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Abstract— With the explosive growth of the Internet over the
last 10 years, a lot of work has been dedicated to understanding
the underlying mechanisms of wired IP traffic. Recently, the rapid
deployment of large-scale wireless infrastructures in various en-
vironments and the interesting mixture of traffic carried coupled
with the large diversity of devices accessing the medium (Cell-
phones, Laptops, PDAs) have triggered the attention and curiosity
of the research community. This paper analyzes in depth the prop-
erties of several large traces of packet data collected between the
wireless access point and the IP cloud from an operational wireless
service provider. We determine unambiguously the influence of
network variables such as the arrival patterns of packet and flows,
flow durations and flow interactions, on the aggregate statistics of
TCP traffic. In doing so, we highlight the main differences and
similarities between wireless and wired IP traffic, and between the
two directions (from wireless devices to IP cloud and vice-versa),
and show how they can be distinguished. The resulting insights
provide a foundation for models of such traffic, necessary for im-
proved resource allocation schemes as well as for the effectiveness
of future services and applications.

Index Terms—wireless traffic characterization, Internet traffic,
wavelets, semi-experiments

I. INTRODUCTION

For over ten years now, researchers have sought to charac-
terize the traffic carried on the Internet as an essential first step
prior to modeling, traffic engineering or application design. A
series of studies focusing on the core of the Internet provided in-
sights into the properties and characteristics of IP traffic. Prop-
erties such as self-similarity [1], long-range dependency (LRD)
[2] and scaling behavior at small time-scale [3] have been dis-
covered, highlighted and discussed. While studies on backbone
IP traffic provide indications as to the nature of wireline traf-
fic, which as a result is now better understood, the deployment
and growth of wireless access networks of different kinds now
requires the examination of wireless IP traffic.

In the last few years the demand for wireless Internet access
has increased exponentially. Mobility seems to be transform-
ing the communication industry, shifting the momentum from
Internet access to broadband wireless access. Carriers have
slowed expansion of their fiber networks in anticipation of new
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wireless technologies, and engineers have refocused develop-
ment towards the products and services that will enable broad-
band wireless communications to become ubiquitous. Mean-
while, Wi-Fi networks and hot-spots are widely implemented
in homes, schools, businesses, cafes and other public areas, fo-
cusing mainly on supporting nomadic user behavior. These net-
works provide people with high-speed access to the Internet,
without being tethered by a cord or cable (in a range of around
300 feet from the access point). WiMAX, which is still in its
infancy, will deliver last-mile broadband connectivity over a
larger geographical area than Wi-FI (one to six miles) enabling
greater mobility for high-speed data applications, while 3G
(GPRS/EDGE, UMTS) technology provides long-range wire-
less access for a larger range of devices supporting voice and
data.

Unfortunately, not much is known about the nature of the
traffic carried by each of these infrastructures, and still less on
how they might combine. Researchers have only recently fo-
cused on this problem. Data from Wi-Fi networks has been
collected and analyzed to answer specific questions related to
mobility and related user behaviors [4], as well as to measure
the characteristics of the associated traffic [5], [6], [7], [8].
On the other hand, some studies have emerged for large-scale
wireless access networks set up by Internet Service Providers
(ISPs), aiming to quantify the performance of GPRS and to un-
derstand its traffic characteristics, either on testbeds [9] or in a
real environment [10]. While the number of excellent studies
on wireless traffic is growing, this area of research is still fairly
immature.

Compared to prior work realized in wireless environments,
the present study brings a certain level of novelty in the raw
material studied and tries to bridge the knowledge gap between
wireline and wireless IP traffic. We have the opportunity to
study traffic traces captured in the operational environment of a
nation-wide ISP wireless access network. Based on CDMA-
1xRTT technology, this wireless access network gathers to-
gether the large scale and mobility properties one can find in the
GPRS/EDGE world (seamless mobility and limited set of appli-
cations), and the diversity of devices and applications as found
in Wi-Fi networks (laptops/PDAs and any application). The
scope of this paper is to understand the similarities and differ-
ences between this traffic and the traditional IP traffic, and iden-
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tify unambiguously the underlying mechanisms involved. Our
methodology relies on the comparison of “typical” wired In-
ternet traces (captured on backbone links) to wireless CDMA-
1xRTT ones. A strong emphasis is given to the structure of
packet and flow arrival processes, and the importance of flow
interactions. The present study adopts then a different point
of view compared to [10]: we are not currently interested in
analyzing the performance of protocols on the wireless envi-
ronment but we try to understand the intrinsic properties of the
wireless traffic. To be able to answer the above questions and
conjecture the causes of key statistical findings, we introduce a
large set of virtual experiments which enable the exploration of
‘what if’ scenarios, and we interpret the results using wavelet
based spectral analysis. We find that in some important respects
the wireless traffic is similar to Internet traffic, and also that in
other important respects, it is not.

The rest of the paper is organized as follows. In section II
we introduce the architecture of the wireless access network
from which we collect the packet traces, and discuss interest-
ing statistics of the time series extracted from the raw data.
In section III we present our methodology based on ‘semi-
experiments’ and wavelet analysis to enable us to dig deeper
towards an understanding of the underlying mechanisms, while
in section IV we offer the results and interpretations of our main
findings. Section V concludes the paper and discusses possible
directions for future research.

