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Abstract—Multi-Modal Optimization (MMO) aiming to locate
multiple optimal (or near-optimal) solutions in a single simulation
run has practical relevance to problem solving across many fields.
Population-based meta-heuristics have been shown particularly
effective in solving MMO problems, if equipped with specifically-
designed diversity-preserving mechanisms, commonly known as
niching methods. This paper provides an updated survey on nich-
ing methods. The paper first revisits the fundamental concepts
about niching and its most representative schemes, then reviews
the most recent development of niching methods, including novel
and hybrid methods, performance measures, and benchmarks
for their assessment. Furthermore, the paper surveys previous
attempts at leveraging the capabilities of niching to facilitate
various optimization tasks (e.g., multi-objective and dynamic
optimization) and machine learning tasks (e.g., clustering, feature
selection, and learning ensembles). A list of successful applica-
tions of niching methods to real-world problems is presented
to demonstrate the capabilities of niching methods in providing
solutions that are difficult for other optimization methods to
offer. The significant practical value of niching methods is clearly
exemplified through these applications. Finally, the paper poses
challenges and research questions on niching that are yet to be
appropriately addressed. Providing answers to these questions is
crucial before we can bring more fruitful benefits of niching to
real-world problem solving.

Index Terms—Niching methods, Multi-modal optimization,
Meta-heuristics, Multi-solution methods, Evolutionary computa-
tion, Swarm intelligence.

I. INTRODUCTION

THIS paper presents an updated survey on niching meth-

ods, which are Multi-Modal Optimization (MMO) meth-

ods aiming at locating multiple optimal solutions in a single

execution run. In many real-world situations, a decision maker

prefers to have multiple optimal (or close to optimal) solutions

at hand before making a final decision. If one solution is not

suitable, an alternative solution can be adopted immediately. A

good practical example is the well-publicized Second Toyota

Paradox [1], which shows that delaying decisions and pur-

suing multiple candidate solutions concurrently can produce

better cars faster and cheaper during the car manufacturer’s

production process.
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The goal of locating multiple optimal solutions in a single

run by niching methods contrasts sharply with the goal of a

classic optimization method [2], which usually starts from an

initial single point and iteratively improving it, before arriving

at one final solution. Since it is not guaranteed that starting

at different initial points will arrive at different solutions with

multiple runs, classic optimization methods are not suited for

the purpose of locating multiple solutions. This goal is also

different from the usual single-optimum seeking mechanism

employed by a standard meta-heuristic method. In literature,

sometimes “multi-modal optimization” also refers to seeking a

single optimum on a multi-modal fitness landscape. To avoid

this confusion and to be more precise, in this paper we also

refer to niching methods as “multi-solution” methods.

Classic niching methods, including fitness sharing [3] and

crowding methods [4], were developed in the early 70s and

80s. In subsequent years, many niching methods have been

proposed. Some representative examples include deterministic

crowding [5], derating [6], restricted tournament selection

[7], parallelization [8], clustering [9], stretching and deflation

[10], [11], and speciation [12], [13]. Initially, niching methods

were developed for Evolutionary Algorithms (EAs). How-

ever, recently niching methods were also developed for other

meta-heuristic optimization algorithms [14], such as Evolu-

tion Strategies (ES), Particle Swarm Optimization (PSO), and

Differential Evolution (DE).

It is interesting to note that though several subareas of meta-

heuristics, such as evolutionary multi-objective optimization

(EMO) and constrained optimization, have gained widespread

acceptance going even beyond the meta-heuristic research

community, niching methods are perceived to have failed in

making a similar impact. Research on niching methods is seen

by many as a byproduct of research on population diversity

preservation, which is an important issue to deal with in

standard meta-heuristic algorithms. It is a common perception

that niching methods have limited use in real-world problem

solving because of the difficulties faced when applying them

(see Section V). Nevertheless, literature review suggests that

research on niching methods is continuing to demonstrate

remarkable success in facilitating various optimization tasks

across a wide range of real-world application areas. In recent

years, niching methods have been developed taking into ac-

count the unique characteristics of new meta-heuristic methods

such as PSO and DE, injecting renewed vitality to this classic

optimization topic. The resurgence of research interests in

MMO is clearly evident from the rapidly increasing number

of research publications in this area, as shown in Figure 1.

Seeking multiple optimal (or good sub-optimal) solutions in a
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Fig. 1. Publication trends from the Elsevier Scopus library that contains
(in either meta-data, or full-text) the following keyword search queries: a)
“multimodal optimization” OR “niching”; and b) “niching”.

single optimization run has the following benefits:

• Finding multiple solutions may help to reveal hidden

properties or relations of the problem under study, e.g.,

the distribution of the solution set in the problem space.

This provides much richer information about the problem

domain than single-solution approaches.

• In some real-world problems, there may be factors that

are difficult to model mathematically, e.g., degrees of

difficulty in manufacturing, maintenance, and reliability.

Having multiple solutions with a similar quality will give

the decision maker more options for consideration, with

factors that are not captured in the mathematical model.

• Finding multiple solutions with a similar quality is a step

towards providing robust solutions, and also helping with

potential sensitivity studies of the given problem.

• Seeking multiple “good” solutions may increase the prob-

ability of a meta-heuristic algorithm finding the globally

optimal solution, since computational effort is not con-

centrated just in one area, but diverted to different regions

of the search space.

• Seeking multiple “good” solutions in different regions of

the search space may help with keeping a diverse pop-

ulation, counteracting the effect of genetic drift, i.e., the

population losing quickly its diversity and prematurely

converging to local optima.

The importance of niching methods and their applications

goes beyond just meta-heuristics. There are many problem

domains where the need to locate multiple solutions is preva-

lent, e.g., clustering, feature selection, machine learning, and

numerous engineering design problems. We feel that it is about

time to provide an updated survey on this classic subarea

of meta-heuristics. Although a few survey papers on niching

exist [15]–[18], little attention was given to niching methods

applied to optimization algorithms other than EAs, neither a

diverse range of real-world applications of niching methods.

This updated survey will differ from these previous surveys in

the following aspects:

• Instead of exhaustively covering existing niching methods

in the literature, we focus on providing an updated survey

of the most recent advancements in niching methods that

are inspired by the development of new meta-heuristics

such as PSO and DE.

• We emphasize more on revealing the intrinsic links

between niching and several topics in optimization and

machine learning, together with other different roles that

niching can play in these areas.

• We provide a more in-depth and detailed account of nich-

ing methods on MMO benchmark test function suites,

performance measures, difficulties in practical usage, and

research questions yet to be addressed.

• We aim to present a more holistic view on the current

state of niching methods and their applications through

a list of examples of real-world niching applications. It

is interesting to note that many researchers who work

on various MMO problems in their respective domain

areas are not aware of niching research done in other

disciplinary areas. This survey hopes to increase the

awareness of potential applications of niching methods

across domain boundaries.

This survey begins with background information covering

the fundamental concepts of niching and diversity, and their

places in population-based meta-heuristics. Section III de-

scribes the two most well-known niching methods which laid

the foundation to this field. Section IV then presents the most

recent advancements in niching methods, in particular those

from meta-heuristics other than EAs. Section V discusses the

difficulties faced by niching method users. This is followed by

discussions on designing benchmark functions for evaluating

niching methods and performance measures, in Section VI

and VII respectively. Section VIII provides a detailed account

of how niching is applied across several optimization and

machine learning areas, which are very revealing in terms of

the influence of niching in these areas. Section IX presents

a list of real-world applications. In the last two sections, we

present a list of open research questions and finish with our

concluding remarks.

II. BACKGROUND

Both notions of niche and species can be found in natural

ecosystems, where individual species must compete to survive

by taking on different roles. Different species or organisms

evolve to fill different niches (or subspaces) in the environ-

ment that can support different types of life. As remarked

in [19], “A niche can be defined generally as a subset of

resources in the environment. A species, on the other hand,

can be defined as a type or class of individuals that takes

advantage of a particular niche. Thus niches are divisions of

an environment, while species are divisions of the population.”

In biology, a species is defined as a group of individuals

of similar biological features capable of interbreeding among

themselves, but not with individuals from a different group.

Since each niche has a finite number of resources, which

must be shared among species members occupying that niche,

over time different niches and species emerge naturally in

the environment. Instead of evolving a single population of

individuals indifferently, natural ecosystems evolve different

species (or subpopulations) to fill different niches.
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Fig. 2. Examples of fitness landscape with multiple global peaks (optima); a)
Vincent 2D function with unevenly-spaced global peaks (left); b) Shubert 2D
function with multiple pairs of clustered global peaks (right). More examples
can be found in [21].

In optimization, we often use the term niche to refer to an

area of the fitness landscape where only one peak resides, and

species the subpopulation maintained around a specific peak

(or niche). It is common to use some sort of distance metric

to measure the closeness among individuals in the same or

different species.

In the following sub-sections, we first provide a definition

of MMO, then discuss the role of niching in meta-heuristics,

and how it differs from maintaining population diversity.

