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Abstract

Image scaling algorithms are intended to preserve the visual

features before and after scaling, which is commonly used in

numerous visual and image processing applications. In this

paper, we demonstrate an automated attack against common

scaling algorithms, i.e. to automatically generate camouflage

images whose visual semantics change dramatically after scal-

ing. To illustrate the threats from such camouflage attacks,

we choose several computer vision applications as targeted

victims, including multiple image classification applications

based on popular deep learning frameworks, as well as main-

stream web browsers. Our experimental results show that such

attacks can cause different visual results after scaling and thus

create evasion or data poisoning effect to these victim appli-

cations. We also present an algorithm that can successfully

enable attacks against famous cloud-based image services

(such as those from Microsoft Azure, Aliyun, Baidu, and Ten-

cent) and cause obvious misclassification effects, even when

the details of image processing (such as the exact scaling

algorithm and scale dimension parameters) are hidden in the

cloud. To defend against such attacks, this paper suggests

a few potential countermeasures from attack prevention to

detection.

1 Introduction

Image scaling refers to the resizing action on a digital image,

while preserving its visual features. When scaling an image,

the downscaling (or upscaling) process generates a new image

with a smaller (or larger) number of pixels compared to the

original one. Image scaling algorithms are widely adopted in

various applications. For example, most deep learning com-

puter vision applications use pre-trained convolutional neural

network (CNN) models, which take data with a fixed size de-

fined by the input layers of those models. Hence, input images

have to get scaled in the data preprocessing procedure to meet

⇤Co-first authors. This work was completed during their internship pro-

gram at 360 Security Research Labs.

with specific model input size. Popular deep learning frame-

works, such as Caffe [17], TensorFlow [13] and Torch [26],

all integrate various image scaling functions in their data pre-

processing modules. The purpose of these built-in scaling

functions is to allow the developers to use these frameworks

to handle images that do not match the model’s input size.

Although scaling algorithms are widely used and are ef-

fective to normal inputs, the design of common scaling algo-

rithms does not consider malicious inputs that may intention-

ally cause different visual results after scaling and thus change

the “semantic” meaning of images. In this paper, we will see

that an attacker can utilize the “data under-sampling” phe-

nomena occurring when a large image is resized to a smaller

one, to cause “visual cognition contradiction” between human

and machines for the same image. In this way, the attacker

can achieve malicious goals like detection evasion and data

poisoning. What’s worse, unlike adversarial examples, this

attack is independent from machine learning models. The

attack indeed happens before models consume inputs, and

hence this type of attacks affects a wide range of applications

with various machine learning models.

This paper characterizes this security risk and presents a

camouflage attack on image scaling algorithms (abbreviated

as scaling attack in the rest of the paper). To successfully

launch a scaling attack, attackers need to deal with two techni-

cal challenges: (a) First, an adversary needs to decide where

to insert pixels with deceiving effects by analyzing the scaling

algorithms. It is tedious and practically impossible to use man-

ual efforts to determine exact pixel values to achieve a desired

deceiving effect for realistic images. Therefore, a successful

attack needs to explore an automatic and efficient camouflage

image generation approach. (b) Second, for cloud-based com-

puter vision services, the exact scaling algorithm and input

size of their models are transparent to users. Attackers need to

infer scaling-related parameters of the underneath algorithms

in order to successfully launch such attacks.

To overcome these challenges, we first formalize the pro-

cess of scaling attacks as a general optimization problem.

Based on the generalized model, we propose an automatic
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generation approach that can craft camouflage images effi-

ciently. Moreover, this work examines the feasibility of this

attack in both the white-box and black-box scenarios, includ-

ing applications based on open deep learning frameworks and

commercial cloud services:

• In the white-box case (see Section 6.1 for more details),

we analyze common scaling implementations in three

popular deep learning frameworks: Caffe, TensorFlow

and Torch. We find that nearly all default data scaling

algorithms used by these frameworks are vulnerable to

the scaling attack. With the presented attack, attackers

can inject poisoning or deceiving pixels into input data,

which are visible to users but get discarded by scaling

functions, and eventually being omitted by deep learning

systems.

• In the black-box case (see Section 6.2 for more details),

we investigate the scaling attack against cloud-based

computer vision services. Our results show that even

when the whole image processing pipeline and design

details are hidden from users, it is still possible to launch

the scaling attack to most existing cloud-based computer

vision services. Since image scaling modules are built

upon open image processing libraries or open interpola-

tion algorithms, possible ways of image scaling imple-

mentation are relatively limited. Attackers can design a

brute-force testing strategy to infer the scaling algorithm

and the target scale. In this paper, we exhibit a simple but

efficient testing approach, with successful attack results

on Microsoft Azure1, Baidu2, Aliyun3 and Tencent4.

• Interestingly, we also discover and discuss the range

of the attacking influence extends to some computer-

graphic applications, such as mainstream web browsers

shown in Section 6.3.

We provide a video to demonstrate the attack ef-

fects, which is available at the following URL:

https://youtu.be/Vm2N0mb14Ow.

This paper studies the commonly used scaling implemen-

tations, especially for image scaling algorithms employed

in popular deep learning frameworks, and reveals potential

threats to the image scaling process. Our contributions can be

summarized as follows:

• This paper reveals a security risk in image scaling pro-

cess in computer vision applications. We validate and

testify the image scaling algorithms commonly used in

popular deep learning (DL) frameworks, and our results

1https://azure.microsoft.com/en-us/services/cognitive-s

ervices/computer-vision/?v=18.05
2https://ai.baidu.com/tech/imagerecognition/fine_grained
3https://data.aliyun.com/ai?spm=a2c0j.9189909.810797.11

.4aae547aEqltqh#/image-tag
4https://ai.qq.com/product/visionimgidy.shtml#tag

indicate that the security risk affects almost all image

applications based on DL frameworks.

• This paper formalizes the scaling attack into a con-

strained optimization problem, and presents the corre-

sponding implementation to generate camouflage images

automatically and efficiently.

• Moreover, we prove that the presented attack is still effec-

tive for cloud vision services, where the implementation

details of image scaling algorithms and parameters are

hidden from users.

• To eliminate the threats from the scaling attack, we sug-

gest several potential defense strategies from two aspects:

attack prevention and detection.

2 Image Scaling Attack Concept and Attack

Examples

In this section, we first present a high level overview of image

scaling algorithms, followed by the concept of image scaling

attacks. Then, we exhibit some examples of the image scaling

attack, and finally we conduct an empirical study of the image

scaling practices in deep learning based image applications.

2.1 An Overview of Image Scaling Algorithms

(a) Image scaling. (b) Interpolation in scaling.

Figure 1: The concept of image scaling.

Image scaling algorithms are designed to preserve the

visual features of an image while adjusting its size. Fig.1

presents the general concept of a common image scaling pro-

cess. A scaling algorithm infers value of each “missing point”

by using interpolation methods. Fig.1b shows an example of

constructing pixel P in the output image based on the pixels

of Q11, Q12, Q21 and Q22 in the original image. A scaling

algorithm defines which neighbor pixels to use in order to

construct a pixel of the output image, determines the relative

weight values assigned to each individual neighbor pixels.

For example, for each pixel in the output image, a nearest

neighbor algorithm only picks a single pixel (the nearest one)

from the input to replace it. A bilinear algorithm considers

a set of neighbor pixels surrounding the target pixel as the
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Figure 2: An example showing deceiving effect of the scal-

ing attack. (Left-side: what humans see; right-side: what DL

models see)

basis. It then calculates a weighted average of the neighbor

pixel values as the value assigned to the target pixel.

Such scaling algorithms often assume that pixel values in

an image are results from natural settings, and they do not

anticipate pixel-level manipulations with malicious intents.

This paper demonstrates that an attacker can use scaling al-

gorithms to alter an image’s semantic meaning by carefully

adjusting pixel-level information.

2.2 Attack Examples

The scaling attack potentially affects all applications that ap-

ply scaling algorithms to preprocess input images. To demon-

strate potential risks and deceiving effects of the scaling at-

tack, here we provide two attack examples of the scaling

attack on practical applications.

Fig.2 presents the first attack example for a local image

classification application cppclassification [16], a sample pro-

gram released by the Caffe framework. For the classification

model with an input size of 224*224, we specially craft input

images of a different size (672*224). The image in the left

column of Fig.2 is one input to the deep learning application,

while the image in the right column is the output of the scaling

function, i.e., the effective image fed into the deep learning

model. While the input in the left column of Fig.2 visually

presents a sheep-like figure, the deep learning model takes the

image in the right column as the actual input and classifies it

as an instance of “White Wolf”.