II. PACKET TRACES

The packet traces we use in this study are from the Sprint IP-
MON project [11]. On the Sprint IP backbone network, about
60 monitoring systems are deployed all across the backbone.
Using optical splitters, the monitoring systems capture the first
44 bytes of all IP packets and time-stamp each of them. As the
monitoring systems use the Global Positioning System (GPS)
for their clock synchronization, the error in time-stamp accu-
racy is bounded to less than 5 microseconds. We used three of
the monitoring systems to collect data from a lightly loaded
OC-12 (622 Mbps) backbone link and from two OC-3 (155
Mbps) links between the Customer Data Network (CDN) and
the core network, that is one for each direction. As TCP “fla-
vored” IP traffic makes up over 90% of all packets and bytes, in
the following we focus on this component only.

We begin with a brief discussion of the wireless data, its col-
lection, and then give a description of basic statistics of the time
series extracted from the raw data. We then describe the back-
bone link that will be used to compare the differences and simi-
larities between the traditional and well-studied wired IP traffic,
and wireless traffic. As our proposed methodology compares
wired to wireless traffic, figures 4 to 7 present results for both
kinds of traffic traces.

A. Wireless Data

Monitoring the links between the Customer Data Network
and the core network represents a challenging experiment.
From this measurement point, a diverse mixture of traffic com-
ing from different end-mobile users, geographically spread

across a very wide area, is visible. Monitoring the traffic be-
tween the CDN and the core network allows then to observe
traffic originated from and intended to numerous wireless cells.
Different traffic profiles originated by a variety of mobile de-
vices are also aggregated together. For example, 3G-phones and
PDAs each feature data roaming, whereas they are expected to
generate different traffic profiles because of their different data
processing capacities. On the other hand, laptop user mobility
will be nomadic, but similar to PDAs in terms of applications
used. In this paper we focus our attention on the aggregated
traffic with no distinction among these three mobile device cat-
egories. Studying the traffic profiles associated to each of these
is out of the scope of this paper and we reserve the problem for
future work.
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Fig. 1. Wireless and Measurement Architecture.

1) Wireless Network Architecture: Figure 1 shows the wire-
less access network with mobile devices (3G-phones, PDAs,
laptops) communicating with the Base Stations (BSs) over
wireless links. The BSs interact with the rest of the voice or data
network through the Base Station Controllers (BSCs). Usually
each BS covers tens of mobile devices belonging to the same
cell site (usually covering tens of miles), while each BSC inter-
acts with tens of BSs covering a wide geographical area (hun-
dreds of miles). This part of the network is common to both
wireless voice and data traffic. The network separates only be-
yond the BSCs where voice frames are forwarded to the Pub-
lic Switched Telephone Network (PSTN) while data frames are
forwarded to Packet Switched Data Network (PSDN). In this
paper we are interested in the data traffic only and we deliber-
ately ignore all the traffic delivered to the PSTN. All network
devices along the path described above are part of the Radio
Access Network (RAN) that provides the basic transmission,
radio control, and management functions needed for the mobile
user to access the resources of the core network and the end-
user services network. It is this access network that terminates
the air interface to the Mobile Station (MS) and converts the air
frames to packet format for transporting traffic between mobile
users on other RANs or to the core network. In the network ar-
chitecture at our disposal the RAN is based on a CDMA-1xRTT
technology.

Between the Radio Access Network and the core network,
the traffic goes through what we call the Customer Data Net-
work (CDN) whose entry points are represented by Packet Data
Switch Node/Foreign Agent (PDSN/FA). This part of the net-
work is in charge of several specific functions like Authoriza-
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tion, Authentication and Accounting (AAA) and mobility man-
agement through a Mobile IP infrastructure. When a user ap-
pears on the RAN, the FA relays its authorization request to the
AAA server for authentication. Once authenticated, the request
packet is forwarded to the Home Agent (HA) that replies with
an IP address from its pool. From this moment, an association
is maintained allowing the new user to access the network re-
sources while being free to move to other cells. The CDN is
also responsible for transcoding, bandwidth optimization and
other proxy functions specific to the type of traffic processed.

2) Data sets: As it is evident from the architecture of the
network, all traffic from the wireless access network to the core
network and vice-versa must traverse a set of links and “boxes”
between the CDN and the core network. This wired architecture
is typical of wireless access networks. In the network studied
we can capture all packets in both directions by monitoring two
OC-3 links. Two wireless traces were captured on April 1st
2004 during a continuous 24 hour period, allowing to capture
the users behavior over an entire day. Average values of their
link utilization and packet rate are indicated in table I. In the
following, by “Wless-OUT”, we refer to packet traces captur-
ing traffic originated from wireless devices to the core network,
while “Wless-IN” refers to traffic from the core network to the
wireless devices. We start our discussion by showing some ba-
sic statistics and properties.

TABLE I
AVERAGE CHARACTERISTICS OF THE WIRELESS TRACES.

Wless-OUT Wless-IN
Duration 23h59m59s 23h59m59s
Link Capacity OC-3 OC-3
Util. (Mbit/s) 2.249 7.447
Util. (Pkt/s) 1893 2121
Total # Packets 25,476,058,647 84,339,787,498
Average Packet IAT 404.995 µs 341.590 µs
Total # Flows 29,970,428 35,202,266
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Fig. 2. Link Utilization of Wless-OUT.

