
SeeMon: Scalable and Energy-efficient Context Monitoring
Framework for Sensor-rich Mobile Environments

Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee,
Youngki Lee, Souneil Park, Taiwoo Park, Junehwa Song

Computer Science, KAIST
Daejeon, 305-701, Republic of Korea

{swkang, jcircle, hjjang, hilee, youngki, spark, twpark, junesong}@nclab.kaist.ac.kr

ABSTRACT
Proactively providing services to mobile individuals is essential for
emerging ubiquitous applications. The major challenge in providing
users with proactive services lies in continuously monitoring their
contexts based on numerous sensors. The context monitoring with
rich sensors imposes heavy workloads on mobile devices with
limited computing and battery power. We present SeeMon, a
scalable and energy-efficient context monitoring framework for
sensor-rich, resource-limited mobile environments. Running on a
personal mobile device, SeeMon effectively performs context
monitoring involving numerous sensors and applications. On top of
SeeMon, multiple applications on the device can proactively
understand users’ contexts and react appropriately. This paper
proposes a novel context monitoring approach that provides
efficient processing and sensor control mechanisms. We implement
and test a prototype system on two mobile devices: a UMPC and a
wearable device with a diverse set of sensors. Example applications
are also developed based on the implemented system. Experimental
results show that SeeMon achieves a high level of scalability and
energy efficiency.

Categories and Subject Descriptors
K.8 [Personal Computing]: General; C.5.3 [Microcomputers]:
Portable devices; C.3.3 [Special-Purpose and Application-based
Systems]: Microprocessor/microcomputer applications

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Context monitoring, Sensor-rich mobile environment, Context
Monitoring Query (CMQ), Shared and incremental processing,
Sensor control, Essential Sensor Set (ESS).

1. INTRODUCTION
Proactively providing services to mobile individuals is essential for
emerging ubiquitous applications. Situational provision of services
without user intervention requires an involved process for acquiring

individuals' contexts. Individual users have different service
requirements and preferences such as the system’s level of
proactiveness and users’ privacy concerns. Applications require
different types of contexts in different degrees of awareness.
Personal sensor networks will become increasingly complicated,
composed of heterogeneous sensors with diverse capabilities, and
densely deployed on users’ bodies or in their personal area. Future
services will require much broader coverage and higher accuracy in
recognized contexts. An effective personal mobile system must
continuously process a large volume of contexts while supporting a
number of concurrent applications.

In this paper, we propose SeeMon, a scalable and energy-efficient
context monitoring framework for sensor-rich and resource-limited
mobile environments. A major challenge in providing users with
proactive services lies in monitoring their contexts continuously.
More important, the context monitoring in a sensor-rich
environment imposes heavy workloads on personal mobile devices
such as PDAs and mobile phones. These devices are often limited in
computing and battery power. Running on such devices, SeeMon
effectively performs context monitoring involving numerous sensors
and applications. On top of SeeMon, multiple applications
simultaneously operating on the device can understand the contexts
of users and serve them appropriately.

The key to the proposed framework is twofold. First, the context
monitoring in SeeMon focuses on the continuous detection of
context changes. Note that this semantics is different from
conventional context recognition, which only identifies the current
context. Once a change is identified, it is not necessary to recognize
and notify the same context redundantly as long as it remains
unchanged.

Second, while conventional context processing occurs in a uni-
directional fashion, SeeMon approaches the context monitoring
problem in a bi-directional way. In the uni-directional approach
described in Figure 1, the processing flow proceeds in one direction
through a pipeline which consists of several stages, i.e.,
preprocessing, feature extraction, context recognition, and change
detection. The change detection is made at the last stage of the
pipeline. However, the bi-directional approach in Figure 2 forms a
feedback path in the pipeline. This approach gives an opportunity to
achieve a high degree of efficiency in computation and energy
consumption. Such an advantage results from careful reflection of
the high-level application requirements such as monitoring requests
and the low-level status of sensor resources. This makes it possible
to elaborate the computational stages in the processing pipeline and
hence to make a monitoring decision at an earlier stage,
significantly saving computational overhead. As shown in Figure 2,
in our approach, the context change is detected directly upon feature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’08, June 17–20, 2008, Breckenridge, Colorado, USA.
Copyright 2008 ACM 978-1-60558-139-2/08/06…$5.00.

267

data without going through the expensive context recognition stage.
In addition, detailed resource status can be dynamically analyzed
considering application requirements. Thus, resources can be
intelligently allocated to save energy or increase utilization. The
reflection of each high level requirement is performed only once
whereas the savings in computational or energy cost are constantly
achieved throughout successive monitoring operations. To the best
of our knowledge, our work is the first attempt to present a scalable
and energy-efficient context monitoring framework for mobile
devices.

1.1 Bi-directional Approach to Context
Monitoring Problem
Our approach is to effectively remove unnecessary expensive
computation and communication in the context monitoring process.
We look into the context monitoring process shown in Figure 1 and
develop the proposed framework based on three observations.

First, we observe that it is computationally efficient if change of
context can be identified at an early stage of the processing pipeline.
The conventional way to detect a change of context is to compare
contexts after inferring them via an algorithm like decision tree
logic. However, we can avoid such costly operation when we
translate a high level application query into a lower level query. For
example, we can skip the costly decision tree logic if we detect the
change of activity using feature value changes from accelerometers.
As far as we know, our work is the first attempt to exploit this novel
observation for context change detection.

Second, we observe and exploit context continuity. This is
possible because we continuously capture context to notice its
changes. It is not just a single recognition task. Rather, it is a
sequence of successive tasks which should be performed
continuously. From this perspective, we note that the context of an
individual remains the same for a certain amount of time. This
continuity of context can be understood in two levels: the context
level as well as the source or feature data level. Consecutive
readings from a data source change gradually and these small
changes rarely lead to changes in context.

Based on the locality of the feature data, we greatly reduce the
processing cost of the change detection process. Among numerous
data updates, we effectively sort out the updates which are expected
to result in context changes. Then, only a small number of registered
queries relevant to the updates are quickly searched for and
evaluated. Combined with the mechanisms for feature data-level
change detection described above, we achieve a high level of
performance.

Third, a small subset of sensors is often sufficient to answer
queries. For example, consider a query for the context “studying in
the library”. When the user is not in the library, her activity
information is not useful; the query can be answered using only
location information. However, even for such a simple query,
finding the most efficient subset of sensors to activate is complex
since it may involve numerous queries and many possible sensors.
We develop a novel method for computing a reduced set of sensors
that is sufficient for context monitoring and then only activate this
subset. These techniques reduce the amount of wireless
communication between sensors and a mobile device, leading to
energy savings.

Change
detection

Raw
sensor
data

Preprocessing
Feature extraction

Feature
data

Context Notification

Query
Registration

Sensors

…

Applications
…

Context
recognition

Figure 1. Conventional context monitoring process

Change
detectionRaw

sensor
data

Preprocessing
Feature extraction

Feature
data

Notification

ESS-based
sensor
control

Query
registrationQuery

translation

…

Sensors

…

Applications

Figure 2. Bi-directional approach to context monitoring problem

Based on these observations, we develop three methods for
context monitoring: CMQ (Context Monitoring Query) translation,
shared and incremental CMQ evaluation, and ESS (Essential
Sensor Set) selection. Our framework automatically translates
CMQs issued by applications into queries with feature data-level
monitoring conditions. While the translation is performed only
once for each query, the performance benefit is achieved
constantly throughout the entire query lifetime. The shared and
incremental CMQ evaluation method maximally utilizes the
context continuity. By exploiting the locality of feature data, the
method significantly accelerates successive evaluation of
numerous CMQs. Further, it only maintains compact light-weight
data structures carefully designed. The method thereby achieves a
high level of scalability even in a resource-limited environment.
The framework is also successful in energy saving by computing
the ESS and dynamically controlling sensors based on it. We
show the complexity of ESS selection by proving that the
problem is NP-complete. A practical heuristic algorithm with
acceptable approximation ratio is developed to handle the ESS
selection problem. Finally, we develop sensor control policies
which can be alternatively used to cope with various
environments and operational situations.

