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Abstract

In social interactions, we rely on nonverbal cues like gaze direction to understand the behavior of others. How we react to these
cues is affected by whether they are believed to originate from an entity with a mind, capable of having internal states (i.e., mind
perception).While prior work has established a set of neural regions linked to social-cognitive processes likemind perception, the
degree to which activation within this network relates to performance in subsequent social-cognitive tasks remains unclear. In the
current study, participants performed a mind perception task (i.e., judging the likelihood that faces, varying in physical human-
likeness, have internal states) while event-related fMRI was collected. Afterwards, participants performed a social attention task
outside the scanner, during which they were cued by the gaze of the same faces that they previously judged within the mind
perception task. Parametric analyses of the fMRI data revealed that activity within ventromedial prefrontal cortex (vmPFC) was
related to both mind ratings inside the scanner and gaze-cueing performance outside the scanner. In addition, other social brain
regions were related to gaze-cueing performance, including frontal areas like the left insula, dorsolateral prefrontal cortex, and
inferior frontal gyrus, as well as temporal areas like the left temporo-parietal junction and bilateral temporal gyri. The findings
suggest that functions subserved by the vmPFC are relevant to both mind perception and social attention, implicating a role of
vmPFC in the top-down modulation of low-level social-cognitive processes.
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Engaging in social interactions requires the ability to infer inter-
nal states of others, such as beliefs, intentions, and emotions
(mentalizing; Baron-Cohen, 1997), and to use this information
to predict their behavior (C. D. Frith& Frith, 2006). The primate
brain is equippedwith neural networks specialized in processing
social information (social brain; Adolphs, 2009), responsible
for making inferences about internal states and understanding
the goals that underlie observed actions (Brothers, 2002; Bzdok
et al., 2013; C. D. Frith & Frith, 2006; Van Overwalle, 2009;
Van Overwalle &Baetens, 2009). Activation within social brain

areas is modulated by the degree to which others are perceived
as Bhaving a mind^(Spunt, Meyer, & Lieberman, 2015) and the
ability to experience internal states and execute goal-directed
actions (mind perception; H. M. Gray, Gray, & Wegner,
2007). Mind perception is not exclusive to interactions with
human agents; it can also be triggered in social interactions with
nonhuman entities like animals or robots, as long as their be-
havior and/or appearance evoke associations with humanness
(anthropomorphism; Abell, Happé, & Frith, 2000; Castelli,
Happé, Frith, & Frith, 2000; DiSalvo, Gemperle, Forlizzi, &
Kiesler, 2002; Kiesler, Powers, Fussell, & Torrey, 2008;
Looser & Wheatley, 2010; Pfeiffer, Timmermans, Bente,
Vogeley, & Schilbach, 2011; Waytz, Gray, Epley, & Wegner,
2010). Agents that do not trigger mind perception recruit social
brain areas less than agents believed to have a mind (Gallagher,
Jack, Roepstorff, & Frith, 2002; Harris & Fiske, 2006; Krach
et al., 2008; Özdem et al., 2016; Sanfey, Rilling, Aronson,
Nystrom, & Cohen, 2003; Waytz, Gray, et al., 2010), and have
a negative impact on performance during social interactions
(Caruana, McArthur, Woolgar, & Brock, 2016; Wiese,
Wykowska, Zwickel, & Müller, 2012; Wykowska, Wiese,
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Prosser, &Müller, 2014). What has not been investigated so far
is whether the degree to which mind perception activates social
brain areas is directly related to human performance during
social-cognitive tasks. To address this question, the current ex-
periment employed parametric analyses of fMRI data to relate
brain activation during a mind perception task (i.e., judging the
likelihood that agents, varying in physical human-likeness, have
internal states) with performance on a separate social attention
task (i.e., attentional orienting to agents’ gaze cues).

We expect networks that are activated during mind percep-
tion and social attention to be located in the social brain net-
work, consisting of the action perception system (APS) in-
volved in understanding the goals underlying observed actions,
and the mentalizing system (MS) involved in inferring others’
internal states (Adolphs, 2009). The APS consists of a distrib-
uted network of temporal areas like the extrastriate body area
(EBA) and posterior superior temporal sulcus (pSTS), as well
as parietal and frontal areas like the inferior parietal cortex
(IPC) and ventral premotor cortex (vPMC); the temporal areas
are thought to detect the presence of intentional agents and label
their actions as goal-directed based on observed motion pat-
terns, while the parietal and frontal areas are believed to identify
particular goals underlying these actions (e.g., BWhat is the
outcome of an action?^; Becchio, Adenzato, & Bara, 2006;
Grafton & Hamilton, 2007; Pobric & Hamilton, 2006; Saxe,
2006; Saygin, 2007; Saygin, Wilson, Hagler, Bates, & Sereno,
2004). Action understanding in the primate brain is based on
the principles of resonance, where shared representations are
activated both when an action is executed and when a similar
action is observed in others (Gallese, Fadiga, Fogassi, &
Rizzolatti, 1996). In nonhuman primates, resonance is associ-
ated with mirror neurons located in the IPC and vPMC, which
fire during both action observation and execution, and may
support inferences about the goals underlying observed actions
of others (Gallese et al., 1996; Gallese, Keysers, & Rizzolatti,
2004; Iacoboni, 2005; Keysers & Perrett, 2004; Rizzolatti &
Craighero, 2004). Although there is agreement that action un-
derstanding in humans is also based on the principles of reso-
nance (Kilner, Paulignan, &Blakemore, 2003; Oztop, Franklin,
Chaminade, & Cheng, 2005; Press, Bird, Flach, & Heyes,
2005; Rizzolatti & Craighero, 2004; Umiltà et al., 2001), the
particular role of mirror neurons in this process is still a matter
of debate (Chong, Cunnington, Williams, Kanwisher, &
Mattingley, 2008; Dinstein, Hasson, Rubin, & Heeger, 2007;
Kilner, Neal, Weiskopf, Friston, & Frith, 2009; Mukamel,
Ekstrom, Kaplan, Iacoboni, & Fried, 2010; Saygin,
Chaminade, Ishiguro, Driver, & Frith, 2012).

The mentalizing system is a distributed network involving
posterior areas like the temporo-parietal junction (TPJ), supe-
rior temporal sulcus (STS), and fusiform gyrus (FG), as well
as anterior areas like the medial and ventromedial prefrontal
cortex (mPFC, vmPFC), and anterior cingulate cortex (ACC;
Saygin et al., 2012; Van Overwalle, 2009). Within the