Figures 2 and 3 show the link utilization in Mbps (on the left)
and the corresponding packet arrival time series in Kpps with 1-
second bin durations (on the right) respectively for Wless-OUT
and Wless-IN. Both directions exhibit a strong diurnal behavior
with a decrease of the traffic in the early hours of the day and an
increase later in the evening. The link in the Wless-IN direction
has a utilization more than twice the one of Wless-OUT. Even
with this proportion in mind, Wless-OUT appears to be less
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Fig. 3. Link Utilization of Wless-IN.

bursty than Wless-IN. In the latter, spikes in traffic up to 10 to
80 times larger than the average are present across the entire
trace.

By comparing the link utilization and packet arrival time se-
ries, we can see an interesting difference between the two direc-
tions. In Wless-OUT the spikes in the packet arrival time series
are not apparent in the link utilization, suggesting they con-
sist of highly localized groups of low total byte count, while in
Wless-IN spikes of similar magnitude are common to both time
series.

In figures 4, 5 and 6 we plot respectively the distributions
of the number of packets, the associated packet rate, and the
packet inter-arrival time (IAT) in TCP flows. Not surprisingly,
the curves for Wless-IN and Wless-OUT in figure 4 are very
similar, since they share common context information about the
two directions of the same flows. The same comment can be
made about Wless-IN and Wless-OUT in figures 5 and 6.

1.5 2 2.5 3 3.5 4 4.5 5 5.5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(k)

lo
g 

( 
P

r 
[ P

 >
 k

 ] 
)

Wless OUT
Wless IN
Backbone

Fig. 4. Empirical Distribution of number of packets P in TCP flows.

In figure 7 we plot the empirical distribution of the TCP flow
arrival process, which we call Y (t) below. It is interesting to
note a remarkable difference in the shape of the distributions for
the two directions. While the distribution of the Wless-IN looks
similar to an exponential distribution with a large exponent, the
distribution of Wless-OUT exhibits an interesting “wavy” be-
havior with period around 0.6ms. Unfortunately we were not
able to identify the reasons of this deterministic periodicity, as
it would require identification of the type of network device and
details of the data path followed by the traffic. We leave it as
part of future work but discuss and conjecture possible causes
in section IV-C. Finally, we notice the large portion of very
small flow inter-arrivals in Wless-IN. We believe that this char-
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Fig. 6. Empirical Distribution of packet inter-arrivals times in TCP flows.
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Fig. 7. Empirical Distribution of TCP Flows inter-arrivals times.

acteristic is a key factor in explaining the different burstiness
observed in the two directions. The deeper analysis provided in
section IV adds weight to this intuition.

B. Wireline Data

We selected a backbone wireline trace based on its equivalent
duration (a continuous 24 hours capture) and its comparatively
low link utilization (for an Internet backbone link), to facili-
tate comparison. In the following, we will refer to this trace
as “Backbone”. It was collected on a lightly loaded OC-12
(655 Mbps) link on January 28th 2004. This Backbone trace is
not related to the wireless traffic described above, but has been
chosen as a good representative of the typical characteristics
observed in previous studies characterizing Internet backbone
traffic. Average values of the link utilization and packet rate are
indicated in table II.

TABLE II
AVERAGE CHARACTERISTICS OF THE WIRELINE TRACE.

Backbone
Duration 23h59m59s
Link Capacity OC-12
Util. (Mbit/s) 40.999
Util. (Pkt/s) 10656
Total # Packets 478,304,079,349
Average Packet IAT 81.328 µs
Total # Flows 51,219,857

Figure 8 shows the traffic rate in Mbps (on the left) and the
corresponding packet arrival time series in Kpps with 1-second
bin size (on the right). Visually, the burstiness characteristic
of this trace seems to be different from either Wless-OUT and
Wless-IN.
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Fig. 8. Link Utilization of Backbone.

In figure 4 we see that the tail of the number of packets per
flow is heavier for the Backbone link, which is what we would
expect given that it does not have the same bandwidth limita-
tions and does not have the same billing scheme. All traces
exhibit heavy tails however, indicating the wide range of down-
load sizes attempted in each case. Figure 5 also shows that
higher rates are accessible, and used, by Internet users more of-
ten than wireless users, although they are similar at lower rates.
Figure 6 and figure 7 are more interesting. In the former, the
two wireless traces are similar, and clearly different from the
backbone, where the higher available rates allow closer spacing
of packets on average. In the latter however, all three traces are
different. Nevertheless, Wless-OUT is distinctly the most dif-
ferent one and Backbone and Wless-IN are closer to each other.
The presence of the exponential distribution of same rate as the
Backbone distribution shows it.

In this section we presented and discussed briefly some char-
acteristics of the time series extracted from the raw data col-
lected. We highlighted some interesting properties of the data
but we could not determine unambiguously the influence of ar-
rival patterns of packets and flows, or that of flow interactions
on the aggregate TCP traffic. In the next section we propose
another methodology based on wavelet analysis to enable us to
dig deeper towards an understanding of the underlying mecha-
nisms.
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III. METHODOLOGY

Our methodology is based on using a wavelet based spec-
trum as the metric to observe and interpret the effect of semi-
experiments.

The term semi-experiments was coined in [12] to describe a
methodology of virtual experimentation which enables, based
on a single data set, the exploration of ‘what if’ scenarios aim-
ing to determine the causes of statistical properties of the data.
It is a systematic extension of the idea of block-wise shuffling
introduced in [13] to explore the presence of long-range depen-
dence (LRD) in time series of byte counts. Typically, a semi-
experiment involves replacing a single specific aspect of the real
data with a simple, neutral model substitute. One then com-
pares the statistics before and after, drawing conclusions on the
role played by the structure removed by the ‘manipulation’.

