be used more widely in the coming decade. Thanks to its

versatility, it offers multiple advances over other imaging

approaches, such as increased spatio-temporal resolution with

significantly reduced phototoxicity and/or photobleaching at all

scales (Fig. 2B,C and E; Table 1), from in toto imaging of small

animals with SPIM, to studying subcellular compartments in

detail with DSLM.

Super-resolution microscopy – digging below the light-

diffraction

Fluorescence microscopy has become one of the most useful tools for

cell biologists owing to its non-invasive properties and high

versatility. The past decades have witnessed significant

technological improvements of microscopy setups regarding

sensitivity and acquisition speed, as well as the development of

brighter and more photostable fluorescent probes. These

developments shifted fluorescence microscopy – which was mainly

used for descriptive purposes – towards a more quantitative approach,

in which the careful analysis of the large datasets allowed the

deciphering of complex cellular processes at the biological and

physical level. However, conventional fluorescence imaging is

limited by light diffraction to a resolution (i.e. the minimal distance

at which two physically distinct objects will appear as separated) of

∼200 nm in the x/y plane (lateral resolution) and∼600 nm along the z

axis (axial resolution), which is several orders ofmagnitude above the

size of single proteins. Thus, reaching a resolution of a few tens of

nanometers had been a main quest for microscopy optics experts and

imaging computer scientists, and ultimately led to the 2014 Nobel

Prize being awarded to Eric Betzig, Stefan Hell andWilliamMoerner

for their essential contributions in the development of super-

resolution microscopy or nanoscopy. Furthermore, since 2007 the

introduction of commercially available systems has granted the cell

biology community access to these new tools, opening the door to a

new era of cellular and sub-cellular imaging. Because subcellular and

biomechanical processes are fast, dynamic and reversible in nature,

they require fast imaging techniques to be monitored (Eyckmans

et al., 2011; Hoffman et al., 2011; Janmey and Miller, 2011). Thus,

wewill introduce here nanoscopyapproaches that can be used to study

subcellular and biomechanical mechanisms by describing selected

examples.

Stimulated emission depletion (STED) microscopy
An important quest for cell biologists is to have access to live and

high-resolution imaging of their favorite fluorescent proteins or

molecules. This can now be performed by using stimulated

emission depletion (STED), which facilitates, for example, live

intracellular vesicular trafficking in multiple situations. STED

microscopy works on the basis of a scanning confocal microscope,

where resolution is improved by using a doughnut-shaped

depletion beam that is shifted into the red-light spectrum, which

‘wraps’ the excitation beam (Fig. 3A). In this configuration,

fluorophores illuminated by the depletion beam are forced to return

to ground state and emit at depletion wavelength, which is filtered

out, while the ‘nondepleted’ fluorophores at the center, emit

normally. This optical trick result in a smaller emission volume and

increases the lateral resolution to 20-70 nm (Klar et al., 2000;

Willig et al., 2007). When live imaging is desired, speed

acquisition may be reduced by relying on higher laser output.

However, increased laser power will ultimately lead to increased

phototoxicity. The use of continuous wave (CW) beams and time-

gated detection allows the effective use of reduced laser powers and

efficient increased resolution, thereby making gated CW STED

compatible with live imaging (Willig et al., 2007; Westphal et al.,

2008; Vicidomini et al., 2011).

STED was effectively used to monitor vesicular trafficking in

real-time in living cultured neurons (Westphal et al., 2008), image

GFP-labeled neurons in Caenorhabditis elegans (Rankin et al.,

2011) and, more recently, follow the trafficking of EGFP-labeled

vesicles in living neurons inDrosophila larvae with a rate above 100

frames per second (Schneider et al., 2015). These examples suggest

that STED microscopy is well suited to image fast and dynamic

processes in small transparent organisms, such as C. elegans,

Drosophila melanogaster or zebrafish embryos. However, when

considering higher organisms, conventional lasers are not able to

perform intravital imaging, and confocal microscopes must be

coupled to selective plane illumination microscopy (SPIM) or

multiphoton excitation (discussed above). For instance, a

combination of STED and SPIM was used to image >100 µm

deep into the tissues of entire zebrafish embryos, resulting in a

40–250% improvement of resolution (Friedrich et al., 2011; Scheul

et al., 2014; Friedrich and Harms, 2015). Axial resolution, which is

often a limiting factor when using light-sheet illumination, has

recently been significantly improved with reversible saturable or

switchable optical linear fluorescence transitions (RESOLFT)

