
PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 1

Seeing the bigger picture:
How nodes can learn their place within a complex ad hoc

network topology

Alexander Bertrand∗,♦ and Marc Moonen∗,♦

∗ KU Leuven, Dept. Electrical Engineering ESAT, SCD-SISTA

♦ iMinds-Future Health Department

Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

E-mail: alexander.bertrand@esat.kuleuven.be

marc.moonen@esat.kuleuven.be

Phone: +32 16 321899, Fax: +32 16 321970

Abstract—Distributed signal processing algorithms that are
operated in complex ad hoc networks are usually ’topology
unaware’ (TU), as there is generally no a priori knowledge
available about the actual network topology. With the aim
of developing improved ‘topology aware’ (TA) algorithms, we
explain how nodes can infer information about the topology
or topology-related properties of the network based on in-
network distributed learning, i.e., without relying on an ‘external
observer’ who has a complete overview over the network. To
this end, we review key concepts and basic techniques from
the established field of spectral graph theory (SGT), with an
emphasis on those concepts that allow for a simple and efficient
distributed implementation. In particular, we focus on eigenvector
or Katz centrality, algebraic connectivity, and the Fiedler vector.
From these concepts, densely-connected node clusters and their
sparse cross connections can be identified, as well as the most
central and/or important nodes (either on the network- or the
cluster-level). We also highlight how this knowledge can be
exploited in several distributed signal processing tasks, e.g.,
for distributed estimation (including consensus-, diffusion-, and
gossip-type algorithms), base station or cluster head selection,
topology selection, resource allocation, node subset selection, etc.

I. MOTIVATION

In the past decade, distributed signal processing has become

an established research field, mainly due to the increased

interest in wireless sensor networks (WSNs) and their appli-

cations in, a.o., environmental monitoring, surveillance, multi-

robot coordination, etc. This has lead to the development

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The work of A. Bertrand was supported by a Postdoctoral Fellowship of
the Research Foundation - Flanders (FWO). This work was carried out at the
ESAT Laboratory of KU Leuven, in the frame of KU Leuven Research Coun-
cil CoE EF/05/006 ‘Optimization in Engineering’ (OPTEC) and PFV/10/002
(OPTEC), Concerted Research Action GOA-MaNet, the Belgian Programme
on Interuniversity Attraction Poles initiated by the Belgian Federal Science
Policy Office IUAP P7/23 (BESTCOM, ‘Belgian network on stochastic
modeling analysis design and optimization of communication systems’ 2012-
2017), and Research Project FWO nr. G.0763.12 ‘Wireless acoustic sensor
networks for extended auditory communication’. The scientific responsibility
is assumed by its authors.

of various distributed algorithms for, e.g., estimation, fusion,

compression, detection, data routing, etc. These distributed

algorithms are often designed to operate in networks with

a complex ad hoc topology, which is a priori unknown and

possibly even time-varying [1]–[7]. Due to this ad hoc aspect,

the algorithms are usually ‘topology-unaware’ (TU), i.e., they

do not explicitly take any specific topology-related properties

of the network into account. The nodes or agents in the

network indeed often have no clue about their place, role

and/or impact within the overall network. It is a highly non-

trivial task for the nodes to infer such information, since each

node has a very limited horizon, i.e., it cannot see beyond its

neighbors.

On the other hand, if specific (low- or high-level) knowledge

on the network topology would be available, this could be

exploited to make certain topology-related decisions and/or

to improve the performance of distributed algorithms that are

operated in the network. Indeed, there is a vast amount of lit-

erature demonstrating that the actual network topology signif-

icantly impacts the performance of distributed algorithms [1]–

[9]. For example, the spectral properties of common topology-

related matrices defined in spectral graph theory (SGT) are

known to directly influence the robustness and convergence

speed of several distributed estimation algorithms, including

the popular consensus-, diffusion- and gossip-type algorithms

[1]–[3], [6]–[8]. Furthermore, SGT provides several graph

analysis techniques that are able to reveal some structure in

complex ad hoc network topologies [10]–[22]. However, since

the network topology is a property of the entire network as

a whole, such a network graph analysis requires an ‘external

observer’, who has a complete overview over the network.

Naturally, this requirement is in conflict with the distributed

learning paradigm where the nodes themselves can perform

the required task by local cooperation. The lack of an ‘ex-

ternal observer’ then usually hampers the use of distributed

‘topology-aware’ (TA) algorithms in practice.

However, the common belief that topology-related analysis

or design is limited to a centralized and off-line context

2 PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013)

(either a priori or a posteriori), is not necessarily true [21]–

[31]. Indeed, several important matrices defined in SGT, such

as the adjacency and Laplacian matrix, are encoded in the

network itself, which allows to perform elementary operations

with these matrices in a distributed fashion. In this paper, we

review key concepts and basic techniques from the field of

SGT based on which the ‘insiders’, i.e., the nodes themselves,

can learn important high-level information about the network

topology or its topology-related properties, without relying on

an ‘external observer’. One of these concepts is eigenvector

centrality, which forms the basis of the celebrated Google

Pagerank algorithm [15]. Eigenvector centrality allows to iden-

tify central nodes, but also to assign a measure of the network-

wide influence of each node. Another very important concept

from SGT is the algebraic connectivity and the associated

Fiedler vector [11]–[13]. The latter is able to identify densely-

connected node clusters that only have a few cross links

to other clusters, which also reveals the weak points in the

network. We also highlight the potential applicability of these

techniques in several distributed signal processing tasks such

as distributed estimation (including consensus-, diffusion-, or

gossip-type algorithms), base station or cluster head selection,

topology selection, resource allocation, node subset selection,

etc.

With this tutorial paper, we aim to give a flavor of SGT-

based topology inference by introducing easy-to-understand

key concepts and basic techniques, and by providing some

insight into the application span of these techniques in a

distributed signal processing context. Therefore, a variety of

(sometimes unrelated) topics and techniques from the fields

of SGT and distributed signal processing are touched upon,

with an emphasis on conceptual ideas rather than on detailed

descriptions or analysis. The included ideas and examples

demonstrate how SGT can be a catalyst in the development of

TA distributed signal processing algorithms.

The outline of this paper is as follows. In Section II, we

describe some basic definitions and notation that will be used

throughout this paper. In Section III, we review eigenvector

centrality and its generalization to Katz centrality. In Section

IV, we review the algebraic connectivity and the Fiedler vector

with a focus on their clustering properties. In Section V, we

give examples of how these concepts can be exploited in

distributed signal processing tasks. Conclusions are drawn in

Section VI.

II. BASIC DEFINITIONS, TERMINOLOGY AND NOTATION

In accordance with the WSN literature, the vertices of a

network graph, i.e., the interacting agents in a network, are

referred to as ‘nodes’, and the edges of the graph are referred

to as ‘links’. We consider a connected ad hoc network where

the set of nodes is denoted by K (containing |K| = K

elements) and the set of links is denoted by L. We denote

Nk as the set of neighbors of node k, i.e., the nodes that

are linked to node k (node k excluded), and |Nk| is referred

to as the degree of node k, i.e., the number of neighbors of

node k. We define I as the identity matrix, and 1 as a vector

with all entries equal to one (dimensions should be clear from

the context). We use the notation ρ (X) to denote the spectral

radius of the matrix X, i.e., its largest eigenvalue in absolute

value.

