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Most environments harbor large numbers of microbial taxa with ecologies that remain
poorly described and characterizing the functional capabilities of whole communities
remains a key challenge in microbial ecology. Shotgun metagenomic analyses are
increasingly recognized as a powerful tool to understand community-level attributes.
However, much of this data is under-utilized due, in part, to a lack of conceptual strategies
for linking the metagenomic data to the most relevant community-level characteristics.
Microbial ecologists could benefit by borrowing the concept of community-aggregated
traits (CATs) from plant ecologists to glean more insight from the ever-increasing amount of
metagenomic data being generated. CATs can be used to quantify the mean and variance of
functional traits found in a given community. A CAT-based strategy will often yield far more
useful information for predicting the functional attributes of diverse microbial communities
and changes in those attributes than the more commonly used analytical strategies. A
more careful consideration of what CATs to measure and how they can be quantified from
metagenomic data, will help build a more integrated understanding of complex microbial
communities.
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WHY MICROBIAL ECOLOGISTS ARE STILL LOST IN ‘TERRA
INCOGNITA’
Ever since van Leeuwenhoek first peered through a microscope,
it has been recognized that most environments harbor diverse
and complex microbial communities. Whether we are study-
ing soil, the human gut, marine sediments, or lake waters, we
find many taxa that have unknown, or at least poorly described,
ecological characteristics. Our descriptions of microbial commu-
nities are littered with question marks just as maps of continents
were once littered with labels of ‘terra incognita’ by European
explorers.

Recent methodological advances, most prominently advances
in DNA sequencing, have provided unique insight into the struc-
ture and function of complex microbial communities, thereby
improving our ability to chart ‘terra incognita.’ This is partic-
ularly true for those environments, like soils and sediments,
which harbor many taxa that are resistant to laboratory isola-
tion (Whitman et al., 1998; Fierer and Lennon, 2011). It is now
routine for researchers to use shotgun metagenomics, randomly
sequencing from a pool of whole-community DNA extracted
from environmental samples (Handelsman, 2004), to characterize
complex microbial communities and their functional capabilities.
Shotgun metagenomics is by no means the only approach avail-
able – but, fueled by rapid declines in sequencing costs, shotgun
metagenomes are an increasingly available source of data that can
be mined to characterize microbial communities.

One of the explicit goals (and promises) of many shotgun
metagenomic projects is to understand the broader functional and
ecological characteristics of microbial communities, insight that

cannot necessarily be gleaned from the sequencing of taxonomic
or phylogenetic marker genes. These arguments are convincing
because there is already evidence that such approaches can be used
to better understand the function of complex microbial communi-
ties, whether those functional capabilities are related to phosphate
removal from wastewater (Martin et al., 2006), carbon cycling in
permafrost soils (Mackelprang et al., 2011), or arsenic geochem-
istry in marine sediments (Plewniak et al., 2013). While these and
many other studies highlight the utility of shotgun metagenomic
analyses, it is often difficult to distinguish tangible advances from
the hype.

We can use metagenomic data to develop testable predictions
regarding the ecological attributes of microbial communities, but
the approach is no panacea and inferring the functional capabil-
ities of communities from metagenomic data remains difficult.
One reason for this is that community-level attributes are the
emergent properties of a diverse array of organisms interacting
directly and indirectly in a myriad of ways under environmen-
tal conditions that are rarely static. Even if we could predict the
ecological attributes of all individual taxa living in a given com-
munity (a Sisyphean task in most microbial habitats), the overall
functional capabilities of that community and how it responds
to changes in biotic or abiotic conditions, will remain difficult to
predict. If we want to know how rapidly soil communities will
decompose soil organic matter or how efficiently a gut microbial
community will ferment ingested polysaccharides, it is insuffi-
cient to document the genes associated with the metabolism of
various organic carbon pools and their relative abundances. Even
in simple communities composed of well-described microbial
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taxa, predicting community-level metabolic properties from
genomic or transcriptomic data can be challenging (Sieuwerts
et al., 2010).