1.2 Implementation and Evaluation
We have implemented a SeeMon prototype as a prototype system
with core components for scalable and energy-efficient context
monitoring. We have also built two ubiquitous computing
applications that use SeeMon for context monitoring. In order to
examine heterogeneous mobile environments, we have been
deploying and testing the prototype system on various types of
mobile devices along with diverse sensors. We demonstrated the
developed system with an example application, SympaThings
which enables interactive objects to sympathize with user’s
affective state, in a public exhibition.

Experimental results show that SeeMon can achieve a high
level of scalability and energy efficiency in sensor-rich and
resource-limited mobile environments. SeeMon provides 4.6
times better throughput than an alternative context monitoring
method under a workload of 2,100 data samples per second. Also,
SeeMon reduces the number of wireless data transmissions by
more than 60% while evaluating 4,000 CMQs.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the overview of

268

SeeMon framework. We describe the proposed processing-
efficient CMQ evaluation method in Section 4 and the energy-
efficient sensor control method in Section 5. Section 6 presents
our prototype implementation and experiences on sample
applications. Section 7 shows experimental results. Finally,
Section 8 concludes the paper.

2. RELATED WORK
Context-aware applications and application-specific systems have
been proposed in several application domains including
healthcare and medical applications [4][5], reminder applications
[6], and activity recognition [7][8]. Each system mainly utilizes
an application-specific context such as location, activity or
biomedical information. However, the proposed framework is
designed to support various applications which utilize diverse
contexts generated from numerous sensors in BAN/PAN. Thus,
the framework provides intuitive query interface to specify
contexts of interest and corresponding processing mechanisms.

Some existing projects have proposed middleware to support
context-aware applications. Their aim is to hide the complicated
issues related to context-awareness. Most middleware is designed
to run in a centralized server environment [9][10][11] or a
distributed environment [12][13]. This approach requires
infrastructural support to deal with sensor data collection and
context processing. Moreover, privacy issues can arise since
context information of individual users is exposed to the server.
Some context-aware middleware targets mobile devices
[14][15][16], but does not consider devices with tens/hundreds of
BAN/PAN sensors or devices’ processing and power limitations.
Moreover, they do not focus on continuously detecting context
changes.

Recently, MyExperience [41] has been proposed to collect
quantitative and qualitative usage data on personal mobile devices
for studies of mobile technology usage and evaluation. For
efficient data collection, it employs an efficient event-driven
architecture of Sensors, Triggers, and Actions. Although the
event-driven architecture is similar to SeeMon, SeeMon focuses
on real-time context monitoring rather than the collection of usage
data. In particular, SeeMon addresses the problem of sensor data
processing in sensor-rich and resource-limited environments.

Limited battery power has been a critical problem in the field
of mobile computing. Many techniques have been proposed to
improve the energy efficiency of mobile devices by reducing the
wireless communication cost. They include a technique to delay
the communication based on GPS-based movement prediction
[20] and techniques to reduce the Wi-Fi connection establishment
and maintenance cost based on a low-power radio interface [17], a
Wi-Fi detector [18], or Wi-Fi network condition estimation [19].
SeeMon also enhances energy efficiency by reducing wireless
communication. However, our approach utilizes the
characteristics of personal context and applications’ requirement
for context monitoring.

Energy saving in wireless sensor networks is well studied,
including MIMO systems at the physical layer [21], MAC
protocols [22], routing mechanisms [23], and integrated solutions
optimizing the energy consumption of all radio states [26].
SeeMon operates at the application layer and is complementary to
these approaches.

Our work on processing-efficient CMQ evaluation is broadly
related to continuous query processing in Data Stream
Management Systems [38][39][40]. These systems support
monitoring query semantics over continuously streaming data and
efficient processing mechanisms for the queries [40][27].
However, such methods are not directly applicable to the context-
monitoring problem because they are not designed for efficient
detection of changes in data values. Instead, they support
continuous query evaluation to retrieve all matching data values.
SeeMon adopts an efficient solution to detect context changes in
terms of computation cost and memory consumption which are
especially critical in resource-limited mobile environments.

3. CONTEXT MONITORING
FRAMEWORK OVERVIEW

3.1 Motivating Environment
The rapid advance of device and mobile service technologies will
lead to a new mobile environment in which personal sensor
networks as well as personal context-aware applications will
grow in scale, diversity and complexity.

Diverse sensors and sensor networks are increasingly being
deployed in personal areas and on human bodies. For example,
acceleration sensors, biomedical sensors (e.g., ECG, BVP, GSR,
and EMG sensors), and environment sensors (e.g., temperature,
humidity, light sensors, RFIDs, and GPS) are widely deployed
across many domains. Even for a single sensor type, tens of
sensors are sometimes used for accurate context recognition [1].
At the current rate of advancement, future personal sensor
networks will likely incorporate up to hundreds of sensors of
various types.

At the same time, many new personal context-aware
applications are being developed and deployed based on personal
sensor networks. Emerging sensor types will lead to even more
applications for mobile users. These applications will be deployed
in domains such as healthcare, personal assistance, dietary
monitoring [2], interactive art [3], gaming, and education.

An important characteristic of these applications is that they
monitor individuals’ context and surroundings. In the future, these
applications will require even finer-grained monitoring. For
example, a current personal assistant service requires
understanding the user’s activity such as running, walking, or
sitting, which is recognized using several accelerometers.
However, in the near future, applications may need to understand
and reflect even finer movements such as delicate hand motions
and individual fingers’ movements. This will require crafted
placement of an increasing number of sensors and processing of
much more monitoring requests. Most important, while personal
applications expand in quantity and quality, users will not use
separate hardware devices for each application. They will use a
single mobile device as a full-fledged, integrated personal service
agent and simultaneously run multiple applications on the device.
In addition, the context monitoring requests from the applications
will be long-standing, resulting in continuous operation of the
mobile device, possibly for 24 hours per day 7 days per week. As
a result, as an integrated personal service agent, personal mobile
devices continuously process a high number of context
monitoring requests as well as voluminous data from numerous

269

sensor devices in the environment. This introduces new technical
obstacles for future ubiquitous services, which will be
compounded by the resource limitations and heterogeneity of the
sensors and mobile devices.

3.2 Context Monitoring Query
SeeMon provides Context Monitoring Query (CMQ), an intuitive
monitoring query language that supports rich semantics for
monitoring a wide range of contexts. It is important for
applications to catch the changes in users’ context proactively.
Applications do not necessarily know what the current context is,
but must detect when the changes occur. CMQ is devised to
support such monitoring semantics. The CMQ template has the
following format.

CONTEXT <context element>
(AND <context element>)*

ALARM <type>
DURATION <duration>

A CMQ specifies three conditions: context, alarm, and duration

conditions. First, the context condition describes the context of
interest. It is presented as a Conjunctive Normal Form (CNF) of
multiple context elements. Each context element is described by a
specific context type, an operator and a context value. SeeMon
supports two types of operators: equality (==, !=) and inequality
(＜ , ≤,＞ , ≥) operators. The state of the context condition
becomes true if and only if all context elements are true. Context
conditions containing negation (¬) and OR operations can easily
be supported in SeeMon. By using Boolean algebra, such context
conditions are transformed into CNF containing only AND
operation.