Two commonly used matrices in SGT are the adjacency

matrix and the Laplacian matrix. The entries of the adjacency

matrix A = [akq]K×K are defined as

akq = aqk =

{
1 if q ∈ Nk

0 otherwise .
(1)

This matrix can be generalized to the case of weighted

and/or directed network graphs where a non-negative weight

and/or a direction is associated to each link. In a wireless

communication network, these weights may correspond to,

e.g., the available bandwidth over the links, the received signal

strengths, the reliability of the links, and so on. We define

the weighted adjacency matrix W = [wkq]K×K , with wkq

denoting the weight on the link (k, q) going from node k to

q (by definition, wkq = 0 if this link does not exist). We

assume that all link weights are non-negative, i.e., wkq ≥ 0,

∀k, q ∈ K. In the case of directed network graphs, it is possible

that wkq 6= wqk, i.e., in contrast to A, the weighted adjacency

matrix W may be asymmetric.

The entries of the Laplacian matrix L = [lkq]K×K of an

undirected graph (wkq = wqk) are defined as

lkq = lqk =

∑
j∈K wkj if k = q

−wkq if q ∈ Nk

0 otherwise .

(2)

For an unweighted network graph, L has the same definition

where the weight for link (k, q) is set to wkq = 1 such that L =
D−A where D = diag (|N1|, . . . , |NK |). We do not define the

(asymmetric) Laplacian matrix for the case of directed network

graphs, since this exceeds the purpose of this paper, i.e., we

only use the Laplacian matrix in a context of clustering, where

the direction of the edges is typically ignored.

The Laplacian matrix L is always positive semidefinite, and

by definition, it has a zero eigenvalue λ1 = 0 (eigenvalues are

sorted in increasing order of magnitude) with corresponding

eigenvector 1√
K

1. In fact, it can be easily shown that L has

P zero eigenvalues, where P is the number of disconnected

subgraphs [13]. Since we only consider connected network

graphs (P = 1), the eigenvalues of L satisfy

0 = λ1 < λ2 ≤ . . . ≤ λK . (3)

Throughout this paper, there is an implicit assumption that

the distributed algorithms operate in a synchronous setting.

This means that there is a common network-wide iteration

index that is incremented deterministically at regular time

intervals. In each iteration, the nodes perform a pre-defined

task and share the result with their neighbors. This is very

different from asynchronous environments, where nodes are

allowed to process and transmit data at will (at any time). The

latter is less restrictive in terms of network-wide coordination,

but the algorithm design is considered to be much more

challenging.

PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 3

Fig. 1. A small example graph with eigenvector centrality scores (the red
dotted line can be ignored, unless stated otherwise).

III. EIGENVECTOR CENTRALITY

A. Definition

For the design of TA distributed algorithms, it is often

important to infer information about the ‘centrality’ of each

node in the network topology. In graph theory, many different

centrality measures are defined, where centrality may have a

different meaning in different contexts or measures [10]. For

example, in the network depicted in Fig. 1 (ignore the red

dotted line for the time being), node 2 could be considered to

be the most central node. This intuition relates to the notion of

closeness centrality [10], i.e., a central node should be close

to any of the other nodes in the network. In graph theory

however, centrality is more often associated with the relative

‘influence’ of a node with respect to the rest of the network,

where nodes with many neighbors are considered to be more

influential. In this context, a network may have multiple

‘central nodes’ at different places in the network, usually at the

centers of densily-connected node clusters (see also Section

IV). For example, nodes 1 and 3 can be considered to be

most influential in the network graph depicted in Fig. 1.

A simple centrality measure in this context is the so-called

degree centrality, where the centrality of node k is defined by

its degree, i.e., |Nk|. However, as it merely measures the local

influence of a node, degree centrality does not take the full

network topology into account, which is a major disadvantage.

The so-called eigenvector centrality fixes this problem, relying

on the principle that a node has more influence if it is

connected to many nodes which in turn are also considered

to be influential. If we denote ck as the centrality of node k,

then this principle yields the following implicit definition:

ck = 1
α

∑
q∈Nk

cq , ∀ k ∈ K (4)

where α is an arbitrary normalization factor. We obtain a

chicken-and-egg problem where the centrality of node k is pro-

portional to the sum of the centralities of its neighbors. Notice

that (4) incorporates knowledge of the full network topology

where each node should look beyond its local horizon, since

a node’s centrality does not only depend on its neighbors, but

also implicitely on the neighbors of its neighbors, etc. To solve

this chicken-and-egg problem, we rewrite (4) by means of the

adjacency matrix A, i.e.,

α c = A · c (5)

where c is the K-dimensional vector in which all ck, ∀k ∈ K,

are stacked. This shows that c has to be an eigenvector of A,

which also explains the name ‘eigenvector centrality’. If we

only allow non-negative coefficients in c, then equation (5)

has a unique solution, given by the principal eigenvector of

A corresponding to its largest eigenvalue αK (this can be

straightforwardly proven by means of the Perron-Frobenius

theorem). It is noted that this defines c up to a non-zero

scaling, and it depends on the application whether and how c

has to be normalized. The definition of c can be generalized

to the case of weighted and/or directed graphs by replacing A

in (5) with W or WT , using the weights of the outgoing or

incoming links, respectively.

As an example, we have indicated the eigenvector central-

ities of the different nodes in the example graph depicted in

Fig. 1. Nodes 1 and 3 have the highest centrality score, which

corresponds to our intuition that these nodes have a large

influence. We reiterate that this does not always correspond

to the geometrical interpretation of centrality, such as in, e.g.,

closeness centrality which would rank node 2 higher than

nodes 1 and 3. In Section IV-B, we will point out that the

Laplacian spectrum often relates better to this geometrical

interpretation of centrality than the spectrum of the adjacency

matrix.

B. Properties and extensions

Eigenvector centrality is a powerful concept to quantify the

topology-induced influence of a node. To give more insight

in the actual meaning of eigenvector centrality, we provide

another interpretation which also allows for a more tunable

generalization. Intuitively, if there are many possible ‘walks’

through the network that pass through a particular node,

this node can be assumed to have an important network-

wide contribution (e.g., in terms of information flow, diffusion

properties, etc.), and therefore this node should receive a high

centrality score. First note that the entry at row k and column

q of the matrix AN is equal to the number of walks of length

N from node k to node q. Therefore, the k-th entry in the

vector AN ·1 is equal to the total number of walks1 of length

N that start at node k. Define the vector

v(φ) =
(
A + 1

φA2 + 1
φ2 A

3 + ...
)
· 1 (6)

where φ > αK (otherwise the sum diverges). Then the k-

th entry of v(φ) is equal to the total number of walks that

start at node k, where a walk of length N is penalized

with a factor 1
φN−1 . By using the Taylor series expansion

(I−X)
−1

=
∑∞

i=0 Xi for ρ(X) < 1 we can rewrite (6)

as

v(φ) =

(
I−

1

φ
A

)−1

·A · 1 (7)

and therefore

v(φ) =
1

φ
A · v(φ) + A · 1 . (8)

If φ approaches αK from above (φ−→
>
αK), then ‖v(φ)‖ → ∞

in (7), in which case the term A · 1 in (8) can be neglected.

Therefore limφ −→
>

αK
v(φ) ∝ c where ‘∝’ denotes equality up

to a non-zero scaling, i.e., eigenvector centrality corresponds

1It is noted that similar interpretations exist for weighted and/or directed
graphs, e.g., in a context of random walks [15], [21], [22], [32].

