
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research Kingsborough Community College

2017

Seeing Library Data: A Prototype Data Visualization Application Seeing Library Data: A Prototype Data Visualization Application

for Librarians for Librarians

Mark E. Eaton
CUNY Kingsborough Community College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/kb_pubs/115

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/kb_pubs
https://academicworks.cuny.edu/kb
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/kb_pubs/115
https://academicworks.cuny.edu/kb_pubs/115
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

 1

This is an electronic version of an article published in the Journal of Web Librarianship, 11, no. 1

(2017): 69-78; the Journal of Web Librarianship is available online at:

http://dx.doi.org/10.1080/19322909.2016.1239236

Seeing Library Data: A Prototype Data Visualization Application for Librarians

Mark Eaton

Assistant Professor / Reader Services Librarian

Kingsborough Community College, City University of New York

mark.eaton@kbcc.cuny.edu

http://dx.doi.org/10.1080/19322909.2016.1239236

 2

Abstract

Visualizations can add value to raw library data. Tools that programmatically make such

visualizations interactive can further increase the value of this data, by giving librarians visual

tools to analyze their data sets. To demonstrate these benefits, Kingsborough Community College

Library built SeeCollections (http://b7jl.org/seecollections), a web application that visualizes our

libraries’ collections of books and ebooks.

This article discusses the how SeeCollections gathers data from Kingsborough’s discovery

layer API (Application Programming Interface), and transforms this data to create visualizations

for the web. SeeCollections is a lightweight, proof-of-concept data application based on a vendor

API. API data is often accessible in academic libraries, but is frequently underutilized.

SeeCollections was built to demonstrate the immediate value of these API data sources to

Kingsborough librarians, by providing a visual interface to discovery layer data. Keeping in mind

the broader literature on data visualization, this article will explore how SeeCollections was built.

Keywords

visualization, academic libraries, data, api (application programming interface)

 3

Introduction

Data visualization can bring a great deal of value to librarians' work. Data often have

compelling practical uses, and data visualization can provide librarians with important insights.

As Stephen Few puts it:

When we represent quantitative information in visual form, our ability to think about it is

dramatically enhanced. Visual representations … make patterns, trends and exceptions in

numbers visible and understandable (quoted in Murphy 2015, 482).

Visualization can increase the power of data, by showing the “patterns, trends and exceptions”

that Few describes. According to Eric Phetteplace, this “data visualization has a clear purpose: to

aid in our understanding of data” (2012, 93). Moreover, as Cole Nussbaumer Knaflic argues, the

effective use of data can help drive decision-making and make strong business cases for

initiatives (2015a). Librarians can benefit when they visually leverage data in support of library

projects.

Beyond producing actionable data, the process of building visualization tools can be

useful to librarians in other ways. Nathan Yau suggests that exploratory learning is a significant

benefit of data visualization initiatives (2013). We can learn about our libraries by tinkering with

data. In addition, handling data can also challenge librarians to improve their technical skills.

Visualization projects allow librarians to not only learn about their libraries, but to also learn

programming and data science skills.

Academic libraries are well positioned to reap these benefits, because there is usually a

great deal of useful data on hand (Chapman and Lown 2010; Chapman and Woodbury 2012). To

demonstrate the value of this opportunity, Kingsborough Community College Library has

 4

created a web application called SeeCollections that interactively visualizes library holdings of

books and e-books. While considering the existing literature of library visualization, this paper

will document how and why we built the SeeCollections application. It will explore the technical

considerations that went into building SeeCollections, and will conclude by suggesting that it is a

useful prototype for further, more elaborative library visualization projects.

Reading the Visualization Literature

Many librarians have already been doing in-depth visualization work and have

documented their achievements in scholarly articles (Braun 2015; Morton-Owens and Hanson

2012; Murphy 2013; Murphy 2015). These investigations are primarily case studies that offer

interesting visual solutions to data problems, and they have greatly informed this project.

However, these articles do not offer much theoretical treatment of data visualization in libraries.