If the goal is to link microbial communities to processes, a
critical step is to understand the ecological attributes of whole
communities, not just the attributes of individual community
members as the whole is rarely the sum of its parts. Here we
argue that we could often do a better job of predicting the func-
tional capabilities of whole communities by using the concept of
community-aggregated traits (CATs) to glean more useful infor-
mation from the terabases of shotgun metagenomic data being
generated.

WHAT ARE COMMUNITY-AGGREGATED TRAITS AND WHY
ARE THEY USEFUL?
Functional traits can be measured at various levels of organi-
zation – from the level of individual cells, to species, to whole
communities. For example, one could determine the size of indi-
vidual bacterial cells in a water sample, the mean cell sizes for
different bacterial species found in that sample, or the mean size
of cells found in the whole sample. Community-level traits can
be quantified either as a “community-weighted mean trait,” where
the mean trait values for all taxa in a community are weighted by
their relative abundances, or as a “CAT,” where the traits are mea-
sured from a random sample of individuals irrespective of their
taxonomic identities.

We can calculate community-weighted mean traits from shot-
gun metagenomic data by reconstructing genomes, or parts of
genomes, and using this genomic information to predict the char-
acteristics of individual community members. This ‘bottom up’
approach has already been demonstrated to be useful for describ-
ing the putative functions of undescribed microbial taxa (e.g.,
Walsh et al., 2009; Hug et al., 2013) or for documenting taxa likely
responsible for specific microbial processes (e.g., Howard et al.,
2008). Likewise, we can calculate community-weighted mean
traits from a priori information on the traits of specific micro-
bial taxa (or lineages). While this approach is certainly appealing
(e.g., Langille et al., 2013), it has some clear disadvantages if the
traits of many microbial taxa, even closely related taxa, are not
already known, as would be the case in many habitat types. Like-
wise, for those traits that are capable of being transferred across
distantly related taxa via horizontal gene transfer (e.g., antibiotic
resistance; Forsberg et al., 2012), trying to determine community-
levels trait solely from taxonomic or phylogenetic information
would be problematic.

An alternative approach is to calculate CATs directly from a
community of interest without collecting any information on the
identities of the taxa found in a given plot. For example, leaf
traits in a plant community can be determined by remote sens-
ing of canopy spectra (Homolová et al., 2013) or through random
taxon-free sampling (Gaucherand and Lavorel, 2007) without hav-
ing to measure trait averages for each plant species. In a similar
manner, we can calculate CATs from shotgun metagenomic data
as long as we assume that our metagenomes represent a random
sampling of all microbial genomes present in that sample and that
the traits of interest can actually be inferred from the genomic
information. Such a ‘top–down’ approach has been widely used in

microbial environments ranging from soil (Fierer et al., 2012) to
marine waters (Ganesh et al., 2014) to the human gut (Greenblum
et al., 2012). In all of these cases, much of the insight into commu-
nity attributes came not from assigning genes to taxa, but rather by
determining the relative abundances or presence/absence of genes
and gene categories at the community-level of inquiry, not at the
level of individual taxa.

CATs are often useful predictors of community-level properties
because, according to the mass ratio hypothesis, species controls
on community-level processes are in proportion to their relative
abundances (Grime, 1998). The functional traits of abundant taxa
will have more important influences on the functional proper-
ties of a community than the traits of subordinate taxa. There is
strong empirical support for the mass ratio hypothesis from those
studies that have explicitly tested the hypothesis in plant com-
munities (reviewed in Lavorel and Grigulis, 2012). For example,
Mokany et al. (2008) demonstrated that mean trait values were
a good predictor of multiple ecosystem properties in grasslands,
including litter decomposition rates and aboveground net primary
productivity. Likewise, other studies have demonstrated the util-
ity of using plant CATs to predict a wide range of processes and
ecosystem properties from nitrification rates (Laughlin, 2011) to
soil carbon dynamics (Garnier et al., 2004), and green biomass
production (Lavorel et al., 2011).