4 PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013)

to a limit case of (6), where the penalization of longer walks is

minimal [33]. To control to which degree neighbors of neigh-

bors of neighbors (etc.) should have an influence on a node’s

centrality measure, one can also choose a larger penalization

factor φ in (6). This generalized centrality measure is often

referred to as Katz centrality [34], and it forms the basis of,

i.a., the successful Pagerank algorithm used by the Google

search engine, in the context of a ‘random surfer’ model [15].

In this case, the penalizing factor φ controls how easily the

surfer gets bored after clicking too many links. In Section V-E,

we will explain how to use similar techniques in TA distributed

algorithms to obtain an ‘eigenutility’ of nodes, based on their

topology-induced influence.

C. In-network computation

To facilitate the design of TA distributed algorithms, we

should be able to perform an in-network distributed compu-

tation of the centrality vector c. An obvious but important

observation is that the (weighted) adjacency matrix is im-

plicitely coded inside the network itself, allowing to perform

in-network matrix-vector multiplications with A or W in a

simple distributed fashion. Indeed, assume we wish to compute

the matrix-vector product y = A · x, and assume that node k

stores the k-th entry of x (denoted by xk) and has access to

the xq’s of its neighbors (q ∈ Nk), then the k-th entry of y

can be computed at node k as

yk =
K∑

q=1

akqxq =
∑

q∈Nk

xq . (9)

Therefore, we can perform an in-network power iteration (PI)

x(i+1) = A · x(i) (10)

starting from a random vector x(0). From matrix theory, we

know that this PI converges to the principal eigenvector of A,

i.e., x(∞) ∝ c. However, the norm of x(i) in (10) will diverge

or vanish, depending on ρ(A) > 1 or ρ(A) < 1, respectively.

Therefore, even though we usually do not require a normalized

centrality vector2, we should still compensate for this growth

or shrinking effect. To this end, we apply a compensation

factor that continuously approximates the growth/shrinking

rate, i.e.,

x(i+1) =
1

r(i)
x(i+1) =

1

r(i)
A · x(i) (11)

such that r(i) ≈ ‖Ax
(i)‖

‖x(i)‖ = ‖x(i+1)‖
‖x(i)‖ (and eventually

limi→∞ r(i) = limi→∞
x
(i+1)

k

x
(i)

k

= ρ(A) = αK). The estimation

of r(i) can be taken care of by a distributed algorithm that

runs in parallel with (10). For example, r(i) is estimated

heuristically from the quantities
x
(i+1)

k

x
(i)

k

by means of a gossip

algorithm in [35], and by means of diffusion adaptation in

[23]. Note that r(i) does not influence the convergence speed

of the PI (11), hence there is no crucial or strict dependency

2In case a normalized centrality vector is desired, one can use techniques
from [1], [6], [7] to compute the norm ‖x(∞)‖ at each node, as done in [35].

(a) Ordered node placement (b) Random node placement

Fig. 2. Two different visualizations of an ad hoc network consisting of
K = 24 nodes (the red dotted line can be ignored, unless stated otherwise).

between the PI and the algorithm that estimates r(i) (one can

lag behind with respect to the other).

Finally, it is noted that the Katz centrality vector v(φ) can

be computed with a similar iterative procedure, based on (8),

i.e.,

x(i+1) =
1

φ
A · x(i) + A · 1 . (12)

and by including a proper compensation for the growth or

shrinking rate, by using similar techniques as mentioned

above.

IV. ALGEBRAIC CONNECTIVITY AND THE FIEDLER

VECTOR

A. Definition

The algebraic connectivity and the Fiedler vector constitute

one of the most important concepts in SGT, and they are

extracted from the spectrum of the Laplacian matrix L. Recall

that the smallest Laplacian eigenvalue is equal to λ1 = 0 with

corresponding eigenvector 1√
K

1. The algebraic connectivity is

defined as the second-smallest Laplacian eigenvalue λ2, which

is proved to be strictly positive (assuming the network graph

is connected) and monotonically increasing when adding links

to L. Its corresponding eigenvector, denoted as f , is referred to

as the Fiedler (eigen)vector, after Miroslav Fiedler who devel-

oped the original theory related to algebraic connectivity [11].

The algebraic connectivity λ2 and the Fiedler vector f contain

important information about the connectivity and clustering

properties of the network graph, as well as the convergence

and robustness properties of distributed algorithms such as

consensus- [1], [6], diffusion- [2], [3], or gossip-based [7]

algorithms (see also Section V-B).

B. Properties

Although the algebraic connectivity and the Fiedler vector

have many important properties [13], we will mainly focus on

their clustering capabilities, as these yield important informa-

tion about the network topology, which can be exploited in

TA distributed algorithms. To this end, we consider a network

in which we would like to identify node clusters, which are

internally densely connected, but which have only few cross

links with other node clusters. For example, three node clusters

can be clearly distinguished in the network depicted in Fig.

2(a), as indicated by their color (in the sequel, the red dotted

line can be ignored, unless stated otherwise). The links cut by

the black dashed lines form important ‘bridges’ between the

PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 5

clusters, which usually correspond to bottlenecks in the data

diffusion or dissemination in the network. Even though it is

intuitively clear how to cluster the network in Fig. 2(a), the

node clustering problem becomes a lot harder for the network

depicted in Fig. 2(b), even though both networks are actually

identical. With this observation, it is not surprising that graph

partitioning (node clustering) techniques also play a crucial

role in graph visualization software [17].

1) Ratio cut: If we aim to partition a network graph with a

set of nodes K in two non-overlapping node clusters K1 and

K2, a commonly used approach, leading to the so-called ratio

cut, is to minimize the edge density [12]

ρ(K1,K2) =
|L(K1,K2)|

|K1||K2|
(13)

where K1 ∩ K2 = ∅, K1 ∪ K2 = K and L(K1,K2) denotes

the set of links that are shared between K1 and K2, i.e., the

links that are cut. The intuition behind the ratio cut is that the

minimization of the numerator of (13) minimizes the number

of links between the two node clusters, while the maximization

of the denominator yields a driving force towards node clusters

of equal size (avoiding trivial solutions). It is noted that the

edge density can be generalized for weighted graphs, where

|L(K1,K2)| is then replaced by the sum of the weights of the

links that are cut, i.e.,

ρ(K1,K2) =

∑
k∈K1,q∈K2

wkq

|K1||K2|
. (14)

Finding the ratio cut of a network graph is not straightfor-

ward, let alone, to do this in a distributed fashion where each

node only sees a small part of the network. Moreover, the

problem is shown to be NP-complete [16], and so one has to

rely on heuristics to solve it in a reasonable time (this holds

in a centralized scenario as well as in a distributed scenario).

This is where the algebraic connectivity λ2 and the Fiedler

vector f come into play.

2) Algebraic connectivity and the ratio cut: One important

property of the algebraic connectivity is that it provides a lower

bound on the edge density of the ratio cut of the network graph

[12], i.e.,

min
K1,K2

ρ(K1,K2) ≥
λ2

K . (15)

Basically, this means that a network graph with a large

algebraic connectivity requires the removal of relatively many

links to partition it into two parts of similar size, i.e., a clear

bipartition of the network graph is not inherent. On the other

hand, a network graph with a small algebraic connectivity

is vulnerable in the sense that two large node clusters are

connected by relatively few links. As explained next, the

Fiedler vector can then be of great help to identify these links.