The metric we use as the basis of comparison is the wavelet
spectrum, defined below. Although this is a second order char-
acterization only, it is comprehensive in that all time scales are
examined, and is reliable in practice as it offers a view which
is quasi-independent across scales. If the semi-experiment has
changed the process significantly, this will typically make its
presence felt at second order over some scales at least.

We will first describe the wavelet analysis in more detail, then
give an example introducing the use of semi-experiments, and
then introduce some important modeling ideas.

A. Wavelet Analysis

Wavelets have become a tool of choice in the analysis of
traffic data because they are well suited to studying scale in-
variant properties. Thus, they are capable of ‘dealing’ with the
known long-range dependent (LRD) properties of packet counts
(and other time series), whose difficult statistical properties can
cause many other statistical tools to perform poorly both in the
measurement of scaling parameters such as the Hurst exponent,
and more generally, for example, in terms of robustness to non-
stationarity. However, the properties of wavelets which make it
effective for LRD are also useful for other reasons. In partic-
ular, their ability to de-correlate data means that they provide
a way of isolating and examining behavior (be it LRD or not)
separately at different time scales. Thus, they are an invaluable
investigative tool to help see ‘what is happening’ in a time se-
ries at different scales. We use them in this sense in this paper.
LRD is observed, but is not a focus of the work. We use the
wavelet analysis code freely available at [14].

Performing the Discrete Wavelet Transform (DWT) of a pro-
cess X consists in computing coefficients that compare, by
means of inner products, X against a family of functions, that
is

dX(j, k) = 〈X,ψj,k〉. (1)

The wavelets ψj,k(t) = 2−j/2ψ(2−jt − k) derive from an
elementary function ψ, called the mother wavelet, dilated by a
scale factor a = 2j and translated by 2jk. They are required
to have excellent localization properties jointly in time and fre-
quency. A key practical advantage of the DWT is the fact that
the coefficients can be computed from a fast recursive algorithm
with computational complexity O(n).

Let X(t) be a continuous time stationary process with power
spectral density ΓX(ν). It can be shown that the variance (note
that the means of wavelet coefficients are identically zero) of its
wavelet coefficients satisfies:

E|dX(j, k)|2 =
∫

ΓX(ν)2j |Ψ(2jν)|2dν, (2)

where Ψ(ν) denotes the Fourier transform of ψ. In fact, equa-
tion (2) can be viewed as defining a kind of wavelet energy
spectrum, analogous to a Fourier spectrum, but much better
suited to the study of long-range dependent processes. We will
also use the term wavelet spectrum to refer to equation 2.

To estimate the wavelet spectrum from data, the time aver-
ages

S2(j) =
1
nj

∑
k

|dX(j, k)|2,

where nj is the number of dX(j, k) available at octave j (scale
a = 2j), perform very well, because of the short range depen-
dence in the wavelet domain. A plot of the logarithm of these
estimates against j is sometimes called the Logscale Diagram
(LD):

LD : log2 S2(j) vs log2 a = j.

The thick gray curve in figure 9 represents the LD of the mea-
sured packet arrival process. The vertical lines mark 95% con-
fidence intervals on the estimation of E|dX(j, k)|2. The hor-
izontal axis is calibrated both in scale a (top edge of plot, in
seconds), and octave j = log2 a.

It is important to note the following three facts about the
wavelet spectrum:

• the spectrum of a Poisson process of intensity λ is flat:
E|dX(j, k)|2 = λ,

• for a simple point process (one whose points are isolated),
in the limit j → −∞ of small scales, E|dX(j, k)|2 → λ,
where λ is the average arrival intensity,

• if the LD of a process X is L(j), then that of a superposi-
tion of N i.i.d. copies is simply log2(N) +L(j): the (log)
spectrum simply moves up.

Combining the first two, we learn that when comparing the LDs
of different traces, in the limit of small scales they will asymp-
totically reach values, which depend on their average arrival
intensities.

B. Introduction to Semi-Experiments

In [12], [15], [16] this method was used to explore the role
of the flow arrival process Y (t) in the structure of the packet
arrival process X(t). A long list of manipulations were per-
formed, modifying aspects such as the flow arrival process, the
internal dynamics of flows, and the number of packets per flow.
For this introduction, we restrict ourselves to two of the most
important used in the works above, and illustrate them with
results from an Auckland IV data set [17] like the one used
in [15]. The thick gray line in figure 9 shows the LD of the
data. The constant slope (relative to confidence intervals) above
scales of 2[sec] corresponds to LRD.

The first semi-experiment employs a manipulation of Y :
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• [A-Pois]: Re-position flow Arrival times according to a
Poisson process with the same rate and randomly permute
the flow order. Flows are translated to their new start-
ing points without having their internal packet structure
altered.

For the Auckland trace of figure 9, the [A-Pois] manipulation
completely erases the original flow arrival process Y and re-
moves inter-flow dependencies. Despite this radical removal of
structure, the resulting LD is barely distinguishable from the
original. It follows that not only can Y be taken as Poisson, but
also that flows can be treated as independent, eliminating the
need to consider session level structure to explain or model X .
Note that this does not contradict as such the presence of closed
loop effects such as TCP flow control. It simply means that we
have observed that the dependencies due to any such feedback
may be ignored, for the purpose of describing and understand-
ing the aggregate statistics of X(t).
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Fig. 9. Semi-experiments [A-Pois] and [A-Pois;P-Uni] on a typical Auck-
land IV trace

The second semi-experiment manipulates the structure of
packets within flows:

• [A-Pois; P-Uni]: In addition to [A-Pois], within each flow
separately, Packet arrival times are Uniformly distributed
between the original arrivals of the first and last packet of
the flow. Flow durations and packet counts are preserved.