Second, the alarm condition determines when SeeMon delivers
an alarm event to applications. Currently, SeeMon supports two
types of conditions: T F and F T. For instance, a condition F

 T means that SeeMon gives a notification when the state of the
context condition changes from false to true. We are developing
more types of alarm conditions to support a wider range of
monitoring semantics such as delivering an alarm event when a
context condition remains true or false for a period of time.

Finally, the duration condition specifies how long a registered
CMQ should run. SeeMon maintains a CMQ for the specified
duration as long as an application does not deregister the query.

The following is an example CMQ. As shown in the example,
the context monitoring semantics required for applications can be
easily expressed by a simple CMQ.

CONTEXT (location == Library)
AND (activity == Sleeping)
AND (time == Evening)

ALARM F T
DURATION 120 DAYS

3.3 Architecture
SeeMon is a middle-tier framework between personal context-
aware applications and a personal sensor network (see Figure 3).
SeeMon provides programming APIs and a run-time environment
for applications. Multiple applications that require context
monitoring can be developed through the APIs and can run on top

Personal sensor network

Wireless Communications
(e.g., ZigBee)

Accelerometer Temperature sensor BVP sensor

Personal Mobile Device (e.g., PDA, smart phone, UMPC)

Personal context-aware applications
Reminder Call Secretary

Input Handler

Preprocessor

Feature Generator

CM
Q

Processor

Sensor
M

anager
Application

Broker

ESS Calculator

Sensor Controller

Application Interface

Access
Controller

Context Translator

Sensor
Broker

SeeMon

SeeMon API

CMQ-Table

CMQ-Index

Figure 3. Architecture of SeeMon

of SeeMon concurrently. Meanwhile, SeeMon receives and
processes sensor data and controls the sensors in the personal
sensor network. For the wireless communication between them,
protocols such as ZigBee, Bluetooth, or 6LoWPAN can be used.

In our architecture design, SeeMon directly performs context
monitoring on mobile devices like PDAs and smart phones. As a
design alternative, we can consider server-based context
monitoring, in which a server processes sensor data for context
monitoring and the mobile device only relays sensor data to the
server and receives monitoring results. However, for context-
aware applications, especially based on personal contexts, our
design choice makes more sense than the server-based approach1
in two ways: privacy and network cost. First, the mobile device-
based approach avoids the exposure of private context, whereas
the server-based one must be carefully designed for privacy
protection. Second, the mobile device-based approach does not
incur continuous mobile networking costs. Even though our
approach requires processing in a resource-limited mobile device,
we carefully address this problem, supporting processing-efficient
context monitoring.

SeeMon consists of four components: the CMQ Processor, the
Sensor Manager, the Application Broker, and the Sensor Broker.
The CMQ Processor is responsible for scalable context
monitoring. It efficiently evaluates numerous CMQs over a
continuous stream of sensor data. The Sensor Manager enables
SeeMon to achieve a high level of energy efficiency. It
dynamically controls sensors to avoid unnecessary data
transmissions. The Application Broker manages interactions with
applications and the Sensor Broker deals with communication
with various heterogeneous sensors.

Based on these components, the operation of SeeMon is
performed in three phases: query registration, query processing

1 Note that there are certain types of context-aware applications
that require a server and a mobile device to cooperate with each
other to provide services such as services based on context
information derived from aggregated data from multiple
individuals or environments.

270

and sensor control. First, applications initiate context monitoring
by registering CMQs to the CMQ Processor through the
Application Broker. Then, the CMQ Processor performs context
monitoring by evaluating CMQs over data delivered by the
Sensor Broker; monitoring results are then forwarded to
applications. Finally, the Sensor Manager finds a minimal set of
sensors that is necessary to evaluate all registered CMQs. Then,
the Sensor Manager forces unnecessary sensors to stop
transmitting data to SeeMon, thereby saving energy. Details of
each component are described as follows.

The Application Broker consists of the Application Interface,
the Access Controller, and the Context Translator. First, the
Application Interface provides an interface to applications. Table
1 summarizes the APIs provided by SeeMon. The Access
Controller manages privacy and security parameters in SeeMon.
Since remote applications can request context monitoring, private
context information can be exposed to other individuals. Thus, it
is important to provide an appropriate control mechanism for
privacy and security. In our current design, the Access Controller
utilizes an ACL-based approach [37], checking whether a
requesting application is registered in an access control list (ACL).
The Context Translator translates a CMQ issued by a permitted
application into a feature data-level CMQ (see Section 4.1 for
details). The translated data-level CMQ is registered with the
CMQ Processor.

The CMQ Processor consists of the CMQ-Table and the CMQ-
Index. The CMQ-Table stores registered CMQs and their
evaluation results. Through the CMQ-Index, context elements for
each feature data can be quickly evaluated. The evaluation of a
CMQ is triggered by state changes in context elements of the
CMQ. When the CMQ Processor detects that a certain CMQ is
satisfied, an alarm event is promptly forwarded to corresponding
applications.

The Sensor Broker consists of the Input Handler, the
Preprocessor, and the Feature Generator. The Input Handler
manages communication with sensors and receives data from
sensors. The Preprocessor removes noise and error from input
data and performs simple computation such as data format
conversion. The Feature Generator performs complex
computation on data from the Preprocessor, such as Fast Fourier
Transform, to derive feature data. It then inputs derived feature
data into the CMQ Processor. Since different types of feature and
computation are needed to analyze sensor data, the Sensor Broker
is designed to be extensible enough to incorporate many types of
sensors. Some sensor data is used directly by the CMQ Processor
after preprocessing without feature generation (e.g., temperature
and humidity data). For simplicity, we will regard all the output
data from the Sensor Broker as feature data in the following
sections.

The Sensor Manager consists of the ESS Calculator and the
Sensor Controller. The ESS Calculator discovers an Essential
Sensor Set (ESS) necessary to evaluate CMQs and identifies
unnecessary sensors based on the evaluation results of the CMQ
Processor. As described in Section 5.1, we abstract ESS
calculation as a variation of Minimum Set Cover problem and
employ a practical heuristic solution. Based on the calculated ESS,
the Sensor Controller sends selected sensors control messages to
reconfigure the sensors to stop transmitting data. This sensor
control is performed whenever the result of any CMQ changes.

Table 1. SeeMon API

Functionality API List

Context
Monitoring

registerCMQ (CMQ_statement)

deregisterCMQ (CMQ_ID)

Context
Customization

createMAP ([Parent_Map_ID])

deleteMAP (Map_ID)

insertContextElement ([Map_ID,] context_level_semantic,
data_level_semantic)

deleteContextElement ([Map_ID,] context_level_semantic)

updateContextElement ([Map_ID,] context_level_semantic,
data_level_semantic)

Context
Browsing

browseMAP ()

browseContextElement (Map_ID [, context_level_semantic])

4. PROCESSING-EFFICIENT CMQ
EVALUATION
Multiple applications running on SeeMon will be interested in
different contexts. Thus, the CMQ Processor should handle a
large number of CMQs issued by applications. To notify changes
of context immediately, CMQs must be continuously evaluated
over data streams from the sensors. It is costly to evaluate all
CMQs upon every data arrival. Furthermore, dealing with such
voluminous data streams must be done in a resource-limited
environment. SeeMon employs novel methods to significantly
improve the evaluation performance under such query and data
workloads.