3) Fiedler vector-based clustering: The coefficients of the

Fiedler vector contain a powerful heuristic to approximate the

ratio cut to partition the network graph into two well-separated

node clusters [12], [14], [16], [18], which may indeed prove

useful in the design of TA distributed algorithms. To see this,

observe that the (normalized3) Fiedler vector is the solution

of

arg min
f

fT Lf (16)

s.t. ‖f‖ = 1 (17)

fT 1 = 0 (18)

and it can be easily verified that

fT Lf =
∑

(k,q)∈L
wkq(fk − fq)

2 . (19)

where fk denotes the k-th entry of f . Minimizing (19) yields

a driving force such that, if node k and q are connected (with

a large weight wkq), the values fk and fq are close to each

other. This means that the nodes in densely connected node

clusters will have similar entries in f . Since ‖f‖ = 1 and

fT 1 = 0, there is also a driving force such that the entries

in f are centered around zero and not all equal to each other,

such that trivial clustering solutions are avoided. Therefore,

sorting the nodes with respect to their corresponding entries

in f provides a good heuristic to partition the network graph

into two node clusters based on the ratio cut. In most cases,

the distinction between positive entries and negative entries

in f is used to form the two node clusters, although other

approaches also exist (see, e.g., [14], [36]). If a network graph

has to be clustered into more than two node clusters, this

technique can be applied recursively [16], [18], [37], which

is often referred to as Recursive Spectral Bisection (RSB).

In this case, the value of λ2 (on the cluster level) can be

used as an indicator to decide whether or not a specific

cluster can be easily partitioned into two smaller clusters,

which is motivated by the lower bound in (15). A possible

RSB-based algorithm to cluster a network graph in Q node

clusters is presented in Table I. It is noted that (15) can

also be used to define a stop criterion if Q is not known a

priori. The RSB-based algorithm described in Table I is a top-

down clustering algorithm, starting from the complete network

graph and subsequently dividing it into smaller clusters. It

is also possible to start from a given node and to identify

the local ‘natural cluster’ that contains this node by using

related Fiedler-based techniques [20]. These techniques can

then be used in a bottom-up approach where a couple of

smaller clusters are identified first, which can then be merged

together with heuristic procedures [19].

As a brief illustration, consider the example network graph

depicted in Fig. 2(a) with the entries of the corresponding

Fiedler vector given in Fig. 3(a). Notice that the nodes in

K1 = {1, . . . , 8} correspond to positive entries, whereas the

other nodes correspond to negative entries. This indicates that

K1 can be considered as a densely-connected node cluster,

having only a small number of links to nodes in K\K1. A more

subtle observation is that, within K1, nodes 1, 3 and 6 have

entries that are significantly closer to zero than the entries of

the others. This is because these nodes contain the bridge links

3It is noted that the unity norm constraint in (17) is an arbitrary choice,
merely to avoid a trivial solution. The actual value of the norm of f is usually
not important in practice.

6 PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013)

TABLE I
DESCRIPTION OF A RSB NODE CLUSTERING ALGORITHM TO IDENTIFY Q CLUSTERS

1) Let C denote the set of clusters and initialize C ← {G1} where G1 = K.

2) ∀ Gi ∈ C, i = 1 . . . |C|, compute the cluster-level Fiedler vector f(Gi) and algebraic connectivity λ2(Gi), where bridge

links between clusters are ignored.

3) Find G∗ ← arg min
G∈C

λ2(G)
|G| .

4) Partition G∗ into two clusters G∗− and G∗+, where G∗− contains the nodes which have negative entries in f(G∗), and where

G∗+ contains the nodes which have positive entries in f(G∗).
5) Set C ← {G∗−,G

∗
+} ∪ C\{G

∗}.
6) If |C| < Q, return to step 2.

0 5 10 15 20 25
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Node index

(a) Entries of the Fiedler vector of the full network

8 10 12 14 16 18 20 22 24 26
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Node index

(b) Entries of the Fiedler vector of the isolated cluster {9, 10, . . . , 24}

Fig. 3. Fiedler vectors computed in the network depicted in Fig. 2(a).

between K1 and K\K1. Similarly, within K\K1, nodes 9, 12,

17 and 23 have the entries that are closest to zero. Finally, the

larger node cluster K\K1 can further be partitioned into two

node clusters by computing the Fiedler vector of the subgraph

corresponding to this node cluster (ignoring the bridge links

with K1). The entries of this vector are given in Fig. 3(b).

Again, it is observed that the positive entries correspond to

one node cluster, and the negative entries to the second node

cluster. This finally results in the three node clusters indicated

by the different colors in Fig. 2(a).

4) Fiedler vector-based centrality: In addition to their

usage in node clustering, the entries in the Fiedler vector may

also be used as a measure of centrality of the nodes, this

time in a more geometrical context of centrality (similar to

closeness centrality). As illustrated in the previous example,

the entries that are close to zero correspond to nodes that

connect the two node clusters, since assigning small values to

such nodes indeed yields a smaller value in (19). These nodes

have short paths to the nodes in both clusters, and therefore

they are usually close to most other nodes in the network.

We will not further elaborate on this Fiedler vector-based

centrality, as it is beyond the scope of this paper. However, it is

noted that it could be incorporated in many of the techniques

explained in Section V (including base station and topology

selection) instead of eigenvector centrality. This would favor

solutions with small network delay, rather than the typical

high-throughput solutions in the case of eigenvector centrality.

C. In-network computation

Similar to the adjacency matrix, it is observed that the

Laplacian matrix is implicitely coded inside the network itself,

again allowing to perform an in-network PI with L. However,

as we are now interested in the second-smallest eigenvalue of

L, some modifications are required to compute f and λ2 [23].

Consider the matrix

G = I− σL (20)

with 0 ≤ σ ≤ 1
λK

such that G is positive (semi-)definite. To

guarantee the latter, σ can be safely set to σ =
(
λ
)−1

, based

on the upper bound [23]

λK ≤ λ = max
k∈K

Sk +

1

Sk

∑

q∈Nk

Sq

 (21)

where Sk =
∑

q∈Nk
wkq . It is noted that G is a doubly

stochastic matrix since the entries in any row and column of

L sum to zero. We also define the matrix

V = GNL (22)

which has the same eigenvectors as L and G, and of which

the eigenvalues are given by

νj = λj(1− σλj)
N , j = 1, . . . ,K . (23)

The aim is now to perform an in-network PI with the matrix

V, similar to (11). To make f the dominant eigenvector of V,

the eigenvalues in (23) should satisfy ν2 > νj , ∀ j 6= 2. Since

ν1 = 0, ∀N ∈ N, it is easy to see that this will indeed be the

case for sufficiently large N (see [23] for sufficient conditions

on N), and therefore we can indeed use the PI

x(i+1) = V · x(i) = GN · L · x(i) (24)

to compute f . This PI can be easily computed in a distributed

PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 7

Fig. 4. A large example graph with four densely-connected node clusters
and corresponding cluster heads as selected by the algorithm in Table II (the
red dotted line can be ignored, unless stated otherwise).

fashion, by alternating between a single in-network multiplica-

tion with L, and N subsequent in-network multiplications with

G (and by including a proper compensation for the growth or

shrinking rate, as in Section III-C). After convergence, the k-

th entry fk is known to node k, as well as λ2, since the latter

can be computed from the limiting growth/shrinking rate.