To validate the deceiving effect on deep learning applica-

tions, we build one image classification demo based on the

BAIR/BVLC GoogleNet model [8], which assumes the in-

put data are of the scale of 224*224. When an image with a

different size is provided, the application triggers the native

resize() function built in the Caffe framework to rescale the

image to fit the input size of the model (224*224). The ex-

act classification setup details and the program outputs are

presented in Appendix A.

Fig.3 exhibits one attack example against the Baidu image

classification service. The attack image is crafted from a

sheep image, with the aim to lead people to regard it as a

sheep but the machine to regard it as a wolf. The results

...
"result":
{ "score": "0.938829",

"name": "Grey Wolf"},

{ "score": "0.0146997",

"name": "Mexico Wolf"}
...

Figure 3: A scaling attack example against Baidu image clas-

sification service.

Cat

Scaling Category InfoDeep Learning Model

Figure 4: How data get processed in image classification

systems.

returned by the cloud service API5 show that the attack image

is classified as the “Grey Wolf” with a high confidence score

(achieving 0.938829), indicating that our attack is effective.

More examples of the scaling attack against more cloud-based

computer vision services are presented in Table 3. In fact,

image scaling algorithms are commonly used by a wide range

of computer-graphic applications, rather than limited to deep-

learning-based computer vision systems. Therefore, they are

all potentially threatened by this type of security risk.

2.3 Empirical Study of Image Scaling Prac-

tices in Deep Learning Applications

Data scaling is actually a common action in deep learning

applications. Fig.4 shows how the scaling process is involved

in open-input applications’ data processing pipelines, such as

image classification as an Internet service. For design simplic-

ity and manageable training process, a deep learning neural

network model usually requires a fixed input scale. For image

classification models, images are usually resizedd to 300*300

to ensure high-speed training and classification. As shown

in Table 1, we examine nine popular deep learning models

and all of them use a fixed input scale for their training and

classification process.

For deep learning applications that receive input data from

fixed input sources, such as video cameras, the input data

formats are naturally determined. Even in such situation, we

find that the image resizing is still needed in certain cases.

One common situation we observe is the use of pre-trained

models. For example, NVIDIA offers multiple self-driving

sample models [6], and all these models use a specific input

5The original API response is presented in Chinese. Here we translate it

into English.
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Table 1: Input sizes of various deep learning models.

Model
Size

(pixels*pixels)

LeNet-5 32*32

VGG16, VGG19, ResNet, GoogleNet 224*224

AlexNet 227*227

Inception V3/V4 299*299

DAVE-2 Self-Driving 200*66

size 200*66. However, for the recommended camera [24]

specification provided by NVIDIA, the size of generated im-

ages varies from 320*240 to 1928*1208. None of the recom-

mended cameras produce output that matches the NVIDIA’s

model input size. Therefore, for system developers that do not

want to redesign or retrain their models, they have to employ

scaling functions in their data processing pipeline to fit the

pre-trained model’s input scale. Recent research work, such as

the sample applications used in DeepXplore [25], also shows

that the resizing operation is commonly used in self-driving

applications to adjust original video frames’ size to the input

size of models.

Most deep learning frameworks provide data scaling func-

tions, as shown in Table 2. Programmers can handle images

with different sizes without calling scaling function explicitly.

We examined several sample programs released by popular

deep learning frameworks, such as Tensorflow, Caffe, and

Torch, and we have found all of them implicitly trigger scal-

ing functions in their data processing pipelines. Appendix B

provides several examples.

3 Related Work

This section briefly reviews some related work and makes a

comparison with our approach.

3.1 Information Hiding

Information hiding is a significant topic in information secu-

rity [2,9,15,18,19,21,27,30,31]. Information hiding methods

achieve reversible data hiding by image interpolation, but

these are different from our attack method: First, the goals

are different. The information hiding methods conceal data

in a source image to make the secret information unnoticed

by human, and image applications operate on the complete

data. Our presented attack hides a target image in a source

image to cause a visual cognition contradiction between hu-

man and image applications. The core components (such as

deep learning classifiers) of the victim applications operate

on a partial data (i.e. the scaling output). Second, informa-

tion hiding efforts often impose a customized coding method

(such as LSB and NIP [21]) in order to conceal and recover

hidden information. This coding scheme is often kept as a

secret known only to the designer of the specific information

hiding method. In contrast, a scaling attack is based on the

interpolation algorithm built within the victim application to

achieve the deceiving effect. The main task for an attacker is

to reverse engineering the scaling algorithms and design the

pixel replacement policy.

3.2 Adversarial Examples

The research of adversarial examples attract growing public

attentions with the reviving popularity of Artificial Intelli-

gence. An adversarial image fools the Artificial Intelligence

by inserting perturbations into the input image, which are

hard to be noticed by human eyes. For example, Goodfellow

et al. [14] presented a linear explanation of adversarial ex-

amples and revealed that such attack is effective for current

sufficiently linear deep networks. In addition to the theoretical

analysis, Alexey et al. [20] added the perturbations into the

physical world and successfully launched the attack. It should

be noted that the attack target of existing adversarial exam-

ples essentially aims at machine learning models, while our

method focuses on the data preprocessing step, concretely, the

image scaling action. Vulnerabilities in code implementation,

such as control-flow hijacking, also could lead to recognition

evasions [32]. However, we exploit the weakness of scaling

algorithms in this work other than code implementation.

3.3 Invisible/Inaudible Attacks

Some researchers investigate potential attacks beyond the

human sensing ability. Ian Markwood et al. [22] showed a

content masking attack against the Adobe PDF standard. By

tampering the font files, the attacker can insert secret infor-

mation into PDF files without being noticed by human. They

demonstrated such attack against state-of-the-art information-

based services. Besides the attacks in vision fields, Zhang et

al. [34] presented the DolphinAttack against speech recogni-

tion (SR) systems. They created secret voice commands on

ultrasonic carriers that are inaudible for human beings, but

can be captured and sensed by voice controllable systems. In

this way, an attacker can control SR systems “silently”. It has

been proved that the widely used SR systems, like Apple Siri

and Google Now, are vulnerable to such attack. Our attack is

like a reverse of such invisible/inaudible attacks. The attacker

leverage the difference between the input and output of the

scaling function. Most part of the content visible to human is

not consumed by the component that uses the scaling output.

4 Formalizing the Scaling Attack

This section describes the goal of a typical scaling attack and

how we design a method to automatically create attack images

with deceiving effects. The autonomous attack image crafting
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Table 2: Scaling algorithms in deep learning frameworks.

DL Framework Library Interpolation Method Order a Validation b

Caffe OpenCV [7]

Nearest H!V 3

Bilinear(I) H!V 3

Bicubic H!V 3

Area H!V =

Lanczos H!V =

Tensorflow c

Python-OpenCV

Pillow [10]

Tensorflow.image

Nearest(IPillow) H!V 3

Bilinear

(IPython-OpenCV, Tensorflow.image)
H!V 3

Bicubic H!V 3

Area H!V =

Lanczos H!V =

Torch Torch-OpenCV

Nearest H!V 3

Bilinear(I) H!V 3

Bicubic H!V 3

Area H!V =

Lanczos H!V =

I The default scaling algorithm.
a H!V means the algorithm first scales horizontally and then vertically.
b The validation is performed on attack with a constraint ε = 0.01. 3 represents generate attack images successfully

satisfying the constraints. = means we have not yet verified the attack effects because the algorithm is complex and

rarely used in DL applications. More details please see Section 6.1.
c Tensorflow integrates multiple image processing packages, including Python-OpenCV, Pillow, and Tensorflow.image.

srcImg

(56*56)

targetImg

(28*28)
Camouflage

Attack
attckImg

(56*56)

ScaleFunc()

outImg

(28*28)

+∆𝟏

+∆𝟐
Figure 5: Automatic attack image crafting.

framework is shown in Fig.5, and details are presented in

Section 4.2.

4.1 Attack Goals

The goal of the scaling attack is to create a deceiving effect

with images. Here the deceiving effect refers to the case that

an image partially or completely presents a different meaning

to humans before and after a scaling action. In such case, we

call the input file to the scaling action the attack image.

To describe the process of a scaling attack, we define the

following four conceptual objects involved in one attack.

• source image (or srcImg) Sm⇤n – the image that an at-

tacker wants the attack image to look like.