SeeMon avoids the expensive context recognition process such
as decision tree traversal and Bayesian network evaluation by
translating CMQs into feature data-level queries. The CMQ
translation provides a chance to reduce the processing overhead
by pruning out unnecessary context recognition at an early stage
of the processing. SeeMon develops a shared and incremental
processing method to efficiently process the translated feature
data-level queries in the CMQ Processor.

The shared processing method efficiently processes a large
number of data-level CMQs using a query index called the CMQ-
Index. Once the index is built for all registered CMQs, upon a
data arrival, only relevant queries will be searched for. This
method provides significant performance benefit compared to
CMQ evaluation without shared processing.

The key idea behind our incremental processing method is to
utilize the locality of feature data streams and develop a stateful
query index for incremental evaluation. Consecutive updates from
a data stream usually show gradual changes. (Data may show
sudden changes from time to time; however, we believe that
changes are more often gradual, especially in the streams of
physical data.) Thus, in many cases, consecutive updates from
each sensor do not change the states of registered queries. For
example, consider a query to monitor an energy feature value
stream from an accelerometer with a range [70 < energy < 75]. If
the energy feature values are [72, 71, 73, 74], the state of this
query is true and it remains unchanged. Even if data updates incur
state changes, it is highly possible that the changes will be
restricted to a small number of queries that are interested in
nearby ranges. The CMQ-Index exploits such locality and
consequent overlaps between previous and current state
evaluation results by remembering the previous states of all
queries. Furthermore, it pre-computes the queries whose states

271

change at each value range. The CMQ-Index also partitions the
domain space of a feature into consecutive range segments, and
computes the difference of sets of queries whose state changes
across consecutive segments. This structure is also memory-
efficient, since it only stores the differences between queries over
successive ranges without replication.

The structure often requires no further evaluation since a data
update may fall into the same segment as before. Even if it does
not, it is most likely that the update will fall into a nearby segment.
In this case, a new evaluation can be performed by computing the
union of the pre-computed differences. No complex computations
are involved in this process other than the union of differences.
The union is taken over just a small number of consecutive
segments starting from the previous segment. This approach
outperforms state-of-the-art query indexing mechanisms [27][28]
by orders of magnitude.

The CMQ evaluation approach, the shared and incremental
processing, is based on our previous work [29]. In this paper, we
extend the work for efficient CMQ evaluation.

4.1 CMQ Translation
CMQ translation is the first step to enable scalable CMQ
evaluation. This process converts CMQs specified in context-level
semantics into range predicates over continuous feature data.
Through this translation, SeeMon avoids the overhead of
continuous context recognition. The CMQ translation requires
two major steps. First, SeeMon maps a context type to one or
more features. A feature represents data values generated via
preprocessing and feature extraction from sensor data. One or
more features can be derived from a sensor. For example, DC and
energy features are derived from an accelerometer [7]. Note that
currently we consider features derived from a single sensor,
although features derived from multiple sensors can be
incorporated. Second, SeeMon transforms a context value to
numerical data value ranges for corresponding features 2 . For
example, (noise == Quiet) can be mapped to (20dB ≤ sound
pressure level ≤ 30dB). Note that the query translation cost is
negligible since the translation is a simple one-time operation
performed during query registration.

SeeMon maintains a context translation map to support the
CMQ translation effectively. Figure 4 shows an example map.
The map manages mappings between context-level semantics and
data-level semantics for a context type and its possible value. By
using it, SeeMon easily translates context elements in a CMQ into
a set of corresponding features and data value ranges. The context
translation map can be built through a machine learning process
such as building a C4.5 decision tree [7][24]. The decision tree
can be easily transformed into the map.

SeeMon supports two types of maps: generic and customized
maps. The generic map maintains mapping information generally
usable to many applications. It is provided by the SeeMon
framework and cannot be modified. For the customization of

2 This kind of mapping between a context and feature values is
based on crisp limits, one of quantization methods used for
context recognition [14].

Context-level semantic Data-level semantic

Type Value
Feature1 Feature2 ...

ID Low High ID Low High ...
location Playground longitude 36°22’04 36°22’05 latitude 127°21’56 127°21’57

...temperature Hot Temp. 28 °C 38 °C

… …

Meta-information
Map_ID: 14
Map_Type: instance

Parent_Map_ID: 3
Application_ID: 14

Figure 4. An example of context translation map

mappings between context-level semantics and data-level
semantics, application developers can create customized maps. It
is very useful to satisfy the different need of a specific application.

4.2 CMQ-Index and CMQ-Table
For efficient CMQ evaluation, the CMQ Processor maintains two
important data structures: the CMQ-Table and the CMQ-Index.
First, the CMQ-Table stores CMQs using a hash structure,
providing O(1) lookup time. It contains three attributes: query id,
state (evaluation result), and context element list (see Figure 5). In
the context element list, a context element is specified with three
attributes: feature id, range condition, and state. A feature id
indicates a feature associated with the context element. A range
condition presents a data value range for the feature as described
in Section 4.1. Note that the state of the context element is one of
three states: true, false and undecided. In particular, undecided
states occur when feature data is unavailable due to dynamic
sensor control. After the states of a set of context elements are
decided, the state of the query is decided according to the
following rules (see the examples in Figure 5).

1) The state of CMQ is false if the number of false context
elements >= 1.

2) The state of CMQ is undecided if there is no false context
element and the number of undecided context elements >= 1.

3) The state of CMQ is true if all context elements are true.

Second, the CMQ-Index is a query index to quickly access
context elements relevant to incoming data. Using the index,
context elements within range of where the data value falls can be
easily identified. The index consists of multiple RS (Region
Segment) lists and a feature table. An RS list is assigned to each
feature and is built to maintain the value ranges of the context
elements associated with the corresponding feature. Each entry of
the feature table maintains a pointer to the value range where the
last data value fell.

The RS list is composed of a set of RS nodes, partitioning the
domain space of feature values. Each RS node includes a set of
context elements covered by its range (see Figure 5). For each
context element, a query id of the element is stored into only two
RS nodes where the range starts and ends. Compared to other
indices [27][28], the CMQ-Index is more storage-efficient.

The RS list is formally defined as follows. Let CE = {CEi} be a
set of context elements associated with a feature where CEi has
the range (li, ui). Let B denote the set of lower and upper bounds
of the range of each CEi and minimum and maximum values of
domain space, bmin and bmax, i.e., B = {b | b is either li or ui of a
CEi ∈ CE} ∪ {bmin, bmax}. We denote the elements of the set B
with a subscript in the increasing order of their values. That is, b0

272

< b1 < … < bm. An RS list is a list of RS nodes, <N1, N2, …, Nm>.
Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti), where

 Ri is the range of region segment (bi–1, bi), bi ∈ B
 +DQSeti is the set of CMQs, where the CMQs contain a

context element CEk such that lk = bi–1 for the range (lk, uk)
of CEk

 –DQSeti is the set of CMQs, where the CMQs contain a
context element CEk such that uk = bi–1 for the range (lk, uk)
of CEk

In Figure 5, two RS lists are shown as an example. The upper
RS list is built for six context elements, CE(Q1), …, CE(Q5), and
CE(Q8). Eight RS nodes are created and each of them has a range
and ±DQSet.