posterior part of the network, the STS is involved in process-
ing biological motion and inferring intentions underlying bi-
ological cues, like changes in gaze or head direction, while the
FG is responsible for encoding invariable facial information,
such as identity (Nummenmaa & Calder, 2009). The TPJ is
involved in inferring particular intentions, beliefs and higher-
order action goals in a situation-specific manner (BWhy is an
observed action executed?^; Chaminade & Decety, 2002;
Farrer et al., 2003; Gallagher et al., 2000; Grèzes, Berthoz,
& Passingham, 2006; Grèzes, Frith, & Passingham, 2004;
Ohnishi et al., 2004; Perner, Aichhorn, Kronbichler, Staffen,
& Ladurner, 2006; Ruby & Decety, 2001; Saxe & Kanwisher,
2003; Saxe & Powell, 2006), and allows differentiating self
from other intentions via perspective taking (Chaminade &
Decety, 2002; Farrer et al., 2003; Ruby & Decety, 2001).
Although still a matter of debate, social functions seem to be
lateralized within TPJ, with lTPJ being more involved in per-
spective taking (Samson, Apperly, Chiavarino, & Humphreys,
2004) and anthropomorphism (Chaminade, Hodgins, &
Kawato, 2007; Cullen, Kanai, Bahrami, & Rees, 2013;
Perner et al., 2006; Zink et al., 2011), and rTPJ being more
responsible for discriminating intentional from nonintentional
actions (Cavanna & Trimble, 2006; Chaminade et al., 2012;
Gallagher et al., 2002; Krach et al., 2008) and reasoning about
others’ particular internal states (Costa, Torriero, Oliveri, &
Caltagirone, 2008; Gallagher et al., 2000; Saxe, 2006; Saxe &
Kanwisher, 2003). The rTPJ also serves as convergence point
for social and nonsocial processes (Chang et al., 2013; Krall
et al., 2015; Krall et al., 2016; Mitchell, 2008; Scholz,
Triantafyllou, Whitfield-Gabrieli, Brown, & Saxe, 2009),
and is involved in processing language and semantics
(Binder, Desai, Graves, & Conant, 2009). The anterior part
of the MS includes areas like the mPFC, vmPFC, and ACC,
and is involved in making inferences about others based on
enduring dispositions, such as traits or preferences rather than
inferring particular internal states on a trial-by-trial basis
(Amodio & Frith, 2006; Brothers, 2002; Saxe, 2006; Saxe &
Kanwisher, 2003; Saygin et al., 2012; Van Overwalle, 2009).
This requires neurons with the ability to represent behavior
over a longer period of time, across different circumstances,
and with different social partners, a feature that applies to
neurons in the mPFC (Amodio & Frith, 2006; Decety &
Chaminade, 2003; U. Frith & Frith, 2001; Gallagher &
Frith, 2003; Huey, Krueger, & Grafman, 2006; Leslie,
Friedman, & German, 2004; Wood & Grafman, 2003).
Activation within mPFC is positively correlated to the degree
of background knowledge one possesses about another person
(Saxe & Wexler, 2005), as well as to the social relevance
ascribed to information about others (Grèzes et al., 2004). In
contrast, activity within vmPFC has been associated with rea-
soning about the emotional states of others (Hynes, Baird, &
Grafton, 2006; Völlm et al., 2006). Medial prefrontal areas are
also involved in impression formation by providing access to
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general social knowledge (Mitchell, Macrae, & Banaji, 2006;
Szczepanski & Knight, 2014), with activity in mPFC being
linked to retrieving stereotypical knowledge about people
(Contreras, Banaji, & Mitchell, 2012; Fairhall, Anzellotti,
Ubaldi, & Caramazza, 2014), and activity in vmPFC being
related to retrieving script-based social knowledge (Ghosh,
Moscovitch, Melo Colella, & Gilboa, 2014; van Kesteren,
Ruiter, Fernández, & Henson, 2012). Medial prefrontal areas
are also related to egocentric mentalizing about similar others
(Jenkins, Macrae, & Mitchell, 2008; Mitchell, Macrae, &
Banaji, 2004, 2006), and are activated when viewing social
scenes containing human versus nonhuman agents (Wagner,
Kelley, & Heatherton, 2011). The ACC is specifically activat-
ed during interactions that require mentalizing in real time
(Gallagher et al., 2000; McCabe, Houser, Ryan, Smith, &
Trouard, 2001) and has been suggested as a neural correlate
of mind perception, as human-like agents capable of executing
intentional actions activate this brain area more strongly than
nonhuman agents (Gallagher et al., 2002).

Previous research has shown that during interactions with
others, activity within social brain areas is modulated by the
degree to which others are perceived as Bhaving a mind,^with
stronger activation for agents believed to have a mind than for
those who do not (Gallagher et al., 2002; Krach et al., 2008;
Sanfey et al., 2003). For instance, observing the actions of
nonhuman agents recruits the APS to a smaller degree than
observation of human actions (Kilner et al., 2003; Oberman,
McCleery, Ramachandran, & Pineda, 2007; Oztop et al.,
2005; Press et al., 2005); the actual degree of activation has
been shown to depend on features like physical appearance
(Chaminade et al., 2007; Kupferberg et al., 2012), motion
kinematics (Bisio et al., 2014), and familiarity (Press,
Gillmeister, & Heyes, 2007). Agents failing to trigger mind
perception also underactivate the MS, with reduced activation
for nonhuman versus human agents, as well as agents who are
deprived of their ability of Bhaving a mind^ due to dehuman-
ization (Gallagher et al., 2002; Harris & Fiske, 2006; Krach
et al., 2008; Özdem et al., 2016; Sanfey et al., 2003; Spunt
et al., 2015; Waytz, Morewedge, et al., 2010a; Wykowska
et al., 2014).

In addition to activation in social brain areas, mind percep-
tion also modulates performance and attitudes during social
interactions. For example, mind perception has been shown to
influence prosocial behaviors (Bering & Johnson, 2005;
Epley, Waytz, Akalis, & Cacioppo, 2008; Graham & Haidt,
2010; Gray, Young, & Waytz, 2012; Shariff & Norenzayan,
2007), reactions to observing negative consequences for
others (Cushman, 2008; Gray & Wegner, 2008; Ohtsubo,
2007), and the motivation to perpetuate moral standards
(Haley & Fessler, 2005). Similarly, attitudes and performance
in interactions with nonhuman agents can be improved when
the agents trigger mind perception by displaying human fea-
tures or behaviors (Bennewitz, Faber, Joho, Schreiber, &

Behnke, 2005; Fussell, Kiesler, Setlock, & Yew, 2008;
Huang & Thomaz, 2011; Mutlu, Forlizzi, & Hodgins, 2006;
Mutlu, Kanda, Forlizzi, Hodgins, & Ishiguro, 2012; Pfeiffer-
Leßmann, Pfeiffer, &Wachsmuth, 2018; Sidner, Kidd, Lee, &
Lesh, 2004; Staudte & Crocker, 2011; Wiese, Metta, &
Wykowska, 2017; Yamazaki, Yamazaki, Burdelski, Kuno, &
Fukushima, 2010). In contrast, agents not triggering mind
perception negatively impact performance in social interac-
tions (Caruana et al., 2016; Wiese et al., 2012; Wykowska
et al., 2014) and fail to induce social facilitation (Bartneck,
2003; Park & Catrambone, 2007; Riether, Hegel, Wrede, &
Horstmann, 2012; Woods, Dautenhahn, & Kaouri, 2005).
Specifically, it has been shown that social signals, like changes
in gaze direction, are followed to a larger extent when they are
believed to reflect the actions of a mind compared to a
preprogrammed algorithm (Caruana et al., 2016; Wiese
et al., 2012; Wykowska et al., 2014), with faster responses to
targets presented at gazed-at locations (gaze-cueing effect;
Friesen & Kingstone, 1998).