nanoscopy and, thus, offers access to high-speed imaging with

lowered laser power (Hoyer et al., 2016). 2PE lasers have a better

penetrance into the tissue (<1 mm) and reduced photo-damaging,

and the resulting laser spot is spread less along the z axis, thus

providing a better axial resolution (Denk et al., 1990; Helmchen and

Denk, 2005). 2PE-STED allowed, for example, to monitor, in real-

time, the dynamics of neurons within the brain of living mice

through a cranial window (Fig. 3D) to a depth of 15–90 µm and with

a resolution of ∼40–90 nm (Berning et al., 2012; Takasaki et al.,

2013; Willig et al., 2014; Coto Hernández et al., 2016). The major

technical challenge is based on the fact that efficient STED requires

a perfect alignment of the excitation and depletion beams. However,

as tissues are not homogenous, imaging of deeper layers

unavoidably decreases resolution (Takasaki et al., 2013).

Structured illumination microscopy (SIM)
Although image reconstruction remains very complex and artifact-

prone, structured illumination microscopy (SIM) is the simplest of

the super-resolution techniques. It works in the basis of a wide-field

microscope into which a grating pattern is inserted into the light

path. By generating interferences (i.e.Moiré fringes), SIM provides

access to spatial information regarding the fluorescence signal. The

pattern is rotated at predefined angles, and several images are

acquired, usually nine to 15 (Fig. 3B). The spatial information

revealed by each frame is then computed to reconstruct a sub-

diffraction image, which allows to double the resolution compared
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to conventional microscopy (Gustafsson, 2000). Alternatively, to

protect living samples from excessive light exposure, the

nonlinearity of photo-convertible fluorescent proteins can be used

with SIM to achieve a similar resolution (Rego et al., 2012; Li et al.,

2015). Furthermore, by engineering the grating to create three

coherent beams, which form an illumination pattern varying

laterally and axially or by using multifocal illumination patterns,

the resolution can also be improved by a factor of two in all

directions (Gustafsson et al., 2008; York et al., 2012).

Since SIM works on the basis of wide-field imaging and thus

requires only a few planes to reconstruct a sub-diffraction image, it

is probably the best-suited live-imaging approach to monitor

dynamic events at subcellular level. However, one should keep in

mind that resolving structures of <50–100 nm in size remains a

difficult task. Nevertheless, SIM was successfully used to monitor

the dynamics of subcellular structures and organelles, such as

mitochondria, clathrin-coated vesicles, microtubules and actin

cytoskeleton in living cells, both in 2D and 3D at a speed of up to

11 frames per second (Fiolka et al., 2012; Kner et al., 2009; Shao

et al., 2011). More recently, up to 200 frames were obtained in

<0.5 s by using total internal reflexion fluorescence (TIRF) with a

high numerical aperture objective in order to limit out-of-focus

excitation and to increase the axial resolution on the basal side of the

sample (Li et al., 2015). The use of cMOS cameras, which are faster

than regular electron multiplying CCD (EMCCD) cameras, helps to

further improve the number of frames acquired per second and

allows the 3D recording of the entire volume of a single cell in

culture within∼1 s (Fiolka et al., 2012). Recently, 3D-SIM has been

combined with lattice light-sheet illumination and achieved a

similar rate of acquisition with less invasive light exposure (Li et al.,

+
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emission depletion (STED) microscopy is
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confocal microscope, in which the resolution
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depletion beam that ‘depletes’ unwanted

activated fluorophores at the edges of the

diffracted excitation beam. This results in a

detection size in the focal plane reduced to

the tens of nanometers. (B) Structured

illumination microscopy (SIM) microscopy is

a widefield microscopy technique. Here,

increased resolution is achieved by

introducing a diffraction grating in the optical

path. The grating is then turned to selected

angles and the sub-diffraction image is

reconstructed from all the images acquired

(typically 9 to 15). (C) Localization

microscopy techniques, such as PALM and

STORM, achieve high resolution by

excitation of stochastic fluorophores coupled

with computer-assisted high-precision

localization of individual molecules.

(D) Direct STED imaging of live mouse brain

through an observation window at a depth of

10–15 µm. 2PE, two-photon excitation.