CMQs can be dynamically registered and deregistered. A CMQ
Qin is registered as follows. First, an entry for Qin is added to the
CMQ-Table. Since the states of Qin and its context elements are
not determined yet, the CMQ Processor evaluates the states of Qin
and context elements through current data values. Then, the
CMQ-Index is updated. That is, the CMQ Processor updates the
RS lists associated with features of context elements of Qin.
Consider a context element of Qin, CEi, whose range condition is
(li, ui). First, the CMQ Processor locates the RS node, Ni, which
contains li, i.e., bi–1 ≤ li < bi. If li is equal to bi–1, Qin is inserted into
the +DQSeti of Ni. Otherwise, Ni is split into two RS nodes: the
left node with the range of (bi–1, li) and the right node with the
range of (li, bi). The left node has the ±DQSet of Ni and the right
node contains Qin in its +DQSet. Second, the CMQ Processor
locates and processes the RS node, Nj containing ui in a similar
way. CMQs can be deregistered similarly.

4.3 CMQ Evaluation Mechanism
CMQ evaluation is performed in two steps. First, using the CMQ-
Index, the CMQ Processor searches for the context elements
whose state changes based on the arrival of feature data. Second,
the CMQ Processor updates the CMQ-Table for the state-changed
context elements. Then, it checks whether the state of
corresponding CMQs should change or not. If they should, the
CMQ Processor updates the CMQ-Table and notifies the
applications that issued the CMQs.

Searching the CMQ-Index is done as follows. Upon feature
data arrival, the CMQ-Index locates an RS list associated with the
feature and searches for an RS node that contains the value, i.e., a
matching RS node. Queries with state-changed context elements
are simply retrieved by traversing from the previous matching
node to the current matching node. Due to data locality, an
updated data value will probably be available in a nearby node.
Thus, the linear traversal is normally fast.

The CMQ-Index search results in two sets of queries containing
state-changed context elements. (1) QSet+, a set of queries
containing context elements whose state changes from false to
true. (2) QSet−, a set of queries containing context elements whose
state changes from true to false.

Given values of two consecutive updates, vt-1 and vt, let vt–1 fall
in the range of a RS node Nj and vt fall in that of Nh, i.e., bj–1 ≤ vt–1
< bj and bh–1 ≤ vt < bh. While traversing from Nj to Nh, QSet+ and
QSet− are computed as follows.

Figure 5. An example CMQ-Table and CMQ-Index:

CMQ-Table shows four CMQs, Q1 ~ Q4, and their states as well as the
lists of included context elements. CMQ-Index shows two RS lists, one
for feature F1 and the other for feature F2. The RS list for feature F1
currently has 8 RS nodes, N1 ~ N8.

If j = h, QSet+ = QSet− = φ
If j < h, QSet+ = [h

ji 1+=U +DQSeti] − [h
ji 1+=U −DQSeti]

 QSet− = [h
ji 1+=U −DQSeti] − [h

ji 1+=U +DQSeti]
If j > h, QSet+ = [1+

=
h

jiU −DQSeti] − [1+
=

h
jiU +DQSeti]

 QSet− = [1+
=

h
jiU +DQSeti] − [1+

=
h

jiU −DQSeti]

In Figure 5, we assume that the previous value vt-1 of feature F2
was located in N4 of RS list (F2). If the current value vt is located in
N2, ±DQSet are retrieved while visiting from N4 to N2. Thus, QSet+

= {Q9} and QSet− = {Q3, Q6, Q8} are obtained. Then, entries for
queries in QSet+ and QSet− are updated in the CMQ-Table. For
instance, the context element of Q3, [F2, (b2, b4), true] is updated to
[F2, (b2, b4), false] since Q3 is included in QSet−. The state of Q3 is
also updated to false.

4.4 Analysis of Processing and Storage costs
The processing cost of the CMQ Processor can be represented as the
total number of retrieved context elements for each feature. The
average number of retrieved context elements U is determined by
two factors. First, U is proportional to the average distance between
two consecutive data values. As the distance increases, more RS
node visits are required to locate a new matching node, thereby
increasing the number of retrieved context elements whose state
changes. We define Fluctuation Level (FL) as the average distance
normalized with respect to the domain size.

sizeDomain
1

1sizeDomain
distance Average 1

1

×
−

−
==

∑
=

−

M

vv
FL

M

i
ii

(vi is ith data value and M is the total number of data values)

273

Second, U is proportional to the average density of context
elements in an RS list. As the density increases, more context
elements are retrieved with the same FL. The average density of
context elements in an RS list can be approximated as (2 × Nq /
Domain size), where Nq is the number of CMQs, because each
query id is inserted into only two nodes of an RS list. Thus, the
average processing cost of the CMQ Processor for each feature can
be formulated as Θ(2 × Nq × FL).

The storage cost of the CMQ Processor is decided by the size of
the CMQ-Table and the CMQ-Index. First, the size of the CMQ-
Table is proportional to the number of CMQs, i.e., Θ(Nq). Second,
the size of the CMQ-Index is a function of the size of the feature
table and the RS lists. The size of the feature table is proportional to
the number of input data sources, Nd, i.e., Θ(Nd). The size of an RS
list is Θ(2Nq) since each context element is inserted once into
+DQSet and −DQSet, respectively. The number of RS lists is the
same as the number of entries in the feature table. Thus, the storage
cost of CMQ-Index is Θ(Nd + 2NqNd).

5. ENERGY-EFFICIENT SENSOR
CONTROL
SeeMon employs a novel sensor control method to enhance the
energy efficiency of sensors and mobile devices. The key idea for
efficient sensor control is that only a small number of sensors are
necessary to determine the states of all registered CMQs. It is true
that an increasing number of sensors will be required for various
applications, especially for fine-grained monitoring and quality
service. However, in a specific context, evaluation of the registered
CMQs can be accomplished by monitoring a subset of sensors. We
call a set of such sensors the Essential Sensor Set (ESS). The ESS
dynamically changes depending on the current context and
registered CMQs. However, once a context is set to a situation, it
tends to stay. Likewise, the ESS does not abruptly change. Once we
know the ESS, sensors not in the ESS do not have to transmit data.
In this section, we present the problem of ESS calculation and our
sensor control methods in detail.

5.1 ESS Problem
Calculating the ESS is a complicated problem. The ESS should
include as few sensors as possible to save energy without
compromising correct CMQ evaluation. It is also important to
consider data transmission rates of sensors as well as the number of
sensors in the ESS. To effectively identify the ESS, the Sensor
Manager utilizes the characteristics of a CMQ’s structure. A CMQ
is specified in a CNF of multiple context elements. A false state of a
context element in a CMQ leads to a false state of the CMQ itself.
The other context elements included in the CMQ are not necessary
to determine the state of the CMQ. On the other hand, a CMQ in a
true state requires all context elements included in the CMQ to be
monitored. As described before, the core of CMQ evaluation is to
detect whether the states of CMQs change or not. For a true-state
CMQ, if the state of a single context element changes to false, the
state of the CMQ changes to false as well. Thus, we should monitor
all the context elements in the CMQ to see if the CMQ state changes.
All sensors related to the context elements should be included in the
ESS. A CMQ in an undecided state should be handled similarly. To
decide a CMQ’s state, the states of all context