It is noted that there exist alternative algorithms to compute

f and/or λ2. E.g., in [24], a continuous-time algorithm is

proposed based on a combination of a PI and consensus

averaging (CA) techniques. In [25], an improved convergence

is targeted based on a combination of an inverse PI and CA

techniques. If only an estimate of λ2 is of interest, we refer

to [22], [26]. The algorithms in [27], [28] do not focus on the

Fiedler vector in particular, but are able to compute a set of

dominant eigenvectors of L or G in a distributed fashion.

V. APPLICATION IN DISTRIBUTED SIGNAL TASKS

In this section, we present a number of distributed signal

processing tasks that can benefit from a TA approach based

on the information that is included in the centrality vector

c, the Fiedler vector f and the algebraic connectivity λ2. In

particular, we consider base station or cluster head selection,

distributed estimation (including consensus- and diffusion-

type algorithms), topology selection, and eigenutility. We also

briefly address resource allocation and node subset selection.

It is noted that the entries in c and f are distributed over the

different nodes, which may require some additional measures

to make global decisions based on the entries in these vectors.

In many cases (including the examples in this section), the

decision making process merely involves a maximum and/or

minimum search over the entries in c and f , which can be

easily performed by means of gossip or max-/min-consensus

techniques [38]. If node clustering is involved, one can rely on

the signs of the entries in f , hence nodes automatically know

which cluster they belong to. We will not elaborate further

on more sofisticated decision making processes, as this is an

application-specific issue which mostly relies on heuristics or

divide and conquer strategies (see also, e.g., [19]).

A. Base station or cluster head selection (c / f)

Base station or cluster head selection amounts to choosing

one or more nodes in a network to serve as a data collec-

tor/distributor for a large part of the network. This is a highly

non-trivial task, especially so in a distributed setting [37], [39].

Ideally, these base stations should be easily reachable (central)

nodes and well-separated from each other. For example, in Fig.

2(a), an ‘external observer’ will usually select nodes 3, 9 and

18 as base stations. In a distributed setting, the centrality vector

c will provide a good heuristic to make this choice, since a

node with a large centrality has many paths or walks going

through it, and therefore it is able to quickly collect/distribute

a large amount of information from/to many different nodes.

However, if the network can be easily partitioned in multiple

node clusters (if λ2

K is small), it is of utmost importance that

the base stations are properly distributed over the different

clusters. If not, the relatively few bridge links between the

clusters may get congested, since these will be used to transfer

the data of an entire cluster to reach a base station in another

cluster.

The algorithm presented in Table II uses both c and f to

select Q base stations in a network (or Q cluster heads in

Q different clusters). When this algorithm is applied to the

network graph in Fig. 2(a), it indeed selects nodes 3, 9 and 18

as the base stations. When applied to the large-scale network

graph depicted in Fig. 4 (again ignoring the red dotted line), it

selects nodes 13, 27, 47, 58 as base stations after succesfully

identifying 4 densely-connected node clusters (indicated by 4

colors).

B. λ2-dependency of distributed estimation algorithms

It has been shown that the algebraic connectivity directly

influences the performance of several distributed estimation

algorithms. To provide some intuition why this is the case, and

considering the important implications for distributed signal

processing in general, we will first elaborate in more detail on

this λ2-dependency, in particular for the well-known consensus

averaging (CA) algorithm [6], as well as for diffusion-type

algorithms [2], [3]. Although beyond the scope of this paper,

it is noted that similar results on λ2-dependency have been

presented for other algorithms such as gossip-type algorithms

[7] and general consensus algorithms [1]. In the next section,

we will demonstrate how the Fiedler vector can be used as a

heuristic to optimize λ2 in an ad hoc network.

1) Consensus averaging (CA): Assume that each node

k ∈ K collects an observation x
(0)
k , then the goal of the CA

algorithm is to compute the average x = 1
K 1T x(0) (where

x(0) has x
(0)
k as its k-th entry). A common approach is to

use Degroot’s algorithm [40], i.e., x
(0)
k is iteratively updated

at node k as x
(i+1)
k = gkkx

(i)
k +

∑
q∈Nk

gkqx
(i)
q , which can be

written as the in-network PI

x(i+1) = G · x(i) (25)

where G = [gkq]K×K . If G satisfies some necessary and

sufficient [6], each node will eventually obtain x
(∞)
k = x,

∀ k ∈ K, i.e., consensus is reached. A popular choice for the

8 PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013)

TABLE II
DESCRIPTION OF A BASE STATION OR CLUSTER HEAD SELECTION ALGORITHM

1) Partition the network in Q clusters C = {G1, . . . ,GQ}, e.g., with the algorithm in Table I.

2) In each cluster Gi ∈ C, i = 1 . . . Q, compute the cluster-level eigenvector centrality c(Gi), where bridge links between

clusters are ignored.

3) In each cluster Gi ∈ C, i = 1 . . . Q, find the maximum entry in c(Gi). Each node corresponding to such a maximum is

selected as a base station or cluster head.

Remark: the available data throughput of each link can also be incorporated by using a weighted adjacency and/or

Laplacian matrix when computing f and c.

weight matrix G, corresponding to the so-called Laplacian

rule [6], is

G = I− σL (26)

which is also the matrix defined earlier in (20). Note that

this choice partially affects generality, i.e., it allows node k

to give a different weight gkq to each neighbor q ∈ Nk, but

the weights are confined to be symmetric, i.e., gkq = gqk since

lkq = lqk. Considering the spectrum of L, the two dominant (in

absolute value) eigenvalues of G are equal to γK = 1−σ0 = 1
and γK−1 = (1− σλ2) if

0 < σ ≤ σ∗ =
2

λ2 + λK
. (27)

Therefore, if σ is not too large, the principal eigenvector of

G is equal to the λ1-eigenvector of L, i.e., 1√
K

1. Since the

absolute value of all other eigenvalues is strictly smaller than

1, we find that limN→∞ GN = 1
K 11T , and therefore (25)

indeed converges to x(∞) = 1
K 11T x(0) = x1.

Since the convergence rate of a PI directly depends on

the ratio β between the two dominant eigenvalues, the CA

algorithm (25) converges at the rate

β = 1
1−σλ2

≤ 1
1−σ∗λ2

= λK+λ2

λK−λ2
. (28)

Therefore, increasing the algebraic connectivity λ2 (see Sec-

tion V-C) will always improve the CA convergence rate β for

any σ that satisfies (27). For the optimal choice σ = σ∗, the

convergence rate increases when λ2 → λK . To determine σ∗,

λK can be computed in a distributed fashion from the limiting

growth or shrinking rate of the in-network PI x(i+1) = L·x(i).

If suboptimal convergence is sufficient, then the nodes can

safely use the value σ = 2

λ2+λ
where λ is defined in (21).