A. Multi-modal problem formulation

Niching methods are generally designed to solve Multi-

Modal Optimization (MMO) problems. A typical MMO prob-

lem can be expressed as follows: given a search domain X
and an objective function f that maps elements of X into a

real domain R (assuming maximization):

max
~x∈X

f(~x), (1)

where ~x is a n-dimensional vector (x1, . . . , xn). In MMO,

an optimization or niching method aims to locate all possible

~x∗ ∈ X (not just a single ~x∗), which obtain the maximum

possible objective value:

f(~x∗) ≥ f(~x), ∀~x ∈ X . (2)

The mapped f values in the immediate vicinity of an ~x∗

should be all equal or lower than f(~x∗), which maximizes the

possible objective value. This is different from the notion of

local optima: although they are surrounded in their immediate

vicinity by inferior solutions, the fitness values of local optima

do not exceed the highest possible value [20]. Fig. 2 shows

examples of two multi-modal functions, Vincent 2D, which

has a fitness landscape of multiple global peaks with vastly

different basin widths, and Shubert 2D which has 9 pairs of

clustered global peaks, with each pair very close to each other,

but the distance between any pair being much greater.

It is also possible to relax the MMO definition to allow

locating globally optimal solutions, as well as “sufficiently”

good sub-optimal solutions.

B. Population diversity vs niching

In population-based meta-heuristics, population diversity

plays an important role in maintaining the meta-heuristic

algorithm’s capability to explore the search space. When the

population converges (or in other words the diversity loss is

at its greatest), the algorithm ceases to make further progress

in optimization. Usually, striking a good balance between

maintaining sufficient diversity (for exploration) and refining

the existing solution locally towards a good accuracy (for

exploitation) is a common goal for these population-based

meta-heuristic algorithms seeking to locate a single optimal

solution. Several definitions were provided by Mahfoud [22]

to characterize diversity in the context of EAs. In contrast,

niching not only helps to maintain a more diverse population,

but also helps to achieve an additional goal, that is to simulta-

neously locate more than one optimal solution. In retrospect,

the early works in EA have been largely dominated by efforts

to maintain good population diversity, and the development

of early niching methods was considered only as a byproduct

[23]. Niching was used largely for the purpose of preventing

the best candidate solution in the population from replacing

other similar quality but distant solutions.

Note that simply maintaining a high level of population

diversity is inadequate for niching, since a high population

diversity could be made up by random points. To induce

a niching effect, a niching method must allow convergence

locally to desired solutions, as well as diversity among these

solutions across different regions of the search space, achiev-

ing some sort of distributed convergence (see Fig. 3).

III. CLASSIC METHODS

This section briefly describes two classic niching methods,

fitness sharing and crowding, which had a significant influence

on the development of subsequent niching methods. For other

well-established niching methods, the readers are referred to

[15], [16].

A. Fitness Sharing and Crowding

One classic niching method is fitness sharing, probably

the most widely-used niching method. The sharing concept

was originally introduced by Holland [24] and then adopted

as a mechanism to divide the population into several sub-

populations based on the similarity of the individuals in the

population [3]. Fitness sharing was inspired by the notion of

‘sharing’ observed in nature, where an individual has only

limited resources that must be shared with other individuals

occupying the same niche in the environment. Fitness sharing

attempts to maintain a diverse population by degrading an in-

dividual’s fitness based on the presence of other neighbouring

individuals. During selection, many individuals in the same

neighbourhood would degrade each other’s fitness, thereby

discouraging the number of individuals occupying the same

niche. This in turn rewards individuals uniquely exploiting

different areas of the search space. Although fitness sharing

has proven to be a useful niching method, it has been shown

that it is rather difficult to set a proper value for the niche

radius σshare and the scaling factor α [25], [26] without any

prior knowledge of the problem. The computation of niches

can also be expensive if the population size is large [15]. Later

efforts in improving fitness sharing led to the development of
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Algorithm 1: The pseudo-code of deterministic crowding.

1: Select two parents, p1 and p2 randomly, without

replacement

2: Generate two offspring c1 and c2
3: if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then

4: if f(c1) > f(p1) then replace p1 with c1
5: if f(c2) > f(p2) then replace p2 with c2
6: else

7: if f(c2) > f(p1) then replace p1 with c2
8: if f(c1) > f(p2) then replace p2 with c1
9: end if

several niching techniques, including dynamic fitness sharing

[27], dynamic niching sharing [28], and clearing [12].

Whereas fitness sharing aims to downgrade the fitness

values of overcrowded individuals, the crowding method relies

on a competition mechanism between an offspring and its

close parents to allow adjusted selection pressure in favouring

individuals that are far apart and fit. The crowding method was

initially designed only to preserve population diversity and

prevent pre-mature convergence [4]. In crowding, an offspring

is compared to a small random sample taken from the current

population, and the most similar individual in the sample is

replaced. A parameter CF (crowding factor) is commonly

used to determine the size of the sample. Mahfoud [5] closely

examined both crowding and pre-selection and found that De

Jong’s crowding method was unable to maintain more than

two peaks of a five peaks fitness landscape due to stochastic

replacement errors. Mahfoud then made several modifications

to crowding to reduce replacement errors, restore selection

pressure, and also to eliminate the crowding factor parameter.

The resulting algorithm, deterministic crowding (DC), was

able to locate and maintain multiple peaks. One merit is that

DC does not assume any prior knowledge of the number of

peaks or niche radius as by the sharing methods. Algorithm 1

shows the basic procedure of DC.

B. Other methods

Many other forms of niching methods have been developed,

of which the most representative ones include restricted tour-

nament selection (RTS) [7], clearing [12], multi-national GA

[29], and speciation [13]. It is interesting to note that the

primary goal of the early niching methods was to preserve

population diversity, due to the constant battle of population

diversity loss in any standard evolutionary algorithm. Using

niching methods to find multiple optima was merely a byprod-

uct of this process (see [23], p.41). Nevertheless, subsequent

to early research, niching methods have been developed with

the primary goal of locating multiple optimal solutions.

IV. RECENT DEVELOPMENTS

As several meta-heuristics other than EAs become increas-

ingly popular, the properties of these new meta-heuristics have

been harnessed to induce niching behaviours. This section de-

scribes two most widely-used meta-heuristics, Particle Swarm

Optimization (PSO) and Differential Evolution (DE), and how

they can be modified to locate multiple solutions. Another in-

teresting development is the hybridization of niching methods

with local search methods.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization tech-

nique inspired by the bird flocking behaviour [30]. In PSO,

each particle has its own memory of the best-known position

visited so far, and is able to share this information with other

particles in the swarm. At each iteration, each particle is

propelled towards the area defined by the stochastic average

of its own known best position and the swarm best position. It

was shown in [31] that basic versions of PSO do not have the

ability to locate multiple solutions. This is mainly due to the

loss of swarm diversity as particles converge. In order to niche,

approaches have to be implemented to promote exploration

and distributed convergence.

The notion of memory associated with each particle is

unique to PSO, and this property can be used to induce

niching behaviour: a swarm can be divided into two parts,

an explorer-swarm consisting of the current particles, and

a memory-swarm, comprising of only best-known positions

of individual particles. The explorer-swarm tends to explore

the search space more broadly, whereas the memory-swarm

tends to be more stable, providing an archive of best positions

found so far by the entire swarm. If a restricted communi-

cation topology (e.g., a ring topology) is mapped over the

particles of the swarm, these particles will be attracted only

towards its local neighbourhood best positions identified in the

topological space. As search proceeds, individual niches are

formed naturally around different optima, eventually leading to

locating multiple optima. Neighbourhood can be defined either

in the topological space or decision space. A few methods

explicitly exploit this PSO property, e.g., the ring-topology-

based niching PSO [32], and the Fitness-Euclidean distance

Ratio (FER-PSO) [33], where the fitness-Euclidean distance

ratio is used to drive particles towards their nearest-and-fittest

neighbourhood bests. In addition, an Euclidean distance-based

niching PSO, namely LIPS [34], forms niches by using the

nearest neighbours to each personal best in the Fully Informed

PSO (FIPS) [35].

Several methods proven to be useful to induce niching be-

haviour in the classic niching methods have also been adopted

to work with PSO. For example, a stretching method was used

in [36] to modify the fitness landscape to allow potentially

good solutions to be isolated from other particles, which is

similar to the effect of a derating method [6]. It was, however,

shown in [37] that the stretching PSO introduces false local

optima. The Derating Niche PSO was proposed to avoid these

false local optima. The idea of speciation was also adopted

in Speciation-based PSO (SPSO) [38], [39], where species

(or sub-swarms) can be adaptively formed around different

optima. However, a niche radius must be pre-specified in

order to define a species. Species are allowed to be merged

or separated into new ones at each iteration. Other similar

methods include NichePSO [40], nbest PSO [41], and Multi-

swarms [42].



JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, NOVEMBER 2016 5

To remove the need to pre-specify a niche radius, an Adap-

tive Niching PSO (ANPSO) [43] was developed to adaptively

determine this parameter by calculating population statistics

at each iteration. Another method that avoids the specification

of a niche radius parameter is a vector-based PSO (VPSO)

[44] where niche identification is done by carrying out vector

operations on the vector components of the velocity update.

A niche is determined by the radius value based on the

distance between the swarm best and the nearest particle with

a negative dot product (i.e., moving in an opposite direction).

Nevertheless, these methods tend to introduce new parameters

that may still be sensitive to the induction of niching effect.

For further information on recent PSO niching methods, the

reader can refer to [45], [46].

B. Differential Evolution

Unlike PSO, Differential Evolution (DE) [47] makes use

of scaled differences between randomly sampled pairs of

individuals in the population to determine how to modify

individual vectors to produce offspring. Considering that the

distribution of these sampled individual pairs reflects the

topographic feature of the search space, DE’s search behaviour

to some extent is self-adaptive to the fitness landscape of the

search space.

Rönkkönen introduced several interesting ideas for global

and local selection in DE [48], and how to use the local

selection concept for MMO [49]. Since this local selection

method requires only the offspring to compete against its own

parent, it is similar to deterministic crowding (DC) used in the

EA context. Like DC, it also has the advantage of not having

to specify additional niching parameters.