Sensor_ID S0 S1 S2 S3 S4 S5

Update Rate 1 1 1 1 1 1

Feature_ID F0 F1 F2 F3 F4 F5 F6

Value 19 27 2 U 6 72 38

(a) Sensor set S U: undecided

S = {S0, S1, S2 , S3, S4 , S5}
QID Condition Result

A (12<F0<25) Λ (50<F5<90) T

B (F0<10) Λ (F1<16) Λ (60<F3) Λ (F4<20) F

C (12<F1<24) Λ (6<F2<9) Λ (5<F4<10) F

D (40<F3<60) Λ (10<F4<15) Λ (50<F5<60) F

E (3<F2<9) Λ (10<F4<20) Λ (60<F5<80) F

F (1<F4<10) Λ (75<F5<80) F

G (3<F2) Λ (40<F3<60) Λ (39<F6<52) F

H (3<F2<6) Λ (F5<80) Λ (F6<26) F

I (9<F2<18) Λ (50<F3<60) Λ (10<F4<20) F

J (20<F0) Λ (F2<6) Λ (40<F3<50) F

(b) Query set
Bold character: false feature

B

C

D

E

F

GH

I

J
S0

S1 S3

S4

S5

F-QSet = {B,C,D,E,F,G,H,I,J}

(c) False-state query set (d) True-state query set

T-QSet = {A}

S0, S4

A

Figure 6. An example of ESS problem

elements must be checked and sensors related to the context
elements should be included in the ESS. However, for false-state
CMQs, monitoring only a single context element in a false state is
sufficient as long as its state remains the same. Only when its
state changes do the states of the other elements need to be
monitored. Thus, the opportunity to save energy comes from
exploiting false-state CMQs. We select a single context element
in a false state; sensors unrelated to the element can be put into an
inactive state. It is also important to choose a false-state context
element associated with the most energy-efficient sensor. For
simplicity of discussion, we use data transmission rate as a stand-
in for energy consumption.

The ESS problem consists of two sub-problems: to find
essential sensors for true-state and undecided-state CMQs and to
find the essential sensors for false-state CMQs. Figure 6 shows an
example of ESS problem for a set of sensors and CMQs. Only
query A is true. Thus, features F0 and F5 have to be monitored
since they are related to the context elements of A. Accordingly,
sensor S0 and S4 should be in the ESS and update data. On the
other hand, query B is false and its state can be determined either
by feature F0 or F1. Thus, we can put either S0 or S1 into an
inactive state. Similarly, other CMQs can be evaluated using a
small number of sensors. Sensor S0, S1 and S4 suffice to evaluate
all the registered CMQs.

As described above, it is simple to calculate ESS for the true-
state CMQs and undecided-state CMQs. However, it is
complicated to compute the set of essential sensors with minimum
cost for the false-state CMQs. We call this problem minimum cost
false-query covering sensor selection (MCFSS). We formally
define MCFSS problem as follows.

Minimum Cost False-query covering Sensor Selection Problem:
Given a finite set of false-state CMQs F-QSet and a set S of

sensors, each of which covers a subset of F-QSet, find a subset S’
= {S’1, … S’k} of S such that k

i 1=U F-QSet’(S’i) covers F-QSet and

∑ =

k

i 1
COST(S’i) is minimal, where F-QSet’(S i) is the set of false-

274

state CMQs which become false by a sensor S’i and COST(S’i) is
the data transmission rate of S’i.

Theorem 1: MCFSS is NP-complete.
Proof: We prove that MCFSS is NP-complete by reducing a well-
known NP-complete problem, Minimum Cost Set Cover (MCSC)
to MCFSS. MCSC consists of a finite set of elements U and a
collection L of subsets of U. Each subset Li has a cost Ci. The
objective is to choose a minimum cost subset S’ from S that covers
all elements of U.

Define F-QSet to be the set of all false-state CMQs which are
false by the sensors of S, and define each sensor Si ∈ S to be the
set of false-state CMQs which become false by Si. Now, MCSC is
easily transformed into MCFSS in polynomial time by considering
U as F-QSet and L as Si.

We have shown a reduction from MCSC to MCFSS, and
therefore MCFSS is NP-hard. Since solutions for the decision
problem (i.e., ∑ =

k

i 1
COST(S’i) < w, where w is a positive

constant) of MCFSS are verifiable in polynomial time, it is in NP.
Consequently, the MCFSS problem is NP-complete.

5.2 ESS Calculation and Sensor Control
Figure 7 shows the ESS calculation process. The ESS is computed
through two steps: computing required sensors for CMQs in a true
or undecided state, and then for CMQs in a false state. We call the
sensors required for true-state CMQs and undecided state CMQs
the TQCover and UQCover, respectively. Including TQCover and
UQCover in the ESS in advance can reduce the overhead while
computing sensors for the MCFSS problem, because there are
false-state CMQs whose state can be identified by sensors in
TQCover and UQCover. Since those sensors are already in the
ESS, we can remove such CMQs from the problem space of
MCFSS, F-QSet.

As the MCFSS problem is NP-complete, we employ a heuristic
algorithm, Greedy-MCFSS (see Figure 8). The objective in
designing the algorithm is to reduce the energy cost as much as
possible while simplifying the computation. For this purpose, the
algorithm iteratively selects the most cost-effective sensor until
all false-state CMQs are covered. The cost-effectiveness of a
sensor Si is defined as the average cost incurred by Si covering

new false-state CMQs, i.e.,)| F-QSet'(MF-QSet) |F-QSet'(S
)COST(S

i

i

−∩ ,
where M is the set of sensors already selected at the beginning of
an iteration and F-QSet’(M) is the set of false-state CMQs that are
falsified by sensors in M.

The Greedy-MCFSS yields a MCFQCover whose cost is
guaranteed to be no more than log |F-QSet| times the cost of an
optimal solution. It is intuitive to see that the time complexity of
the algorithm is O(|S|2) in the worse case, where |S| is the number
of sensors. For the brevity of presentation, we do not present the
details of the algorithm analysis in this paper.

The Sensor Controller controls sensors based on the calculated
ESS. It sends a control message to the sensors that are not
included in the ESS. The message configures the sensors to stop
transmitting data. Afterwards, the ESS Calculator updates the
state of context elements related to the controlled sensors in the
CMQ-Table. Specifically, it changes the state of those context

Figure 7. ESS calculation algorithm

Figure 8. Greedy-MCFSS algorithm

elements to undecided. On the other hand, the Sensor Controller
sends a different type of control message to sensors that are newly
included in the current ESS. When a sensor receives this message,
it is reconfigured to transmit data.

5.3 Sensor Control Policy
For sensor control based on the ESS, we carefully consider the
ESS computation overhead. The ESS needs to be calculated
whenever the evaluation result of any CMQ changes. Such a
frequent ESS computation may be burdensome even with a
heuristic-based algorithm. To address this problem, we propose
two different policies for sensor control: an aggressive policy and
a conservative one. The aggressive one is the default policy. It
aims to maximize energy saving. In contrast, the conservative
policy is designed to reduce the processing cost while sacrificing
some energy efficiency. The conservative policy will be most

// ESS Calculation (T-QSet, F-QSet, U-QSet, S)
S: a set of all sensors
T-QSet: a set of all true-state CMQs
F-QSet: a set of all false-state CMQs
U-QSet: a set of all undecided-state CMQs
q.sensor: a set of sensors which are associated with the context
elements of a CMQ q.

1. TQCover, UQCover, TUQcover, RF-QCover ∅
2. for ∀ qi, where qi ∈ T-QSet,

TQCover TQCover ∪ qi .sensor
3. for ∀ qi, where qi ∈ U-QSet,

UQCover UQCover ∪ qi .sensor
4. TUQCover TQCover ∪ UQCover
5. RF-QSet F-QSet
6. for ∀ si, where si ∈ TUQCover,

for ∀ qi, where qi ∈ F-QSet,
if qi evaluates to false by sensor si

RF-QSet RF-QSet – { qi }
7. for ∀ qi, where qi ∈ RF-QSet,

for ∀ si, where si ∈ qi.sensor,
if qi evaluates to false by sensor si

RF-QCover RF-QCover ∪ { si }
8. Greedy-MCFSS (RF-QSet, RF-QCover)

// Greedy-MCFSS (F-QSet, S)
 F-QSet: a set of false-state CMQs
 S: a set of sensors, each of which covers a subset of F-QSet
1. M ← ∅ // a minimum cost subset
 S’ = S
2. while F-QSet’(M) ⊂ F-QSet do
 Find Sc in S’ such that a(Sc) = min s∈S’(a(s)),

 where a(s) =
)| F-QSet'(MF-QSet) |F-QSet'(S

)COST(S
i

i

−∩
,

 i.e., the cost-effectiveness of s
 M ← M ∪ Sc
 S’ = S’ – {Sc}
3. Output the chosen sensors M

275

effective when mobile devices’ computing power is limited or
processing overhead is high due to numerous CMQs.