Aim of study

Prior research indicates that mind perception has the capacity
to modulate activation in social brain areas, as well as perfor-
mance during social-cognitive tasks. However, relations be-
tween activation in brain areas related to mind perception and
performance during social-cognitive tasks have yet to be
established. That is, prior studies have not tested whether
within-subject variation in brain activation during mind per-
ception is related to subsequent variation in performance on
social-cognitive tasks and, if so, which brain areas are most
closely related to social-cognitive performance. We address
this question by relating brain activation during a mind per-
ception task (i.e., judging the likelihood that agents have
internal states; Martini, Gonzalez, & Wiese, 2016) to perfor-
mance on a low-level social-cognitive task (i.e., attentional
orienting to gaze cues; Friesen & Kingstone, 1998). These
tasks were chosen based on previous studies showing that
(a) judgments regarding others’ capacity of having internal
states require mind perception (Cheetham, Suter, & Jancke,
2014; Hackel, Looser, & Van Bavel, 2014; Looser &
Wheatley, 2010; Martini et al., 2016; Waytz, Gray, et al.,
2010), and (b) the degree to which others’ gaze is followed
is linked to mind perception and other more complex social-
cognitive processes like mentalizing (Baron-Cohen, Leslie, &
Frith, 1985). In both tasks, we used a set of images that varied
in their degree of physical humanness and were created by
morphing separate images of a human and a robot face into
each other in steps of 20%. Manipulating physical humanness
via morphing has been used in previous studies as a reliable
tool to manipulate the degree to which mind is perceived in
others (Cheetham et al., 2014; Hackel et al., 2014; Looser &
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Wheatley, 2010; Martini et al., 2016; Waytz, Gray, et al.,
2010). The mind perception task was performed inside an
fMRI scanner to determine the degree to which reasoning
about the agents’ capability of having internal states elicited
activation within the social brain network; the social attention
task was performed outside the scanner, and reaction times
were collected in order to assess the degree to which the
agents’ gaze triggered shifts of spatial attention to gazed-at
locations.

We first confirmed that the mind perception task activated
the social brain network by employing a parametric analysis
of the fMRI data utilizing the mind perception ratings as
weights. As a second step, to test whether activation in the
social brain network was also related to subsequent perfor-
mance on a social attention task, a parametric analysis of the
fMRI data was performed utilizing each participant’s variation
in gaze cueing across the different levels of physical human-
ness as weights. Together, these two parametric analyses of
the fMRI data provide insight about the neural regions in-
volved in mind perception and relations with subsequent
low-level social-cognitive performance, respectively. Of par-
ticular interest was whether any neural regions were activated
not only during the mind perception task but also were related
to subsequent low-level social-cognitive performance during
gaze cueing. An overlap in activity between these two analy-
ses would provide evidence that initial neural activity related
to mind perception, for a particular agent, is related to subse-
quent low-level social-cognitive performance involving that
same agent. In line with the notion that mind perception is a
prerequisite for low-level social-cognitive processes like so-
cial attention, we predicted that overlapping fMRI activation
would be identified within the social brain network.

Method and materials

Participants

Twenty-two undergraduate students (seven female, mean age
= 24.36, SD = 4.73) were recruited from George Mason
University and paid $15 per hour for their participation. All
were right-handed, had normal or corrected-to-normal vision,
had no known neurological deficits, and were not currently
taking any medications known to affect the central nervous
system. The office of integrity and assurance approved all
procedures, and participants provided informed consent prior
to the experiment.

Stimuli

Six agent images were created that varied in their degree of
physical humanness (in %) from machine-like (100% robot)
to human-like (100% human) and were used both for the mind

perception task and the social attention task.1 Changing the
physical appearance of an agent in a parametric fashion has
been shown tomodulate the degree to whichmind is attributed
to an agent in previous studies (Hackel et al., 2014; Martini
et al., 2016) and to alter activation within social brain areas
(e.g., Gao, McCarthy, & Scholl, 2010; Looser & Wheatley,
2010; Waytz, Morewedge, et al., 2010; Wheatley, Weinberg,
Looser, Moran, & Hajcak, 2011).

The stimuli were created using FantaMorph, which allows
two images to be blended together at specified increments (in
%). The images used to create the stimuli were the Meka S2
humanoid robot head and a male human face (Lundqvist,
Flykt, & Öhman, 1998). Morphing occurred at 20% incre-
ments, yielding a total of six images (0%, 20%, 40%, 60%,
80%, 100% physical humanness; see Fig. 1). Each image was
presented on white background in full frontal orientation and
subtended 7.8° wide and 8.6° high. For both the mind percep-
tion and the social attention tasks, the eyes were centered on
the horizontal axis of the screen. In the mind perception task,
the pupils always remained centered relative to the vertical
axis of the screen, looking straight ahead; in the social atten-
tion task, irises and pupils were additionally shifted with
Photoshop to deviate 0.4° from direct gaze in order to create
the impression of an eye movement.

Tasks

Mind perception task

The mind perception task was performed inside of an fMRI
scanner and involved making judgments about the capability
of different agents (varying in their degree of physical hu-
manness) of having internal states (see Martini et al., 2016).
The sequence of events on a given trial is shown in Fig. 2.
Each trial began with the presentation of a question (see
Supplementary Table S1) regarding an internal state (e.g.,
BHow likely is it that this agent has a mind?^), followed by
a series of images depicting the different morphed images in a
randomized order. As each agent image was presented, par-
ticipants were instructed to rate the agent on the particular
question that had just been presented using a Likert scale
from 1 (very unlikely) to 8 (very likely). Responses were en-
tered using a pair of fMRI-safe button boxes. Each internal
state question was presented for 5 seconds, followed by a
screen that contained only a fixation cross for a jittered time
period of 12 to 16 seconds. During the sequence of agent

1 Physical humanness refers to the percentage amount of the human image that
is contained in the morphed image. For instance, a 60%humanmorph contains
40% features of the robot image and 60% features of the human image. Please
note that although physical humanness is manipulated parametrically, per-
ceived humanness as measured in mind ratings, follows a qualitative pattern
(in line with Hackel et al., 2014; Looser & Wheatley, 2010; Martini et al.,
2016; see Results section).
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images, each agent was presented for 2 seconds, and partici-
pants were given an additional 4 seconds on average (jittered
between 2 and 6 seconds) to give a response (i.e., the mini-
mum amount of time for a response was 4 seconds). The
mind perception task was divided into four blocks, each
consisting of 12 questions and an average of 72 agent presen-
tations (six agents times 12 questions) and lasting approxi-
mately 12 minutes each (total task time = 48 minutes). During
the task, each of the six distinct agent images (i.e., 0%, to
100% physical humanness in steps of 20%) was presented 72
times, while each of the 24 questions was presented twice
(see Supplementary Table S1).

Social attention task

A gaze-cueing paradigm (Friesen & Kingstone, 1998) was
used to measure low-level social-cognitive performance in
the current experiment. This task was chosen for two reasons:
(1) being able to attend to where others are looking is a

prerequisite for mentalizing and other more complex social-
cognitive functions and is thus a good proxy for social-
cognitive performance (Frischen, Bayliss, & Tipper, 2007;
for a review), and (2) the degree to which a mind is perceived
in others has been shown to modulate mechanisms of social
attention like gaze cueing in previous studies (Teufel et al.,
2009; Wiese et al., 2012; Wykowska et al., 2014). In contrast
to the mind perception task, the gaze-cueing task was per-
formed outside the fMRI scanner and required participants
to respond to the identity of a target letter (F or T) while
reaction times were measured. The target either appeared at
the location that was looked at by the agent (i.e., valid trial) or
opposite of where the face was looking (i.e., invalid trial).
Gaze-cueing effects were calculated by subtracting reaction
times for valid trials from reaction times for invalid trials
(i.e., difference score). In the current experiment, we used a
reversed gaze-cueing task, where targets appeared with a
higher likelihood opposite of where the agent was looking
(80% of the cases) compared with locations that were looked

Fig. 2 Mind perception task: While inside of an fMRI scanner, participants were presented with theory-of-mind questions and a series of morphed
images to judge. Participants rated each image on a 1–8 scale

Fig. 1 Stimuli used for themind perception and social attention tasks. The images were created bymorphing a robot face (Meka robot; image on the very
left) into a human face (adult male; image on the very right) in steps of 20%
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at by the agent (20% of the cases; see Friesen, Ristic, &
Kingstone, 2004). This was done in order to distinguish be-
tween bottom-up components of gaze cueing, which are ap-
parent if participants attend to the gazed-at location despite the
target being more likely to appear at the uncued location (i.e.,
shorter reaction times at the cued location), and top-down
influences on gaze cueing, which would be apparent if partic-
ipants orient away from the gaze cue and shift their attention to
the uncued location, which is more likely to contain the target
(i.e., shorter reaction times at the uncued location).