Further studies on the dynamics of DE [50], [51] reveal

that DE individuals are inclined to cluster around either local

or global optima after some iterations. A clustering tendency

statistic, H-measure, was suggested in [50] to measure the

varying degrees of clustering tendency that may occur for

six classical DE variants. Inspired by this observation, the

mutation operator in a classic DE variant DE/rand/1, was

altered to induce niching behaviour without the need of adding

any extra control parameter [52], namely the DE/nrand/1.

More specifically, instead of using the base vector in the usual

way, its nearest neighbour is always chosen as the actual base

vector:

vig+1 = xNNi

g + F (xr1
g − xr2

g ), (3)

where xNNi
g is the nearest neighbour of the current individual

xi
g, r1, r2 ∈ {1, 2, . . . , NP}\{i} are random integers mutually

different and not equal to the running index i, and F is the

scaling factor. A similar nearest-neighbour idea for a niching

PSO was also adopted [34]. Intuitively, such mutation scheme

distributes the new offspring individuals to exploit the vicinity

of their nearest neighbours, while exploration is attained by the

scaled differences of randomly selected vectors. The proposed

mutation modification is generic and a family of new niching

DE variants can be produced, i.e., the DE/nrand family of

algorithms.

One appealing aspect of DE/nrand/1 is its simplicity in

implementation, requiring only addition of a few lines of codes
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Fig. 3. Snapshots of a simulation run of DE/nrand/1 on the Shubert 2D
function, at the 0th, 20th, 50th, and 100th iterations (clockwise).

to the standard DE source code1. Figure 3 illustrates a series of

snapshots of a simulation run of the DE/nrand/1 on the Shubert

2D function, after 0, 20, 50 and 100 iterations. One can clearly

observe a strong niching effect, i.e., clustering tendency of the

distributed individuals in the immediate vicinity of the global

optima (in other words, distributed convergence), during the

simulation run.

The ability of a niching method to locate and maintain a

large number of “optimal” solutions is heavily dependent on

the chosen population size. A dynamic archive niching DE,

(dADE/nrand/1), was introduced in [53] to overcome this

dependency issue. The dynamic archive mechanism, similar

to [54], along with a re-initialization strategy, was incorporated

into the DE/nrand family to achieve better efficiency in main-

taining high quality solutions found during the optimization

run while retaining the algorithm’s exploratory search power.

In a neighbourhood-based niching DE [55], similar vectors

within the neighbourhood of each base vector were used to

define the DE mutation operator in order to induce niching

behaviour. Here a difference vector is only generated from

“similar” individuals of the DE population rather than ran-

domly selected from the entire population. Similarity is defined

for each base vector as the niche, or sub-population, that

contains its m-th closest individuals in terms of Euclidean

distance. As such, each individual is mutated by randomly

selecting individuals within the niche of its base vector.

Note that these niches are overlapped with each other. The

parameter m is user-defined and needs to be fined-tuned

according to the problem characteristics. Three well-known

niching techniques were used in conjunction with this scheme,

namely crowding [5], speciation [12] and a modified version

of the fitness sharing technique [3], resulting in three different

niching DE variants.

Similarly, Biswas et al. [56] recently proposed three niching

1Price & Storn’s original implementation DeMat with the DE/nrand/1
modification by only using six new lines of MATLAB code. Available at:
https://github.com/mikeagn/DeMatDEnrand
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DE variants by incorporating a probabilistic parent selection

scheme based on fitness and proximity information, known as

localized shared information. More specifically, parent selec-

tion in the mutation stage is replaced by a probabilistic scheme

to increase the probability of selecting fitter individuals that

are closer to the target vector. This is a trade-off that is usually

needed to induce a niching effect and minimize the tendency of

changing basin of attractions without hindering the exploratory

ability of the considered algorithm.

One key common characteristic of niching methods is the

incorporation of proximity information of the evolving popula-

tion into the search operations. Such information unavoidably

increases the complexity of the niching method. To mitigate

this issue, Zhang et al. [57] recently proposed a fast niching

algorithm to calculate approximate nearest neighbours using

a hashing mechanism (namely Locality Sensitive Hashing),

instead of exact pairwise distances within a solution set. In

this scheme, potential solutions are projected to a number of

buckets by a hash function, where similar solutions have a

higher probability to be assigned in the same buckets than

dissimilar ones. To induce a niching effect, search operations

in DE or PSO identify niches by solutions that lie in the

same bucket. The complexity of this fast niching algorithm is

proved to be linear to the population size. Another approach

using approximate neighbourhoods is the index-based neigh-

bourhoods in DE [51], which can also substantially decrease

the complexity of the niching algorithm.

Other recently proposed DE niching variants include parent-

centric mutation strategies combined with crowding [58] and

ensembles of niching techniques such as speciation [59].

C. Other meta-heuristics

The previous section on classic and recent niching methods

are far from complete. Obviously niching can be introduced to

other meta-heuristics as well, such as Artificial Immune Sys-

tems (AIS) [60], [61], Ant Colony Optimization (ACO) [62]–

[64], and Cultural Algorithms (CA) [65]. It is also possible

to induce niching behaviour through probabilistic modelling

building, e.g., via an Estimated Distributed Algorithm (EDA)

[66]. Please refer to [17] for further information on these

niching methods.

D. Hybrid methods

Hybrid methods combining meta-heuristics with local

search (or hill climbing), e.g., the quasi-Newton or Nel-

derMead simplex methods, have shown great promise for

global optimization [67]. These hybrids derive their enhanced

problem solving capability by harnessing both the explorative

search power of the meta-heuristics and the refining capability

(i.e., exploitation) offered by a local search method. They are

also commonly referred to as Memetic Algorithms (MA) [68].

Attempts have been made to hybridize niching methods with

local search procedures, in order to enhance convergence to

multiple optima, or in other words, distributed convergence.

For example, regression was incorporated into Speciation-

based PSO (i.e., rSPSO) for improving local convergence on

both static and dynamic multi-modal landscapes in [69]. The

faster and more accurate local convergence is achieved by

using regression computed based on only a handful of existing

individuals in the population. An EA hybridizing the Nelder-

Mead simplex method with clearing was proposed in [70].

Gradient descent was used in conjunction with a dynamic

niche sharing algorithm applying mating restriction [71], with

the results showing that this hybrid method performed better

than using niching methods alone. Quasi-Newton local search

was combined with a sharing GA as well as an artificial

immune algorithm by Ono, et al. [72], which resulted in

the hybridized algorithms outperforming those methods using

niching alone, on high-dimensional multi-modal functions.

V. DIFFICULTIES FACING NICHING

In this section we discuss several difficulties faced by the

users of niching methods.

A. Maintaining found solutions

In the early days of niching algorithm development, it

was observed that both sharing and crowding methods tended

to have difficulty in maintaining found optima. Subsequent

research aimed at designing enhanced niching methods so

that they can maintain found solutions stably until the end

of a run. Any loss of found optima would be considered a

failure. However, most researchers now accept the fact that the

population does not have to fully converge to single solutions

each corresponding to a single optimum. For example, we can

store the found solutions into an archive [53], [54], separate

from the running EA population (similar to a Tabu list), or we

can let the population reach some kind of equilibrium state,

as shown in [32]. In an equilibrium state, some individuals of

the population would keep oscillating around a stable state,

never reaching complete convergence.

B. Specifying niching parameters

The difficulty in specifying niche parameters has been a

major impediment to the use of niching methods in practice.

The most representative one is niche radius, which needs to

be specified to indicate how far apart the optima are from

each other. For some search landscapes, using a fixed uniform

niche radius is likely to fail, e.g., the Vincent function which

has irregular uneven-spaced optima (see Fig. 2 (left)).

Many attempts have been made specifically to address this

issue. They can be mostly categorized into the following:

• Attempting to find a single uniform niche radius. For ex-

ample, in [73], a radius function and a cooling procedure

similar to simulated annealing were adopted. However,

this method GAS (S for species) introduced several new

parameters that must be specified by a user. In [74], Dick

proposed a local sharing method where the information

about the fitness landscape during a run is first collected

and then subsequently used to adapt the niche radius

parameter value.

• Instead of using a fixed niche radius, several studies

suggest to adopt a variable niching radius. More specif-

ically, each niche has its own niche radius, independent
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from other niches. Niching algorithms that follow this ap-

proach include multinational GA [29], forking GA [75],

Dynamic Niche Clustering [76], an adaptive extension

of NichePSO (ANPSO) [43], and a CMA-ES niching

algorithm [23], [77]. Inspired by the notion of self-

adaptation in evolution strategies, the CMA-ES niching

algorithm allows each individual to adapt its own niche

radius along with other adaptive strategy parameters.

• Avoiding to specify the niche radius. These methods

include tagging [78], deterministic crowding (DC) [5],

implicit fitness sharing [79], multi-national GA (MGA)

[29], population index-based niching PSO [32], vector-

based PSO (VPSO) [44], DE niching method using the

nearest neighbour of the current individual as the new

base vector [52], [53], and locally-informed PSO (LIPS)

using the nearest neighbours (measured in the decision

space) to each particle’s personal best [34]. DC randomly

selects two parents for crossover and mutation. The two

offspring generated are compared with the parents. The

children only replace the nearest parent if their fitness

values are greater. This process does not rely on any nich-

ing parameters. In MGA [29], instead of using a radius, a

hill-valley detection mechanism is required to take some

sampling points between two individuals to see if they

belong to the same peak. However, accurate detection

could be an expensive exercise. Further attempts were

made to improve the hill-valley detection but still required

pre-specification of certain parameters [80]. Recently, a

history-based topological speciation algorithm (HTS) was

developed to recursively construct a sequence of sample

points between two individuals using search history to

determine if they belong to the same species [81].