Looking at figure 9, at small scales this manipulation flattens
the spectrum to its small scale Poisson limit (recall the prop-
erties discussed in section III-A). Compared with [A-Pois],
the removal of in-flow burstiness has reduced energy (variance)
over small scales without significantly affecting large scale be-
havior. This indicates that the energy in the data above a neutral
Poisson model, at small scales, is due to the burstiness within
flows, and again not to dependencies between flows or details
of flow arrivals, and also that in-flow burstiness is not the cause
of LRD.

As we see in section IV, the choice of semi-experiment is
guided by observation in a truly experimental procedure where
one tried to pinpoint as precisely as possible the structural el-
ements most responsible for the main statistical features. This
requires the constant invention of new semi-experiments.

C. Cluster Processes as Models

Based on the semi-experiments just described and a num-
ber of others which reinforced and extended the conclusions

above, in [15] a Bartlett-Lewis point process (BLPP) was pro-
posed as a model for X(t). A BLPP is a Poisson cluster pro-
cess [18], that is it consists of a Poisson process defining the
locations of ‘seeds’, about which independent and identically
distributed (i.i.d.) clusters of points are placed. Let the arrival
times {tF (i)} of flows (the seeds) follow a Poisson process of
rate λF . The packet arrival process can be written as

X(t) =
∑

i

Gi(t− tF (i)), (3)

where Gi(t) represents the arrival process of packets within flow
i. In the particular case of the BLPP, a cluster is a finite renewal
process consisting of a random number P ≥ 1 of points (in-
cluding the seed) with inter-arrival time variable A. Gi(t) then
reads

Gi(t) =
P (i)∑
j=1

δ

(
t−

j−1∑
l=1

A(i, l)

)
, (4)

where A(i, l) denotes the l−th inter-arrival for flow i (the inner
sum is zero if j = 1) and P (i) is the number of packets in flow
i. In [15] a choice of gamma distributed inter-arrivals A, with
mean µ and shape parameter c > 1, was found to account in
a simple way for the observations made on in-flow burstiness.
A heavy tailed (infinite variance) choice of P accounts for the
long-range dependence.

The BLPP model is useful to us here as a reference from
which to understand traditional Internet traffic, and to compare
against our findings from wireless data. One can go beyond
BLPP models in several ways. One way is to allow greater
structure for the seed process. In [16] that observation was
made that Y is not Poisson but in fact is long-range depen-
dent! however, for the purposes of modeling X , this source of
LRD could be neglected compared to the main source, namely
the heavy tailed nature of P . We will show in this paper that
the role of Y is far from negligible in the wireless context.

IV. DATA ANALYSIS

In this section we offer results and interpretations based on
the methodology of semi-experiments defined above. It is use-
ful to structure the results into two sets of comparisons, first
Wless-OUT and Wless-IN, then Wless-IN and Backbone, in
order to structure the expected differences and similarities.

Due to the architecture of the wireless access network and the
placement of the measurement point at a concentration point of
traffic, the same flows are seen by both Wless-OUT and Wless-
IN. They are therefore guaranteed to be alike in many respects,
enabling us to interpret differences as being in large part due to
features of the wireless network, and the subsequent processing
before the measurement point.

In contrast, the Backbone trace has nothing to do with the
measurement point, and its flows will be completely different.
However, since Wless-IN consists of traffic which traversed the
Internet, it will share, in a general sense, a networking envi-
ronment with Backbone. We might then expect differences to
be mainly due to application mix, and the effect of slower flow
control acting through from the wireless side, but not to details
of the wireless link layer.
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Fig. 10. Flow and packet level manipulations on X . Examining flow independence and impact of in-flow burstiness.
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Fig. 11. Flow level manipulations on X. Examining interaction between flows, and the structural importance of Y .

In the following, figures 10 to 17 present the results produced
by the semi-experiments methodology on the 3 traces studied,
respectively from left to right Wless-OUT, Wless-IN and Back-
bone. To improve the readability of those results we start the
analysis by comparing Wless-OUT to Wless-IN.

A. Comparing Wless-IN and Wless-OUT

We begin the analysis of the wireless traces by the examina-
tion of the results of semi-experiments acting at packet and/or
flow level on X(t). We then focus on the examination of the
consequences of the semi-experiments on Y (t).

1) The Packet Arrival Process X: The first manipulation,
[S-Thin], is designed to directly test for the independence of
flows. It consists of a thinning of the flow process by select-
ing flows randomly with some probability, here equal to 0.9.
The results are similar for both Wless-OUT in figure 10(a) and
Wless-IN in figure 10(b). The energy plot has the same shape,
but has dropped by a small amount close to log2(0.9) = −0.15,
just as one would expect if flows were independent. Looking
ahead briefly to the Backbone trace in figure 10(c), we see that
the same conclusion also holds there, just as it did for the Auck-
land trace of the previous section. At least in this important

respect then, we see that wireless traffic is similar to wireline
traffic.