Adapted with permission from Berning et al.,

2012. Scale bar: 1 µm. (E) C. elegans eight-

cell embryo expressing GFP-myosin and

mCherry-membrane marker. (i) Live image

using SIM combined with Bessel beam

illumination. (ii) Cropped view from the 3D

section in i. (iii) Single-plane view

corresponding to the orange plane in ii,

showing a cytokinetic ring. Adapted with

permission from Gao et al., 2012. Scale bar:

2 µm. (F) 3D rendering of the nuclear

envelope of U2OS cell expressing Dendra2–

LaminA excited with dithered lattice light-

sheet illumination and acquired with 3D

PALM (top). Super-resolution maximum-

intensity projection of the boxed area

(bottom). Adapted with permission from

Chen et al., 2014. Scale bar: 1 µm.
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2015). Furthermore, the combination of SIM and Bessel beam plane

illumination was used to image the development of a C. elegans

embryo (Fig. 3E), and the chromosomal rearrangement in a

Drosophila syncytium with a three- to fivefold increase in

resolution and an image acquisition speed that captured the total

volume of the embryo within 1 s (Gao et al., 2012). Furthermore,

multifocal plane illumination SIM was used to image the dynamics

of the endoplasmic reticulum in cultured cells at 100 frames per

second, or of the blood flow in zebrafish at 37 frames per second

(York et al., 2013).

Localization microscopy
Localization microscopy encompasses a family of techniques that

allows the precise localization of fluorophores at single-molecule

level; here, the precision directly reflects the number of photons

emitted by a single source. The sub-diffraction image is then

reconstructed from the localizations obtained for the single

fluorophores. These techniques rely on the possibility to excite

only a few fluorophores within the image plane, rather than all of

them; this makes it possible to differentiate between fluorophores,

whose distance is below the diffraction limit. This is achieved by

photo-manipulation of fluorophores, i.e. by turning them on or off

(Fig. 3C). In photo-activated localization microscopy (PALM),

photo-manipulation is mediated by using photo-activatable

fluorescent proteins (Betzig et al., 2006; Hess et al., 2006),

whereas stochastic optical localization microscopy (STORM) uses a

pair of organic dyes, of which one - following Förster resonance

energy transfer (FRET) - activates the second one, which is imaged

until it is switched off (Heinlein et al., 2005; Rust et al., 2006).

Furthermore, direct STORM (dSTORM) allows the localization of

single molecules by photoswitching an organic dye between its

fluorescent and non-fluorescent state (Heilemann et al., 2005,

2008). Altogether, localization microscopy is the most efficient sub-

diffraction technique with a lateral resolution <10∼20 nm (Betzig

et al., 2006; Hess et al., 2006). Localization microscopy has also

been implemented for 3D imaging, and several technical

approaches have been used to achieve sub-diffraction 3D imaging.

For instance, in combination with PALM, simultaneous detection of

each imaged focal plane and of a second plane that is 350 nm closer

to the objective, improves the axial resolution to 75 nm (Juette et al.,

2008). In addition, combination of multifocal excitation and

localization microscopy has demonstrated the simultaneous

imaging of a 4-µm volume within single cells with a resolution of

20×20×50 nm (Hajj et al., 2014).

The main drawback of localization microscopy is that the sub-

diffraction resolution is achieved by localizing single fluorophores

over time, which makes it less suitable for imaging fast dynamic

processes. However, localization microscopy can be used for high-

resolution single-particle tracking (spt) (Manley et al., 2008), which

can be very useful for understanding key cell biological events. For

example, spt-PALM has recently been applied to track integrins

within and outside of focal adhesions, and to quantify their

diffusive properties (Rossier et al., 2012). Furthermore, this

approach was used to demonstrate that the mechanical properties

of the glycocalyx layer promote focal adhesion growth by

channeling membrane-associated integrins into clusters (Paszek

et al., 2014). In another example, 3D PALM was used in

Drosophila embryos to analyze the clustering of E-cadherin at

cell–cell junctions (Truong Quang et al., 2013). In addition, PALM

has been combined with confocal correlation microscopy for high-

resolution mapping of glutamate receptors in individual neurons

that had been annotated by standard confocal microscopy in C.

elegans (Vangindertael et al., 2015). As live imaging also requires

imaging at high speeds in order to being able to track dynamic

events, faster cMOS cameras have been developed that allow the

recording of fast events at high-resolution (Huang et al., 2013).