One common issue among the above-mentioned approaches

is that the removal of the niche radius parameter sometimes

unavoidably introduces new parameters, some of which may

still be difficult to specify in practice.

C. Scalability

Scalability of niching methods refers to two aspects: the

number of dimensions and the number of optima to be located.

Most of the niching methods in literature have been evaluated

on low-dimensional test functions. The scalability of several

niching methods including NichePSO has been studied [82],

[83], but only functions up to 5 dimensions were used. In [23],

the CMA-ES niching algorithm was only tested on functions

up to 10 dimensions. In the most recent CEC’2013 niching

benchmark suite [21], functions up to 20 dimensions were

proposed for the competition. It can be envisaged that the

performance of niching methods would degrade rapidly even

though they may perform well on low-dimensional problems.

Furthermore, if the number of optima increases, how does a

niching method respond? Another question that needs to be

answered here is whether all optima (global and good local

ones) need to be found. In particular, in real-life scenarios, the

number of optima is often unknown, in which case it seems

unreasonable to demand a niching method to locate all the

optima, e.g., millions of optima. Perhaps a niching method

with an adaptive population size, identifying a pre-specified

number of optima would be a more appropriate strategy.

Very few attempts have been made towards answering

these questions. One noticeable work on niching scalability is

given in [84]. The authors suggested that for low-dimensional

problems, we should use sequential niching methods [6], [11]

where collision avoidance mechanisms were implemented to

avoid finding the same optima repetitively. However, for high-

dimensional problems, parallel niching methods with auto-

matic restarts should be considered. As soon as an optimum

is found, it is archived, and its search capacity is reused by

randomly generating it anew. The authors named this process

as niche deactivation in [85], [86]. Using an archive seems

to be an effective mechanism dealing with this situation,

as also demonstrated in [54] and in [53], where adaptive

archive mechanisms combined with restart techniques can

substantially enhance the performance of the simple DE [53]

and PSO [54] variants.

D. Measuring performance

In many real-world situations, we do not always know the

true global optima, their objective values, or the number of

optima. This fact renders most existing performance metrics

on niching (as discussed in section VII) unusable. There are

still open research questions on how to design better metrics

for comparing niching methods more fairly, as well as being

more informative to the decision makers.

VI. BENCHMARK TEST FUNCTIONS

To empirically evaluate and compare the strengths and

weaknesses of different niching methods, it is important to

use a set of multi-modal test functions representing different

characteristics and various levels of difficulty. The earliest

work on designing multi-modal benchmark test functions was

carried out by Deb [87] in his master thesis, where, five 1

or 2-dimensional test functions, each with several peaks with

varying heights, equal or unequal distances between these

peaks, were defined. A more challenging multi-modal test

function with millions of local optima and 32 global optima

was proposed by Goldberg et al. [25].

Several efforts have been made to design multi-modal

test function generators. In particular, Rönkkönen et al. [88]

suggested some general guidelines when designing such multi-

modal function generators. The authors suggested that the

following desirable features should be considered for the

function generator: ease of use and being tunable; functions

transformable from separable to non-separable; regular and

irregular distributions of optima; controllable number of global

and local optima; scalable to different dimensions; software

easily expandable and freely available; and facilitating per-

formance measures. With these guidelines, Rönkkönen et al.

[48], [88] developed a versatile and flexible test function

generator based on several suitably-designed and tunable func-

tion families, such as the cosine and quadratic function

families. Functions can be rotated to a random angle, and

each dimension of a function can be stretched independently

using Bezier curves [89] to decrease regularity. The quadratic
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family can be used to generate completely irregular landscapes

and allows the number of optima to be defined independently

of the number of dimensions. Any number of global and local

optima can be determined by a user. This function generator

is easily tunable and can offer a wide variety of landscape

characteristics and difficulties. Other efforts were also made

to produce irregular landscapes by using a Gaussian density

function [90] or generic hump functions [16].

Furthermore, Qu and Suganthan [91] proposed a set of

multi-modal test functions derived from some early work on

composition functions by Liang et al. [92]. These composition

functions, which are constructed by combining several simple

basis functions, can have a complex and rugged landscape,

posing difficulties to existing niching methods. Qu et al.

[93] constructed and adopted several simple and composition

multi-modal functions, making them scalable according to

dimensionality. Moreover, a suite of multi-modal constrained

test functions was proposed by Deb and Saha in [94]. The tech-

nical report on “Benchmark Functions for CEC’2013 Special

Session and Competition on Niching Methods for Multimodal

Function Optimization” [21] is the latest effort in providing

a unifying framework for evaluating and comparing niching

methods. The CEC’2013 competition is the first attempt to

create a common platform that encourages fair and easy

comparisons between different niching methods across a range

of difficulty levels. Twenty test functions ranging from simple

and low-dimensional to challenging and high-dimensional

were introduced. Some functions are scalable and tunable

in terms of dimensionality and the number of optima. Two

performance measures designed for evaluating and comparing

different niching methods, i.e., peak ratio and success rate, are

adopted as performance measures for this competition. Two

competitions CEC’2013 and CEC’2015 have been held using

this benchmark suite, which involve comparing more than 20

different participating niching algorithms. The top 5 entries

are provided in Table I2.

The winning entry of the CEC’2013 niching competition

was NEA2 (Niching with CMA-ES via NBC) [95], follow-

ing the basic idea of nearest-better-clustering (NBC). NBC

assumes that the best individuals in the population are usually

located at different basins of attractions, further away from

each other, and that the distances between them are usually

larger than the average distance between all individuals and

their nearest better neighbours. As such, NEA2 first creates

a spanning tree among all the individuals, and then connects

each individual to its nearest better neighbour (according to

fitness). Next it identifies the attractors (sub-populations) via

clustering done by cutting the longest edges of the graph that

are larger than the average distance between all individuals

and their nearest better neighbour. The connected sub-graphs

(clusters) that remain are the predicted attractors (or niches).

For each attractor, CMA-ES is employed (in parallel) to search

its neighbourhood. NEA2 has shown promising performance.

However, two parameters, i.e., the maximum number of niches

and the previously mentioned scale factor, must be specified

2For further information on the latest activities on niching methods, please
visit the IEEE CIS Task Force on Multi-modal Optimization website: http:
//www.epitropakis.co.uk/ieee-mmo/

TABLE I
TOP 5 ENTRIES FROM BOTH CEC’2013 AND 2015 NICHING METHODS

FOR MULTIMODAL FUNCTION OPTIMIZATION COMPETITIONS.

Algorithm Statistics Friedman’s Test

Median Mean St.D. Rank Score

NMMSO [20] 0.9885 0.8221 0.2538 1 16.1900
NEA2 [95] 0.8513 0.7940 0.2332 2 16.1150
LSEAEA [96] 0.9030 0.7477 0.3236 4 14.5050
dADE/nrand/1 [53] 0.7488 0.7383 0.3010 5 14.2450
LSEAGP [98] 0.7900 0.7302 0.3268 3 14.7550

by the user.

Some algorithmic analysis of the CEC’2013 competition

top-ranked entries in [20], [96] identified several techniques

offering significant advantages: self-adaption of search param-

eters [97], dynamic niche maintenance [53], and exploitative

local search [95]. Leveraging on these results, Fieldsend pro-

posed a more competent niching algorithm, NMMSO (Niching

Migratory Multi-swarm Optimiser) [20], winning the most

recent CEC’2015 niching competition. NMMSO employs mul-

tiple swarms, each having strong local search, fine-tuning its

local niche estimates. At each iteration, swarms which have

improved their niche estimate are paired with their closest

adjacent swarm to see if they should merge (thus preventing

duplication of labour). Niches in new areas are searched and

identified by splitting particles from existing swarms.

VII. PERFORMANCE MEASURES

Early studies of niching methods focused more on mea-

suring the difference between the distribution of a final EA

population from a goal-distribution [22]. Deb and Goldberg

proposed a Chi-square-like performance statistic [99], which

measures the deviation of the actual distribution of the individ-

uals Xi from the goal distribution mean µi (with variance δ2i )

in all the i sub-spaces (q niche sub-spaces plus the non-niche

subspace):

χ2 =

√

√

√

√

q+1
∑

i=1

(

Xi − µi

δi

)2

, (4)

where Xi denotes the actual number of individuals in the ith
subspace (following a standard normal distribution), and µi

denotes the ideal number of individuals in the ith subspace,

with δ being the standard deviation. Both µi and δ can be

calculated from the known optima of a multi-modal function.

If the number of individuals in every niche equals the mean

of that niche, the χ2 value will be zero. The smaller χ2 value,

the better of the distribution is.

Instead of comparing two distributions such as χ2, a metric

that measures directly the quality of the final solutions as well

as the number of optima is the Maximum Peak Ratio (MPR)

[28]. Assuming maximization, the metric is defined as follows:

MPR =

∑q
i=1 fi

∑q
i=1 Fi

, (5)

where fi denotes the best fitness value of the individual on

the ith peak (or optimum), and Fi represents the fitness value

of the ith peak. Assuming all q optima are known a priori.
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Basically, MPR defines the ratio of the sum of fitness values

of the obtained optima divided by the sum of fitness values

of the actual optima. MPR can be measured over time, to see

how a niching algorithm behaves in terms of niching formation

acceleration [23]. A logistic function can be used for curve-

fitting in order to obtain niching formation acceleration.