• attack image (or attackImg) Am⇤n – the crafted image

eventually created and fed to the scaling function.

• output image (or outImg) Dm0⇤n0 – the output image of

the scaling function.

• target image (or targetImg) Tm0⇤n0 – the image that the

attacker wants the outImg to look like.

In some cases, some of these objects are identical. For

example, it is often possible for an attacker to generate an out

image that is identical to the target image.

The process of performing a scaling attack is to craft an

attackImg under visual similarity constraints with srcImg

and targetImg. Based on the intent and constraints on source

images, we define the image scaling attack into two attack

modes.

The first attack mode is when both the source and target

images are specified, i.e. the attacker wants to scale an im-

age that looks like a specific source image to an image that

looks like a specific target image. In this mode the attacker

launches a source-to-target attack, where the semantics of

srcImg and targetImg are controlled as he/she wants. How-

ever, posing constraints on the looks of both the source and

target images makes this attack mode more challenging. We

call this mode of attack the strong attack form.
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The second attack mode is when only the target image is

specified. In that case, the attacker just wants to cause a vision

contradiction during image scaling, as long as it is related

to a certain concept (such as any images of sheep). In some

extreme cases, the image content could be meaningless, e.g.,

just to create a negative result to an image classifier. Without

a specific source image, the attacker’s goal is to increase

the dissimilarity before and after image scaling as much as

possible. In this mode, the similarity constraints get relaxed

and we call this mode of attack the weak attack form.

4.2 An Autonomous Approach on Attack Im-

age Generation

We are interested to develop a method to automatically create

scaling attack images in both the strong and weak attack

forms. In order to achieve such goal, we first formalize the

description of the data transition process among the four

conceptual objects, and then we seek an algorithmic solution

to create attack images.

The relationship between the four conceptual objects can

be described in the following formulas.

First, the transition between srcImg and attackImg can

be represented by a perturbation matrix ∆1, and so does the

difference between outImg and targetImg. These transition

can be represented by

Am⇤n = Sm⇤n +∆1 (1)

For the transition between attackImg and outImg, we con-

sider the scaling effect as a function ScaleFunc(), which con-

verts an m ⇤ n input image Am⇤n to an m0 ⇤ n0 output image

Dm0⇤n0
6.

ScaleFunc(Am⇤n) = Dm0⇤n0 (2)

ScaleFunc() is a surjective function, i.e. there exist multiple

possible inputs Am⇤n that all result in the same output Dm0⇤n0 .

To perform a scaling attack, attackers need to craft an attack

image Am⇤n, which is the source image Sm⇤n plus a perturba-

tion matrix ∆1. In the meanwhile, the scaling result of the

attack image, i.e., the output image Dm0⇤n0 , needs to be visu-

ally similar with the target image Tm0⇤n0 . Here we use ∆2 to

evaluate the difference between Dm0⇤n0 and Tm0⇤n0 .

Am⇤n = Sm⇤n +∆1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +∆2

(3)

Let us consider the strong attack form of scaling attack

as in Fig.5, where both source Sm⇤n and target image Tm0⇤n0

6Conventionally, we say a matrix of m⇤n dimension has m rows and n

columns, while an image of m⇤n size consists of m columns and n rows. For

convenience sake, in this paper we use a matrix Xm⇤n of m⇤n dimension to

refer to “an m⇤n image”.

are specified. The attacker’s task is to find an attack image

Am⇤n being able to cause deceiving effect. Considering Eq.3,

we can find multiple possible candidate matrices as solutions

for Am⇤n that satisfy the whole set of formulas. This is due

to the surjection effect of ScaleFunc(). What the attacker

wants to find is the matrix that produces the best deceiving

effect among all possible solutions for Am⇤n. One strategy is

to find an A that is the most similar with S, while limiting the

difference between D and T within an upper bound.

To find the best deceiving effect, we theoretically define

an objective function that compares all solutions of Am⇤n. To

seek an algorithmic solution, we choose the L-norm distance7

to capture the pixel-level differences as an approximation for

measuring how close two images are.

In the strong attack form, we want to minimize the differ-

ence between Am⇤n and Sm⇤n, and limit the difference between

Dm0⇤n0 and Tm0⇤n0 within a threshold. Consequently, when the

source image Sm⇤n and target image Tm0⇤n0 are given, the best

result can be found by solving the following objective func-

tion.
Am⇤n = Sm⇤n +∆1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +∆2

||∆2||∞  ε⇤ INmax

Objective function : min(||∆1||
2)

(4)

where INmax is the maximum pixel value in the current image

format.

For the weak attack form, i.e. only the target image Tm0⇤n0 is

given, what an attacker wants to optimize is to pick the attack

image that visually has the largest difference from the target

image. Thus, the best result should be found by solving the

following objective function:

Rm⇤n = ScaleFunc(Tm0⇤n0)

Am⇤n = Rm⇤n +∆1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +∆2

||∆2||∞  ε⇤ INmax

Objective function : max(||∆1||
2)

(5)

Notice that in the above constraints, we apply ScaleFunc()

twice. The first call of ScaleFunc() is actually scaling the

target image to the size of the attack image, i.e., upscaling an

image from dimension m0 ⇤n0 back to m⇤n.

5 Creating Scaling Attack Images

After building up the formalized model of the scaling attack,

in this section we investigate how to generate attack images

automatically.

7In this paper, || · || denotes the L2-norm, while || · ||∞ denotes the L∞-

norm.
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5.1 Empirical Analysis of Scaling Functions

In our implementation, we first need to find an appropriate

expression of ScaleFunc(). We studied the implementation

details of commonly used image processing packages. All

of the scaling functions we studied perform the interpolation

in two steps, one direction in each step. We design our at-

tack algorithm with the assumption that the target scaling

algorithm first resizes inputs horizontally and then vertically.

Empirically the popular algorithms take this order (see Ta-

ble 2, and more detailed analysis and examples are provided

in Appendix C.). In case the scaling algorithm takes vertical

order first, the attack method just needs to change accordingly.

Hence, the ScaleFunc() in Eq.2 can be presented as:

ScaleFunc(Xm⇤n) =CLm0⇤m ⇤Xm⇤n ⇤CRn⇤n0 (6)

In Eq.6, CLm0⇤m and CRn⇤n0 are two constant coefficient

matrices determined by the interpolation algorithm, related

to horizontal scaling (m ⇤ n ! m ⇤ n0) and vertical scaling

(m⇤n0 ! m0 ⇤n0), respectively.

With Eq.4 and Eq.6, we eventually build a relationship

among the source image, the target image, and the perturba-

tion:
CLm0⇤m ⇤ (Sm⇤n +∆1)⇤CRn⇤n0 = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +∆2

(7)

5.2 Attack Image Crafting: An Overview

The main idea of automated scaling attack generation is to

craft the attack image by two steps. The first step is to ob-

tain the coefficient matrices in Eq.7. Section 5.3 presents a

practical solution to find CL and CR, implemented as GetCo-

efficient(). The second step is to find the perturbation matrix

∆1 to craft the attack image. We perform the attack image gen-

eration along each direction, in reverse order that we assume

ScaleFunc() uses. Further, we decompose the solution of the

perturbation matrix into the solution of a few perturbation

vectors. By this way, we can significantly reduce the computa-

tional complexity for large size images. Section 5.4 provides

more details of the second step, based on which we implement

GetPerturbation() to find the perturbation vectors. Algorithm

1 and Algorithm 2 illustrate the attack image generation in

the weak attack form and the strong attack form, respectively.

Weak attack form (Algorithm 1) 8. First, we obtain the co-

efficient matrices by calling GetCoefficient() (line 2), which

receives the size of Sm⇤n and Tm0⇤n0 , and returns coefficient

matrices CLm0⇤m and CRn⇤n0 , and then generate an intermedi-

ate source image S⇤
m⇤n0

from Tm0⇤n0 . Then, we call GetPertur-

bation(), which receives the column vectors from S⇤
m⇤n0

and

Tm0⇤n0 , with the coefficient matrix CL and the object option

(‘max’), and returns the optimized perturbation matrix ∆v
1,

to solve the perturbation matrix column-wisely and craft out

8To clarify, here we use X [i, :] and X [:, j] to represent the i-th row and

j-th column of matrix X respectively.