Therefore, for theoretical context, fairly rich, recent, technical literature on data visualization

practice by non-librarians was examined (Cairo 2013; Knaflic 2015a; Tufte 1990; Wong 2010;

Yau 2013). These latter authors offer high-level perspectives on the goals of data visualization,

and suggest methodologies that best achieve these goals. I will discuss a few of these non-

librarian perspectives on visualization below. These theories of visualization will help frame the

SeeCollections project.

The classic voice on data visualization theory is Edward Tufte. In Envisioning

Information, Tufte unequivocally advocates for multi-dimensionality in visualizations. He

praises some incredibly complex paper-based visualizations (1990). However, writing in 1990,

Tufte was largely unaware of the coming ubiquity of interactive, digital visualizations. As a

 5

result, Envisioning Information understandably overlooks programmatic interactivity as a means

of representing complexity. Today’s technology makes it possible to create interactive web

visualizations that offer rich, multidimensional information in ways that were not foreseen by

Tufte’s model.

Yet not all visualization experts value multi-dimensionality as much as Tufte does. Wong

(2010) and Knaflic (2015a) advocate for very sparse visualization aesthetics. Knaflic is more

strategic and practical than Wong, arguing that data visualizations should have actionable

agendas. Knaflic maintains that visualizations should be expedient, and should focus on

advancing organizational objectives. While Wong argues that visualizations should be simple to

avoid deception, Knaflic’s minimalism is for tactical rather than philosophic reasons. Their

minimalist approaches will be useful to librarians working on applied, practical projects.

Yau (2013) and Cairo (2013) both provide useful syntheses between Tuftian complexity

and Wong and Knaflic’s visually minimalist counterpoints. Yau argues that sometimes data is

complex, requiring complex representation. Like Tufte, he suggests that complex visuals need

not be immediately understood to be effective. In this respect, he moves away from a strict visual

minimalism; however, he moderates his enthusiasm for complexity by insisting that such

complexity must be contextual. Cairo likewise balances conflicting approaches, strongly

seconding Yau’s position.

This discussion suggests that the principles of data visualization are strongly contested.

Although Yau’s even-handed approach and Cairo’s willingness to find common ground are

laudable, their positions are not authoritative or the only approach to data visualization. On her

blog, Knaflic states bluntly: “Many of the [data visualization] studies that come out

 6

demonstrating one thing are opposed via counter-studies that show the opposite” (2015b). The

literature on visualization remains fractious.

Yet despite this discord, the authors mentioned above all more or less maintain that

visualization can drive insights. While there is often disagreement about the methods and

techniques of visualization, there is usually common ground on the value of visualization (Cairo

2013; Knaflic 2015a; Tufte 1983; Wong 2010; Yau 2013). I attempted to build on this shared

enthusiasm for visualization by creating SeeCollections, a prototype data visualization tool for

libraries.

While this study does not attempt to draw theoretical conclusions about library data

visualization, I hope to suggest a practical way forward. This study reaffirms that visualized data

can drive insights. Our project’s unique contribution to the literature is therefore a technical

approach that demonstrates the value of data visualization in libraries. As shown above, this

project was informed by the visualization literature from beyond librarianship. This case study

seeks to provide an example of how data visualization techniques can be used productively at an

academic library. Before looking at the technical aspects of SeeCollections in detail, I will give

an overview of how it can be used to manipulate and display library data.

SeeCollections: A Visualization Project

SeeCollections visually represents the book collections of City University of New York

(CUNY) libraries. Our college, Kingsborough Community College, is one of 24 CUNY schools.

The Kingsborough library has a collection of approximately 161,000 books and 459,000 e-

books. This project was developed to give librarians at CUNY colleges a deeper understanding

 7

of what is in their collections through visualization. SeeCollections seeks to make intuited

knowledge about the collections more tangible by representing these collections visually. Rather

than restrict those visual insights to a local network or intranet, SeeCollections is accessible on

the public web. While primarily intended for CUNY librarians, the general public and

researchers are welcome to use this tool to visualize our library’s collections.