Moreover, 3D PALM has recently been combined with lattice light-

sheet illumination to image single cells in culture (Fig. 3F), as well

as mouse stem cells spheroids at high speed (Chen et al., 2014).

Taken together, although super-resolution imaging offers new

possibilities in live and in vivo cell biology, there are still some

limitations that impede obtaining nanoscale resolution of these

events (Table 1).

Correlative light and electron microscopy (CLEM) – moving

towards nanoscale resolution of dynamic in vivo phenomena

The most interesting biological events usually occur only

infrequently and involve single molecules or organelles that are

separated by only few nanometers. The perfect imaging approach,

thus, would make it possible to obtain macroscopic views of tissues

and structures and, at wish, to easily zoom into the most-discrete

details or subcellular structures, organelles or proteins. As discussed

above, live imaging with light microscopy is extremely useful to

characterize the dynamics of cellular events in vivo and allows

imaging of living samples in 3D, but it only has a limited spatial

resolution. Electron microscopy (EM) achieves a much higher

resolution but, generally, allows the imaging of fixed specimen with

a limited screening ability. This makes it a challenging technique

when studying rare objects such as single metastatic cells within a

full organ (lung, brain, liver). CLEM combines live confocal

microscopy with EM for the characterization of biological samples

at high spatial and temporal resolution (de Boer et al., 2015)

(Fig. 4A). CLEM can be used for virtually any biological event that

can either be imaged (Goetz et al., 2014) or quantified by using

biophysical approaches. The main bottleneck of the approach is the

challenge to align the region of interest (ROI) that has been

identified by light microscopy with the EM image. However, the

increasing popularity of CLEM has led to the development of novel

procedures and microscopy setups, although these were mainly

developed to retrieve the ROI within a small sample, e.g. thin

sections of cells or tissue to be imaged with transmission EM. The

difficulty to accurately align the ROI within samples that have a

complex 3D organization, such as large cells, embryos, small

organisms or tissues, is still a major hurdle. Here, wewill discuss the

recent developments in CLEM by providing a snapshot of available

procedures and techniques that help to reliably track biological

events of interest at the highest spatial and temporal resolutions. We

and others have recently contributed to the significant progress in

the field of correlative light- and electron microcopy. by combining

intravital imaging of entire organisms with EM, which we here refer

to as intravital CLEM (Goetz et al., 2014, 2015; Karreman et al.,

2014, 2016; Maco et al., 2013). Intravital CLEM enabled important

discoveries in several areas of life science, such as cell biology

(Avinoam et al., 2015), neuroscience (Allegra Mascaro et al., 2013;

Maco et al., 2013), cancer research (Karreman et al., 2016), virology

(Hellström et al., 2015) and developmental biology (Durdu et al.,

2014; Goetz et al., 2014), and is highly likely to contribute to future

breakthroughs in biological research.

Ground-breaking in vitro CLEM
CLEM has primarily and successfully been applied to in vitro

situations. By preserving the fluorescence signal within a resin-

embedded block for its easy correlation with the EM image, the

Briggs group has established a ground-breaking technique that
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Fig. 4. Intravital CLEM and its biological applications. (A) Examples of intravital CLEM performed on C. elegans, zebrafish embryos and mice. In C. elegans,

intravital CLEM has been used to study the ultrastructure and formation of the excretory canal by using correlative fluorescence and volume EM (serial

electron tomography). Adapted with permission from Kolotuev et al., 2013. In the zebrafish embryo, CLEM was used to dissect the ultrastructure of endothelial

cilia that sense and transduce blood flow forces. Adapted with permission from Goetz et al., 2014. In mice, we recently developed a mutimodal approach

that combines intravital 2PEM imaging, X-ray micro-computed tomography (mCT) and focused ion beam scanning EM (FIB-SEM; see panel B); this made it

possible to retrieve single brain metastatic cells for their dissection at high-resolution). Adapted with permission from Karreman et al., 2016. (B) A snapshot of the

existing intravital CLEM procedures. Targeted ultramicrotomy, and subsequent volume EM, can be performed upon laser carving in the flat-embedded resin

sample (left). Alternatively, near-infrared branding (NIRB)-guided marks can be physically drawn on vibratome sections of the mouse brain for guiding