Algorithm 1 Image Crafting of the Weak Attack Form

Input: scaling function ScaleFunc(), target image Tm0⇤n0 ,

source image size (widths,heights), target image size

(widtht ,heightt)
Output: attack image Am⇤n

1: m = heights, n = widths, m0 = heightt , n0 = widtht

2: CLm0⇤m, CRn⇤n0 = GetCoefficient(m, n, m0, n0)

3: ∆v
1 = 0m⇤n0 ⇤ Perturbation matrix of vertical attack.

4: S⇤
m⇤n0

= ScaleFunc(Tm0⇤n0 )⇤ Intermediate source image.

5: for col = 0 to n0�1 do

6: ∆v
1[:,col] = GetPerturbation(S⇤[:,col], T [:,col], CL,

obj=‘max’) ⇤ Launch the vertical scaling attack.

7: end for

8: A⇤
m⇤n0

= unsigned int(S⇤ + ∆v
1)

9: Sm⇤n = ScaleFunc(Tm0⇤n0 ) ⇤ Final source image.

10: ∆h
1 = 0m⇤n ⇤ Perturbation matrix of horizontal attack.

11: for row = 0 to m�1 do

12: ∆h
1[row, :] = GetPerturbation(S[row,:], A⇤[row,:], CR,

obj=‘max’) ⇤ Launch the horizontal scaling attack.

13: end for

14: Am⇤n = unsigned int(S + ∆h
1)

15: return Am⇤n ⇤ Get the crafted attack image.

A⇤
m⇤n0

(line 5 to 8). Similarly, we solve another perturbation

matrix ∆h
1 row-wisely and construct the final attack image

Am⇤n (line 9 to 15).

Strong attack form (Algorithm 2). The strong attack form

follows a similar procedure, except of two parts different from

the weak attack form: The first one is that the input in this

form includes two independent images Sm⇤n and Tm0⇤n0 , while

the second one is that the optimization problem transforms

from maximizing the object function into minimizing the

object function (line 6 and line 11).

5.3 Coefficients Recovery

Here we investigate the design of GetCoefficient() function,

i.e., how does an attacker obtain the coefficient matrix CLm0⇤m

and CRn⇤n0 .

For public image preprocessing methods/libraries, the at-

tacker is able to acquire the implementation details of Scale-

Func(). Hence, in theory, the attacker can compute each ele-

ment in CLm0⇤m and CRn⇤n0 precisely.

Eq.8 is a coefficient recovery result from the open-source

package Pillow. In the bilinear interpolation algorithm, the

coefficient matrices from 4*4 image to 2*2 image are:

CLm0⇤m =



3
7

3
7

1
7

0

0 3
7

3
7

1
7

�

, CRn⇤n0 =

2

6

6

4

3
7

0
3
7

1
7

1
7

3
7

0 3
7

3

7

7

5

(8)

Though it is possible to retrieve coefficient matrices pre-

cisely, the pre-mentioned procedure may become challenging
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Algorithm 2 Image Crafting of the Strong Attack Form

Input: scaling function ScaleFunc(), source image Sm⇤n, tar-

get image Tm0⇤n0 , source image size (widths,heights), tar-

get image size (widtht ,heightt)
Output: attack image Am⇤n

1: m = heights, n = widths, m0 = heightt , n0 = widtht

2: CLm0⇤m, CRn⇤n0 = GetCoefficient(m, n, m0, n0)

3: ∆v
1 = 0m⇤n0 ⇤ Perturbation matrix of vertical attack.

4: S⇤
m⇤n0

= ScaleFunc(Sm⇤n) ⇤ Intermediate source image.

5: for col = 0 to n0�1 do

6: ∆v
1[:,col] = GetPerturbation(S⇤[:,col], T [:,col], CL,

obj=‘min’) ⇤ Launch the vertical scaling attack.

7: end for

8: A⇤
m⇤n0

= unsigned int(S⇤ + ∆v
1)

9: ∆h
1 = 0m⇤n ⇤ Perturbation matrix of horizontal attack.

10: for row = 0 to m�1 do

11: ∆h
1[row, :] = GetPerturbation(S[row,:], A⇤[row,:], CR,

obj=‘min’) ⇤ Launch the horizontal scaling attack.

12: end for

13: Am⇤n = unsigned int(S + ∆h
1)

14: return Am⇤n ⇤ Get the crafted attack image.

when the coefficient matrices grow large and the interpola-

tion method becomes complex. To reduce the human effort

for extracting the coefficient values, we introduce an easy

approach to deduce the those matrices. The idea is to infer

these coefficient matrices from input and output pairs.

First, we establish the following equation:

CLm0⇤m ⇤ (Im⇤m ⇤ INmax) =CLm0⇤m ⇤ INmax

(In⇤n ⇤ INmax)⇤CRn⇤n0 =CRn⇤n0 ⇤ INmax

(9)

where Im⇤m and In⇤n are both identity matrices.

Then, if we set the source image S = Im⇤m ⇤ INmax and scale

it into an m0 ⇤m image Dm0⇤m, we can obtain

D = ScaleFunc(S) = unsigned int(CLm0⇤m ⇤ INmax)

!CLm0⇤m(appr) ⇡ D/INmax

(10)

In the theoretical formulation, the sum of elements in each

row of CLm0⇤m should be equal to one.

Finally, we do the normalization for each row (Eq.11). In

fact, the type cast from float-point values to unsigned integers

in Eq.10 will cause a slight precision loss. What we acquired

is an approximation of CLm0⇤m, but in practice our experimen-

tal results show that the precision loss can be ignored.

CLm0⇤m(appr)[i, :] =
CLm0⇤m(appr)[i, :]

∑
m�1
j=0 (CLm0⇤m(appr)[i, j])

(i = 0,1, ...,m0
�1)

(11)

The inference of CRn⇤n0 follows a similar procedure. When

scaling S0 = In⇤n ⇤ INmax into D0
n⇤n0

, we have

D0 = ScaleFunc(S0) = unsigned int(INmax ⇤CRn⇤n0)

!CRn⇤n0(appr) ⇡ D0/INmax

(12)

Hence, we can obtain the estimated CR:

CRn⇤n0(appr)[:, j] =
CRn⇤n0(appr)[:, j]

∑
n�1
i=0 (CRn⇤n0(appr)[i, j])

( j = 0,1, ...,n0�1)

(13)

So far, we have found a practical approach to recover coeffi-

cient matrices. In the next step, we focus on constructing the

perturbation matrix ∆1.

5.4 Perturbation Generation via Convex-

Concave Programming

In the threat model established in Section 4.2, ∆1 is a matrix

with dimension m⇤n. The optimization problem tends to be

complex when the attack image is large. This part illustrates

how to simplify the original problem and find the perturbation

matrix efficiently.

5.4.1 Problem Decomposition

Generally speaking, the complexity of an n-variable quadratic

programming problem is no less than O(n2), as it contains

complex computation operations, such as solving the Hessian

matrix. The optimization is computationally expensive when

the image size grows large. Here we simplify and acceler-

ate the image crafting process by two feasible steps, only

sacrificing the computing precision slightly.

Firstly, we separate the whole scaling attack into two sub-

routines. The image resizing in each direction is equivalent,

because the resizing of S in the vertical direction can be re-

garded as the resizing of the source image’s transpose ST in

the horizontal direction. Therefore, we only need to consider

how to generate ∆1 in one direction (here we choose the verti-

cal resizing as the example). Suppose we have an input image

Sm⇤n and an target image Tm0⇤n, and we have recovered the

resizing coefficient matrix CLm0⇤m, with the aim to craft the

attack image Am⇤n = Sm⇤n +∆1.

Secondly, we decompose the calculation of the perturbation

matrix into the solution of a few vectors. In fact, the image

transformation can be rewritten as:

CLm0⇤m ⇤A =
⇥

CL⇤A[:,0](m⇤1) ... CL⇤A[:,n�1](m⇤1)

⇤ (14)

In this way, our original attack model has been simplified

into several column-wise sub optimization problems:

obj: min/max(||∆1[:, j]||2)

s.t. CL⇤A[:, j](m⇤1) = T [:, j](m0⇤1)+∆2

||∆2||∞  ε⇤ INmax

( j = 0,1, ...,n�1)

(15)
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5.4.2 Optimization Solution

We formulate our model in Eq.15 into a standard quadratic

optimization problem.

Constraints. First there is a natural constraint that each

element in the attack image A should be within [0, INmax]. We

have the following constraints:

0  A[:, j]m⇤1  INmax

||CL⇤A[:, j]m⇤1 �T [:, j]m0⇤1||∞  ε⇤ INmax

(16)

Objective function. Our objective function is also equiva-

lent to

min/max(∆1[:, j]T Im0⇤m0∆1[:, j]) ( j = 0,1, ...,n�1) (17)

where Im0⇤m0 is the identity matrix. Then, combining the ob-

jective function (Eq.17) and constraints (Eq.16), we finally

obtain an m0-dimensional quadratic programming problem

with inequality constraints.