2) Diffusion adaptation: A similar conclusion can be made

for diffusion-based adaptive algorithms [2], [3], which com-

bine adaptive filtering techniques with a weighted averaging

step similar to (25). In this case, each node k ∈ K collects

observations {uk,i}i∈N of a stochastic vector uk and obser-

vations {dk,i}i∈N of a response signal dk = uT
k wo + nk,

where nk denotes an additive noise term and wo denotes an

unknown parameter vector (common to all nodes). The goal

is to estimate and track wo at each node k ∈ K by means of

local cooperation. As an example, consider the diffusion least

mean squares (LMS) algorithm [3], where each node alternates

between a stochastic gradient descent step (with stepsize µ)

ψ
(i)
k = w

(i)
k + µuk,i(dk,i − uT

k,iw
(i)
k) (29)

and a diffusion step involving a weighted averaging with

weight matrix G = [gkq]K×K

w
(i+1)
k = gkkψ

(i)
k +

∑

q∈Nk

gkqψ
(i)
q . (30)

In the sequel, we give an intuitive argument to demonstrate

how the diffusion step improves the performance of the LMS

algorithm, and how this improvement is influenced by the

algebraic connectivity. For the sake of an easy exposition, we

consider the scalar case where u, w and ψ become u, w and

ψ, respectively. We define the instantaneous error vectors w̃(i)

and ψ̃
(i)

, where the k-th entry is given by w̃
(i)
k = wo

k − w
(i)
k

and ψ̃
(i)
k = wo

k − ψ
(i)
k , respectively. The norm ‖w̃(i)‖ can

then be viewed as an instantaneous network-wide performance

measure at iteration i of the diffusion LMS algorithm. By

defining Λi = diag{u1,i, . . . , uK,i} and ni = [n1,i . . . nK,i]
T ,

(29)-(30) can straightforwardly be rewritten as

ψ̃
(i+1)

=
(
I− µΛ2

i

)
· w̃(i) − µΛi · ni (31)

w̃(i+1) = G · ψ̃
(i+1)

. (32)

Let us now compare ψ̃
(i)

with w̃(i), i.e., the network-

wide instantaneous error before and after the diffusion step.

Note that ψ̃
(i)

can be decomposed as ψ̃
(i)

= ψ
(i)

1 + η(i)

where ψ
(i)

= 1
K 1T ψ̃

(i)
such that η(i) can be viewed as a

‘disagreement’ component. In steady state, this disagreement

component is mainly dominated by the noise ni and the

variance of the local stochastic gradients, hence η(i) should

preferably be eliminated. If we again choose the Laplacian

rule G = I − σL in the diffusion step (32), it can be easily

found that (note that η(i) and 1 are orthogonal)

‖w̃(i)‖2 ≤ ‖ψ
(i)

1‖2 + (1− σλ2)
2‖η(i)‖2 ≤ ‖ψ̃

(i)
‖2 (33)

i.e., the network-wide error ‖w̃(i)‖ (after the diffusion step) is

strictly smaller than ‖ψ̃
(i)
‖ (before the diffusion step), unless

ψ̃
(i)

is equal in each node (‖η(i)‖ = 0), in which case the

diffusion step has no impact. Note that (31)-(32) is a recursive

expression, hence the beneficial effect of G builds up over the

iterations (we refer to [3] for a rigorous performance analysis

which incorporates this recursive effect). The suppresion of

η(i) in every iteration of the diffusion LMS algorithm directly

depends on the magnitude of (1 − σλ2), hence increasing

the algebraic connectivity (see Section V-C) generally has a

PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 9

beneficial effect on the convergence speed and steady-state

performance.

C. Increasing the algebraic connectivity (f)

In the previous section, we have explained that a large

algebraic connectivity λ2 is beneficial for the performance

of distributed estimation algorithms. Furthermore, a network

graph with a small λ2 is vulnerable to link failures or conges-

tion, due to the presence of crucial bridge links between the

densely connected node clusters. Therefore, a TA distributed

algorithm should be able to modify the set of active links in

the network graph, to maintain a large algebraic connectivity.

To obtain the largest possible λ2, the network graph should

have a fully connected topology, which is then very energy-

inefficient. In most cases however, λ2 can be significantly

increased by adding only a few links between carefully chosen

node pairs [9], [41]. This can be achieved based on an iterative

greedy approach where, in each iteration, the link is added that

yields the largest increase in λ2. As it turns out, the Fiedler

vector f provides an important heuristic to select this link.

Indeed, it can be shown that [41]

∂λ2

∂wkq
= fT ∂L

∂wkq
f = (fk − fq)

2 (34)

i.e., a small perturbation ∆ on the weight wkq = wqk of the

link (k, q) will yield a change of ∆(fk−fq)
2 in λ2. Therefore,

to achieve a significant increase in λ2, it suffices to identify

arg max
(k,q)/∈L

(fk− fq)
2 (i.e., identify the minimum and maximum

entry in f), and to create a link between the resulting nodes

k and q. In the network graphs depicted in Fig. 1, Fig. 2(a)

and Fig 4, this optimal link is indicated with a red dotted line,

demonstrating that this procedure will try to connect nodes on

the outer edges of 2 different clusters. It is noted that a similar

procedure can also be used to remove links that do not have

much impact on λ2, to reduce the overall energy consumption

[9].

Observe that this procedure can also be used to manipulate

the Laplacian combiner weights gkq in (26) to improve the

performance of distributed estimation algorithms (see Section

V-B). Furthermore, if σ is set to σ = σ∗ in (26), (28) shows

that a joint minimization of λK and maximization of λ2 should

improve performance. λK can be minimized by computing

a similar heuristic based on the principal eigenvector of L

corresponding to λK (which can also be easily computed in a

distributed fashion). Based on the above heuristics, a greedy

method is proposed in [9], which incorporates the simultane-

ous effects on λK , λ2 and the resulting increase/decrease in

energy consumption when adding and/or removing a specific

link. Similar Fiedler-based techniques have also been used to

control the motion of moving agents with limited communi-

cation range, to increase their interconnectivity [42].

D. Topology selection and network pruning (c / f)

For some distributed algorithms, the network graph is

required to belong to a pre-defined topology class, e.g., a

tree topology [43], a ring topology [44], etc. Setting up such

a specific topology by pruning links from an initial ad hoc

network graph is often non-trivial, especially in a distributed

context. Again, the vectors c and f can be of great help in

this process. For example, if a highly branched spanning tree

is required, the node corresponding to the maximum entry in

c should be chosen as the root node. The tree can then grow

further by using a similar heuristic on the branches, i.e., a so-

called brush fire search. A similar procedure can be used to

approximate an optimal spanning tree in a weighted network

graph [45]. If it is important that each node has a short path

to the root node, a Fiedler vector-based centrality measure can

also be used instead (see Section IV-B4).

A more difficult example is the construction of a ring

topology or a so-called Hamiltonian cycle [44], i.e., a cyclic

path that visits each node exactly once, which is an NP-

complete problem. However, if an approximate Hamiltonian

cycle is allowed where a few nodes can be visited more than

once, the Fiedler vector can be used to identify node clusters

and bridge links. Many of the bridge links will be part of the

(pseudo-)Hamiltonian cycle and should therefore be treated as

anchor points in the definition of the cycle. It is noted that

the corresponding node clustering also allows for a divide-

and-conquer approach, where each cluster sets up a (pseudo-

)Hamiltonian path from one bridge link to another bridge link.

E. Eigenutility of nodes (c)

In most of the currently available distributed algorithms, the

nodes themselves do not know how they influence the overall

network performance. At best, they only know how they

influence the signal processing task of their direct neighbors.

Therefore, an interesting objective would be to assign some

‘utility’ measure to each node based on the node’s influence

in a network-wide context. Depending on the application

or context, ‘utility’ can have different meanings, e.g., the

usefulness of the data that a node provides [46], the quality

of its local estimate [3], its reliability [47], its willingness to

cooperate, its data throughput, etc.