Success Rate (SR) can be used to measure the percentage

of runs in which all the optima are located. The success rate

is generally well-correlated with the MPR [23].

Both χ2 and MPR metrics (Equation (4) and (5)) assume

that the number and locations of the global optima are known

a priori, which is very unlikely in practice. An alternative

performance metric which does not make this assumption was

proposed in [84]:

sc′(P, θl, θu) =
∑

{xi∈P |f(xi)>θu}

f(xi)− θl
θu − θl

, (6)

where P denotes a set of candidate solutions. This metric

allows the decision maker to select a threshold internal [θl,
θu], covering a range of objective values that are regarded

as interesting. A fitness value above the lower bound θl can

be judged as interesting, whereas the upper bound θu is set

to some reachable fitness value. A real-world example in

bioinformatics is given in [85] to show how to set θl and

θu in practice. Given the interval [θl, θu], we can compute

the score sc′ (using Equation (6)), which is within [0, smax].

Note that smax may be unknown since the number of optima

is unknown.

When checking if an optimum is reached within a certain

level of accuracy, a threshold ǫ (usually some small value) can

be supplied. It is possible to evaluate a niching method over

a range of such threshold values [21], [85], so that its ability

to obtain optimal solutions accurately can be appropriately

assessed.

It may be possible to adapt some ideas from EMO perfor-

mance metrics for the purpose of MMO, since both MMO

and EMO methods emphasize the need to locate a set of

solutions. In [100], Preuss and Wessing provided a review

on both EMO and MMO performance metrics, discussing the

similarities and differences between the two. It remains unclear

about what would be the appropriate number of solutions in

a solution set, since in most real-world situations, neither a

too large nor a too small number is preferred by a decision

maker. The authors suggested a metric named Representative

5 Selection (R5S) to emphasize that a niching method should

aim to select around 5 diverse but good solutions. Clearly, none

of the studied indicators is perfect, requiring future effort to

improve and fine-tune their capabilities.

Recently, Mwaura et al. [101] provided a review of niching

algorithm performance measures. A derivative-based perfor-

mance measure that does not require any knowledge of the

number of optima nor their positions was proposed.

VIII. NICHING IN SPECIALIZED TASKS

Niching not only helps to provide more effective problem

solving in a diverse range of tasks (as shown in Fig. 4) but also

sometimes benefits itself from its interaction with these areas.

This section provides some examples of such interactions.

Fig. 4. Niching methods for a diverse range of problem solving.

A. Multi-objective Optimization

Multi-objective optimization using meta-heuristics has

gained great popularity in recent years. While MMO using

niching methods emphasizes the aspect of locating multiple

good but different solutions in the decision space, multi-

objective optimization using meta-heuristics (i.e., EMO) fo-

cuses more on the aspect of producing a set of trade-off

solutions in the objective space. What is in common here is

that both approaches produce a set of solutions from which

a decision maker can choose from. However, for niching

methods, solutions produced are not required to be in conflict.

When using a population-based meta-heuristic algorithm,

diversity maintenance is normally required for spreading out

solutions in the decision space. However, in EMO, it is the

objective space where solution diversity is most often and

explicitly maintained. This is usually done by using some

niching methods. An early example is the Niched-Pareto GA

(NGPA) [102], which is a multi-objective GA using a variant

of fitness sharing to maintain Pareto solution diversity in the

objective space. Another example is the crowding distance

metric used in NSGA-II [103]. Much attention has been

given to maintaining solution diversity in the objective space.

However, little attention has been given to how to maintain

solution diversity in the decision space, with only a few

exceptions, e.g., a probabilistic model-based EMO algorithm

was designed in [104] to explicitly promote diversity of

solutions in both decision and objective spaces simultaneously.

Another example is the Omni-Optimizer [105].

1) Niching in EMO: An interesting extension of NSGA-II

to a more generic optimization method, the so-called Omni-

Optimizer [105], allows degeneration of NSGA-II into a single

objective MMO method (i.e., a niching method). In this case,

a variable space crowding distance metric is used to encour-

age distant solutions in the decision space to remain in the

population (see Fig. 5). Consequently, distant solutions with

similar or equal objective function values will tend to survive

to the end of an optimization run. This would achieve the

same effect as niching. One highly desirable feature of Omni-

Optimizer is that it does not require any additional parameters

such as niche size or radius. Furthermore, Omni-Optimizer

can degenerate to a niching method for multi-objective MMO
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Fig. 5. An example where two solutions that are close in the objective space
but their corresponding points in the decision space are further apart.

(MOMMO), capable of finding multiple Pareto-optimal fronts.

The versatility of Omni-Optimizer is remarkable.

2) Many-objective optimization: Research on many objec-

tives (i.e., more than 4 objectives) has been very active in

recent years. One popular approach is to use an Achievement

Scalarizing Function (ASF) [106] to decompose a multi-

objective problem into several subproblems using a set of

predefined weight vectors. A representative example of such

a decomposition-based method is MOEA/D [107]. A crucial

part of MOEA/D is to use a niching parameter to select two

solutions associated with neighbouring weight vectors, in order

to produce offspring solutions.

In the subsequently proposed NSGA-III [108], the original

framework of NSGA-II is kept, but significant changes have

been made to the selection operator. In NSGA-III, a set of

well-spread reference points is used for maintaining population

diversity. It is achieved by associating each individual in

the population with a reference point. More specifically, a

reference line is defined by drawing a line from a reference

point to the origin of the hyper-plane, then each individual

is considered to be associated with this reference line if the

individual has the closest perpendicular distance to it. Here,

niche preservation is done through favouring an individual

that is the closest to the reference line of each reference

point. NSGA-III does not require any additional parameter,

but niching is established by ensuring at least one available

population member is selected for each reference line. In

another variation of NSGA-III, namely U-NSGA-III [109],

which allows more than one individuals to be associated with

each reference line, a niching-based tournament selection is

used to introduce more selection pressure and better diversity

across multiple reference lines.

3) Multi-objective formulation of a multi-modal problem:

Deb and Saha demonstrated in [94], [110] that a single-

objective MMO problem can be transformed into a suitable

bi-objective optimization problem. Here, the second objective

can be defined based on two approaches: a) the gradient

information of the first objective function (to differentiate

those weak Pareto-front consisting of global and local mini-

mums, secondary derivatives are incorporated into this second

objective function); b) the number of sample neighbouring

solutions that are better than the current solution, which is

more practical when the gradient information is unavailable.

This bi-objective approach was shown to scale well with a

large number of optima (up to 500) and higher dimensionality

(up to 16 variables). To cut down the number of sample

neighbouring points required, as the number of dimensions

n grows, the Hooke-Jeeves search is adopted to evaluate

only 2n sample neighbouring points instead of 2n for the

second objective. This is one of a few studies which proposed

a number of scalable constraint multi-modal test problems.

Another method for defining the second objective is to use the

mean Euclidean distance of a solution from other individuals

of the population as proposed in [111], which has the merit of

avoiding the sampling evaluation cost. Furthermore, to avoid

cases where the multiobjectification of the problem does not

lead to conflicting objectives, Wang et al. [112] proposed a

transformation of a multi-modal problem to a multi-objective

optimization problem that always leads to conflicting objec-

tives based only on information from its decision variables and

fitness values.

4) Multi-modal formulation of a multi-objective problem:

It is shown in [113] that it may be beneficial to formulate

a multi/many objective optimization problem into a multi-

modal scalarized single-objective problem, where each Pareto-

optimal solution can be treated as an independent optimum of

a multi-modal fitness landscape. More specifically, multiple

reference points and weight vectors are used to obtain multiple

Pareto-optimal solutions, with each solution corresponding to a

single reference point and weight vector combination. A niche-

based EA (MEMO) is then used to find these Pareto-optimal

solutions in a single simulation run. One advantage of MEMO

is that there is no need to employ non-dominated sorting,

thereby making it more effective and computationally efficient

on many-objective problems. MEMO was found to provide

superior performance on both unconstrained and constrained

multi-objective optimization problems when compared with

existing state-of-the-art approaches.

5) Diversity in decision space: The popular CMA-ES [97]

was also integrated with niching methods [23], and was

further extended in [114] to solve multi-objective optimization

problems, with a particular emphasis on promoting deci-

sion space diversity. It was shown in [114] that the multi-

objective Niching-CMA method can produce a more diverse

set of efficient solutions (i.e., solutions in the decision space),

without sacrificing objective space diversity. One drawback

of this method is the introduction of several user-specified

parameters which may be difficult to tune. Another example

is provided in [115], where a niching method is explicitly

used to approximate Pareto-optimal solutions in both objec-

tive and decision spaces, resulting in finding two equivalent

Pareto-subsets of solutions for the TWO-ON-ONE problem.

If a standard NSGA-II was used, half of the Pareto-optimal

solutions would have been neglected, as the solutions tended

to converge to only one of the two niches.

B. Dynamic Optimization

In a dynamic environment where a problem itself may

change over time, the key objective of a meta-heuristic al-

gorithm is not only to locate the global optimum, but also to

keep track of the optimum or relocate a new global optimum
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if the problem changes over time [116]. Merely maintaining

population diversity is often inadequate. Instead, some sort of

distributed convergence is more desirable.