The second manipulation is [P-Uni], which as we know from
the previous section, uniformises the packet arrivals within
flows (since it is not combined with [A-Pois] here, Y is not
affected), leaving intact both the duration and the number of
packets in the flow. At scales below j = −10 we again see the
same result for each of Wless-OUT and Wless-IN: the excess
energy above the asymptotic Poisson level corresponding to the
average arrival intensity (marked as the horizontal gray line)
has been eliminated, revealing that it was due to the organiza-
tion of packets within flows. For Wless-IN however, this zone
continues up to j = −6, whereas an energy ‘bump’ appears
clearly in Wless-OUT over scales j ∈ [−9,−2]. This unex-
pected bump of energy in the wavelet spectrum of Wless-OUT
is only slightly affected. We conclude that the main source of
energy behind this bump is not in-flow burstiness.

We now move to figures 11(a) and 11(b) where we use a
set of manipulations affecting flow arrivals. First consider [A-
Pois] from the previous section. Although it has little effect
for Wless-IN, it effectively removes the energy bump in Wless-
OUT (over scales j ∈ [−9,−2]). This is another strong indica-
tion that in-flow burstiness is not responsible for it, and points
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Fig. 12. Packet level manipulations on X . Examining the effect of packet weighting of the Y ‘skeleton’.

the finger at Y . However, since [A-Pois] is a very drastic ma-
nipulation, it is not yet clear what exactly does cause it.

[A-Ord] re-positions the points of Y according to a Pois-
son process, just as [A-Pois] does, but unlike it does not per-
mute the flow bodies. Dependencies between flows are there-
fore perturbed at small scales, but not destroyed. Despite this
much gentler modification of the original process, the effect on
Wless-OUT is indistinguishable compared to [A-Pois]. Reduc-
ing the severity of the manipulation still further, [A-Homo] re-
places Y with a renewal process rather than a Poisson process,
based on the empirical inter-arrival distribution of Y (in fact
the actual inter-arrivals are used, but permuted). Despite re-
taining the correct inter-arrival marginal in Y , much of bump
still vanished, indicating that flow inter-arrivals cannot be taken
as independent. In other words, the distribution of flows inter-
arrivals is not sufficient to model accurately Y . Finally, moving
in the opposite direction to [A-Ord], [A-Perm] retains Y , but
like [A-Pois], permutes the flow bodies about these points. The
result is almost indistinguishable from the original plot, a result
which again argues for the independence of flows. As expected,
each of [A-Ord], [A-Homo] and [A-Perm] has little effect on
Wless-IN, since they are all lesser ‘sub-manipulations’ of [A-
Pois].

The results above lead to two conclusions:
(i) flows are independent in both Wless-IN and Wless-OUT
(ii) the structure of the flow process Y has a strong influence on
Wless-OUT, but negligible influence on Wless-IN

Following our observation of the importance of Y , we intro-
duce a new family of semi-experiments that focus on it whilst
still studying X . The Truncation manipulation [T-Pkt n] con-
sists in keeping only the first n packets in each flow. With
this definition, [T-PKt 1] collapses simply to Y . Note that this
manipulation preserves the total number of flows, but removes
packets, and therefore energy, from the process. The resulting
wavelet spectra accordingly drop to lower values. LRD is also
affected, since its main source, the heavy tail of the number of
packets per flow, has been cut off.

In figure 12 we show the results of the new semi-experiments.
The plots are necessarily nested as n decreases. The fact that
the energy in the range of scales associated with the bump re-

mains high even for [T-PKt 1] confirms our suspicion that it is
dominated by Y .

It is interesting to note that, with increasing n and therefore a
reduced ‘masking effect’ due to packets in flows, we are able to
see an energy bump even in Wless-IN, although it is smaller in
magnitude and occurs at larger scale (in fig. 12(b) over scales
j ∈ [−5, 1]). We speculate that this bump, which is due to link
layer protocol or shaping effects on the wireless side, impacts
the traffic returning through the Internet, but that this ‘reflec-
tion’ is sufficiently smoothed out that it no longer has an appre-
ciable effect. The truncation manipulation however was able to
reveal it. This could potentially be used as a means of identify-
ing traffic originating from wireless access networks.

2) Flow Arrival Process Y: In this section we try to deter-
mine more precisely which aspect of Y is responsible for the
energy bump we observed. This knowledge will help in the
search for, and in the future validation of, network level causes,
and ultimately allow a more precise model to be developed. For
the same reason we also wish to understand more clearly how
Y impacts on X , as it is only of interest to model those aspects
with high impact.

We know from [A-Homo] that although the marginal inter-
arrival distribution of Y is very important, so are correlations
between different interarrivals. We now design manipulations
to break the latter down in different ways.

The first manipulation type, [A-LocUni t], provides a Local
smoothing by Uniformising points of Y on a time scale of t.
More precisely, we segment the time axis into adjacent win-
dows of width t, and for each window uniformly re-position
the points of Y which fall within it. Figure 13 shows the results
for 3 values of t. We also show X and Y separately, each with
its respective asymptotic Poisson lines. By comparingX and Y
(upper and lower gray curves respectively), we can see directly
the impact of Y on X in terms of pure energy, that is viewing
Y as a, generally small, subset of the points of X .