The sequence of events on a given trial is shown in Fig. 3.
At the beginning of each trial, a black fixation cross appeared
on white screen for a jittered time interval of 700 to 1,000 ms,
followed by the image of one of the agents displaying a
straight gaze. After a jittered time interval of 700 to 1,000
ms, the agent changed gaze direction and looked either to
the left or right side of the screen for 400 to 600 ms, followed
by the presentation of the target letter (F or T, measuring .5° in
width and .9° in height) that either occurred where the face
was looking or opposite of where the face was looking.
Targets appeared on the horizontal axis of the screen and were
located 14.7° from the center of the screen. The image of the
agent and the target remained on the screen until the partici-
pant gave a response or a time-out criterion was reached
(1,200 ms after target presentation), whichever came first.
The intertrial interval (ITI) was 680 ms.

Participants used the index finger of each hand to respond
to the identity of the target letter by pressing either the key
that was marked with BF^ or BT.^ For half of the participants,
BF^ was assigned to the BD^ key, and BT^was assigned to the
BK^ key of a regular keyboard, with reversed key assignment
for the other half of the participants; key labels were
counterbalanced across participants throughout the study.
Participants were instructed to maintain fixation on the center
of the screen throughout all trials and to respond as quickly
and accurately as possible to the target letters. Before the

actual experiment started, participants first completed a prac-
tice block that mirrored the experimental task but used a
different agent stimulus (EDDIE; developed at Technische
Universitaet Muenchen; see Wiese et al., 2012) to avoid prim-
ing effects or other response biases. Participants then per-
formed six experimental blocks, with each block employing
one of the six agent images; the order in which agents were
presented was counterbalanced across participants. Total time
for the social attention task was approximately 20 minutes.

Procedure

The experiment started with the mind perception task in the
scanner, followed by the social attention task and a series of
questionnaires outside the scanner. Participants were screened
for fMRI safety and completed a demographic questionnaire
approximately 1 week prior to participating in the experiment.
When participants arrived on the day of the experiment, they
were first provided with the instructions of the mind percep-
tion task and then positioned in the fMRI scanner in order to
perform the task. Following the mind perception task, partic-
ipants exited the scanner and were then provided with the
instructions for a social attention task, which took place in a
separate room. Critically, the same agents were employed for
both the mind perception and the social attention task. After
completion of the social attention task, participants filled out
questionnaires and were debriefed.

Analyses

Behavioral data

The behavioral data of the mind perception and social atten-
tion tasks were analyzed using the LME4 and the Mediation
packages in R (version 3.2.4). We first tested if the relation-
ship of the three variables (physical humanness, gaze-cueing

Fig. 3 Social attention task: Outside of the fMRI scanner, participants
performed the gaze cueing task using the same morphed images from the
mind perception task. Participants were required to identify the identity of

a target letter, presented in the periphery that was preceded by either a
congruent or incongruent looking morph image
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behavior, and mind ratings) were linear or nonlinear. To do
so, we constructed four mixed-effects regression models (i.e.,
one linear and three polynomials: quadratic, cubic, and fourth
level) to model the data. This step was done for each of our
three predictive relationships. In other words, we tested
whether the mind ratings could be predicted by physical hu-
manness in a linear or nonlinear method, if gaze-cueing be-
havior could be predicted by physical humanness, in a linear
or nonlinear fashion, and if gaze-cueing behavior could be
predicted by mind ratings in a linear or nonlinear way (see
Fig. 4). After we examined the linear and nonlinear relation-
ships for all pairs of our three variables (mind ratings and
physical humanness, gaze-cueing behavior and physical hu-
manness, gaze-cueing behavior and mind ratings), we com-
pared the linear model to the nonlinear models in a nested
model comparison to determine which of the models repre-
sented the data best. Choosing the model of best fit was
decided based on a chi-square test that compares more com-
plex, polynomial models (i.e., quadratic, cubic, and fourth
level) to a linear reference model (i.e., the simplest model
fit; all models with a chi-square test result of p < .05 differ
significantly from the linear model in terms of model fit).
Moreover, the model with the smallest Bayesian information
criterion (BIC) constitutes the best, and at the same time most
parsimonious, model fit for a given data set (Konishi &
Kitagawa, 2008). This step was repeated for each pair of
relationships (mind ratings and physical humanness, gaze-
cueing behavior and physical humanness, and gaze-cueing
behavior and mind ratings).

After testing for which of the relationships were linear
and which were nonlinear, we investigated a mediation
model that predicted gaze-cueing behavior from physical
humanness through mind ratings as a mediator. To avoid
overfitting the model and to aid interpretation, we specified
a more simplistic mediation model by allowing only linear
relations for the mediation analysis, regardless of how well
the polynomials predicted the outcome of the nested model
comparisons described above.

fMRI data

Image acquisition and preprocessingWe acquired fMRI data
using a Siemens Allegra 3Tscanner, equipped with a standard
one-channel quadrature birdcage head coil. During each run,
T2* gradient-echo, echo-planar imaging was acquired, with a
TR/TE of 2300/30 ms, flip angle = 90 degrees, 40 interleaved
axial slices 3 mm thick/1 mm gap, FOV = 192mm, and matrix
size = 64 × 64 (in-plane resolution of 3 mm2). Following
fMRI acquisition, a whole-head, T1 structural scan was ac-
quired using a three-dimensional, magnetization-prepared,
rapid-acquisition gradient echo (MPRAGE) pulse sequence.
During theMPRAGE sequence, 160 1-mm-thick slices (256 ×
256matrix, field of view = 260, .94mmvoxels) were acquired
with a TR/TE of 2300/3 ms.

All analyses of fMRI data were performed using FSL
(www.fmrib.ox.ac.uk/fsl). In order to allow the scanner to
reach equilibrium magnetization, the first five volumes were
removed prior to analysis. The fMRI data were high-pass
filtered (128-s cutoff), slice timing corrected (Hanning-win-
dowed sinc interpolation to shift each time series relative to
the middle of the TR period), and motion corrected using
FMRIB ’s Linear Regis t ra t ion Tool (MCFLIRT).
Prewhitening using fMRIB’s Improved Linear Model
(FILM) was performed to remove temporal autocorrelation
in the fMRI time-series data. Data were smoothed using a
6-mm full-width at half-maximum (FWHM) Gaussian kernel.
Coregistration was completed in a two-step process.
Functional data were first registered to a high-resolution
structural image (MPRAGE) using FMRIB’s Linear
Registration Tool (FLIRT) following brain extraction using
the Brain Extraction Tool (BET) with the fractional intensity
threshold set to .35. Registration to standard space (T1 2-mm
MNI template) was then performed using FLIRT.