Problem Solution. Back to the two attack models pro-

posed in section 4.2, the strong attack model refers to a con-

vex optimization problem while the weak model refers to

a concave optimization problem. We adopt the Disciplined

Convex-Concave Programming toolbox DCCP developed by

Shen et al. [33] to solve the optimization problem. The re-

sults exhibited in Appendix D validate that this approach is

feasible.

6 Experimental Results of Scaling Attack

In this section, we report attack results on three kinds of

applications: local image classification applications, cloud

computer vision services and web browsers.

6.1 White-box Attack Against Local Com-

puter Vision Implementations

Many computer vision applications expose the model’s in-

put size and scaling algorithm to attackers. We regard this

scenario as our white-box threat model.

White-box Threat Model. In our white-box threat model,

we assume that the attacker has full knowledge of the tar-

get application’s required input size and the scaling algo-

rithm implementation. This can be achieved by inspecting the

source codes, reverse engineering the application, or specu-

lating based on open information. For instance, there is an

image classification application claiming that it is built upon

Caffe and uses the GoogleNet model. The attacker can en-

sure the input size is 224*224 (Table 1), and guess that the

OpenCV.Bilinear (default for Caffe, see Table 2) is the scaling

function with a high confidence. With the automatic attack

image generation approach proposed in Section 5, the attacker

can achieve the deceiving effect without much effort in the

white-black threat model.

Results. We validate our attack image generation approach

on the interpolation algorithms built within three popular deep

learning frameworks: Caffe, Tensorflow, and Torch. For each

framework, we write an image classification demo based on

the BAIR/BVLC GoogleNet model, whose required input size

is 224*224. We launch the attack with a 672*224 sheep-like

image as the source image, and a 224*224 wolf-like image

as the target image, under a tight constraint where we set ε =
0.01. If the generated attack image satisfies the constraints and

deceives the application, we consider the attack is successful,

and otherwise it fails. The results reported in Table 2 show

that our attack method is effective for all the default scaling

algorithms in these frameworks.

Notice that our approach does not generate successful at-

tack images for some less commonly used algorithms. There

are two factors affecting these attacks. First, some of these

algorithms might pose more constraints during the scaling

process. And because they are not popularly used, we have

not yet studied the detail of these implementations. Second,

in this paper, we only applied a tight constraint on our op-

timization task (Eq.16 and Eq.17), for the purpose of threat

demonstration. There is a trade-off between the deceiving

effect and image generation difficulty. Even if the automatic

image generation process fails for some algorithms, by no

means these algorithms should be considered as safe.

6.2 Black-box Attack Against Cloud Vision

Services

Cloud-based computer vision services, provided by Microsoft,

Baidu, Tencent and others, have arisen broadly, which sim-

plify the deployment of computer vision systems. By sending

queries to these powerful cloud vision APIs, users can obtain

detailed image information, e.g., tags with confidence values

and image descriptions. In this case, the pre-trained models

are usually packaged as black boxes isolated from users, and

users only are able to access these services through APIs. This

section shows that the commercial cloud vision services are

threatened by the scaling attack, even in the black-box sce-

nario where the input size and scaling method are unknown.

Black-box Threat Model. In our black-box threat model,

the goal of an attack is to deceive the image recognition

service running on the cloud server, resulting in a mis-

recognition for input images. But the input scale and scaling

method is unknown to the attacker, making the attack more

challenging.

6.2.1 Attack Roadmap

The attack against black-box vision services mainly includes

two steps. The first step is scaling parameter inference – the

attacker estimates the input size and scaling algorithm used

by the classification model. The second step is to craft attack

images based on the inferred scaling parameters.
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Scaling Parameter Inference. We design the scaling pa-

rameter inference strategy based on two empirical observa-

tions. First, from Table 1 we can see that for most commonly

used CNN models, the input is a square-sized image with a

side length in the range of [201,300]. Second, by comparing

and analyzing the source codes of popular DL frameworks

in Table 2, we found the most commonly used default scal-

ing algorithm is Nearest, Bilinear, or Bicubic. Therefore, a

naive approach by the adversary is to infer the scaling param-

eters via exhaustive tests. An adversary can send a series of

m probing images {probeImgi},(i = 1,2, ...,m), crafted by

the scaling attack method with various scaling parameters.

The attacker can infer the scaling parameters by watching

the classification results. If one query returns with the correct

classification result, the corresponding scaling parameters are

likely to be used by the target service. Then the attacker can

try to launch the attack with the inferred parameters. This

procedure is shown in Algorithm 3.

The inference efficiency can be increased by using a

complex attack image involving several sub-probing images.

These sub-probing images can only be recovered with their

corresponding scaling parameters.

Here we show one simple approach to achieve this goal.

First, the attacker collects n sub-probing images each be-

longing to different categories, and determines the input

size range SizeRange and the scaling algorithms AlgSet to

test. The search space S can be defined as S = {Si} =
SizeRange⇥AlgSet = {sizei}⇥{algi}. Second, the attacker

chooses a large blank white image (with #FF as the pixel

value) as the background, and divides it into n non-overlapped

probing regions. Third, the attacker repeats the following pro-

cedure: he/she fills the j-th probing region of the blank image

with the j-th sub-probing image respectively, next scales it

with the scaling parameter S
j

i , and then conducts the scaling

attack with the original blank image as the sourceImg and

the resized image as the targetImg. Finally, the attacker com-

bines all the output images to create the probeImgi. In this

way, when probeImgi is resized, the j-th sub-probing image

will be recovered if and only if the scaling parameter is set

as S
j

i . Fig.6 gives an example of the probeImg. Note that the

larger n is, the fewer probeImgs are needed, but the recogni-

tion accuracy of sub-probing images might be reduced as the

area of each probing region decreases.

Image Crafting. After retrieving the possible input size

and scaling algorithm, the adversary can generate attack im-

ages as described in Section 5, and launch the scaling attack

to cloud vision services .

6.2.2 Results

To show the feasibility of the scaling attack against black-

box cloud vision services, we choose Microsoft Azure, Baidu,

Algorithm 3 Scaling Parameter Inference

Input: cloud vision API f , scaling algorithms AlgSet =

{alg1, alg2, ...}, input size range SizeRange = {size1, size2,

...}, source image sourceImg, target image targetImg

Output: the inferred input size size⇤ and scaling algorithm

alg⇤

1: for alg in AlgSet do

2: for size in SizeRange do

3: testImg = resize(targetImg, size)

4: probeImg = ScalingAttack(alg, sourceImg,

testImg) ⇤ Can be recovered once resized into size

by alg.

5: if argmax( f (testImg)) == argmax( f (probeImg))

then

6: Return size,alg ⇤ Get a feasible answer.

7: end if

8: end for

9: end for

10: Return NULL, NULL ⇤ No match during the search.

Aliyun, and Tencent cloud vision services as our test beds9.

In our experiment, each probeImg contains four sub-

images (classified as “zebra”, “dog”, “rat” and “cat”) for dif-

ferent input parameters. For the input size, the SizeRange is

set from 201 to 300, while the scaling algorithm options in-

clude two libraries OpenCV and Pillow with Nearest, Bilinear

and Cubic interpolation methods. Considering the trade-off

between efficiency and recognition accuracy, we set n = 4.

Hence, the total amount of queries is 100 (#input size) * 2

(#scaling library) * 3 (#interpolation method) / 4 (#probing

region) = 150 (#probeImg). As we can see, the searching

space is extremely small and it consumes just up to several

minutes to obtain the results. We provide the scaling parame-

ter inference results and one scaling attack sample in Table

3.

Moreover, to verify the effectiveness of the proposed attack

strategy, we collected 935 images from Internet, including 17

categories except of sheep or sheep-like animals, and cropped

them into the 800*600 size holding the main object, as our

sourceImg dataset. Then for each of the 935 sourceImgs, we

generated one attack image with the same targetImg contain-

ing a sheep in the center, setting the scaling attack parameter

ε = 0.01.