Niching methods can be used to track or relocate the global

optimum more effectively. As observed in a number of multi-

population based methods [39], [42], [117], [118], a useful

strategy to ensure good tracking of the global optimum in a

dynamic environment, is to maintain multiple species at all

the optima found so far, regardless whether they are globally

or locally optimal. This is because in a dynamic environment,

optima may change in locations, heights, and/or shapes, as

well as the widths of the basins. By maintaining individual

species at each local optimum, it helps tremendously in cases

where such a local optimum turns into a global optimum.

A hierarchical clustering-based multi-population method was

shown in [119] to track changing optima, even without an

explicit mechanism for change detection.

To speed up local convergence, one could use individuals

in the population and their fitness evaluations accumulated

so far during the optimization run to estimate and predict

the positions of the changing optima. A simple regression

method with Speciation-based PSO (so called rSPSO) [69],

[120] shows significantly better performance than several other

multi-population methods such as mQSO [42]. The regression

method can be substituted by other surrogate models such as

Kriging [121]. Multiple surrogates can also be used to model

each niche on a multi-modal fitness landscape. As demon-

strated by Fieldsend [98], such localized surrogates using

only local information in the vicinity of a local optimum can

save a substantial amount of time than the more commonly-

used method that models the entire fitness landscape. The

readers are referred to [122] for more recent developments

on surrogate modelling.

As shown in [123], it is also possible to make use of the

directional information provided by the particles in a swarm

(namely a vector-based PSO) to adaptively form niches in

parallel in an effort to track multiple dynamically changing

optima in a dynamic environment.

C. Bilevel Optimization

Bilevel optimization involves two levels of optimization of

tasks, in which a feasible solution to the upper level opti-

mization corresponds to an optimal solution of the lower level

optimization problem. Such a nested structure of dependency

makes bilevel optimization problems very challenging [124].

Niching can be done for bilevel optimization at either the upper

or lower level, or both. In [125], several test functions have

been constructed to show that for any given set of variables

at the upper level, there may exist multiple global solutions

at the lower level. Niching in bilevel optimization makes

these problems extremely challenging to solve by any types of

optimization problems and should be of interest to algorithm

developers.

D. Clustering

The goal of clustering is to group data points into clusters

such that points in each cluster have a high degree of similarity,

whereas points in different clusters have a high degree of

dissimilarity. A similarity metric is often based on some

distance measured between these data points, e.g., Euclidean

or Mahalanobis distance can be used. Since both clustering and

niching share some common features, e.g., data points can be

seen as individuals or clusters as niches, it is not difficult to

see that clustering methods can be used to do niching, and

vice versa.

1) Clustering for niching: The classic k-means clustering

technique [126] can be easily incorporated into a niching

method to identify niches, assuming that the number of

clusters k is known a priori, or can be adapted. For example,

an adaptive k-means clustering-based niching algorithm was

developed in [9], with an aim in particular to improve the

efficiency of the sharing methods. Essentially, the k-means

clustering method is used to subdivide the population into

clusters (or niches), but instead of having to compute the

niche count parameter in the classic sharing method, the

distance between an individual to the centroid of each cluster

is calculated. Initial candidate points for centroids are critical

here, so before applying clustering, the algorithm first sorts

the population in descending order according to fitness values,

giving the best-fit individuals higher preferences as initial cen-

troids. The cluster centroids are recalculated and the number

of clusters updated at each iteration. Two new parameters

dmin and dmax (i.e., the minimum and maximum allowable

distances between any two niche centroids) were introduced

to determine an individual’s membership to a niche.

Among other clustering-based niching methods are dynamic

niche sharing [28], dynamic niche clustering [76], and dy-

namic fitness sharing [27]. The species conserving genetic al-

gorithm (SCGA) [13] and the topological species conservation

algorithm (TSC) [80] could also be considered as belonging

to this category. More advanced clustering methodologies that

do not need information on the number of clusters a priori

have been combined with EAs to simultaneously locate more

than one (global and/or local) optimal solutions [127], [128].

2) Niching for clustering: What is more interesting is that

a clustering problem can be formulated as an MMO problem,

and be handled by a niching method [129], [130]. Some

early attempts at using genetic algorithms for clustering [131]

indicated several challenges: the problem representation often

leads to an explosion of the search space as the data set grows

larger; the algorithms tend to be sensitive to initialization

and noise; crossover often produces meaningless solutions.

An unsupervised niche clustering algorithm (UNC) was pro-

posed to combat these aforementioned issues [130]. Instead

of formulating the clustering problem as searching through

a space for multiple clusters, UNC adopted a density-based

fitness function that would reach a maximum at every good

cluster center. As a result, the search space is substantially

reduced: if there are c clusters and S is the search space for

UNC, then the previous formulation searching for all c cluster

centers would have a search space of Sc.

To identify dense areas of a feature space as clusters, UNC

adopts the following density-based fitness function, assuming

that ci is the location of a hypothetical cluster center, and the

data set X has n features/dimensions, with N data points:
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fi =

∑N
j=1 wij

δ2i
, (7)

where wij = exp(−
d2

ij

2δ2
i

), and d2ij = ||xj − ci||
2 which

measures the Euclidean distance of the data point xj (where

j = 1, . . . , N ) to the cluster center ci. The value of fi will

be high for points falling within the boundary of a cluster,

and low for points falling outside of the cluster. δ2i is a

measure of dispersion for the i-th cluster. This parameter is

crucial for determining the cluster boundaries. UNC measures

the goodness-of-fit of a model to just a part of the data.

Essentially this constructs a fitness landscape with multiple

peaks with each at a cluster center location. Both Euclidean

and Mahalanobis distance measures were used in order to more

accurately estimate the different shapes and the sizes of the

niches. Deterministic crowding was then used in conjunction

with a restricted mating scheme, to allow no assumption of

niche radii, or whether all peaks are equally distant. Through

experimentation on both synthetic data and a data set of

a real-world image segmentation problem, UNC was shown

to be less prone than non-niching techniques to premature

convergence, noise, and initialization. Several recent works

adopting a similar objective function based on the compactness

of points around a cluster center include [132] where a

dynamic niching GA was used, and [133] where LIPS [34]

was adopted. A distinct advantage of these methods is that they

do not require any prior knowledge of the number of clusters,

and can still perform reasonably well on several synthetic and

real data sets.

Niching can be used to enhance clustering and feature

selection simultaneously. It has been observed in [134] that

clustering is highly multi-modal, and a direct application of a

standard EA tends to result in getting stuck in local optima.

Furthermore, clustering on all features is not a good strategy

since not all features are relevant. It was shown in [134] that

niching could help preserve population diversity allowing the

EA to explore many optimal solutions in parallel, and as a

result, help to prevent the algorithm from getting stuck in

local optima. A unified criterion was designed as an objective

function to simultaneously optimize the clustering centers and

feature subset selection. In this case, a replacement group

was adopted to encourage mating among similar solutions

with the same number of clusters, and competition among

dissimilar solutions with different numbers of clusters. The

similarity measure is based on the Euclidean distance between

a pair of solutions in the phenotypic space. This niching

memetic algorithm, NMA CFS [134], shows clear advantages

over other methods that do not use niching or simultaneous

optimization of clustering and feature subset selection.

E. Feature selection

Feature selection plays an important role in pattern recog-

nition. Generally speaking, the aim of feature selection is

to choose features that allow us to discriminate patterns

belonging to different classes. The feature selection problem

can be defined as follows [135]: given an initial set F with

n features, search for a subset S ∈ F with k features that

maximize the mutual information I(C, S) between the class

label C and the subset S of selected features.

Feature selection algorithms are generally classified into two

categories, wrapper and filter methods. The wrapper method

makes use of a learning classifier’s performance to evaluate

the suitability of the feature subset, whereas the filter method

treats the selection of feature subsets as a pre-processing step,

independent from the learning classifier.

Traditional feature selection algorithms are mostly incre-

mental methods where features are selected one at a time,

according to criteria based on a single feature. This is limiting,

since in many real-world problems, several features acting

simultaneously may be relevant (i.e., epistasis), though an

individual feature may not. However, selection of subsets of

features can be done more efficiently by EAs. Since an optimal

subset might not be unique, there is merit to obtain all such

optimal subsets before making a final choice. We can consider

different optimal subsets of features as different optima on a

multi-modal fitness landscape, which can be searched using a

niching method. For example, a subset of the selected features

can be represented using a binary string where the i-th bit

being 1 indicates that the i-th feature is included in the subset,

whereas 0 indicates the feature is excluded. To evaluate the

goodness of the subset, the binary string is fed into a learning

classifier (e.g., neural network). The fitness function takes

into account the classifier accuracy term and the penalty for

selecting a large number of features [136].

A genetic algorithm (GA) guided normalized Mutual Infor-

mation Feature Selection (GAMIFS) algorithm was developed

in [137], which is a hybrid of the filter and wrapper feature

selection methods employing the GA and a neural network

classifier. The GA incorporated deterministic crowding into its

procedure to encourage searching for multiple optimal feature

subsets. In this niching scenario, a tournament selection is

run between the offspring and its nearest parent with respect

to Hamming distance. The winner is carried over to the

next iteration. A mutation operator is used to allow adding

a relevant feature or eliminating an irrelevant or redundant

feature from the individuals in the GA population. A mutated

individual survives only if it has a better fitness than that of

the original individual. The niching-based GAMIFS is able to

find individual relevant features as well as groups of relevant

features. On 4 data sets with up to 60 features, GAMIFS

outperformed those incremental search methods.

The effect of employing niching methods for solving feature

selection problems was also investigated in [138]. This study

combined the standard wrapper method with various niching

methods such as DFS [27] and r3pso [32] and their variants.