Neural activation associated with mind perception The first
analysis of the fMRI data sought to identify whether the
mind perception task reliably activated regions within the
social brain network. To this end, a parametric analysis of
the fMRI data was carried out, with a parametric regressor
being used to identify neural regions that tracked trial-by-
trial variation in mind perception. The initial, a priori anal-
ysis of the data employed all four blocks (separate runs of
fMRI acquisition). However, while results from this initial
analysis yielded a cluster of activation within vmPFC (see
Fig. 9), no activations survived a whole-brain correction
for multiple comparisons. Due to concerns that the lack
of statistical robustness for this initial analysis was the
result of habituation and repeated exposure to the same
agent images over extended periods of time, we performed
a second, post hoc, analysis of these data in which only the
first two blocks (separate runs of fMRI acquisition) were
employed. This second analysis was performed in an effort

Fig. 4 Equations tested in the nested model comparison. Data were
modeled using a linear model (a), as well as a quadratic (b), cubic (c),
and fourth-level (d) polynomial. The error terms and intercept have been
omitted in all of the equations
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to optimize the likelihood of identifying statistically robust
neural regions that tracked trial-by-trial variation in mind
perception; indeed, as described within the Results section,
this post hoc analysis revealed a qualitatively similar clus-
ter of activation within the vmPFC that survived correction
for multiple comparisons.

For both the a priori and post hoc analyses of the fMRI
data, a parametric regressor modeled the onset of each
agent at a magnitude determined by the mean-centered
Likert-scale rating provided on each trial, whereas a sec-
ond task-related regressor modeled the onset of each agent
image at a fixed magnitude. A nuisance regressor was also
included to model the onset of each question, using a fixed
magnitude. All task-related regressors were convolved
with a canonical double-gamma hemodynamic response
function (HRF) with no phase delay. Six motion parame-
ters (three translation, three rotation) were also added to
the GLM model as confound regressors in order to account
for residual motion effects after correction by MCFLIRT
(nine regressors total). A second-level analysis was used to
average across the first two runs for each participant using
a fixed-effects model. Data were then averaged across par-
ticipants in a third-level analysis, using FMRIB’s Local
Analysis of Mixed Effects (FLAME1). We then conducted
a whole-brain analysis investigating the parametric effect
of gaze cueing. The family-wise error rate (FWER) were
controlled for at an alpha level of .05, using cluster-based
correction following Gaussian random field (GRF) theory
and a cluster-defining threshold of Z = 1.96.

Association of neural activation during mind perception and

social attention Following the identification of neural regions
associated with mind perception, we sought to identify how
brain activity elicited by the mind perception task was related
to the degree of gaze cueing during the social attention task.
To this end, we again performed a parametric analysis; how-
ever, in this second analysis, the parametric regressor was
modulated based on average gaze-cueing effect values that
an individual exhibited for each agent during the social atten-
tion task. Therefore, the second parametric analysis allowed
us to identify which brain regions that were activated during
the mind perception task were directly related to performance
in a separate low-level social-cognitive task. Moreover, we
identified neural regions that were significantly activated by
both the parametric analysis based on gaze cuing and the
parametric analysis based on mind ratings. In line with the a
priori analysis of neural activity associated with the mind
perception task, all four blocks of fMRI data were also
employed for the analysis of relations between neural activity
during mind perception and behavior during the social atten-
tion task. All other aspects of this second fMRI analysis were
identical to those described for the analysis focusing on mind
perception (see above).

Results

Behavioral data

Mind perception task Results of the nested model comparison
predicting mind ratings from physical humanness revealed
that both the cubic model, χ2(2) = 11.04, p = .003, BIC =
430.05, and the fourth-level polynomial model, χ2(1) =
12.54, p < .001, BIC = 422.39, fit the data significantly better
than the linear model; the fourth-level polynomial model con-
stitutes the overall model of best fit based on the BIC estimate
(i.e., smallest BIC; see Table 1 and Fig. 5). These results
suggest that linear changes in physical human-likeness do
not lead to linear changes in ratings of mind perception; in
contrast, linear increases in human-likeliness where associat-
ed, on average, with a nonlinear (fourth-level polynomial)
increase in ratings of mind perception.

Social attention task The nested model comparison of models
predicting gaze-cueing behavior from physical humanness
showed that only the cubic model fit significantly different
better than the linear model, χ2(2) = 4.51, p = .03; however,
the cubic model was not the most parsimonious model based
on the BIC (i.e., BIC for the cubic model was larger than the
BIC for the linear model; see Table 2). Thus, the linear model
constitutes the overall best model fit for the gaze-cueing data
(see Fig. 6). This result suggests that linear increases in phys-
ical human likeness lead to linear increases in gaze cueing.
That is, although gaze cues invalidly cued the target location
on 80% of trials, increases in physical humanness led to in-
creased reflexive attentional orienting in direction of the gaze
cue (and slower response times at the uncued location).

Link between physical humanness, mind perception, and so-

cial attention Before examining the nested model comparison
of models predicting gaze-cueing behavior frommind ratings,
we controlled for the agents’ physical humanness by adding it
as a covariate in the model. After controlling for physical
humanness, the nested model comparison of models
predicting gaze-cueing behavior showed that none the poly-
nomial models fit significantly better than the linear model, as
indicated by the chi-square test (see Table 3). This indicates
that the linear model is the best fit for the relationship between

Table 1 Nested model comparison predicting mind rating data from
physical humanness

BIC χ2 p value

Linear model 431.33

Quadratic model 433.86 2.35 .12

Cubic model 430.05 8.68 <.01

Fourth-level polynomial 422.39 12.54 <.001
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gaze-cueing behavior and mind ratings (after controlling for
physical humanness). This finding illustrates that reflexive
orienting to gaze cues decreases as mind ratings increase,
but that voluntary attentional orienting to predicted target lo-
cations increases (see Fig. 7). In other words, after controlling
for physical humanness, increases in mind ratings were asso-
ciated with reductions of the Bbottom up^ component and
enhancements of the Btop down^ component of gaze cueing,
which led to a greater reliance on the predictivity of the gaze
cue and faster response times to targets appearing at the
uncued location. These data are consistent with the notion that
increased mind ratings lead to a greater reliance on higher-
level behavioral attributes of the agent (i.e., the predictivity
of its gaze direction).