SeeCollections is also a prototype, proof-of-concept project, meant to demonstrate the

value of data visualization to my colleagues at Kingsborough Community College. Part of the

rhetorical agenda of SeeCollections is to show that there is a great deal of useful, interesting, and

actionable data available to our library. The project is therefore meant to convey the potential

utility of library data sources to CUNY co-workers and peers.

What does SeeCollections do? It is a web application that visualizes the library’s

holdings of books and e-books according to certain facets and keywords. Users can visualize

whatever topics they want, by selecting keywords and facets that interest them. Before

discussing the technical processes that make this possible, I will walk through how the

application is approached from a user’s perspective.

The user interface for SeeCollections is minimal, with a focus on clear presentation.

When a user loads the application page, they are prompted to select their college from a

dropdown list of CUNY colleges. Once a college is selected, the user is presented with a search

screen where they can search the collection by keyword and facet (see figure 1). Keywords can

be any combination of words, while a dropdown menu lets the user choose a facet to visualize.

 8

FIGURE 1

The facet choices are: (1) Library of Congress (LC) Classification, (2) Creation Date, and

(3) Topic. These particular facets were selected because they would be relevant to librarians, and

because they were easy to extract from the data. Other readily available facets were not selected,

either because they would likely not be interesting to the user, or because they produced

visualizations that were not intelligible using the visualization script adapted by this project. For

example, visualizations by Language or Resource Type did not produce useful visualizations,

because one category within each of those facets overwhelmingly dominated all others.

After the user picks from the facet options, running the search produces a visualization of

the number of print and electronic books at the selected college by the selected keywords and

facet. A blue bubble represents each category within the facet. A search by the Library of

Congress Classification facet, for example, would return bubbles for each relevant top-level LC

 9

class (see figure 2). The sizes of the bubbles represent the number of results for each category

within that facet. The bubbles are labeled, and hovering over the label displays a tooltip with

more details. Only categories with results are visualized. For example, a search by LC class that

returns results in both Music and Literature would have correspondingly sized bubbles

representing the M and P classes. Thus, SeeCollections works programmatically with data to

produce visualizations of the library’s book and e-book holdings.

FIGURE 2

Interactivity is built into the application. A librarian can run multiple searches on

SeeCollections, with differing keywords or facets, and corresponding visualizations will be

generated dynamically. This has important implications: “Suddenly, the creator of a visualization

does not have a monopoly over its meaning because the viewer can unveil patterns on their own”

 10

(Phetteplace 2012, 95). The viewer can participate in the production of meaning because the tool

can access data on demand, and process it instantly.

For our librarians, interactive visualization has important benefits. It has contributed to

problem solving in our library in interesting ways. For example, early on in the development of

SeeCollections, a Kingsborough librarian discovered that running a search for “computer

science” according to “creation date” at our college produced a visualization that was extremely

skewed toward books from 2009. We did some further investigation, and it turned out that the

reason for this anomaly was due to some rather uncontroversial cataloging considerations.

Despite our original hypothesis, it was not due to a disproportionate number of computer science

texts being purchased that year. Although the issue was resolved rather easily and satisfactorily,

it is clear that the librarians would have never identified this problem, nor reached these accurate

conclusions, without a visual tool to show us these previously unseen patterns in the data.

How Does SeeCollections Work?

SeeCollections uses data from the Primo X-Services API (X-Services 2016). Primo is the

discovery tool that is used across CUNY libraries. An API is an “Application Programming

Interface.” The API allows librarians to write scripts that can interact programmatically with

Primo, helpfully letting them build programs that expand upon the existing functionality of

Primo. In particular, this Primo API provides data about our libraries’ holdings in a machine-

readable format. This is a particularly useful starting point for library visualizations, as it allows

programs to be written that can access a huge amount of holdings data.

 11

However, working with the X-Services API can also be somewhat frustrating, since the

documentation (at the time of writing) does not cover all of the API’s functionality. Most

notably, some parameters that can be passed to the API are not described in the X-Services API

documentation (X-Services 2016). As a result, the API documentation was at times an obstacle

to the development of SeeCollections. Thankfully the Primo community is very supportive, and

CUNY is fortunate to employ librarians with deep knowledge of Primo. The community of users,

at CUNY and beyond, was essential to this project’s success.