For Baidu, Aliyun and Tencent, all the attack images are

classified as “sheep” or “goat” with the highest confidence

value compared with other classes, while for Azure the re-

sult becomes more complex. In our experiment we requested

the Azure cloud vision service API to respond with four fea-

9 As part of the responsible disclosure etiquette, we have reported this

issue and received replies from these companies. The latter three have con-

firmed this problem as are now in the process of fixing it. Microsoft Azure

has also acknowledged the issue and is discussing with us about possible

solutions.
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(a) probeImg

(1024*1024)

(b) Scaled result

(OpenCV.Bilinear, 201*201)

(c) Scaled result

(OpenCV.Bilinear, 202*202)

(d) Scaled result

(OpenCV.Bilinear, 203*203)

(e) Scaled result

(OpenCV.Bilinear, 204*204)

Figure 6: An example of the probeImg. (a) is a probeImg containing 4 subfigures, and (b) to (e) are the results when the probeImg

is scaled under different scaling settings.

tures: “description”, “tags”, “categories”, and “color”. We

find that for attack images, the word “sheep” may appear in

the “description” or “tags” with a confidence value. Hence,

we computed the CDF (cumulative distribution function) of

attack images’ confidence values of “tags” and “description”

respectively, and plot the two CDF curves in Fig.7 (we as-

sume the confidence value as 0 if “sheep” is absent in the API

response). The result shows that for the “tags” feature, more

than 60% attack images are classified as “sheep” with a confi-

dence value higher than 0.9, which implies the effectiveness

of our proposed attack.

Figure 7: The CDF curve of responses from Azure.

6.3 Deceiving Effect on Web Browsers

Web browsers provide the page zooming function to scale the

contents, including texts and images. Hence, an attacker may

be able to utilize scaling functions in web browsers to achieve

deceiving or phishing attacks.

We have evaluated such effect on several mainstream

browsers running on different platforms. We generated an

attack image (with a 672*224 sheep image as the source

image, a 224*224 wolf image as the target image, using

OpenCV.Bilinear as the scaling method, ε = 0.01), and used

HTML tags to control its rendering size in browsers. The re-

sult is presented in Table 4, indicating the potential victims of

scaling attack are beyond the scope of deep learning computer

vision applications. One potential problem is that scaling at-

tacks can cause inconsistency between different screen reso-

lutions, when the browser’s auto/adaptive-zooming function

is enabled.

6.4 Factors that Might Interfere with Scaling

Attacks

Image processing applications often contain a complex pre-

processing pipeline. Besides scaling, an image processing

applications might use cropping, filtering, and various other

image transformation actions. If these additional image pre-

processing actions occur prior to the scaling action, they might

pose additional challenges to scaling attacks.

The following list presents an overview of common image

preprocessing actions and discusses their potential impact on

scaling attacks.

• Cropping – truncate certain regions of the input image,

for the purpose of data augmentation or background re-

moving. Cropping usually changes the source image

aspect ratio, and if a scaling attack was designed under a

wrong dimension, the automatic generated image would

not scale to the right target image. Therefore, attackers

need to know precisely which region in the input is ex-

pected to be cropped. Only under some special cases,

such as the cropping preserves the aspect ratio and the

underneath algorithm is Nearest, deceiving effect can be

preserved. Certainly the degree of impact also depends

on the relative size being cropped. If the pixels that are

used to generate the targeted image are chopped, then

the effect of scaling attack is definitely affected.

• Filtering – is to blur or sharpen an image, adjust its color

palette. Image filtering changes the pixel values and thus

directly interferes with scaling attacks, because the attack

is based on the manipulation of “average” values of

neighbor pixels used by the interpolation algorithms. For

simple scaling algorithms, such as Nearest, the output

image might still present deceiving effect as the result is
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Table 3: Deceiving effect on four cloud vision services.

Service Azure Baidu Aliyun Tencent

Inferred Scale 227*227 256*256 224*224 224*224

Inferred Algorithm OpenCV.Bilinear OpenCV.Bicubic OpenCV.Bilinear OpenCV.Bilinear

Attack Image

Response

"captions":

{ "text": "a close up of a wolf",

"confidence": 0.707954049 } }

Tags: ... { "name": "wolf",

"confidence": 0.981169641}...

... "result":

{ "score": "0.938829",

"name": "Grey Wolf" },

{ "score": "0.0146997",

"name": "Mexico Wolf" }...

...

"Object":

{ "Grey Wolf": "49.37%",

"White Wolf": "29.93%",...}

...

"Tags":

{ "Grey Wolf": "88%",

"Eskimo": "15%"}...

Table 4: Proof-of-Concept sample image and the rendering effect under different browser settings. (The HTML file uses an IMG

tag to specify the image rendering size.)

Browsers Original Image Firefox, Edge IE11 Chrome Safari

Image

Size 672*224 224*224 224*224 224*224 224*224

Version

Firefox: 59.0.2, IE: 11.0.9600.18977

Chrome: 63.0.3239.84,

Edge: 41.16299.371.0

Safari: 8.0 (10600.1.25.1)

Firefox: 59.0.2

Edge: 41.16299.371.0
IE: 11.0.9600.18977 Chrome: 63.0.3239.84

Safari:

8.0 (10600.1.25.1)

like the original target with a filtering effect. However,

for complex scaling algorithms, such as Bilinear and

Bicubic, the output image will likely not present as the

intend target image.

• Affine transformations – is to rotate or mirror the in-

put image. Rotation in an arbitrary degree likely breaks

the calculation used by the automatic attack image craft-

ing. However, flipping images in 180 degree, mirror im-

ages might have no impacts on the scaling attack which

mainly depends on the size of the inputs and the scaling

algorithms. Some scaling algorithms are orientation in-

dependent, i.e. the output is same regardless the scan of

pixels is from left to right or the opposite order. In those

cases, a flip or mirror action would not affect scaling

attacks.

• Color transformations – to change the color space, like

convert an RGB image to grayscale. Color transforma-

tion can be considered as a special type of filtering, and

thus the impact to scaling attack is similar to filtering.

Although the above transformation actions all directly in-

terfere with scaling attacks, the interference can be overcome

by the attackers if they know these transformation details. In

fact, each of these operations can be described by a transfor-

mation matrix. Once an attacker ensures the exact content

of the transformation matrix and if there exists a correspond-

ing reverse transformation matrix, the attacker can applies

the reverse matrix to generated attack image before feeding

it to the targeted application. In the black-box case, the at-

tacker has to infer the transformation matrix. Therefore, these

transformation actions would increase the attack difficulty.

The deceiving effect of scaling attacks is also subject to

some native limitations, especially size and brightness, of

source and target images. An attacker needs to find an ap-

propriate pair of the source and target images to achieve a

successful attack image.

• Size: Sizes of the source and target images decide how

many redundant pixels can be leveraged to launch the

attack. If the size differences between scaling input and

output are very close, the information attenuation due to

resampling may be insufficient to achieve a successful

deceiving effect.

• Brightness: Brightness or color of the source and target

images decides how tight the constraints are. In the worst

case, it is hard to find a feasible solution given a full

white source and a full black target. Even we generate

an attack image successfully, it is hard to deceive human

without noticing dark dots distributed in the white image.

6.5 Practical Attack Scenarios

This paper presents the risk of scaling attacks through a set

of limited experiments with proof-of-concept images. We

have shown these proof-of-concept images can achieve de-

ceiving effect in deep-learning based image applications, web
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browsers, as well as cloud-based visual recognition and clas-

sification services. Although these proof-of-concept images,

such as the wolf-in-sheep set, do not cause any real damage,

we believe the risks of scaling attacks are real. This section

describes a few motivating scenarios to illustrate possible real

life threats.

• Data poisoning. Many image based applications rely

on label training sets and there are many large image

datasets, such as ImageNet [12], on the Internet. Many

deep learning developers rely on these datasets to train

their models. Although data poisoning as a concept is

known, developers and model trainers rarely consider

data poisoning is a real threat on these public datasets

since these datasets are public, and humans are expected

to notice obvious genre mistakes and a large set of mis-

labels. However, with scaling attacks, people with mali-

cious intent could conceal a hidden category of images

(e.g. wolf) while providing mistaken labels as another

category (e.g. sheep). We do not have evidence of such

activities, but we envision that scaling attacks definitely

make data poisoning more stealthy.