ultramicrotomy and/or volume EM (middle). NIRB can also be used for whole-organ ‘tattooing’ (e.g. ear, brain) and thereby guide the biopsy of the region of

interest (ROI) in voluminous samples, such as the mouse brain. Resin-embedded ROIs are then scanned by using mCT, the volumes are then registered and the

position of the ROIs retrieved; this allows 3DEM by using FIB-SEM (right).
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allowed them time-lapse recordings of endocytosis gaining

ultrastructural information from resin sections imaged by applying

electron tomography (Kukulski et al., 2011, 2012). These elegant

studies elucidated how proteins that control membrane budding,

such as clathrin, actin and amphiphysin, drive invagination,

elongation and fission of endocytic vesicles. Further work using

CLEM showed that vesicle budding appears to involve the assembly

of clathrin adaptors (Skruzny et al., 2015) and the bending of a

dynamic preassembled clathrin coat (Avinoam et al., 2015). Similar

approaches of preserving the fluorescence signal have been used in

CLEM of zebrafish embryos (Nixon et al., 2009), C. elegans

(Watanabe et al., 2011) and mammalian cells (Paez-Segala et al.,

2015; Peddie et al., 2014). CLEM can also be performed thanks to

the development of bimodal probes, such as the mini singlet oxygen

generator (miniSOG) (Shu et al., 2011) and proteins of the ascorbate

peroxidase (APX) family, in particular APEX2 (Lam et al., 2015).

MiniSOG is a fluorescent flavoprotein that, when genetically

encoded, is used as a versatile tag that emits fluorescence and, in

response to illumination, generates singlet oxygen that transforms

diaminobenzidine into electron-dense precipitates that can by

imaged by using EM. The engineered peroxidase APEX, by

contrast, can be used for EM and proximity labeling upon its fusion

to a protein of interest, (Mick et al., 2015). Alternatively, events or

regions of interest can be tracked over the two imaging modalities,

with recording of coordinates imprinted on the culture dish, by

using either commercialized (Al Jord et al., 2014) or laser-

micropatterned culture substrates (Spiegelhalter et al., 2010). This

method allows the fast freezing (e.g. high-pressure freezing) of

dynamic events within seconds for their ultrastructural

characterization. A similar approach has recently been used to

characterize centriole duplication in multi-ciliated ependymal cells,

which grow multiple motile cilia that efficiently propel the

cerebrospinal fluid in brain ventricles. By combining live super-

resolution imaging of ependymal progenitors by using EM, Al Jord

and colleagues could show that multiple centrioles derive from the

pre-existing progenitor cell centrosome following multiple rounds

of procentriole seeding, thereby unraveling an unexpected centriolar

asymmetry that differs from the archetypal duplication program

found in other ciliated cells (Al Jord et al., 2014). Similarly, in vitro

CLEM has been combined with the 3D electron microscopy

(3DEM) technique focused ion beam scanning electron microscopy

(FIB-SEM) to show that invadopodia of cancer cells potentially

mature in response to a mechanical interplay with the nucleus

(Revach et al., 2015). Their EM data revealed that invadopodia are

composed of actin bundles that interact with and indent the nucleus

at the apical side. Finally, many of the issues that are encountered

when retrieving the ROI in EM after light microscopy and sample

transfer can be avoided by using integrated microscopes that are

specially designed for CLEM studies; the latter also allow the

combination of atomic force microscopy and EM (for a review see

de Boer et al., 2015).

CLEM of multicellular and 3D samples – probing biomechanics at
high resolution
Amajor gap in cell biology is to understand cell biological events in

a realistic pathophysiological context. This can only be approached

by using light microscopy in living animals, i.e. intravital imaging.

Although single-photon and light-sheet imaging allow to image

small organisms, such as Drosophila, C. elegans and zebrafish

embryos at any depth, the event of interest might be beyond the

imaging depth of the fluorescence microscope in higher organisms,

such as mice. As discussed above, this can be easily overcome by

surgical implantation of imaging windows and the use of multi-

photon microscopy (Helmchen and Denk, 2005), which permits to

acquire high-quality fluorescent images deep inside animals (see

above).