SeeCollections’ use of the Primo X-Services API is rather straightforward. The program

queries the API on the fly for the specific records that match the user’s request. However, it does

not tap into the full range of possible query parameters, nor does it make full use of the rather

exhaustive data returned by the API. Indeed, some portions of the data returned by the API are

simply discarded by the application. In particular, SeeCollections’ visualizations draw

specifically from the header data returned by the API, rather than from the search results

themselves. In this way, SeeCollections takes a fairly minimal approach to API data. Rather than

aiming for comprehensive functionality, SeeCollections’ use of the API is kept as simple as

possible.

This is by design, for a couple reasons: First, this tool is a prototype. It is not intended to

exhaust the possible uses of the X-Services API. Second, there is merit to having a tool that is

easily explained to librarian colleagues. Using a straightforward API call makes this easier.

Librarians – our primary audience – often ask probing questions about where specific data come

from. They want clarity about which underlying collections are reflected by the visualization.

However, clearly representing diverse Primo data can be a challenge. Keeping the API call

 12

simple makes it easier to explain the data underlying the visualization. The intention is to have

the data visualization’s workings be as transparent as possible.

Structure of the Application

To access the Primo API data, the application takes user input in order to dynamically

generate an API call. Primo provides the choice of whether the data should be returned as JSON

or XML. For this application, I chose to use JSON, because this is the format that is ultimately

required for the front-end visualization script. JSON, or JavaScript Object Notation, is a

“lightweight data-interchange format” (JSON 2016) that is easy to manipulate in a number of

programming languages. This inter-operability makes it advantageous to retrieve and keep the

data in JSON format.

 Much of the application is devoted to handling and manipulating JSON, and ultimately

displaying that data on the web. This is accomplished using Flask, a very flexible Python web

micro-framework (Flask 2016). There are other, more elaborate web frameworks for Python, but

Flask is more than sufficient for this project. The minimal overhead of a Flask application was

appealing for this project, especially because the project is intended as a lightweight prototype.

Flask was also chosen because it allows most of the data manipulation to happen in Python, a

language that I am familiar with. Flask is particularly well suited to this project because it makes

it easy to integrate Python logic with the web. Flask coordinates all of the various aspects of our

SeeCollections application; it allowed me to work on the data on the back end with Python,

transform it, and pass it programmatically to the front-end code that delivers the visualization.

 13

Flask uses “routes,” which are functions, to handle HTTP requests. Much of the work in

the SeeCollections application is done by a route that handles the data submitted by the user.

First, this route parses and validates the user’s input. For example, keyword input is controlled

for length, and limited to certain characters with a regular expression. The route then

dynamically creates an API call and sends it. It then passes the resulting JSON data to a Python

module (which I also wrote) for processing. This module transforms the raw API JSON data into

more helpful, better-structured data by checking it and putting it through a series of

manipulations. These manipulations are fairly straightforward. For example, they ensure that all

of the Python dictionaries present have appropriately named keys; they wrap all of the data in a

Python list; they catch and handle exceptions correctly; and so on.

In addition to creating the visualization, SeeCollections also makes this data available on

the web. JavaScript is the front-end technology that ultimately presents data to the

SeeCollections user. JavaScript is a cornerstone of contemporary web development; a great deal

of today’s interactive web content relies upon it. Many popular code libraries have been written

for JavaScript. This project draws upon jQuery, Bootstrap and d3.js. These libraries are helpful

additions to plain JavaScript, allowing for the execution of complicated operations with

relatively simple bits of code.

For example, in SeeCollections, jQuery is primarily used as a way to display messages.

These include helpful updates for the user like “Loading your data…”, as well as error messages,

when necessary. jQuery is especially useful because it provides straightforward event handling:

it can capture users’ interactions with the page and it provides helpful tools for responding to

those events (jQuery 2016). This allows for the display of appropriate messages in response to

users’ interactions with SeeCollections. For this project, the main benefit of jQuery is that it

 14

greatly simplifies the process of writing JavaScript for the web, which is no doubt in part why

jQuery is such a popular JavaScript library.