After investigating the models of best fit for all three rela-
tionships (mind ratings and physical humanness, gaze-cueing
behavior and physical humanness, and gaze-cueing behavior
and mind ratings), we tested whether mind ratings partially
mediated the relationship between physical humanness and
gaze-cueing behavior, despite their having effects of opposite
directions on gaze-cueing performance. As indicated before,
we only used linear models to avoid overfitting the model with
too many parameters, as well as to simplify the interpretation.
The mediation analysis revealed a nonsignificant total effect

of (β = .15, 95% CI [−.01, .33], p = .08), a significant positive
direct effect (β = .44, 95% CI [.14, .73], p < .01) of physical
humanness on gaze-cueing behavior, as well as a significant
negative indirect effect of mind perception on gaze cueing (β
= −.28, 95% CI [−.52, −.05], p < .01; see Fig. 8). Since phys-
ical humanness and mind ratings were highly correlated (r =
.83), the observed negative indirect relationship between mind
perception and gaze-cueing behavior needs to be interpreted
with caution, as it could be an artifact due to issues with
multicollinearity (Cohen, Cohen, West, & Aiken, 2003); this
would mean that we could not be certain of the direction of
this effect as the sign (positive or negative) of the weight,
could flip. However, since multicollinearity, if anything, de-
creases the power of detecting an effect and thus decreases the

Fig. 5 Average mind ratings as a function of physical humanness (1 = 0% physical humanness; 6 = 100% physical humanness, as modeled by a linear
(a), quadratic (b), cubic (c), and fourth-level polynomial (d) model. The fourth-level polynomial model constituted the overall best model fit (see Table 1)

Table 2 Nested model comparison predicting gaze cueing data from
physical humanness

BIC χ2 p value

Linear model −258.63

Quadratic model −253.75 .01 .93

Cubic model −253.39 2.51 .03

Fourth-level polynomial −248.53 .02 .87

Cogn Affect Behav Neurosci (2018) 18:837–856 845



probability of rejecting the null hypothesis (Cohen et al.,
2003), it is unlikely that the negative direction of the indirect
effect is a mere artifact of multicollinearity, as the indirect
effect of mind perception on gaze cueing is statistically sig-
nificant despite such multicollinearity. What is more likely is
that the mediation model is showing a suppression phenome-
non; unlike in consistent mediation models (i.e., models that
have the same direction for all of their paths), suppression
occurs when two variables that are related to each other (i.e.,
an independent variable and a mediator) cause the dependent
variable to move in opposite directions (Mackinnon, Krull, &
Lockwood, 2000). Consistent with suppression, we find that
adding the mediator (i.e., mind ratings) increases the strength
of the relationship between physical humanness and gaze-

cueing behavior (β increased from .15 to .44 after including
the mediator). Taken together, the data suggest that physical
humanness affects social attention performance in two poten-
tially opposing ways: On the one hand, increases in physical
humanness seem to enhance reflexive attentional orienting to
gazed-at locations (i.e., increases in gaze-cueing effects) de-
spite the fact that the predictivity of the gaze cue is low (i.e.,
20%), suggesting that changes in gaze direction are more au-
tomatically followed as the stimulus looks more human-like.
On the other hand, physical humanness also exerts an indirect
effect on gaze-cueing behavior by increasingmind perception,
such that more human-like agents are ascribed a greater degree
of mind, which in turn seems to facilitate voluntary shifts of
attention away from the gazed-at location toward the likely
target location (i.e., 80%).

FMRI data

Neural activation associated with mind perception

The neural basis of mind perception was investigated using a
parametric regressor of agent image onset during the mind
perception task, using trial-by-trial mind ratings to weight
the regressor. This analysis allowed for testing whether the

Fig. 6 Average gaze-cueing effects as a function of the degree of physical of humanness. For the x-axis, 1 = 0% human, 6 = 100% human, as modeled by
a linear (a), quadratic (b), cubic (c), and fourth-level polynomial (d) model. The linear model constituted the overall best model fit

Table 3 Nested model comparison predicting mind rating data from
gaze-cueing data

BIC χ2 p value

Linear model −273.16

Quadratic model −255.46 1.58 .2

Cubic model −251.34 .76 .38

Fourth-level polynomial −246.50 .04 .83
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mind perception task indeed activated the social brain net-
work, and if so, which subdivisions of this network were re-
lated to mind perception. The initial, a priori analysis
employing all four blocks of the task revealed a cluster of
activation within vmPFC, although this cluster of activation
did not survive correction for multiple comparisons (see Fig.
9). However, a post hoc analysis that employed only the first
two blocks of data, due to concerns overhabituation, revealed
statistically robust activation within a similar region of

vmPFC that indeed survived correction for multiple compar-
isons. Specifically, this post hoc analysis revealed a significant
cluster located primarily within vmPFC, but also extending
into more anterior and less ventral subdivisions of the mPFC
such as the frontal poles (peak z = 3.14; 2, 68, 22; 1,050
voxels). No other effects within the whole-brain analysis sur-
vived correction for multiple comparisons (see Table 4 and
Fig. 10 for the results of the post hoc parametric analysis).

Association of neural activation during mind perception

and social attention

The relationship between brain activation related to mind per-
ception and gaze-cueing performance was investigated using a
parametric regressor of agent image onset during mind per-
ception, using gaze-cueing effects to weight the regressor.
This analysis allows for testing whether neural activity during
the mind perception task significantly matches the patterns of
gaze-cueing behavior with the respective agent. Similar to the
post hoc analysis of mind ratings described above, the para-
metric analysis based on gaze-cueing effects revealed signifi-
cant activation within the vmPFC (peak z = 3.59; −46, 38, −2;
982 voxels). Several other neural regions, such as the left TPJ

Fig. 7 Average gaze-cueing effects as a function of mind ratings. Data
were modeled by a linear (a), quadratic (b), cubic (c), and a fourth-level
polynomial (d) model. None of the nonlinear models fit significantly

better than the linear model, which is evidence that the linear model
was the best predictor of gaze-cueing behavior

Fig. 8 Path diagram illustrating the mediation model. The mediation
analysis revealed both a significant and positive direct effect of physical
humanness on gaze cueing, as well as a negative indirect effect, as
mediated by mind ratings. Values over the directional arrows reflect
standardized coefficients produced from each regression model in the
mediation. *p < .05. **p < .01
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and insula, right fusiform cortex and middle temporal gyrus,
and bilateral occipital cortex were also significant for the para-
metric analysis based on gaze cueing (see Table 4 and Fig. 11).
Most importantly, an overlapping region of the vmPFC was
identified for both parametric analyses (see Fig. 11), suggest-
ing that vmPFC may relate not only to mind perception, but
also low-level social-cognitive performance during a gaze-
cueing task.

Discussion

The goal of the present experiment was to investigate whether
within-subject variation in brain activation during mind per-
ception is directly related to variations in social attention per-
formance, and, if so, which social brain areas are most strong-
ly related to this performance measure. For that purpose, we
manipulated the physical appearance of social agents (i.e., on
a spectrum from robot to human) and measured the effect of
this manipulation on two orthogonal tasks: social judgments
regarding the agents’ capability of having a mind (i.e., ratings
and brain activation), and low-level social-cognitive perfor-
mance during a social attention task (i.e., gaze-cueing effects).
Patterns within the behavioral data (i.e., ratings and gaze-
cueing effects) were analyzed using a nested model compari-
son. We used a mediation model to test the complex relations
between physical humanness, mind ratings, and gaze-cueing
effects. Moreover, a set of parametric analyses of fMRI data
was used to investigate the relations between brain activation,
mind perception, and low-level social-cognitive performance.
In particular, vmPFC was found to be activated not only dur-
ing mind perception, but the level of vmPFC activity during
mind perception was also directly related to subsequent low-
level social-cognitive performance on a separate gaze-cueing
task. This pattern of results suggests that initial activity within
vmPFC actually influences subsequent social-cognitive be-
havior. However, future research that measures vmPFC

activation not only during mind perception but also during
subsequent social interactions, is critical in order to identify
whether the vmPFC indeed serves as a direct link between
mind perception and subsequent low-level social-cognitive
behavior. Moreover, additional work using larger sample sizes
andmore ecologically valid measures of social interaction will
be needed to confirm the exact role of the vmPFC in low-level
social-cognitive performance.