In many cases, the mass ratio hypothesis should also apply
to microbial communities. For example, we might expect that
the efficiency by which microbes mineralize nitrogen in a com-
posting bio-reactor would be a function of the community mean
for those traits associated with nitrogen mineralization rates. The
appeal of the mass ratio hypothesis to ecologists working with
highly diverse microbial communities is that we do not necessarily
need to know the traits of all taxa to predict a process of interest,
rather we just need to know the traits of the more dominant taxa
(Grime, 1998). Of course, not all community-level processes will
be predictable from the mass ratio hypothesis. For example, rel-
atively rare ‘keystone’ taxa can have a disproportionate influence
on certain processes (Paine, 1995) and biotic interactions could
invalidate the mass ratio hypothesis (Vile et al., 2006). Moreover,
the diversity of traits (the range or variance in trait values found
in a given community) could often be more relevant (Violle et al.,
2012) than just the mean CAT value (Figure 1). For example,
under fluctuating environmental conditions, like those found in
wet soils exposed to wide swings in O2 levels, the distribution
of traits associated with O2 tolerance could be more informa-
tive for predicting community responses over time than simply
measuring a mean community-level O2 preference (Pett-Ridge
and Firestone, 2005). In theory, we should be able to use shot-
gun metagenomic data to calculate both means and variances of
traits (Figure 1), based on the distribution of the relevant genes
or gene categories indicative of the trait of interest within the
community.

CATs have already proven useful for predicting some micro-
bial processes. For example, soil microbial ecologists have long
considered bacterial:fungal ratios to be a useful metric for
understanding soil carbon dynamics because bacteria and fungi
are considered to have distinct carbon use efficiencies (Bailey
et al., 2002), an assumption that has been called into question
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FIGURE 1 | Conceptual distribution of a community-aggregated trait

(CAT) as inferred from the frequency of sequence reads from five

different metagenomes (represented as different colors). For an
illustrative purpose, we can assume that the mean value of the trait
increases along an environmental gradient or correlates with an ecosystem
process of interest. Likewise, we can assume that the variance of this
same trait is reduced at the extreme values of the gradient/process as a
result of selective pressures. Trait distributions as conceptualized in this
figure have been observed, for example, in the distribution of GC content
across aquatic metagenomes (Barberan et al., 2012).

(Strickland and Rousk, 2010). Likewise, the elemental composi-
tion of planktonic cells can often be used to predict biogeochemical
dynamics in aquatic systems (Finkel et al., 2009) just as C:N
ratios of heterotrophic microbial communities appear to influence
nitrate accumulation rates in a wide range of systems (Taylor and
Townsend, 2010). Some models have incorporated community-
level information on microbial traits or functional guilds to
predict litter decomposition rates (Allison, 2012), soil carbon
cycling (Wieder et al., 2013), and patterns in marine phytoplank-
ton biomass (Dutkiewicz et al., 2009). Although these models did
not determine CATs empirically, they do demonstrate that mod-
els which incorporate shifts in CATs (or equivalent) are useful for
predicting how microbial processes, even complex microbial pro-
cesses likely driven by hundreds of microbial taxa, can effectively
be predicted across space or time.

WHICH MICROBIAL CATs TO MEASURE?
If we assume that CATs provide a useful means to describe the
functional attributes of communities, we then have to identify
the traits that are relevant and worth quantifying. There is a
long list of microbial traits that could be useful (see examples
in Table 1) and the list of traits that will be most relevant will
depend on the study system and the research question. Collaps-
ing phenotypic diversity into groups with shared traits has been

one approach to simplify this complexity. For example, microbial
taxa have been divided into groups based on shared life history
characteristics (Fierer et al., 2007; Ho et al., 2013), groups defined
by the source of carbon or energy (lithotrophs, heterotrophs,
autotrophs), or divided into groups based on specific func-
tional capabilities (N2-fixers, photosynthesizers, methylotrophs).
While pragmatic, these functional categories over-simplify trait-
level variability and it is likely more appropriate to define
microbial trait space as a set of continuous, quantifiable vari-
ables, where microbes, or microbial communities, sit within this
multidimensional space.