Under the aggressive policy, the ESS Calculator continuously
updates the ESS to find the most cost effective sensors. On the other
hand, under the conservative policy, the ESS Calculator delays ESS
computation to reduce the processing overhead. It calculates only
TQCover and UQCover to identify necessary sensors for correct
CMQ evaluation. While the ESS computation is being delayed,
sensors can be added to the TQCover and UQCover and become
active. However, to maintain a certain level of energy efficiency, the
ESS must be updated before too many sensors are activated. Thus,
the ESS Calculator monitors the ratio of active sensors using a
metric called the Sensor Turn-on Level (STL) defined below. To
drop the number of active sensors, it updates the ESS when the STL
goes beyond a predefined threshold value.

STL = Ninactive active / Ninactive
(Ninactive is the number of sensors that became inactive at the last

ESS calculation and Ninactive active is the number of sensors that
become newly active among the sensors that were inactive at the
last ESS calculation.)

Such configurability is important to adapt SeeMon to various
processing capacity and battery power constraints. We are currently
developing a method that performs automatic adaptation. The
method dynamically changes the STL threshold value to cope with
different throughput demands. To maximize energy efficiency, the
default STL threshold value is set to 0, or the equivalent of the
aggressive policy. When the number of CMQs becomes larger than
the currently achievable throughput, SeeMon automatically
increases the STL threshold value. While increasing the value, the
method tries to find a value to meet the requested throughput
without sacrificing too much energy efficiency.

6. IMPLEMENTATION
We have implemented the SeeMon system architecture as a
prototype system, carefully applying the scalable CMQ evaluation
and energy-efficient sensor control mechanisms. We have also
built two example applications on top of it, where SeeMon plays a
critical role as an underlying context monitoring platform.
Currently, the prototype is implemented in C++ on a Linux. The
total lines of prototype system code are about 8,700. We have
been deploying the prototype on various types of mobile devices
such as smart phones and wearable devices. In addition, we
continue to incorporate diverse and numerous sensors to support
rich and fine-grained context specifications. Multiple application
developers have used our prototype system and considered it
effective, efficient, and stable. Furthermore, we demonstrated an
application called SympaThings on top of SeeMon at the
Nextcom Show 2007 [35], one of the biggest IT exhibitions in
Korea, held in Seoul in November 2007.

Figure 9. H/W setup

Table 2. Sensor-Feature-Context

Sensor Sampling
rate Feature Feature

generation rate

Context type
(# of possible

values)

Context Value
Examples

BVP sensor 60 Hz
Heart rate ~ 3 Hz Heart rate (10) Fast, Normal

Stress ~ 3 Hz Stress (4) High, Low

GSR sensor 60 Hz
Skin

conductance 60 Hz Strain (4) High, Low

Startle event 60 Hz Startle event (2) Yes, No

Light sensor 0.72 Hz Illumination 0.72 Hz Light (7) Dark, Bright

Temperature sensor 0.36 Hz Temperature 0.36 Hz Temperature (8) Cool, Hot

Humidity sensor 0.18 Hz Humidity 0.18 Hz Humidity (6) Dry, Humid

Three 2-axial
acceleration sensors

48.08 Hz
× 6

DC 4.808 Hz × 6
Activity (12) Running,

SittingEnergy 4.808 Hz × 6

GPS sensor 2 Hz

Longitude 2 Hz Outdoor
location (9)

CS building,
East restaurantLatitude 2 Hz

Speed 2 Hz Speed (5) Walking,
Bicycling

Direction 2 Hz Direction (8) North, West

S/W sensor (timer) - Time 0.1 Hz Time (8) Dawn, Noon

S/W sensor (indoor
location)

manual
input Indoor location 1 Hz Indoor

location(12)
1st floor lobby,

Room 2432

6.1 Prototype Hardware
Deploying SeeMon requires two important hardware sets: mobile
devices and sensors. Currently, we have deployed the SeeMon
prototype and its applications on two different mobile devices: (1)
an Ultra Mobile PC (UMPC), SONY VAIO UX27LN with Intel®
U1500 1.33 GHz CPU and 1GB RAM, and (2) a custom-designed
wearable device with Intel® PXA270 processor 3 and 128MB
RAM. The former represents powerful future mobile devices and
the latter a relatively resource-limited current mobile device. We
plan to port our system to widely used smart phones as well.
Figure 9 shows a snapshot of currently used hardware including
the two mobile devices and sensors.

The diversity and scale of sensors determine the coverage and
accuracy of context monitoring of SeeMon. From this viewpoint,
we have been incorporating as many as sensors that a person can
carry. Table 2 shows the sensors that we used in our current
prototype. We prefer small-size controllable sensors with
processing and wireless communication capabilities appropriate
for mobile environments. Such sensors can be deployed in a
wearable or a carry-able form and adopt the sensor control
mechanism of SeeMon easily. Considering this, we mainly use
five of USS-2400 [31] sensor nodes, i.e., a light sensor, a
temperature/humidity sensor, and three 2-axial acceleration
sensors. They are equipped with Atmega 128L MCU4, CC2420
RF module supporting 2.4GHz band ZigBee protocol, and
TinyOS as an operating system. To provide communication
between the mobile device and sensors, we attach one base sensor
node to the mobile device using serial or USB interfaces. The
node receives sensor data from other sensor nodes and forwards
the data to a mobile device. Also, it transmits control messages to
the sensor nodes on behalf of the mobile device.

We incorporated several additional sensors to provide
important context types not supported by USS-2400 nodes. First,
we use a Bluetooth-enabled GPS sensor to position outdoor
location. We also incorporate two biomedical sensors, a BVP
(Blood Volume Pulse) sensor and a GSR (Galvanic Skin

3 This processor supports flexible clocking from 104 to 624 MHz.
4 This processor supports maximum 8 MHz 8MIPS CPU Clock.

276

Response) sensor, which are essential to recognizing the user’s
affective context [32] and medical context. Finally, two software
sensors are used for time and indoor location. Indoor location is
positioned by manual input of predefined location. To automate
this manual process, we plan to couple SeeMon and in-door
positioning system deployed in our university [30].

6.2 SeeMon Implementation
Implementing a working prototype of the SeeMon architecture
requires a careful choice of programming models. First, we
implemented SeeMon as a multi-thread system for performance.
Each system component runs as a single thread while the
Application Broker is separated into two threads for query
registration and result forwarding. Note that the Sensor Broker
handles input data from multiple sources in a thread as well using
efficient event-driven I/O multiplexing. The inter-component
communication is performed through message queues. To support
frequent data transfer from the Sensor Broker to the CMQ
Processor, we used double-buffering. Currently, we are extending
the prototype to include an advanced thread scheduler and queue
management mechanism to further improve system performance.