The linear mixed models revealed that increasing levels of
physical humanness were associated with a general increase in
mind ratings (i.e., positive social judgments) and low-level
social-cognitive performance (i.e., stronger gaze cueing). This
is consistent with prior research, demonstrating that increasing
levels of physical humanness are associated with increased
mind perception (Cheetham et al., 2014; Hackel et al., 2014;
Looser & Wheatley, 2010; Martini et al., 2016) and improved
low-level social-cognitive performance (Teufel et al., 2009;
Wiese et al., 2012; Wykowska et al., 2014). However, we also
found that for the counterpredictive social attention task
employed here, mind perception (after controlling for physical
humanness) seemed to affect gaze cueing in a different manner
than physical humanness; that is, increasing levels of physical
humanness directly enhanced reflexive attentional orienting to
gazed-at locations (i.e., faster reaction times to targets present-
ed at valid compared to invalid locations), suggesting that
changes in gaze direction were more automatically followed
the more the stimulus looked human-like despite the fact that
the gazed-at location was unlikely to contain the target (i.e.,
counterpredictive cue: 20%). Increasing levels of physical hu-
manness, however, also lead to an increase in mind perception,
which seemed to facilitate voluntarily shifts of attention away
from the gazed-at location and toward the location that most
likely contained the target (i.e., predicted location: 80%). This
pattern of results is interesting in the light of previous reports
that attentional orienting to gaze cues is hard to suppress given
the high social relevance of eye gaze for social learning and the
development of close relationships (see Friesen & Kingstone,

Fig. 9 A priori parametric analysis of fMRI activations based on mind
ratings. Z maps reflecting onset of the morph images, using mind ratings
to weight the parametric regressor. From left to right: coronal (y = 58),

sagittal (x = −2), and axial (z = 2) slices; no activations survived correction
for multiple comparisons. (Color figure online)
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1998). It suggests that although increasing physical humanness
enhances the reflexive component of gaze cueing, it also leads
to higher levels of mind perception, which seems to facilitate
voluntary shifts of attention to uncued, but likely target loca-
tions (in counterpredictive cueing paradigms). In particular, it
is possible that participants who ascribe higher levels of inten-
tionality to the gazing stimulus might pay more attention to
contingencies in its behavior, making it more likely that they
pick up on the counterpredictivity of the gaze signal (which can

potentially be interpreted as negative intention; e.g. BThe agent
wants to trick me and make me miss the target^), and adjust
attentional orienting accordingly (for reports of top-downmod-
ulation of gaze cueing, see Bonifacci, Ricciardelli, Lugli, &
Pellicano, 2008; Cazzato, Liuzza, Caprara, Macaluso, &
Aglioti, 2015; Dalmaso, Edwards, & Bayliss, 2016; Fox,
Mathews, Calder, & Yiend, 2007; Graham, Friesen,
Fichtenholtz, & LaBar, 2010; Hungr & Hunt, 2012; Tipples,
2006; Wiese, Wykowska, & Müller, 2014; Wykowska et al.,

Table 4 FMRI activations for the parametric analyses

Anatomical area Clust. x y z Z max Vox.

Mind-rating parametric analysis

Frontal pole (MFC) 1 2 68 22 3.14 1,050

Frontal pole (vmPFC) 1 0 62 −8 3.04

Frontal pole (vmPFC) 1 −24 66 −8 2.92

Frontal medial cortex (vmPFC) 1 −8 52 −16 2.9

Frontal pole (vmPFC) 1 −8 52 −20 2.88

Frontal pole (vmPFC) 1 −14 56 −16 2.68

Gaze-cuing parametric analysis

Anterior middle temporal gyrus 5 52 −4 −32 3.24 2,175

Anterior middle temporal gyrus 5 50 0 −26 3.16

White matter 5 14 34 −12 3.12

Frontal pole (vmPFC) 5 20 44 16 3.09

Frontal medial cortex (vmPFC) 5 4 48 −22 3.03

Frontal pole 5 48 36 −4 2.99

Inferior lateral occipital cortex 4 36 −72 4 3.48 2,130

Inferior lateral occipital cortex 4 46 −74 −2 3.36

Occipital pole 4 24 −90 34 3.35

Supracalcarine cortex 4 4 −78 18 3.27

Occipital pole 4 18 −88 28 3.12

Fusiform cortex 4 24 −46 −22 3.04

Inferior lateral occipital cortex 3 −54 −64 12 3.34 1,573

Superior lateral occipital cortex 3 −38 −76 20 3.3

Posterior superior temporal gyrus 3 −56 −42 6 3.22

Angular gyrus (TPJ) 3 −48 −56 16 3.18

Posterior superior temporal gyrus 3 −58 −38 4 3.13

Angular gyrus (TPJ) 3 −52 −58 26 3.09

Insular cortex 2 −38 6 −2 3.38 1,217

Putamen 2 −32 −12 6 3.33

Middle frontal gyrus 2 −26 24 36 3.29

Putamen 2 −28 −8 10 3.23

Superior frontal gyrus 2 −24 24 42 3.12

Middle frontal gyrus 2 −26 10 44 3.02

Frontal pole 1 −46 38 −2 3.59 982

Orbitofrontal cortex 1 −50 30 −12 3.57

Orbitofrontal cortex 1 −24 28 0 3.16

Inferior frontal gyrus 1 −60 30 4 3.11

Inferior frontal gyrus 1 −56 34 −2 3.09

White matter 1 −22 28 12 3

Cogn Affect Behav Neurosci (2018) 18:837–856 849



2014). Although this finding is interesting, since it points at a
possible dissociation between perception of intentionality and
perception of human appearance, it needs to be interpreted with
caution, due to potential issues with multicollinearity in the
current experiment, and warrants further investigation.

Analysis of the fMRI data provided insight into the neural
regions involved in mind perception and explored how brain
activation related to mind perception is related to subsequent
gaze-cueing performance (as a proxy for social-cognitive perfor-
mance). We found that mind ratings were associated with
vmPFC activation, a finding that is consistent with prior investi-
gations linking perceptions of intentionality to ventromedial pre-
frontal areas (Gallagher et al., 2002; Pfeiffer et al., 2014; Sanfey
et al., 2003). Activity within vmPFC was also related to low-
level social-cognitive performance during gaze cueing, together
with a set of other regions including the left TPJ and insula, right
medial temporal gyrus and fusiform cortex, and bilateral occip-
ital cortex. Thus, while social attention was associated with a set
of regions involved in gaze perception (Nummenmaa & Calder,
2009) and mentalizing (Van Overwalle, 2009), an overlapping
region of vmPFC was associated with both mind perception and

social attention, suggesting that the vmPFC might play an im-
portant role in linking higher-order social-cognitive processes
(like mind perception) and performance on lower-level social-
cognitive tasks (like gaze cueing). However, additional research
that measures neural activity not only during mind perception
but also during social-cognitive tasks within the same study will
be required to substantiate claims surrounding the link between
mind perception and social interaction within the vmPFC.

While prior work has investigated relations between mind
perception and social attention (Özdem et al., 2016; Teufel
et al., 2009; Wiese et al., 2012; Wykowska et al., 2014), the
current study adds to these findings by showing that both
mind perception and mechanisms of social attention are relat-
ed to activation within the vmPFC. This neural region has
been associated with mentalizing (Amodio & Frith, 2006;
Frith & Frith, 1999; Frith & Frith, 2003; Gallagher et al.,
2002), and is involved in impression formation in social situ-
ations by providing access to general social knowledge
(Mitchell et al., 2006; Szczepanski & Knight, 2014), and re-
trieving script-based social knowledge (Ghosh et al., 2014;
van Kesteren et al., 2012). Moreover, lesions to vmPFC result

Fig. 11 Parametric analysis of fMRI activations based on gaze cueing
effects, mind ratings, and their conjunction. Zmaps reflecting onset of the
morph images, using either mind ratings (orange) or gaze cueing (green)
to weight the parametric regressor, along with their conjunction (yellow).