A first approach to defining such a utility measure is to let

each node k ∈ K assign a non-negative utility score wkq to

each of its neighbors q ∈ Nk, where
∑

q∈Nk
wkq = 1. The

utility of node k could then be defined as uk =
∑

q∈Nk
wqk.

However, this is again a local measure, which does not relate

to the impact of node k on the entire network. For instance,

if node k is only found useful by nodes that themselves

are not found useful by their own neighbors, node k should

get a small uk as it is indeed not useful in a network-wide

context. Similarly, a node should get a higher utility if it is

found useful by other high-utility nodes. This chicken-and-

egg problem straightforwardly brings us back to the notion

of eigenvector centrality in (5), this time with a weighted

adjacency matrix equal to the (possibly assymetric) scoring

matrix W = [wkq]K×K , i.e.,

u = WT · u . (35)

The unique positive solution for u is equal to the principal

eigenvector of WT . It is noted that the scaling factor α in

(5) is omitted here since ρ(W) = 1 due to the normalization∑
q∈Nk

wkq = 1. The iteration (35) is strongly related to the

invariant distribution of random walks over a Markov chain

10 PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013)

where the transition probabilities are given by the entries in

W [32, Chapter 2].

The entries in u are referred to as the nodes’ eigenutil-

ity. They are the sensor network equivalent of sociometric

eigenvector status indices [34], [48]. The eigenutility can be

very useful for resource allocation, node subset selection,

weight selection in weighted averaging, etc. In some cases,

it may be desired to dampen the effect of far-away nodes on

a node’s utility. For example, in large-scale networks for on-

line tracking of rapidly time-varying parameters, there may be

insufficient time to diffuse information over the entire network,

as old information may rapidly become obsolete. In this case,

far-away nodes cannot affect a node’s performance, hence they

should be neglected in the determination of a node’s utility. In

such cases, Katz centrality may prove a valid alternative. For

example, Katz centrality is used in the EigenTrust algorithm

that assigns a measure of reliability to each node [47], and

in Google’s Pagerank algorithm that assigns scores to internet

web pages [15]. In [31], a unifying framework is proposed that

captures several of these measures in a single cost function,

and a single distributed algorithm to compute all of these

(including Katz centrality, (personal) Pagerank, peer-to-peer

rating, information centrality, and even consensus averaging).

F. Other applications of c and f

There are many other distributed signal processing problems

that can benefit from the information that is included in the

centrality vector c and/or the Fiedler vector f . Although be-

yond the scope of this paper, we briefly mention the following

applications:

• Resource allocation (c / f): Resource allocation is a

common problem appearing in almost all distributed al-

gorithms, and it may refer to assigning to each node/link,

e.g., a quantization level, a bit-rate, a channel code length,

a transmission power, and so on. In this context, node

clustering can be used to identify the ‘weakest links’, i.e.,

the bridge links between densely-connected node clus-

ters4. These bridge links should ideally be protected with

strong channel codes and fine quantization to facilitate

robust data dissemination between clusters. Central nodes

or nodes with a large eigenutility should also receive

more resources, because these are assumed to have a large

overall influence.

• Divide-and-conquer techniques (f): Node clustering can

be helpful to divide difficult problems involving large-

scale networks into small-scale sub problems on the

cluster level, which can be solved more easily (e.g.,

for stability or robustness control [30], or to find a

Hamiltonian cycle).

• Node subset selection (c / f): Node subset selection refers

to selecting a set of nodes that contribute most to the

overall network performance, while putting less useful

nodes to sleep to save energy. This problem can use input

from the eigenutility procedure, but also node clustering

4In [29], another (related) heuristic method is proposed to identify critical
links without using explicit node clustering procedures.

may be helpful, e.g., to protect important bridge links

from being removed.

VI. CONCLUSIONS

In this paper, we have explained how nodes in a network

graph can infer information about the network topology or its

topology-related properties, based on in-network distributed

learning, i.e., without relying on an ‘external observer’ who

has a complete overview over the network. We have reviewed

some key concepts from the field of SGT, with a focus on

those that allow for a simple distributed implementation, i.e.,

eigenvector or Katz centrality, algebraic connectivity and the

Fiedler vector. We have explained how the nodes themselves

can quantify their individual network-wide influence, as well

as identify densely-connected node clusters and the sparse

bridge links between them. The addressed concepts, as well as

more advanced concepts from the field of SGT, are believed

to be crucial catalysts in the design of topology-aware dis-

tributed algorithms. We have provided examples of how these

techniques can be exploited in several non-trivial distributed

signal processing tasks.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Dr. B. Cornelis and the

anonymous reviewers for proofreading this manuscript and for

their valuable comments and suggestions.

REFERENCES

[1] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[2] S.-Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE Journal of

Selected Topics in Signal Processing, vol. 5, no. 4, pp. 649–664, Aug.
2011.

[3] F. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp.
1035 –1048, March 2010.

[4] S. Kar and J. Moura, “Sensor networks with random links: Topology
design for distributed consensus,” IEEE Transactions on Signal Process-

ing, vol. 56, no. 7, pp. 3315 –3326, July 2008.

[5] G. Mateos and G. B. Giannakis, “Distributed recursive least-squares:
Stability and performance analysis,” IEEE Trans. Signal Processing,
vol. 60, no. 7, pp. 3740–3754, July 2012.

[6] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[7] J. Lavaei and R. Murray, “On quantized consensus by means of gossip
algorithm - part II: Convergence time,” in American Control Conference,
June 2009, pp. 2958–2965.

[8] S. Sardellitti, S. Barbarossa, and A. Swami, “Optimal topology control
and power allocation for minimum energy consumption in consensus
networks,” IEEE Transactions on Signal Processing, vol. 60, no. 1, pp.
383–399, Jan. 2012.

[9] C. Asensio-Marco and B. Beferull-Lozano, “A greedy perturbation
approach to accelerating consensus algorithms and reducing its power
consumption,” in IEEE Statistical Signal Processing Workshop (SSP),
June 2011, pp. 365–368.

[10] M. Newman, Networks: An Introduction. Oxford University Press,
2010.

[11] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-

ical Journal, vol. 23, no. 98, pp. 298–305, 1973.

[12] B. Mohar, “Laplace eigenvalues of graphs - a survey,” Discrete Mathe-

matics, vol. 109, no. 13, pp. 171–183, 1992.

[13] ——, “The Laplacian spectrum of graphs,” in Graph Theory, Combi-

natorics, and Applications, Y. Alavi, G. Chartrand, O. Oellermann, and
A. Schwenk, Eds. Wiley, 1991, pp. 871–898.

PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE (2013) 11

[14] T. F. Chan, T. C. Ciarlet, and W. K. Szeto, “On the optimality of the
median cut spectral bisection graph partitioning method,” SIAM Journal

on Scientific Computing, vol. 18, pp. 943–948, 1997.

[15] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN Systems, vol. 30, pp.
107–117, 1998.

[16] L. Hagen and A. Kahng, “New spectral methods for ratio cut partitioning
and clustering,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 11, no. 9, pp. 1074 –1085, Sep. 1992.

[17] W. Richards and A. Seary, “Spectral methods for analyzing and visu-
alizing networks: an introduction,” Dynamic Social Network Modeling

and Analysis, pp. 209–228, 2003.

[18] S. Barnard and H. Simon, “Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems,” Concurrency

and computation: Practice and Experience, vol. 6, pp. 101–117, 1994.