To give SeeCollections a unified visual theme, I have used Bootstrap. Bootstrap is most

commonly used to make webpages responsive to different devices (Bootstrap 2016). However,

this project did not use much of this responsiveness functionality; instead the Bootstrap library

was primarily used to style the elements of the page in a consistent and appealing way. For

example, the expandable help menu in the bottom corner of the results screen was entirely styled

with Bootstrap. Bootstrap was used because it provides a minimal, easy-to-implement style for

our web content.

Most critically, SeeCollections draws upon the d3.js library to display the data. D3.js is

an immensely popular library that provides useful building blocks for making data visualizations

(Bostock 2016b). D3.js facilitates the binding of data to the content of a web page, which allows

manipulation of the web content based on the underlying data. I adapted a d3.js script called

“Bubble Chart,” which was originally published by Mike Bostock under the GNU General

Public License (2016a). This fairly accommodating license permits the use of his code in this

project. Bostock is a prolific creator of d3.js scripts, and a number of his other d3.js

visualizations could also have plausibly been used for this project; “Bubble Chart” was chosen

based on the simplicity of its JSON data structure and the clarity of the resulting visualization.

The “Bubble Chart” script, as originally written, draws its data from a static JSON file

(Bostock 2016a). While this may have been useful for Bostock, using static JSON does not meet

the needs of this application. SeeCollections generates visualizations dynamically, and a static

JSON file is not ideally suited to this. As a result, I altered the d3.js script so that JSON could be

 15

directly passed to the script as a variable. This is possible thanks to Flask’s templating feature,

which allows the application to drop bits of Python, such as variables and logic, into the front-

end code. For this purpose, Flask relies on Jinja2, “a modern and designer-friendly templating

language for Python” (Jinja2 2016). Jinja2 allows for the creation of HTML templates that

integrate the results of our Python logic. In this way, the restructured JSON data can be directly

included in the front-end code that powers the visualization. Bostock’s d3.js script is then able to

transform this JSON into appealing visualizations for the web.

The crux of the programming problem for this project was getting the JSON from the

API to work with the d3.js script. As I figured out this programming challenge, there were a

number of corner cases along the way that needed to be addressed (what happens if there is no

data, or if only one item from the collection is returned?). Once these were resolved, the Flask

application was successfully passing data to the d3.js script.

Conclusion

SeeCollections is an example of a small application for producing data visualizations

from a vendor API. It dynamically draws on API data to responsively produce custom

visualizations. The basic principles outlined here – structuring an application with Flask,

visualizing with d3.js, and drawing data from an API – could be applied to many other library

data projects. This is important because librarians usually have access to data through numerous

APIs, either freely available or through contracts with vendors. There are substantial

opportunities to better utilize these data sources for the benefit of the library community.

 16

Of course, these initiatives require librarian labor. However, Chapman and Lown have

convincingly made the point that “although there is undeniably a time-commitment involved in

initiating this kind of effort, especially in cases where data … is not a part of one’s usual

responsibilities, we think the short term and long term benefits are significant” (2010, ¶25).

These benefits include improved library decision-making and expanded librarian skill sets. It is

in librarians’ interests to programmatically dig into library data sources, as there are clear

benefits in making data more visible.

One function of SeeCollections is as a proof-of-concept project for the Kingsborough

library. It is intended to demonstrate the benefits of library data work to colleagues at

Kingsborough Community College. This project has shown that useful data projects are within

reach for the library, using sources the library already has access to. SeeCollections only

scratches at the surface of the data available to the library; more can be done to take advantage of

the numerous existing data sources.

SeeCollections may also be helpful and interesting to colleagues who may have no

interest in developing digital tools. SeeCollections has proved useful for identifying patterns in

holdings data; for example, in analyzing the computer science books in the library’s collection.

These data-driven insights have clear value, and SeeCollections makes them accessible to

librarians across CUNY and beyond. In this way, the tool may prove useful to CUNY librarians

who may be approaching the data from a number of non-technical perspectives.