• Detection evasion and Cloaking. Content moderation

is one of the most widely used computer vision applica-

tions. Many vendors provide content filtering services,

such as Google [11], Amazon AWS [3] and Microsoft

Azure [4]. ModerateContent claims that it is trusted by

1000’s of sites to prevent offensive content [23]. An at-

tacker may leverage the scaling attack to evade these con-

tent moderators to spread inappropriate images, which

may raise serious problems in online communities. For

example, suppose an attacker wants to advertise illegal

drugs to users on the iPhone XS. The attacker can use

the scaling attack to create a cloaking effect, so that

the scaling result on the iPhone XS browser is the in-

tended drug image while the image in the original size

contains benign content. Certainly cloaking can also

be achieved by using other approaches such as browser

sensitive Javascript. However, scaling attacks create an

alternative approach as no additional code is used to

manage the rendering effect.

• Fraud by Leveraging Inconsistencies between Dis-

plays. An attacker can create a deceptive digital con-

tract using the scaling attacks. An attacker can create

an image document that contains a scanned contract but

renders to different content when scaling to different

ratios. The attacker can then get two parties to share the

same document. If they each use different browsers, the

content being displayed will be different. This inconsis-

tency can become the basis of potential financial fraud

activities.

7 Countermeasures

In this section, we discuss potential defense strategies to miti-

gate the threat from scaling attacks. First, we discuss possible

countermeasures as the attack prevention in the image prepro-

cessing procedure. Second, we discuss some approaches to

detect scaling attacks.

7.1 Attack Prevention

A naive way to avoid the scaling attack is to omit inputs whose

sizes are different from the input size used by the deep learn-

ing models. This approach is appropriate for applications that

deal with the inputs collected by sensors in specific formats.

However, this strategy is infeasible for many Internet services,

since the input images uploaded by users are often in various

sizes.

Another solution is that we can randomly remove some

pixels (by line or by column) from the image before scal-

ing it. This random cropping operation makes the scaling

coefficient matrices unpredictable, and therefore, it can in-

crease the attack difficulty effectively. However, we should

carefully design the pixel removing policy to maintain the

image quality.

7.2 Attack Detection

The scaling attack achieves the deceiving effect by causing

dramatic changes in visual features before and after the scal-

ing action. One potential solution is to detect such obvious

changes of input features during the scaling process, such as

the color histogram and the color scattering distribution.

7.2.1 Color-histogram-based Detection

The color histogram counts the amount of pixels for color

ranges of a digital image. It presents the color distribution in

an image, and is commonly used as a measurement of image

similarity. The main advantage of the color-histogram-based

detection approach is that it can measure the color distribution

change easily and quickly. It is a simple solution when the

data processing speed is the main concern, especially when

the system throughput is high. In our experiments, we convert

the image into grayscale to examine the effectiveness of color-

histogram-based detection, i.e., pixel values ranging from 0

to 255. Eventually, the color histogram of one image can be

represented as a 256-dimension vector vhis, and we adopt the

cosine similarity to measure the color-histogram similarity of

two images shis = cos(vhis
1 ,vhis

2 ).

7.2.2 Color-scattering-based Detection

The color-histogram-based detection can only present a rough

distribution of pixel values, disregarding the color spatial dis-

tribution information. The color scattering could become a
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supplementary to the histogram, which presents the color dis-

tribution measured with the distance between pixels and the

image center. In our experiments, we also convert the image

to grayscale to evaluate the effectiveness the color-scattering-

based detection approach. Specifically, we calculate the dis-

tance histogram as the color scattering measurement, and

define a statistical metric to evaluate the similarity: First,

we compute the average distance from pixels which belong

to the same pixel value to the center of the image and we

present the result with a 256-dimension color scattering vec-

tor vscat . Second, we calculate the cosine similarity between

vectors of two images as the color-scattering-based similarity

s = cos(vscat
1 ,vscat

2 ).

(a) Input (crafted) (b) Output

(c) Input (original) (d) Output

(e) CH: Crafted vs. Output (f) CH: Original vs. Output
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(h) CS: Original vs. Output

Figure 8: The color histograms and color scattering detection

results of the scaling attack in the wolf-in-sheep example.

(CH: color histogram, CS:color scattering)

(a) Color Histograms (b) Color Scattering

Figure 9: The CCD of color histogram similarity and color

scattering similarity detection.

7.2.3 Evaluation

To evaluate the performance of two attack detection strategies,

we have crafted three attack images for each sourceImg in

the dataset established in Section 6.2, with three 224*224

target images belong to the wolf, human face and cat category.

Before the similarity comparison, we resize the output to the

same size with the input, in order to eliminate the difference

in pixel amount. Fig.8 exhibits the detecting result of a wolf-

in-sheep attack image.

Fig.8e and Fig.8f present the comparison of grayscale his-

tograms between the input images and their scaled output.

The x-axis refers to pixel values ranging from 0 to 255, while

the y-axis refers to the number of pixels with the same value.

From Fig.8f, we can see that the two curves of the origi-

nal input and its scaling output almost coincide, where the

similarity is 0.96. In the meanwhile, we can see an obvious

difference between the color distribution of the attack image

and its scaling output, where the similarity is 0.50.

Fig.8g and Fig.8h present the comparison of grayscale color

scattering measurement. The x-axis refers to pixel values

ranging from 0 to 255, while the y-axis refers to the average

distance between the image center and pixels with the same

value. Similarly, we can see an obvious difference in the color

scattering measurement of the attack image and its scaling

output.

Fig.9 reports the complementary cumulative distribution

(CCD) of the detection results of our test set. The legend

“original-resize”, “ds-wolf”, “ds-face” and “ds-cat” refer to

the original-image, wolf-as-target, human-face-as-target and

cat-as-target case, respectively. We can observe that for both

two detection metrics, the similarity between original images

and their scaling outputs is obviously higher than that between

attack images and their scaling outputs. The result indicates

the two attack detection strategies work well in most cases.

8 Conclusion

This paper presents a camouflage attack on image scaling

algorithms, which is a potential threat to computer vision ap-
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plications. By crafting attack images, the attack can cause

the visual semantics of images change significantly during

scaling. We studied popular deep learning frameworks and

showed that most of their default scaling functions are vulner-

able to such attack. Our results also exhibit that even though

cloud services (such as Microsoft Azure, Baidu, Aliyun and

Tencent) hide the scaling algorithms and input scales, attack-

ers can still achieve the deceiving effect. The purpose of this

work is to raise awareness of the security threats buried in

the data processing pipeline in computer vision applications.

Compared to the intense interests in adversarial examples, we

believe that the scaling attack is more effective in creating

misclassification because of the deceiving effect it can create.
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A Proof of Concept of the Scaling Attack

A.1 Software Version and Model Information

for Attack Demonstration

Here we present the software setup for the attack demonstra-

tion. Although the example used here targets applications

with Caffe, the risk is not limited to Caffe. We have tested

the scaling functions in Caffe, TensorFlow and Torch. All of

them are vulnerable to scaling attacks.

The Caffe package and the corresponding image classi-

fication examples were checked out directly from the of-

ficial GitHub on October 25, 2017, and the OpenCV used

was the latest stable version from the following URL:

https://github.com/opencv/opencv/archive/2.4.13.4.zip

We used the BAIR/BVLC CaffeNet Model in our proof of

concept exploitation. The model is the result of training based

on the instructions provided by the original Caffe package. To

avoid any mistakes in model setup, we download the model

file directly from BVLC’s official GitHub page. Detailed

information about the model is provided in the list below.

Listing 1: Image classification model

name: BAIR/BVLC GoogleNet Model

caffemodel: bvlc_googlenet.caffemodel

caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

caffe_commit: bc614d1bd91896e3faceaf40b23b72dab47d44f5

A.2 Command Lines

The deceiving effect was demonstrated based on the official

Caffe example cppclassification. The exact command line

was shown in the list below.

Listing 2: Image classification command line

./classification.bin models/bvlc_googlenet/deploy.prototxt
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models/bvlc_googlenet/bvlc_googlenet.caffemodel

data/ilsvrc12/imagenet_mean.binaryproto

data/ilsvrc12/synset_words.txt

IMAGE_FILE

A.3 Sample Output

The list below shows the classification results for the sample

images used in the Section 2.2.