From left to right: coronal (y = 54), sagittal (x = −12), and axial (z = −14)
slices; cluster corrected (Z = 1.96, p < .05) at the whole-brain level. (Color
figure online)

Fig. 10 Post hoc parametric analysis of fMRI activations based on mind
ratings. Z maps reflecting onset of the morph images, using mind ratings
to weight the parametric regressor. From left to right: coronal (y = 54),

sagittal (x = −12), and axial (z = −14) slices; cluster corrected (Z = 1.96, p
< .05) at the whole-brain level. (Color figure online)
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in impairedmental state understanding (Beer, Heerey, Keltner,
Scabini, & Knight, 2003; Stone, Baron-Cohen, & Knight,
1998), emotion recognition (Hornak et al., 2003; Tsuchida &
Fellows, 2012), social and moral reasoning (Anderson,
Bechara, Damasio, Tranel, & Damasio, 1999), and cognitive
empathy (Shamay-Tsoory, Aharon-Peretz, & Perry, 2009).
While the vmPFC has previously been shown to modulate
higher-order social-cognitive processes involved in economic
or strategic decision-making (Gallagher et al., 2002; Sanfey
et al., 2003), associations between this neural region and low-
level social-cognitive processes like gaze cueing have not pre-
viously been reported (to the best of our knowledge).

In addition to the vmPFC literature reviewed above, it is
important to note that this neural region has also been shown
to track feelings of eeriness toward nonhuman agents in a
parametric fashion (Wang & Quadflieg, 2015), and has been
suggested as a potential neural correlate of the uncanny valley
(i.e., nonhuman agents with human-like appearance induce
feelings of eeriness when being not perfectly human; Mori,
1970). Based on this research, variation of vmPFC activation
in the current experiment could be driven by feelings of eeri-
ness toward agents that are ambiguous in terms of their phys-
ical human-likeness. This could lead to a general disengage-
ment from gaze cues as the agents’ physical human-likeness
increases (this is less likely since increases in physical human-
ness were associated with stronger reflexive gaze cueing in the
current study), or an impaired ability to control attentional
orienting in a top-down manner, since processing Buncanny^
stimuli has been shown to consume additional cognitive re-
sources to resolve the conflict of whether one is looking at a
human or a nonhuman agent (Weis & Wiese, 2017). Previous
studies have also shown that activation in medial prefrontal
areas, and in particular bilateral vmPFC, is related to evaluat-
ing the predictability of stimuli, leading to higher levels of
anthropomorphism if a stimulus is hard to predict (Waytz,
Morewedge, et al., 2010). Thus, it is possible that activation
within vmPFC reflects one’s sensitivity to the predictability of
gaze cues, and that the level of vmPFC activation is modulated
by the degree to which mind is perceived in the agents. This
interpretation is in line with previous neurophysiological stud-
ies showing that evaluations of predictability are associated
with additional neural effort in frontocentral areas for human
versus robot agents (Caruana et al., 2016).

In addition to activation in bilateral vmPFC, gaze cueing
performance was also associated with activation in left TPJ
and insula, right medial temporal gyrus and fusiform cortex,
and bilateral occipital cortex. This is in line with previous
studies showing that both prefrontal and temporo-occipital
areas like bilateral TPJ and STS are implicated in social atten-
tion (Nummenmaa & Calder, 2009). Previous studies have
also related TPJ activation to judgments about another’s in-
tentionality, with stronger activation for agents with versus
without a mind (Cavanna & Trimble, 2006; Chaminade

et al., 2012; Gallagher et al., 2002; Krach et al., 2008), and
shown that TPJ serves as convergence point for social and
nonsocial processes (Chang et al., 2013; Krall et al., 2015;
Krall et al., 2016; Mitchell, 2008; Scholz et al., 2009).
Notably, Özdem et al. (2016) have shown that attentional
orienting in response to nonpredictive gaze cues is sensitive
to the perceived intentionality underlying these cues (i.e., hu-
man controlled vs. preprogrammed) and is associated with
activation in bilateral TPJ. The question remains, however,
why only relations between gaze cueing performance and
the left TPJ reached statistical significance in the current ex-
periment, although both left and right TPJ are activated during
mentalizing and social judgment tasks. First, it is possible that
the lack of significant activation within the right TPJ could
simply arise as a result of issues with statistical power.
However, we might also suggest that social functions of the
TPJ are lateralized and that the functionalities subserved by
the left TPJ (i.e., attribution of human-likeness; Perner et al.,
2006) might be more important for the current task than the
functionalities of the right TPJ (i.e., mentalizing; Costa et al.,
2008; Gallagher et al., 2000; Saxe, 2006; Saxe & Kanwisher,
2003). Specifically, right TPJ activation is found during clas-
sic mentalizing tasks (Frith & Frith, 2003; Saxe & Wexler,
2005), while left TPJ activation is related to perspective taking
(Samson et al., 2004), anthropomorphism (Chaminade et al.,
2007; Cullen et al., 2013; Zink et al., 2011), and processing of
agent identity from visual information (Van Overwalle, 2009).
Cullen et al. (2013) also showed that gray-matter volume in
the left TPJ is related to individual differences in one’s will-
ingness to treat nonhuman entities as human-like, and
Chaminade et al. (2007) showed that activation in the left
TPJ is positively correlated with one’s tendency to perceive
humanness in motion patterns of nonhuman agents. Both the
mind perception task and gaze-cueing task employed in the
current study required reasoning about the agents’ human-
likeness based on visual features, which is expected to trigger
different degrees of anthropomorphism (Cheetham, Suter, &
Jäncke, 2011, 2014; Martini et al., 2016) and might explain
why specifically left TPJ activation was found to be related to
social attention performance. Nonetheless, the lateralized
function of the TPJ observed in the current experiment will
require replication in future work.

Conclusions

In sum, the present study provides evidence that variation in
bilateral vmPFC activation, when perceiving the mind of a
novel agent, is related to variation in subsequent low-level
social-cognitive performance when interacting with that
agent, as measured in gaze-cueing performance. Critically,
this relationship was identified by recording neural activity
upon initial exposure to a set of novel agents, followed by
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engaging in a separate, orthogonal low-level social-cognitive
task with the same agents. The current study adds to previous
research by (a) showing that the degree to which an agent is
perceived to have a mind is significantly related to low-level
social-cognitive performance on an orthogonal task with the
respective agent (with the advantage that measuring brain ac-
tivation related to mind perception is not confounded by be-
havioral performance during the low-level social-cognitive
task), and (b) identifying a potential neural substrate associat-
ed with both mind perception and low-level social-cognitive
performance: the bilateral vmPFC. This finding also adds to a
growing body of evidence suggesting that mind perception
constitutes a source of top-down modulation on attentional
orienting, ensuring that more attentional resources are devoted
to interactions with agents who are believed to have a mind
compared to machine agents without a mind (Krall et al.,
2015; Mitchell, 2008; Özdem et al., 2016; Scholz et al.,
2009; Wiese et al., 2012; Wykowska et al., 2014). Future
research could build on the present results by employing a
network perspective, probing the functional or structural con-
nectivity of the vmPFC with other neural regions involved in
social cognition and attention.
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