However, most organs are not directly optically accessible and

require surgical procedures to expose the tissue of interest, as is

employed in neuroscience (Dombeck et al., 2007) and cancer

research (Ellenbroek and van Rheenen, 2014). The second, and

biggest, challenge resides in the difficulty to retrieve the ROI in

voluminous resin-embedded 3D samples (up to a few mm3). In

small organisms and embryos, anatomical landmarks, such as

fluorescent or visible structures that have been imaged in vivo can be

utilized to provide key anchor points for pinpointing the event of

interest in the resin-embedded tissue (Durdu et al., 2014; Goetz

et al., 2014, 2015; Kolotuev et al., 2010, 2013; Müller-Reichert

et al., 2007). This has proven to be very useful in zebrafish embryos

for correlating the blood flow that is sensed by endothelial cilia to

their inner ultrastructure (Fig. 4A,B). In addition to anatomical

landmarks, artificial markers can be carved in the resin, which –

upon superimposition with the intravital image – facilitate targeted

ultramicrotomy by EM. Of note, laser etching had been originally

pioneered on glass coverslips for micropatterning-assisted CLEMof

cells (Spiegelhalter et al., 2010). In resin- and flat-embedded small

organisms, it facilitates the retrieval of a precise ROI located within

the intravital image and, for instance, afforded the characterization

of how fibroblast growth factor (FGF) activity controls the

frequency at which rosette-like mechanosensory organs, e.g. the

zebrafish lateral line primordium, are deposited through the

assembly of microluminal structures that constrain FGF signaling

(Durdu et al., 2014). Studies performed in C. elegans provide

additional examples of laser-assisted targeted ultramicrotomy; these

have helped to further clarify at high resolution the formation of

excretory canals, as well as the contribution of exosomes to alae

formation (Hyenne et al., 2015) (Fig. 4A). Laser etching can also be

used directly on hydrated tissues to precisely locate the ROI. This

technology, called near-infrared branding (NIRB) has been

developed a few years ago and enables to highlight the position of

the ROI, either owing to laser-induced autofluorescence or upon

photooxidation of the NIRBmark (Bishop et al., 2011) (Fig. 4B). In

that study, by using NIRB on brain vibratome sections, single

cortical dendritic spines that had been previously recorded in a

living mouse could be dissected at unprecedented resolution

(Bishop et al., 2011). Furthermore, NIRB-guided retrieval of the

ROI in vibratome sections allows to combine intravital imaging with

3DEM, such as FIB-SEM, which was shown to provide nanoscale

isotropic imaging of axons and dendrites (Maco et al., 2013).

Combined with state-of-the-art optogenetic tools, intravital CLEM

holds great promises for resolving long-standing questions in brain

connectivity. For instance, NIRB has recently been customized to

perform tissue surface ‘tattooing’, which facilitates the retrieval of

the ROI before embedding (Karreman et al., 2014) (Fig. 4B).

However, although this approach allowes to selectively target the

ROI-contained volume in x and y direction, the z-position within the

block cannot be estimated from it, and serial sectioning throughout

the block is required for ROI retrieval. Combined with anatomical

landmarks, NIRB-assisted tattooing of the mouse ear skin was used

to precisely correlate intravital imaging of subcutaneous tumors

with high-resolution electron tomography (Karreman et al., 2014).

However, these techniques do not provide the opportunity to predict

where the ROI is within the resin-embedded sample; being able to

achieve this would greatly increase throughput and facilitate en

block imaging, which is of utmost importance when working with
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high-volume samples. One way to circumvent this issue is to

implement a third imaging modality to map the resin-embedded ROI

and thereby predict the position of the ROI by cross-correlating the

topology of anatomical landmarks. This opportunity is provided by

X-ray micro-computed tomography (microCT), which uses the

presence of heavy metals, such as osmium – and which are required

for EM – to resolve a number of anatomical structures, such as the

vasculature, hair follicles and collagen fibers (Karreman et al., 2016).

This approach has been used on brain vibratome sections and allowed

to locate photo-oxidized neuronal structures (Bushong et al., 2015).

Moreover, microCT can be used on voluminous samples, such as

brain biopsies, and allows to accurately resolve the brain capillary

architecture. We have recently shown that implementing microCT as

an intermediate step between intravital imaging of brain metastasis

and FIB-SEM allows the high-resolution imaging of single metastatic

cells (Karreman et al., 2016). The combination of state-of-the-art light

and intravital microscopy techniques together with the growing

approaches for 3DEM will provide scientists with an unprecedented

toolbox that can help to resolve – in vivo and at very high resolution –

many of the current questions surrounding cell biology. We believe

that intravital CLEMhas the potential to provide the link between cell

biology and relevant pathophysiological contexts and, undoubtedly,

will become the next-generation microscopy for in vivo cell biologists

(Table 1).