[19] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
pp. 27–64, 2007.

[20] P. Orponen and S. Schaeffer, “Local clustering of large graphs by
approximate Fiedler vectors,” in Experimental and Efficient Algorithms,
ser. Lecture Notes in Computer Science, S. Nikoletseas, Ed. Springer
Berlin Heidelberg, 2005, vol. 3503, pp. 524–533.

[21] A. D. Sarma, “Algorithms for large graphs,” Ph.D. dissertation, Georgia
Institute of Technology, 2010.

[22] D. Nanongkai, “Graph and geometric algorithms on distributed networks
and databases,” Ph.D. dissertation, Georgia Institute of Technology,
2011.

[23] A. Bertrand and M. Moonen, “Distributed computation of the fiedler
vector with application to topology inference in ad hoc networks,” Signal

Processing, vol. 93, no. 5, pp. 1106–1117, May 2013.

[24] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar, “Decentralized estimation and control of graph
connectivity for mobile sensor networks,” Automatica, vol. 46, no. 2,
pp. 390–396, Feb. 2010.

[25] R. K. Williams and G. S. Sukhatme, “Distributed connectivity control
in mobile networks under local topology constraints,” Internal report of

the Departments of Electrical Engineering and Computer Science at the

University of Southern California, Los Angeles, 2012.

[26] R. Aragues, G. Shi, D. V. Dimarogonas, C. Sagues, and K. H. Johans-
son, “Distributed algebraic connectivity estimation for adaptive event-
triggered consensus,” in Proc. American Control Conference, Fairmont
Queen Elizabeth, Montreal, Canada, June 2012, pp. 32–37.

[27] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” Journal of Computer and System Sciences, vol. 74, no. 1, pp.
70–83, 2008.

[28] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a
graph: A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24,
2012.

[29] C. Gkantsidis, G. Goel, M. Mihail, and A. Saberi, “Towards topology
aware networks,” in Proc. IEEE International Conference on Computer

Communications (INFOCOM), May 2007, pp. 2591–2595.

[30] A. Banaszuk, V. A. Fonoberov, T. A. Frewen, M. Kobilarov, G. Mathew,
I. Mezic, A. Pinto, T. Sahai, H. Sane, A. Speranzon, and A. Surana,
“Scalable approach to uncertainty quantification and robust design of
interconnected dynamical systems,” Annual Reviews in Control, vol. 35,
no. 1, pp. 77–98, 2011.

[31] D. Bickson and D. Malkhi, “A unifying framework of rating users and
data items in peer-to-peer and social networks,” Peer-to-Peer Networking

and Applications, vol. 1, no. 2, pp. 93–103, 2008.

[32] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-

tion: Numerical Methods. Belmont, Massachusetts: Athena Scientific,
1997.

[33] G. L. Thompson, “Lectures on Game Theory, Markov Chains and
Related Topics,” Monograph SCR-11, Sandia Corporation, Albuquerque,

New Mexico, 1958.

[34] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[35] M. Jelasity, G. Canright, and K. Engo-Monsen, “Asynchronous dis-
tributed power iteration with gossip-based normalization,” in Lecture

Notes in Computer Science, vol. 4641. Springer, 2007, pp. 514–525.

[36] D. A. Spielman and S.-H. Teng, “Spectral partitioning works: Planar
graphs and finite element meshes,” Linear Algebra and its Applications,
vol. 421, no. 23, pp. 284–305, 2007.

[37] B. Elbhiri, S. El Fkihi, R. Saadane, and D. Aboutajdine, “Clustering in
wireless sensor networks based on near optimal bi-partitions,” in Proc.

Conf. on Next Generation Internet (NGI), June 2010, pp. 1–6.

[38] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of dis-
tributed consensus algorithms with boundary: From shortest paths to
mean hitting times,” in Proc. IEEE Conference on Decision and Control,
Dec. 2006, pp. 4664–4669.

[39] B. Deosarkar, N. Yadav, and R. Yadav, “Clusterhead selection in
clustering algorithms for wireless sensor networks: A survey,” in Proc.

Int. Conf. on Computing, Communication and Networking (ICCCN).,
Dec. 2008, pp. 1–8.

[40] M. H. Degroot, “Reaching a consensus,” Journal of the American

Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.
[41] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in IEEE

Conference on Decision and Control, Dec. 2006, pp. 6605–6611.
[42] M. C. DeGennaro and A. Jadbabaie, “Decentralized control of connec-

tivity for multiagent systems,” in Proc. IEEE Conference on Decision

and Control, San Diego, CA, Dec. 2006, pp. 3628–3633.
[43] A. Bertrand and M. Moonen, “Distributed adaptive estimation of node-

specific signals in wireless sensor networks with a tree topology,” IEEE

Transactions on Signal Processing, vol. 59, no. 5, pp. 2196–2210, 2011.
[44] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over

distributed networks,” IEEE Trans. Signal Processing, vol. 55, no. 8,
pp. 4064–4077, Aug. 2007.

[45] A. Robles-Kelly and E. R. Hancock, “Spanning tree recovery via random
walks in a riemannian manifold.” in Proc. Iberoamerican Congress on

Pattern Recognition, ser. Lecture Notes in Computer Science, vol. 3287.
Springer, 2004, pp. 303–311.

[46] A. Bertrand, J. Szurley, P. Ruckebusch, I. Moerman, and M. Moonen,
“Efficient calculation of sensor utility and sensor removal in wireless
sensor networks for adaptive signal estimation and beamforming,” IEEE

Trans. Signal Processing, vol. 60, no. 11, pp. 5857–5869, Nov. 2012.
[47] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust

algorithm for reputation management in P2P networks,” in Proc. inter-

national conference on World Wide Web. New York, USA: ACM, 2003,
pp. 640–651.

[48] J. R. Seeley, “The net of reciprocal influence: A problem in treating
sociometric data,” Canadian Journal of Psychology, vol. 3, pp. 234–
240, 1949.

Alexander Bertrand received the electrical engi-
neering degree (2007) and the Ph.D. degree in en-
gineering sciences (2011), both from KU Leuven,
Belgium. He is currently a Postdoctoral Fellow of
the Research Foundation - Flanders (FWO), affili-
ated with the E.E. Department of KU Leuven. In
2010, he was a visiting researcher at the University
of California, Los Angeles (UCLA). He has served
as a Technical Program Committee (TPC) Member
for the European Signal Processing Conference (EU-
SIPCO) 2012 & 2013, and is currently co-editor of

the newsletter of the European Association for Signal Processing (EURASIP).
He received the 2012 IBM (Belgium) Award.
[alexander.bertrand@esat.kuleuven.be]

Marc Moonen (IEEE Fellow 2007) is a Full Profes-
sor at the E.E. Department of KU Leuven, Belgium.
He has served as Editor-in-Chief for the EURASIP
Journal on Applied Signal Processing (2003-2005),
and has been a member of the editorial board of
IEEE Transactions on Circuits and Systems, IEEE
Signal Processing Magazine, EURASIP Journal on
Wireless Communications and Networking, and Sig-
nal Processing. He is currently a member of the
editorial board of EURASIP Journal on Advances in
Signal Processing and Feature Articles Area Editor

in IEEE Signal Processing Magazine. He was President of EURASIP (2007-
2007, 2011-2012) and is currently Past-President of EURASIP.
[marc.moonen@esat.kuleuven.be]