There are 100s of traits that could possibly be measured for
any organism – but it is often not necessary to measure every one
of these traits to place species into multidimensional trait space
(Laughlin, 2014). The key is to identify and measure those traits
that are most relevant to the system in question and select those
traits that are independent and that most effectively discriminate
between taxa or communities. Such an approach has proven use-
ful in plant ecology where a handful of plant traits can be used to
accurately place species into multidimensional trait space (Laugh-
lin et al., 2010; deBello et al., 2013) as many other plant traits are
often correlated with this subset of traits. There are clearly simi-
lar trade-offs in microbial traits (Gudelj et al., 2010). For example,
there are well-established trade-offs between growth rate and yield
(Pfeiffer et al., 2001), between stress tolerance and the ability to
compete for substrates (Ferenci and Spira, 2007), and between cell
size and nutrient uptake rates (Young, 2006). Although the list
of possible traits is enormous, there are inescapable morpholog-
ical, physiological, and genetic constraints that narrow the list of
possible trait combinations associated with different life history
strategies.

Selecting CATs to study can often be done a priori. For exam-
ple, we can assume that traits that confer tolerance to changes in
water activity will likely be important if we are trying to predict
soil C dynamics in arid or semi-arid systems (Lennon et al., 2012;
Evans and Wallenstein, 2014). Likewise, we could assume that
traits associated with nutrient uptake will have important controls
on phytoplankton growth in many freshwater systems (Edwards
et al., 2013). Sometimes the traits that might be relevant to pre-
dicting the community-level function are unknown or unexpected
because the process itself or specific controls on the process are
not well understood. For example, it would be difficult to pre-
dict a priori which CATs would be most relevant to understanding
controls on nitrification by archaea given that physiologies remain
poorly understood (You et al., 2009). In these cases, one could
determine which CATs are most relevant to a process of interest by
first measuring the community-level process across space and/or
time and then empirically determining what CAT, or set of CATs,
appears to be correlated with the measured changes in the process.
In this manner, one could generate specific, testable predictions
about how changes in CATs relate to changes in community-level
processes and test them experimentally.

INFERRING COMMUNITY-AGGREGATED TRAITS FROM
METAGENOMIC DATA
Many microbial traits could be inferred from genomic or metage-
nomic data (Table 1) and there are many other examples of traits
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Table 1 | Selected examples of microbial traits and the genes or genomic characteristics that could be used to calculate community-aggregated

trait (CAT) values from shotgun metagenomic data.

Microbial trait Selected genes, gene categories, or genomic characteristics that

could be used to infer the trait value

Reference

Maximum growth rate rRNA operon number, codon usage bias in highly expressed genes,

rRNA/tRNA position

Lauro et al. (2009), Vieira-Silva and Rocha

(2010)

Dormancy Sporulation proteins, toxin–antitoxin systems,

resuscitation-promoting factors

Lennon and Jones (2011)

Osmoregulation Trehalose and peptidoglycan production Culligan et al. (2012)

Ability to catabolize recalcitrant

organic compounds

Genome size, secondary metabolite transport/metabolism Konstantinidis and Tiedje (2004), Fierer et al.

(2012)

Stress resistance (general) Sigma factor subunits of RNA polymerases (e.g., σB ) Kazmierczak et al. (2003), Marles-Wright and

Lewis (2007)

Cold tolerance Cold shock proteins, trehalose synthesis proteins Varin et al. (2012)

Motility Chemoreceptor, flagellar genes Girgis et al. (2007)

Oxidative stress tolerance Catalase, peroxidase, and polyketide synthase genes Qin et al. (2012), Zhang et al. (2013)

Nitrogen/phosphorus affinities Genes for membrane-bound nutrient uptake/transporters Hewson et al. (2009), Eloe et al. (2011)

Resistance to toxic metals COGs associated with heavy metal efflux pumps Hemme et al. (2010), Eloe et al. (2011)