These feature selection wrapper variants were evaluated on 12

UCI data sets3, and the results were compared with the single-

optimum seeking GA and memetic algorithm, showing that the

niching variants outperformed the standard GA and memetic

algorithm in finding multiple accurate feature subsets.

3http://archive.ics.uci.edu/ml/datasets.html
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F. Machine learning

Machine learning (ML) plays an increasingly important role

in data analytics these days because ML can make predictions

by learning from data. Many real-world problems are often

too large and complex to solve by a single machine learning

model. An effective approach may be to employ an ensemble

of learning models, each specializing in solving a subtask of a

much larger problem. Meta-heuristic algorithms can be used to

evolve a population of ML models, e.g., an ensemble of neural

networks [139] or a set of knowledge rules [140]. In such a

setting, niching methods are useful schemes for maintaining a

diverse population of learning models. The ensemble approach

is shown [141] not only performing much better, but also more

robust and generalizing better than those employing a single

ML model.

1) Evolving neural network ensembles: Several early works

by Yao and Liu [139], [142], [143] showed that a population

contains more information than a single individual in it. Such

information can be useful for improving the generalization

ability of a learning model. Furthermore, speciation (or nich-

ing) can be introduced to the population to evolve a diverse but

accurate set of specialist modules which can be then combined

to perform learning tasks. In [144], Liu et al., proposed

Evolutionary Ensembles with Negative Correlation Learning

(EENCL) to automatically determine the number of individual

neural networks in an ensemble. Fitness sharing was adopted

to promote diversity in the ensemble. If one training example

is learned correctly by n individual neural networks, then each

of these n neural networks receives a fitness value 1/n, and

the remaining neural networks in the ensemble receive zero

fitness. This procedure is repeated for all examples in the

training set. The final fitness of an individual is determined

by summing up its fitness values over all training examples.

The idea is to encourage niche formation by degrading the

original fitness of an individual neural network according to

the presence of other similar neural networks. The output

of the ensemble is normally determined by the majority of

the neural networks. This series of works on neural network

ensembles is nicely summarized in [141].

A PSO-based niching method (i.e., NichePSO [40]) was

used to evolve neural network ensembles (NNE) [145], more

specifically for training a group of neural networks for solving

a set of multivariate classification and regression tasks from

the UCI data sets. A typical goal for using an NNE, is

to evolve different neural networks to specialize in solving

complementary parts of a task, making niching methods a

good fit for this purpose. In the proposed NichePSO for

NNE (NPSOE), each sub-swarm is used to optimize the

connection weights of each constituent neural network. During

the training, the training data are fed into each neural network

as the input layer, and the output is compared with those

produced as the validation data is passed as the inputs. The

difference (or error) is used by NichePSO as the fitness value

for a particle in a sub-swarm. The weights for each neural

network are set according to the best particle in the sub-swarm.

In short, this research shows that NichePSO evolving an NNE,

i.e., NPSOE, is capable of exploiting the multivariate nature

of the multivariate classification and regression tasks. On the

majority of the tested UCI classification and regression data

sets, NPSOE was shown to produce much lower classification

and prediction errors than those by using the typical back-

propagation trained NNE.

2) Learning multiple rules from data: Data mining employs

many of the same techniques developed in ML. In data mining,

meta-heuristics can be used to extract knowledge such as rules

and use these rules to solve classification problems [140],

[146]. There are usually two different methods, the Michigan

approach where each individual encodes a single rule, and the

Pittsburgh approach where each individual represents multiple

rules, i.e., a rule set. Since it is often difficult to capture

the knowledge of a data set by a single rule, multiple rules

are often required. Directly evolving multiple rule sets from

scratch using the Pittsburgh approach is too challenging as

the search space is vast. However, for the Michigan approach,

niching methods can be used to evolve multiple different good

individuals that are required to produce a rule set.

An idea of token competition was proposed in [140] to

promote diversity in the rule population. Each record in the

training set is regarded as a resource (so-called token). If

an individual (or rule) is matched with a record, then this

individual can seize the token. The order of receiving tokens

is determined by the fitness values of the rules. A rule with a

high score (original fitness) means it can cover more records,

and at the same time, the other rules attempting to cover the

same rules (or niche) will have their fitness decreased since

they cannot compete with the stronger rule. An individual’s

fitness is modified according to the following:

fmodified = foriginal ∗ count/ideal, (8)

where foriginal is obtained from the objective function eval-

uation, count is the number of tokens actually seized by the

rule, and ideal is the total number of possible tokens that can

be seized by the rule. Token competition favours stronger rules

that cover more records, and weakens other rules that cannot

compete with them in the same niche areas.

Unlike classic niching methods such as fitness sharing or

crowding, token competition does not use a distance mea-

sure directly on the evolved rules, since it can be difficult

to determine how similar two rules are (e.g., produced by

using genetic programming). Token competition regards two

individuals as similar if they cover similar sets of records.

Building upon the above token competition idea, a

coevolution-based classification method was proposed in [147]

to coevolve individual rules and rule sets concurrently in

separate coevolving populations in order to further confine the

search space and produce quality rule sets efficiently.

3) Game playing: In [148] an evolutionary system was

proposed to automatically create a collection of specialist

strategies for a game playing system, relieving humans from

having to decide how to specialize. In the real-time Neuro-

evolution of Augmented Topologies (rtNEAT) embedded in

the NERO (Neuroevolving Robotic Operative) game [149],

speciation played a critical role in protecting topological

innovation by only allowing individual topology solutions (i.e.,
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Fig. 6. Multiple optimal truss topologies obtained by using niching methods
[150]. Permission for using the figure has been obtained from the first author.

neural network structures) to compete within their own niches

instead of with the population at large.

IX. EXAMPLES OF REAL-WORLD APPLICATIONS

In this section, we provide a collection of various real-

world MMO problems where niching methods have been

successfully applied to (it is by no means a complete list).

Each example will be briefly described, focusing more on the

problem characteristics and the key motivation of adopting

niching methods in its specific context. Readers can follow

the references for further information:

Truss-structure optimization: Optimization of truss-

structures has been a well-researched area in engineering. It

usually involves finding solutions with optimal cross-sectional

size, topology, and configuration so that an overall minimum

weight can be achieved. Given a set of supports, concentrated

loads, and node points, the optimization method needs to

determine the optimal connectivity between elements, member

sizing, and node positions that will lead to a least weight

structure, satisfying all design constraints. An early work

by Deb and Gulati [151] showed that there existed multiple

different topologies with almost equal overall weight. More

specifically, this truss-structure optimization problem can be

considered multi-modal since it has a large number of possibly

different topological solutions. Luh and Lin [150] adopted

a two-staged approach: first topology optimization from a

given ground structure, and then size and shape optimization

employing the identified topology from the first stage. For the

topology optimization phase, they demonstrated that a binary

PSO with fitness sharing can be used to find multiple equally

good truss-structure solutions, as shown in Fig. 6.

Metabolic network modelling: A metabolic network is

modelled using Generalized Mass Action Kinetics formulation

(GMAKr) [85]. In this case, using a classic global optimization

algorithm can only find a single solution that is not biologically

plausible. Kronfeld et. al [85] showed that this problem is

highly multi-modal, and there exists a large number of high-

quality solutions which can be used together for sensitiv-

ity analysis. More specifically, some parameters are more

sensitive than others. This allows identification of parameter

values that are less sensitive as well as producing high-quality

solutions.

Drug molecule design: This problem was formulated as

a multi-objective constrained optimization problem and opti-

mized by NSGA-II [152]. A major issue here is that approx-

imation models must be used since it is difficult to obtain

accurate measures on objectives and constraints. Physical

experiments are necessary, and as a result, it is desirable

that after the optimization, a set of diverse solutions, i.e.,

molecules, can be obtained. An expert can then decide which

one of the solutions should be selected. With the assistance of

a niching based NSGA-II method, it is possible to substantially

enhance the diversity of solutions found in the design space.

Femtosecond laser pulse shaping problem: A CMA-ES

based niching method was employed to solve this Femtosec-

ond Laser Pulse Shaping problem in the field of Quantum

Control [153]. A distance metric was appropriately defined

between two feasible solutions, in order to discover multiple

unique pulse profiles of high quality. In this case, different

niches represent the same conceptual designs. The CMA-ES

based niching method achieved better alignment results than

the standard evolution-strategy method.

Job shop scheduling problem (JSSP): This is a classic

optimization problem studied extensively in literature. Perez

et al. [154], [155] represents one of the very few studies on

JSSP with a focus on identifying multiple solutions. JSSP are

typically multi-modal, presenting an ideal case for applying

niching methods. Their studies suggest that not only do

niching methods help to locate multiple good solutions, but

also to preserve the diversity more effectively than employing

a standard single-optimum seeking genetic algorithm.

Resource constrained multi-project scheduling problems

(RCMPSP): In this problem, multiple projects must be carried

out and completed using a common pool of scarce resources.

The difficulty is that one has to prioritize each project’s tasks

to optimize an objective function without violating both intra-

project precedence constraints and inter-project resource con-

straints. A decision maker can benefit from choosing between

different good scheduling solutions, instead of being limited

to only one. In addition, it is also much faster than reschedul-

ing. The deterministic crowding and clearing methods were

adopted in [156] to find multiple optimal scheduling solutions

for this problem. A library called RCMPSPlib was created

by the authors to report the benchmarking instances and the

multiple optima that have been found 4.