Listing 3: Sample classification results

# wolf-in-sheep.png [Image size: 672*224]

./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel

data/ilsvrc12/imagenet_mean.binaryproto

data/ilsvrc12/synset_words.txt /tmp/sample/wolf -in-sheep.png

---------- Prediction for /tmp/sample/wolf -in-sheep.png ----------

0.8890 - "n02114548 white wolf , Arctic wolf , Canis lupus tundrarum"

0.0855 - "n02120079 Arctic fox , white fox , Alopex lagopus"

0.0172 - "n02134084 ice bear , polar bear , Ursus Maritimus , Thalarctos maritimus"

0.0047 - "n02114367 timber wolf , grey wolf , gray wolf , Canis lupus"

0.0019 - "n02111889 Samoyed , Samoyede"

# wolf.png [Image size: 224*224]

./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel

data/ilsvrc12/imagenet_mean.binaryproto

data/ilsvrc12/synset_words.txt /tmp/sample/wolf.png

---------- Prediction for /tmp/sample/wolf.png ----------

0.8890 - "n02114548 white wolf , Arctic wolf , Canis lupus tundrarum"

0.0855 - "n02120079 Arctic fox , white fox , Alopex lagopus"

0.0172 - "n02134084 ice bear , polar bear , Ursus Maritimus , Thalarctos maritimus"

0.0047 - "n02114367 timber wolf , grey wolf , gray wolf , Canis lupus"

0.0019 - "n02111889 Samoyed , Samoyede"

# cat-in-sheep.png [Image size: 672*224]

./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel

data/ilsvrc12/imagenet_mean.binaryproto

data/ilsvrc12/synset_words.txt /tmp/sample/cat -in-sheep.png

---------- Prediction for /tmp/sample/cat -in-sheep.png ----------

0.1312 - "n02127052 lynx , catamount"

0.1103 - "n02441942 weasel"

0.1068 - "n02124075 Egyptian cat"

0.1000 - "n04493381 tub , vat"

0.0409 - "n04209133 shower cap"

# cat.png [Image size: 224*224]

./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel

data/ilsvrc12/imagenet_mean.binaryproto

data/ilsvrc12/synset_words.txt /tmp/sample/cat.png

---------- Prediction for /tmp/sample/cat.png ----------

0.1312 - "n02127052 lynx , catamount"

0.1103 - "n02441942 weasel"

0.1068 - "n02124075 Egyptian cat"

0.1000 - "n04493381 tub , vat"

0.0409 - "n04209133 shower cap"

(a) wolf-in-sheep.png (672*224) (b) wolf.png (224*224)

(c) cat-in-sheep.png (672*224) (d) cat.png (224*224)

Figure 10: Input pictures of the demo application.

B Code Samples Containing Image Scaling

This appendix provides code snippets of using data scaling

procedure examples, from popular deep learning frameworks’

released demos without change.

Listing 4: Preprocessing in image demo of Tensorflow [28]

def read_tensor_from_image_file(file_name , input_height=299, input_width=299,

input_mean=0, input_std =255):

input_name = "file_reader"

output_name = "normalized"

file_reader = tf.read_file(file_name , input_name)

if file_name.endswith(".png"):

image_reader = tf.image.decode_png(file_reader , channels = 3,

name=’png_reader’)

elif file_name.endswith(".gif"):

image_reader = tf.squeeze(tf.image.decode_gif(file_reader ,

name=’gif_reader’))

elif file_name.endswith(".bmp"):

image_reader = tf.image.decode_bmp(file_reader , name=’bmp_reader’)

else:

image_reader = tf.image.decode_jpeg(file_reader , channels = 3,

name=’jpeg_reader’)

float_caster = tf.cast(image_reader , tf.float32)

dims_expander = tf.expand_dims(float_caster , 0);

resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])

normalized = tf.divide(tf.subtract(resized , [input_mean]), [input_std])

sess = tf.Session()

result = sess.run(normalized)

return result

Listing 5: Preprocessing in cppclassification of Caffe [16]

189 void Classifier::Preprocess(const cv::Mat& img ,

190 std::vector <cv::Mat >* input_channels) {

191 /* Convert the input image to the input image format of the network. */

192 cv::Mat sample;

...

204 cv::Mat sample_resized;

205 if (sample.size() != input_geometry_)

206 cv::resize(sample, sample_resized, input_geometry_);

207 else

208 sample_resized = sample;

209

210 cv::Mat sample_float;

211 if (num_channels_ == 3)

212 sample_resized.convertTo(sample_float , CV_32FC3);

213 else

214 sample_resized.convertTo(sample_float , CV_32FC1);

...

224 CHECK(reinterpret_cast<float*>(input_channels ->at(0).data)

225 == net_ ->input_blobs()[0]->cpu_data())

226 << "Input channels are not wrapping the input layer of the network.";

227 }

Listing 6: ImageNet classification with Torch7 [29]

function preprocess(im, img_mean)

-- rescale the image

local im3 = image.scale(im,224,224,’bilinear’)

-- subtract ImageNet mean and divide by std

for i=1,3 do im3[i]:add(-img_mean.mean[i]):div(img_mean.std[i]) end

return im3

end

Listing 7: ImageNet classification with PyTorch [1]

def main():

global args , best_prec1

args = parser.parse_args()

...

# Data loading code

traindir = os.path.join(args.data , ’train’)

valdir = os.path.join(args.data , ’val’)

...

val_loader = torch.utils.data.DataLoader(

datasets.ImageFolder(valdir , transforms.Compose([

transforms.Resize(256),

transforms.CenterCrop(224),

transforms.ToTensor(),

normalize ,

])),

batch_size=args.batch_size , shuffle=False ,

num_workers=args.workers , pin_memory=True)

Listing 8: Code snippet in deepdetect based on Caffe [5]

int read_file(const std::string &fname)
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{

cv::Mat img = cv::imread(fname ,_bw ? CV_LOAD_IMAGE_GRAYSCALE :

CV_LOAD_IMAGE_COLOR);

if (img.empty())

{

LOG(ERROR) << "empty image";

return -1;

}

_imgs_size.push_back(std::pair <int,int>(img.rows ,img.cols));

cv::Size size(_width ,_height);

cv::Mat rimg;

cv::resize(img,rimg,size,0,0,CV_INTER_CUBIC);

_imgs.push_back(rimg);

return 0;

}

C Analysis and Examples of Popular Image

Scaling Implentations

In this paper, we assume that the scaling algoritms first re-

size inputs horizontally and then vertically. This appendix

provides examples of how we make our assumptions based

on source code snippets of OpenCV and Pillow.

Here, Listing 9 shows one code snippet of OpenCV10,

where lines 3607-3700 are the main part of the resizing

function implementation. From the loop condiction variables

dsize.width (line 3607) and dsize.height (line 3674), we can

infer that lines 3607-3662 present the horizontal scaling opera-

tion, and lines 3674-7300 show the vertical scaling operation.

Listing 9: Code snippet of OpenCV

...

3607 for( dx = 0; dx < dsize.width; dx++ )

3608 {

3609 if( !area_mode )

...

3662 }

3663

3664 for( dy = 0; dy < dsize.height; dy++ )

3665 {

3666 if( !area_mode )

...

3700 }

...

Listing 10 shows one code snippet of Pillow11, which fol-

lows the same procesure (lines 635-681). The scaling direc-

tion can be inferred from the variables need_horizontal (line

636) and need_vertical (line 662).

Listing 10: Code snippet of Pillow

...

635 /* two-pass resize, horizontal pass */

636 if (need_horizontal) {

637 // Shift bounds for vertical pass

638 for (i = 0; i < ysize; i++) {

639 bounds_vert[i * 2] -= ybox_first;

640 }

...

659 }

660

661 /* vertical pass */

662 if (need_vertical) {

663 imOut = ImagingNewDirty(imIn ->mode , imIn ->xsize , ysize);

664 if (imOut) {

665 /* imIn can be the original image or horizontally resampled one */

666 ResampleVertical(imOut , imIn , 0,

667 ksize_vert , bounds_vert , kk_vert);

668 }

...

681 }

10https://github.com/opencv/opencv/blob/master/modules/i

mgproc/src/resize.cpp
11https://github.com/python-pillow/Pillow/blob/master/sr

c/libImaging/Resample.c

D Scaling Attack Examples

Table 5: Examples of two attack forms.

Style
Source

Image

Target

Image

Attack

Image

Output

Image

Strong

Attack

(328*438) (178*218) (328*438) (178*218)

Strong

Attack

(580*785) (128*128) (580*785) (128*128)

Strong

Attack

(580*785) (220*311) (580*785) (220*311)

Strong

Attack⌃

(1280*720) (384*215) (1280*720) (384*215)

Strong

Attack⌥

(922*692) (185*139) (922*692) (185*139)

Weak

Attack
None

(328*438) (109*145) (328*438) (109*145)

⌃The car at the lower left corner of the attack image is

removed after the attack image gets resized.
⌥The "Prohibt left turn" sign in the attack image is changed

into "Turn left" after the attack image gets resized.
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