The results shown in figures 13(a) and 13(b), as expected,
show the removal of energy above the Poisson level due to the
low pass filtering, thereby progressively eroding the bump as t
is increased. However, the energy is removed only up to the
timescale t of the manipulation, which is to be expected, but
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Fig. 13. Time-based smoothing manipulations on Y only, with X as a comparison.
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Fig. 14. Time-based smoothing manipulations on X , showing the effect of adding in flow bodies.

not beyond. Thus the manipulation fails to find a particular
structure which underlies the energy bump and which could be
‘surgically’ removed. The corresponding plots in figures 14(a)
and 14(b), where the same manipulations on Y are performed
but we observe the resulting impact on X , is nonetheless infor-
mative. It reinforces the conclusions of the previous subsection,
that since the flow bodies act independently, we can understand
X in terms of a simple packet weighting of the ‘skeleton’ Y .
If Y itself has too little energy, such as in figure 14(b), details
of its structure are lost in X . If it does have enough, such as in
figure 14(a), the impact is nonetheless smoothed and reduced
by the addition of the flow bodies.

We now move from a time based local randomization of Y to
one based on packet index. The manipulation type [A-IAPerm
n] acts on InterArrivals of Y , Permuting them randomly within
non-overlapping groups of n consecutive flows. Note that once
n is large enough to include all of Y , then this manipulation
reduces to [A-Homo] defined previously.

Figure 15 shows the results of [A-IAPerm n] on Y for vari-
ous n. In contrast to the time based randomization, here we see
the energy bump in figure 15(a) targeted much more precisely.
For each n, energy is lost across the entire range of scales defin-
ing the bump. This suggests that a clustering of Y is responsi-

ble for the energy bump observed, which we are succeeding in
breaking up. From the values of n, it seems that most cluster-
ing of Y occurs in groups of around 25, but that such involve as
many as 100 flows. Interestingly, these values are different, in
fact higher, for Wless-IN (figure 15(b)). This may be related to
the mechanism which pushes the bump to higher scales, and re-
quires further investigation. Figure 16 shows the results of the
[A-IAPerm n] applied on Y but observed on X . In the same
way as for figure 14, we observe that the structural characteris-
tic of Y is smoothed by the addition of the flow bodies.

Figure 17 replots selected manipulations to assist in summa-
rizing some of the main findings of this section, and to give
insight towards a model. Comparing Y to [A-Homo] applied
to Y in figure 17(a) we see that a renewal process model for
Y with the correct marginal captures the small and large scale
behavior, but does not capture the energy bump, which is due
to clustering of Y as we have just seen. Correspondingly, if we
used such a model of Y to form X , that is if we perform [A-
Homo] on X , we obtain a good match, with the exception of
the bump. The same results hold for Wless-IN (figure 17(b)),
except that there the renewal model for Y degenerates to Pois-
son, and the packet weighting overwhelms the bump, so that it
would not in fact be necessary to model it, resulting in a Pois-
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Fig. 15. Packet index-based smoothing manipulations on Y only, with X as a comparison.
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Fig. 16. Packet index-based smoothing manipulations on X , showing the effect of adding in flow bodies.

son model for Y in this case. The Poisson Process hypothesis
remains then valid for the Wless-IN traffic but is more difficult
to retain for the Wless-OUT traffic.

B. Comparing Wless-IN and Backbone

The results of the semi-experiments for the Backbone trace
appear as the third plot in the figures above (figures 10 to 17). A
quick examination shows that they are much closer to the result
for Wless-IN than to Wless-OUT, as expected. We accordingly
focus on comparing Wless-IN and Backbone.

1) Packet Arrival Process X: As already noted above, the
results for the Backbone trace in figure 10(c) are entirely con-
sistent with those of Wless-IN (figure 10(b)) and of previous
work [15]: flows can be taken as independent, and the structure
at small scales is due to in-flow burstiness.

To first order, in figure 11 we also see a consistent picture
across Wless-IN and Backbone, where flows are independent,
and details of Y do not matter. There is a subtlety, however, re-
lating to a small energy bump centered around octave j = −3.
The result of [A-Perm], which is extremely close to X except
at the bump, shows that it is related to the position of flow bod-
ies (but not to their internal structure, as the bump is visible in

[P-Uni]) rather than to the structure of Y . On the other hand,
the bump is also eliminated by the other manipulations which
act directly on Y (but which do however perturb flow body po-
sitions). We speculate that this bump may be due to a small
class of flows, with related starting times, which carry an un-
usually large proportion of packets. For example, they could be
from a set of clients with direct access to a high capacity link.

Figure 12 shows a clear difference between wireless and
wireline. There is no evidence of an energy bump at small
scales related to Y . On the other hand, there is evidence that
Y has long-range dependence. These findings agree with those
of [16], [15].

2) Flow Arrival Process Y: The results of figure 13 show
that the local time-based smoothing of Y makes very little dif-
ference, reinforcing the conclusion that for backbone traffic Y
has little small-scale structure. Consequently, the impact on X
in figure 14 is even lower, indeed negligible.

Figure 15 shows a similar picture under the packet-based lo-
cal smoothing. The impact on Y is negligible until [A-Homo]
radically eliminates the LRD in Y . Despite this, the impact
on X as seen in figure 16 is small. These again reinforce the
modeling idealization of taking Y as Poisson for backbone traf-
fic. Figure 17 gives a direct illustration of the impact of such an
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Fig. 17. Manipulations summarizing the effect of Y , and a renewal model of Y , on X .

assumption. Figure 17(c) shows indeed how the [A-Homo] ma-
nipulation applied on Y derived to a Poisson Process and that
the overall impact when adding flow bodies is small. The same
assumption may be more dangerous for wireless traffic. In the
case of Wless-IN, we see in figure 17(b) that the assumption
of modeling Y with a Poisson Process works even better than
for the Backbone traffic. Nevertheless, in the case of Wless-
OUT, because the energy bump although not having a strong
influence on X in figure 17(a), is close to the spectrum of the
overall traffic, it may influence it in other circumstances or for
particular applications of this ideal Poisson model.