Antibiotic resistance Genes for efflux pumps, ribosomal protection, enzymatic inactivators Hu et al. (2013), Forsberg et al. (2014)

References include examples of studies where that trait was inferred from either genomic or metagenomic data.

that could be inferred directly from either the presence/absence
of specific genes, including specific metabolic capabilities (e.g.,
the ability to fix CO2 or oxidize elemental sulfur) or tolerances
to specific environmental stressors (e.g., resistance to antibiotics
or toxic metals). Other traits could be determined from genomic
data but, in many cases, there will not be a single gene, or set of
genes, whose presence or absence is directly associated with the
trait. Instead, one would have to identify what gene abundances or
gene ratios correlate with the trait of interest. For example, maxi-
mum growth rate is clearly an important trait, but there is no single
gene that directly determines growth rate. However, a variety of
genomic features (including number of rRNA copies, number of
outer membrane proteins, presence of motility genes) have been
shown to distinguish copiotrophic and oligotrophic taxa (Klap-
penbach et al., 2000; Lauro et al., 2009) with work by Vieira-Silva
and Rocha (2010) demonstrating how such information could
be used with metagenomic data to estimate microbial genera-
tion times in environmental samples. In many cases, the process
of inferring specific CATs from metagenomic data will require
analyzing genomes from individual taxa with well-characterized
phenotypic traits or by analyzing metagenomes from communi-
ties across well-characterized gradients in CAT-space (Barberan
et al., 2012). For example, there are likely genes, or combinations
of genes, that could provide insight into the nutrient stoichiome-
tries of individual taxa or whole communities, but these genes will
have to be identified and their utility validated.

There are numerous caveats to consider when trying to use
metagenomic data to quantify microbial CATs and nearly all of
these caveats are shared by any study using metagenomes to infer
the functional attributes of communities. First and foremost,
traits are phenotypic characteristics of organisms and changes in

metagenomes will not necessarily equate with changes in CATs.
Metagenomes allow us to make some guesses and hypotheses
about changes in CATs, but these hypotheses would need to be con-
firmed independently. This is particularly true for traits, like cell
size (Young, 2006) and nutrient stoichiometries (Scott et al., 2012),
which can exhibit a high degree of plasticity depending on environ-
mental conditions. A related concern is that CAT estimates from
metagenomes will reflect both active and inactive members of the
community and in many environments, like soil, a large portion
of the DNA pool isolated at a given point in time could come from
cells that are dormant, inactive, or even lysed (Lennon and Jones,
2011). Perhaps a larger concern is that we are often going to be
restricted to estimating CATs from that portion of the metagenome
that has been annotated. In environmental metagenomes, typically
>50% of the genes found in metagenomes are of undetermined
function (Ellrott et al., 2010) and it is a big leap of faith to assume
that those annotations are thorough and accurate (Schnoes et al.,
2009). Although some traits can be inferred from unannotated
metagenomic data (e.g., codon usage, Roller et al., 2013), the
requirement that genes are first annotated is an important lim-
itation in most environmental samples as the large fraction of
genes that fall into the ‘known unknown’ category may obscure
relationships between CATs and the community-level attributes
one is trying to predict.

CONCLUSION
Microbial ecologists are inherently interested in the details and
complexities of microbial communities. This is not true for most
people outside the field – they want to know what microbial
communities do, how they can be managed, and how they impact
our health and environmental quality. Thus, there is a need for
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quantifiable information on community-level functions and the
relevant community-level properties. Unfortunately, the traits of
most microbial taxa living in the environment remain poorly
understood and trying to understand community-level properties
from trait-based information on individual cells or individual taxa
is often difficult, if not impossible. There is no method waiting on
the horizon that will serve as a panacea to close these knowledge
gaps. However, CATs represent a valuable conceptual approach
that could be used by microbial ecologists to make better use of
shotgun metagenomic data for predicting the functional capabili-
ties of complex communities. The key is to determine what CATs
to measure and how the relevant CATs can be quantified from
metagenomic data.
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