Conclusions

We have summarized here the imaging approaches that are

currently used for studying any cell biological event of interest.

Cell biologists are now in the great position to have access to a

wide and still-growing palette of fast, non-invasive, high-

resolution, label-free technologies that make true ‘in vivo cell

biology’ a goal that is within reach in the near future. It is of utmost

importance to continue to pursue the development of high-

resolution and animal-suitable imaging approaches in order to

visualize the cell biology of any given disease within an animal

model. This giant leap forward will enable us to model, image,

quantify and understand the complexity of cell biology within its

most relevant contexts, thereby contributing to the wealth of

knowledge and to the design of optimal therapeutic strategies to

deal with life-threatening pathologies.
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Pérez-Alvarez, A., Araque, A. and Martıń, E. D. (2013). Confocal microscopy for

astrocyte in vivo imaging: recycle and reuse in microscopy Front. Cell Neurosci. 7,
51.

Perrault, C. M., Brugues, A., Bazellieres, E., Ricco, P., Lacroix, D. and Trepat, X.
(2015). Traction forces of endothelial cells under slow shear flow. Biophys. J. 109,
1533-1536.

Peticolas, W. L., Goldsborough, J. P. and Rieckhoff, K. E. (1963). Double photon

excitation in organic crystals. Phys. Rev. Lett. 10, 43-45.
Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A.,

Galbraith, C. G. and Betzig, E. (2011). Rapid three-dimensional isotropic

imaging of living cells using Bessel beam plane illumination. Nat. Methods 8,
417-423.

Plodinec, M., Loparic, M., Monnier, C. A., Obermann, E. C., Zanetti-Dallenbach,
R., Oertle P., Hyotyla, J. T., Aebi, U., Bentires-Alj, M., Lim, R. Y. and
Schoenenberger, C. A. (2012). Nat. Nanotechnol. 11, 57-65.

Raab, M., Gentili, M., de Belly, H., Thiam, H. R., Vargas, P., Jimenez, A. J.,
Lautenschlaeger, F., Voituriez, R., Lennon-Duménil, A. M., Manel, N. et al.
(2016). ESCRT III repairs nuclear envelope ruptures during cell migration to limit

DNA damage and cell death. Science 352, 359-362.
Raman, C. V. and Krishnan, K. S. (1928). A new type of secondary radiation.

Nature 121, 501-502.
Ramspacher, C., Steed, E., Boselli, F., Ferreira, R., Faggianelli, N., Roth, S.,

Spiegelhalter, C., Messaddeq, N., Trinh, L., Liebling, M. et al. (2015).

Developmental alterations in heart biomechanics and skeletal muscle function

in desmin mutants suggest an early pathological root for desminopathies. Cell

Rep. 11, 1564-1576.
Rankin, B. R., Moneron, G., Wurm, C. A., Nelson, J. C., Walter, A., Schwarzer,

D., Schroeder, J., Colón-Ramos, D. A. and Hell, S. W. (2011). Nanoscopy in a

living multicellular organism expressing GFP. Biophys. J. 100, L63-L65.
Rego, E. H., Shao, L., Macklin, J. J., Winoto, L., Johansson, G. A., Kamps-

Hughes, N., Davidson, M. W. and Gustafsson, M. G. L. (2012). Nonlinear
structured-illumination microscopy with a photoswitchable protein reveals

cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA 109,
E135-E143.

Revach, O.-Y., Weiner, A., Rechav, K., Sabanay, I., Livne, A. and Geiger, B.
(2015). Mechanical interplay between invadopodia and the nucleus in cultured

cancer cells. Sci. Rep. 5, 9466.
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Tello, M., Spenlé, C., Hemmerlé, J., Mercier, L., Fabre, R., Allio, G., Simon-
Assmann, P. and Goetz, J. G. (2016). Generating and characterizing the

mechanical properties of cell-derived matrices using atomic force microscopy.

Methods 94, 85-100.
Theer, P., Hasan, M. T. and Denk, W. (2003). Two-photon imaging to a depth of

1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier. 28,
1022-1024.
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