C. Discussion and Future Directions

In this section we observed and characterized the structure
of wireless traffic and compared it to prior results obtained in
the wired traffic area. The set of data we had the chance to
observe covers continuous 24 hours period. Even with such a
limited data set, we found possible evidences of wireless traffic
peculiarities. The analysis, so far, mainly adopted a statistical
point of view. Here we try to offer some clues about the possi-
ble causes of the observed properties of the traffic and about the
models that can be derived from the present study. As we saw,
the flow arrival structure of the wireless traffic may not be neg-
ligible when designing models of traffic for the wireless access
network. Obviously, some models one can design may only
require a “loose” traffic estimation. A model of traffic based
on a BLPP process where flows are treated as independent will
be satisfying to capture most of the structure of the entire traffic
(the packet arrival process). More precise models would require
to capture the bump observed in the LDestimate spectrum. The
“wavy” behavior we observed in the distribution of the flows
inter-arrivals led us to characterize the clustering present in the
flow process Y .

In order to build more accurate models, a deeper analysis in
larger data sets is required. The set of data at our disposal does
not permit to clearly identify network causes. Future work will
focus on trying to identify the causes of the observations made.
Three main directions will be investigated to determine these
network causes:

• We first will study the impact of the air interface on the
traffic. The channel access mechanisms, the radio channel
setup delay, the rate adaptation of CDMA-1xRTT layer
may be the possible causes of the particular clustering
structure we observed.

• Our second intuition targets the role of the intermedi-
ate “black boxes” present in the Customer Data Network.
Those boxes working at the packet, flow and application
levels have proxy and transcoding functionalities that may
have a specific impact on the wireless traffic.

• Finally, the diversity of devices and applications, and the
particular user behaviors on a wireless access network are
surely of high interest in understanding the reality of the
wireless traffic.

Understanding the consequences of the three directions of re-
search mentioned above is surely crucial from a wireless access
operator perspective. As a future work we will validate (or in-
validate) the two first possible causes by adding a measurement
point close to the air interface (at the Base Station Controller).
Having two measurement points will allow us to observe the
characteristics of the traffic at the air/CDN interface and at the
CDN/core network interface. We will then be able to estimate
the influence of the wireless channel on the traffic characteris-
tics and, at the same time, it will allow us to quantify the impact
of the “black boxes” on the aggregated traffic. As the architec-
ture deployed on the Sprint network is surely close to the one
of any other wireless operator, this future study will help to
understand better the interaction of those different networking
elements.

Finally, we will observe the characteristics of specific groups
of devices or applications in use on the wireless network. We
will then be seeking for a possible classification of the devices
or application based on their specific contribution (if it exists)
to the characteristics of the traffic. Location and roaming infor-
mations could be added in order to observe the impact of users
mobility on a large scale wireless access network. These analy-
ses remain difficult to realize as they have to cope with an access
to data coming from different layers of the architecture (physi-
cal layer, network layer, AAA functionality, mobileIP manage-
ment) and correlate all this information. To be realized, the
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setup of all those monitoring tools is highly time consuming on
a commercial network, while ensuring data anonymity at the
same time.

V. CONCLUSION

We examined precision time-stamped TCP/IP traffic at a con-
centration point where all traffic passing between a portion of
a wide area CDMA wireless network and the Internet was vis-
ible, capturing traffic from a mix of end devices, mobility pro-
files, and applications. The traffic was examined in detail using
wavelet energy plots, which allow a vision of the statistics of
the data over all time scales. The semi-experimental method
was used to observe differences between the incoming and out-
going traffic, and a benchmark backbone Internet trace.

Our first observation is that, to a large extent, the wireless and
Internet data was quite similar. Clear differences were nonethe-
less observed. Data originating from the wireless network con-
tained energy in a range of scales in the millisecond range. We
were able to trace this to the flow arrival process, and more
specifically, to clustering of neighboring arrivals in groups of
the order of 50 members. We found that the packet arrival
processes within flows were not a major factor, and that flows
themselves could be treated as independent, confirming recent
work on Internet traffic as well as the results from the backbone
trace. In the trace containing data from the Internet to the wire-
less network, a related energy ‘bump’ was also found, however
it appeared at larger scale, and had reduced amplitude. As a
result, it no longer affected the statistics of packet arrivals sig-
nificantly; however it was still clearly visible in the flow arrival
process, opening up the possibility of using this as a signature
of wireless traffic which could be used as a basis of detection.
The signature in the flow arrival process for the backbone trace
is quite different: there is no energy bump, but instead a long-
range dependence which may be neglected as the entire flow
arrival process has low energy compared to the weight of pack-
ets in flows.

Our findings have important implications for modeling of
wireless traffic. First, in contrast with Internet traffic, the flow
arrival process has significant structure which must be taken
into account, and cannot be taken as a Poisson process, in con-
trast to Internet traffic in general. Second, in common with
Internet traffic, the parsimonious choice of independent flows
with simple internal burstiness structure represents aggregate
statistics adequately. Thus, there is scope for an accurate model
which also has few parameters and will be simple to simulate.

In future work, we hope to incorporate more contextual in-
formation allowing the nature of end devices to be identified.
This will open up a rich new field for exploration where net-
work causes will be able to be linked to the ‘statistical causes
found here’. We will also develop a model of the packet and
flow arrival processes.
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