Lastly, SeeCollections is also meant to open a conversation with librarians at other

institutions. Hopefully this project can serve as a point of reference for librarians considering

visualization projects for their own collections. To encourage adoption of these ideas and the

 17

code, the project is open source and available on GitHub (Eaton 2016). The code is permissively

licensed, and can be freely adapted and modified. In the hands of other librarians, ideally this

work may lead to further, more well-elaborated applications. SeeCollections is meant to serve as

a useful example of a d3.js visualization using a Flask framework, within a library context. It

shows that useful data visualization applications are possible, even with fairly simple, librarian-

built web applications. Hopefully this project suggests viable paths towards future library data

projects.

 18

References

“Bootstrap: The World’s Most Popular Mobile-First and Responsive Front-End Framework.”

2016. Accessed July 19. https://getbootstrap.com/.

Bostock, Mike. 2016a. “Bubble Chart.” Accessed February 23.

http://bl.ocks.org/mbostock/4063269.

———. 2016b. “D3.js - Data-Driven Documents.” Accessed May 29. https://d3js.org/.

Braun, Steven. 2015. “Manifold: A Custom Analytics Platform to Visualize Research Impact.”

Code4Lib Journal, 30.

Cairo, Alberto. 2013. The Functional Art: An Introduction to Information Graphics and

Visualization. Berkeley, CA: New Riders.

Chapman, Joyce, and Cory Lown. 2010. “Practical Ways to Promote and Support Collaborative

Data Analysis Projects.” Code4Lib Journal, 12.

Chapman, Joyce, and David Woodbury. 2012. “Leveraging Quantitative Data to Improve a

Device-Lending Program.” Library Hi Tech 30 (2): 210–34.

Eaton, Mark. 2016. “Primo-Visualization.” GitHub. Accessed May 19.

https://github.com/MarkEEaton/Primo-Visualization.

“Flask.” 2016. Accessed February 23. http://flask.pocoo.org/.

“Jinja2.” 2016. Accessed July 18. http://jinja.pocoo.org/docs/dev/.

“jQuery.” 2016. Accessed July 19. https://jquery.com/.

“JSON.” 2016. Accessed February 23. http://www.json.org/.

Knaflic, Cole Nussbaumer. 2015a. Storytelling with Data: A Data Visualization Guide for

Business Professionals. Hoboken, NJ: John Wiley and Sons, Inc.

 19

———. 2015b. “The Great Pie Debate.” Storytelling with Data. March 31.

http://www.storytellingwithdata.com/blog/2015/03/the-great-pie-debate.

Morton-Owens, Emily, and Karen L. Hanson. 2012. “Trends at a Glance: A Management

Dashboard of Library Statistics.” Information Technology and Libraries, September.

Murphy, Sarah Anne. 2013. “Data Visualization and Rapid Analytics: Applying Tableau

Desktop to Support Library Decision-Making.” Journal of Web Librarianship 7 (4): 465–

76.

———. 2015. “How Data Visualization Supports Academic Library Assessment: Three

Examples from the Ohio State University Libraries Using Tableau.” College & Research

Libraries News 76 (9): 482–86.

Phetteplace, Eric. 2012. “Effectively Visualizing Library Data.” Reference & User Services

Quarterly 52 (2): 93–97.

Tufte, Edward R. 1983. The Visual Display of Quantitative Information. Cheshire, CT: Graphics

Press.

———. 1990. Envisioning Information. Cheshire, CT: Graphics Press.

Wong, Dona M. 2010. The Wall Street Journal Guide to Information Graphics: The Do’s and

Don’ts of Presenting Data, Facts, and Figures. New York: W.W. Norton & Co.

“X-Services.” 2016. Accessed February 23.

https://developers.exlibrisgroup.com/primo/apis/webservices/xservices.

Yau, Nathan. 2013. Data Points: Visualization That Means Something. Somerset, NJ: John

Wiley & Sons.

	Seeing Library Data: A Prototype Data Visualization Application for Librarians
	tmp.1488917450.pdf.imNSI