Automatic point determination: The problem of automatic

determination of point correspondence between two images

can be formulated as an MMO problem. A niching GA was

used to determine the automatic point correspondence between

4http://www.eii.uva.es/elena/RCMPSPLIB.htm
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two images [157]. The niching GA method was able to

discover optimal solutions that are measured by the similarity

between patches of two images.

Seismological inverse problem: A niching GA was applied

to an inversion problem of teleseismic body waves for the

source parameters of an earthquake [158]. Here a distance

metric for waveform inversion was adopted for measuring the

similarity between solutions. The niching GA was shown to

be more efficient than a grid search in detecting several global

and local optima over a range of scales, representing the fault

and auxiliary planes.

Monte Carlo nonlinear filtering: Niching methods was

used to improve a Monte Carlo filtering algorithm when the

posterior distributions of problems are multi-modal [159]. The

standard Monte Carlo filters often suffer from the issue of

diversity loss due to the random nature of re-sampling. Niching

in Monte Carlo filtering helps to combat genetic drift. In this

case, the Kolmogorov-Smirnov metric was used as a measure

of the distance between two probability distributions [159].

Image segmentation: A Dynamic Niching Genetic Cluster-

ing algorithm (DNGA) was developed for image segmentation

without knowing the number of clusters [160]. The similarity

of each data point to all other points is defined by a similarity

function based on the density shape of the data points in the

vicinity of the chosen point. The DNGA was shown to be

insensitive to a range of niche radius values.

Clustering: A clustering-based niching EA was developed

in order to reconstruct gene regulatory networks from data

[161]. The niching method was used to maintain a better

solution diversity and to ultimately identify multiple alternative

networks. The decision maker can then make the final choice

based on further design considerations. In [162], the restricted

mating scheme (a classic niching method) was incorporated

into a memetic algorithm to carry out the task of web doc-

ument clustering. A clustering algorithm based on dynamic

niching with niche migration was shown in [132] to perform

well for the task of remote sensing image clustering. In

spatial data clustering [163], it was shown that the GA-based

spatial analysis technique could benefit from employing fitness

sharing to mitigate the effect of genetic drift, and as a result,

promote population diversity and encourage multiple optimal

solutions to be located in a single run.

Real-time tracking of body motion: A Niching Swarm Fil-

tering (NSF) algorithm was developed to address the problem

of real-time tracking of unconstrained full-body motion [164].

In this case, multiple significant global and local solutions of

the configuration distribution are found.

Competitive facilities location and design: In this facility

location problem, typically multiple global solutions need to

be obtained. A niching method named the Universal Evolu-

tionary Global Optimizer (UEGO) was shown to significantly

outperform simulated annealing and multi-start methods [165].

Solving systems of equations: One of the first niching PSO

algorithms were developed to solve systems of linear equations

[166]. Niching algorithms are suitable to solve systems of

equations due to systems of equations having multiple solu-

tions. Recently, it was shown in [167] that systems of nonlinear

equations can also be solved using niching techniques.

Protein structure prediction: A protein structure pre-

diction problem on the 3D Hydrophobic-Polar (HP) lattice

model was formulated as an MMO problem in [168], and

it was shown that even applying a simple niching method

outperformed the state-of-the-art approaches.

Induction motor design for electric vehicle: For design

optimization of induction motors (shape or structure), there

is a need to identify multiple optimal profiles. A niching

method with restricted tournament selection was used for this

task [169]. It is interesting to note the discussion in [169] on

the difficulty in formulating the problem as a multi-objective

optimization problem, e.g., it is difficult to directly apply

the geometrical constraints and manufacturing considerations,

such as stator coil winding. Furthermore, the transient tem-

perature rise of the stator coil could not be calculated during

the optimization. A better alternative is to carry out some

post-processing, i.e., using other criteria and the designer’s

experience to select the best solution from a list of optimal

solutions produced by a niching method.

Electromagnetic design: In [170], an electromagnetic de-

vice design problem was reformulated into an MMO problem

by deliberately not specifying a normative value for the

magnetic flux density attribute. Several niching methods were

used, locating typically 14 to 20 solutions, whereas a simple

GA just found one.

Other examples include a niching method for detecting

multiple nearly-optimal solutions for space mission design

problems [171] and a niching PSO method for identification

of static equilibria via potential energy optimization [172].

Though many more examples can be found in literature, we

hope the above list suffices to demonstrate a common pattern,

i.e., the importance and usefulness of niching methods going

beyond the boundaries of many application areas.

X. DISCUSSION AND OPEN QUESTIONS

From the previous sections, we can see that among many

real-world niching applications it is important to adopt a

domain-specific tailor-made distance (or similarity) measure,

as also noted in [23]. Another observation is that up to

now many optimization problems have been treated as single-

solution seeking problems, but actually can be reconsidered as

multi-solution seeking problems, e.g., data mining problems

approached by the token competition method [140]. Finding

multiple solutions using a niching method helps to reveal

some global properties of the problem under study, which is

information a user would not normally get by observing just

a single obtained solution in isolation. A decision maker can

compare and study these alternative solutions before making

a final choice, depending on the circumstance. Furthermore,

sometimes a multi-modal formulation may be easier hence

more viable than others, e.g., difficulties associated with a

multi-objective formulation [169]. In such a case, niching

methods can be used to first produce a set of alternative

solutions, which can be subsequently post-processed according

to criteria external to the formulation.

A common feature that can be observed among these PSO,

DE, and ES niching algorithms is the need to identify nearest
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neighbourhood best points with respect to a current point in the

population, e.g., FER-PSO [33], LIPS [34], DE/nrand/1 [52],

dADE/nrand/1 [53], LoINDE [56], the DE using a proximity

mutation operator [50], the Local selection-based DE [49],

and NEA2 (Niching with CMA-ES via NBC) [95]. These

neighbourhood best points can be subsequently used to attract

individuals in their respective neighbourhoods, in order to

achieve the niching effect. It is obvious that only population-

based meta-heuristic algorithms can exploit this property.

Below we provide a list of open research questions on

niching methods, which we think are important to address in

future research:

• We need to rethink real-world problems with a view to

seeking multiple solutions. Clearly, this is an important

perspective that tends to be missed by many. For example,

we can formulate a typical clustering problem as an

MMO problem.

• Ensemble-based learning models have been shown to be

promising for non-stationary environments [173]. How

can we apply niching methods to maintain a good diver-

sity of learners in an ensemble? A broader question is

how to apply niching to uncertain environments.

• There is a general lack of theoretical understanding

of the distributed convergence behaviour among differ-

ent niching techniques, as also remarked in [17]. Such

theoretical studies can provide guidance for designing

effective niching techniques applicable to a wide range

of problem domains.

• Many new niching methods have been introduced and

revamped under different search paradigms. A common

problem is that these methods introduce additional pa-

rameters for tuning and they may be problem dependent.

How do we adapt and even remove these undesirable

parameters without sacrificing performance?

• How do we measure the performance of niching methods

in real-world settings, where the locations and number

of optima are usually unknown? The existing perfor-

mance metrics are clearly limited, as they make several

assumptions [101]. In addition, when there exist too many

solutions, it is perhaps unnecessary to find all of them

(see arguments made against too many choices in [174]).

Instead, it may be sufficient to attain a subset of solutions

with some desirable coverage and spread. This is in some

way, similar to the distribution requirement of a solution

set obtained by an EMO algorithm.

• There are not enough studies on high-dimensional MMO

problems, as shown in [110]. Though evidence exists that

shows niching is helpful for low-dimensional problems,

it is unclear how much benefit we can derive from doing

niching in high-dimensional cases.

• Many real-world problems are highly constrained and

of combinatorial nature. However, there lacks a sys-

tematic study on how existing niching methods, largely

designed for unconstrained optimization, should cope

with constraints. Deb and Saha provided a multi-modal

constrained test function suite in [94], [110], which may

help spur more research in this direction.

• Although there exist many studies hybridizing EA with

local search [67] for locating a single optimum, it seems

still rare to see niching methods hybridized with local

search [71]. It can be envisaged that niching combined

with local search has the potential to further enhance

convergence onto multiple optima.

Many interesting and challenging research ideas have also

been raised and discussed in [175], [176], which is the first

book published on the topic of niching methods.

XI. CONCLUDING REMARKS

Niching methods are powerful search methods that can pro-

duce multiple good solutions for a decision maker to choose

from. In this paper, we have revisited classic niching methods

in EAs and reviewed recent developments of niching methods

derived from other meta-heuristics. We have shown through

many real-world application examples that seeking multiple

good solutions is a common task across multiple disciplinary

areas, and niching methods can play an important role in

achieving this task. These examples of niching applications

present a more holistic picture of the impact by niching

methods, and hopefully this will provide a great impetus for

an even more wide-spread use of niching methods. We have

identified several open research questions. We hope these

questions will help to rejuvenate new interest and research

effort in this classic but important topic in the years to come.

Population-based optimization methods, such as evolution-

ary methods and other meta-heuristics methods, are attractive

due to their ability to store and process multiple and diverse

solutions from the search space. Maintaining diversity of a

population may not be automatic in all problems and therefore

the role of a niching operator becomes evident and invaluable

in a population-based optimization method. However, a nich-

ing operator needs an appropriate space (genotypic or pheno-

typic or both) and a distance metric to be effective. Although

most niching methods use at least one user-defined threshold

parameter to compare the distance metric with, recent efforts

have been focused on a parameter-less approach. This paper

has presented many different existing niching methodologies

that exploited (and reasonably so) the population approach of

evolutionary and other meta-heuristics methods.
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