The Sensor Broker extracts 15 features from data delivered
from the sensors, as shown in Table 2. We implemented several
simple techniques and utilized several existing libraries to
compute features from sensor data. First, we used FFTW, a Fast
Fourier Transform library [33], to obtain DC and energy features
from acceleration data. Second, we implemented a NMEA data
parser to extract the longitude, latitude, speed, and direction
features from GPS data based on the NMEA 0183 protocol. Third,
we utilized a convolution filter to remove errors, smooth signals,
and detect peaks from BVP sensor data. The heart rate feature is
derived from the detected peaks and stress feature is obtained
through further frequency domain analysis. Fourth, to get the
strain feature from GSR data, we implemented simple technique
to analyze the magnitude, relative to normal conditions, of GSR
signals. Finally, we implemented simple conversion functions to
compute features from other USS-2400 sensors such as
illumination and temperature features.

The Application Broker uses the context translation map for
CMQ translation. Since the context translation map influences the
quality of monitoring, the learning process had to be extensive.
We obtained mappings for activity contexts through user
annotation-based learning [7]. The learning was done with C4.5
decision tree provided by Weka, a Java-based open source
machine learning tool [34]. The learning for the level of strain, the
level of stress and startle event were conducted based on IAPS
experiment [42].

The CMQ Processor and the Sensor Manager involve many
operations and result in relatively high processing cost in SeeMon.
We noticed that set operations such as union and difference are
dominant and reducing their number and cost is essential to
improve system performance. Thus, we developed a fine-tuned
module for set operations to reduce their overhead. We observed
that the CMQ Processor and the Sensor Manager generated many
intermediate results that can be reused several times afterwards.
By effectively reusing the results, we reduced the number of set
operations. In particular, we designed a bit-map like data structure
to store the detailed information of false-state CMQs. It improves
ESS calculation performance significantly.

Figure 10. Running Bomber Figure 11. SympaThings

6.3 Application Development
Emerging areas such as ubiquitous gaming and affective computing
are domains in which many new applications will be developed. For
evaluation, we have prototyped two applications for each of them:
Running Bomber and SympaThings.

Running Bomber is the first step toward applying the SeeMon
framework to ubiquitous games (U-games). U-games utilize users’
various contexts and reflect their physical actions from their
everyday activities. Running Bomber is a U-game designed to make
treadmill running less boring. Figure 10 shows a picture of Running
Bomber demo. For the Running Bomber game, a player holding a
bomb should pass the bomb to others within 3 seconds. Bomb
passing is signaled by shaking an arm wearing an acceleration
sensor. With SeeMon, developing U-games is much simpler; game
developers only need to define the game rules and design user
interfaces. In Running Bomber’s case, complexities such as
processing acceleration data and recognizing the motion are
completely handled by SeeMon while the game rules can be
reduced to a simple CMQ registration with SeeMon.

SympaThings, an application inspired by affective computing, is
a demonstration of SeeMon’s wide applicability. SympaThings runs
on a wearable device and controls nearby smart objects to
sympathize with a person’s affective context. For example, a picture
frame changes the picture inside and a lighting fixture adjusts its
color (e.g., red color for the high degree of strain or yellow color for
the low degree of strain). Efficient processing is crucial in the
operating environment of SympaThings: high-rate data from BVP
and GSR sensors, and many queries for nearby smart objects.
SeeMon’s shared and incremental processing is essential to satisfy
these requirements. SympaThings is a collaborative project with
HCI Lab of ICU and Semiconductor System Lab of KAIST. Figure
11 shows the demonstration of SympaThings at Nextcom Show
2007.

7. EXPERIMETS
7.1 Experimental Setup
We have conducted extensive experiments to evaluate the
scalability and energy efficiency of SeeMon. We generated sensor
data and CMQ workloads based on our motivating environment.
First, we produced a data workload by collecting raw sensor data
from the daily activities of a person. For data collection, a student in
our laboratory carried a UMPC with eight sensors for 12 hours in
campus. The eight sensors were a light sensor, a temperature
/humidity sensor, three 2-axial acceleration sensors, a GPS sensor,
and two software sensors for time and indoor location (see Table 2
for details). The total data rate was 291.74 Hz. Feature data was
generated from the sensor data with the rate of 68.06 Hz. We
implemented a simple data sender to replay and feed the collected

277

data to SeeMon. Thus, we were able to conduct our experiments
multiple times under the same data workload.

We synthetically generated CMQ workloads to simulate
numerous CMQs registered by multiple applications. They reflected
various monitoring conditions on different types of contexts. We
generated different sets of CMQs with four parameters: the number
of CMQs, the number of context elements per CMQ, the
distributions of context types and values in context elements. (see
Table 2 for the possible context types and values) The default CMQ
settings were four context elements per CMQ with uniform
distributions for selecting context types and values.

For all experiments, we ran SeeMon on the UX27LN UMPC. We
scaled down the CPU frequency to 200MHz to validate our system
under a resource-limited mobile environment5. Memory constraints
were not seriously considered since SeeMon consumes less than 5
MB even with 2,000 registered CMQs. This amount of memory is
reasonable for most smart phones. The default sensor control policy
was the aggressive policy.

7.2 Scalability
In this experiment, we compare the scalability of SeeMon with that
of an alternative approach called context recognition-based
monitoring method, which carefully models existing context-aware
systems [13][14][15][16]. It receives and pre-processes continuously
arriving data from sensors, processes the data to recognize contexts,
and evaluates monitoring queries to detect specified context changes
as shown in Figure 1. We assume that the alternative processes each
query independently since existing work does not consider the
efficient shared processing of concurrent queries.

We measure the scalability in terms of throughput while
increasing input data scale from 1 to 7. Throughput is the maximum
number of queries that can be handled without causing system
overload6. Data scale 1 is the data workload under our initial sensor
settings described in Section 7.1. We synthetically increase the size
of data workload by replicating data traces of data scale 1. At the
data scale k, the number of sensors and data rate becomes k times
larger than the initial sensor setting. We assume that the data scale 7,
i.e., 56 sensors and 2100 samples/sec, is sufficient to represent a
large-scale personal sensor network. We use query workloads
generated by our default setting.

Figure 12 demonstrates the high level of scalability of SeeMon.
First, SeeMon scales well with data scale. Even under data scale 7,
SeeMon can process 1400 queries, which is a reasonably large
number, given the device’s limited computing resources (200MHz
CPU) and the high rate of sensor data (2100 samples/sec). Note that
such a high level of scalability is critical since the number of

5 We consider widely used mobile devices, Nokia N95 (330MHz
CPU, 64MB of RAM) and Samsung Blackjack (220MHz CPU,
64MB of RAM).
6 Currently, overload is determined by the size of the data queue
which should be processed by the CMQ Processor. It is important
to detect context changes without long delay. We assume a delay
of a couple of seconds is tolerable. Accordingly, acceptable
maximum queue size is set to three times of data rate.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7

Th
ro

ug
hp

ut

Data scale

SeeMon

Context recognition‐based
monitoring method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

4 16 64 256 1024 4096

TR
R

The number of CMQs
Figure 12. Throughput Figure 13. TRR for # of CMQs

sensors and data rate will dramatically increase to deal with
broader and more accurate contexts. Second, SeeMon scales
better than a context recognition-based monitoring method. For
all data scales, the throughput of SeeMon is higher than that of the
alternative. Furthermore, the benefit of SeeMon becomes
relatively larger as data scale increases. At data scale 1, SeeMon
processes three times more queries than the context recognition-
based monitoring method. However, it processes 4.6 times more
queries at data scale 7. Such benefit mainly comes from the
shared and incremental processing of SeeMon. In contrast,
context recognition-based monitoring method processes
monitoring queries independently. Moreover, it does not employ
any incremental processing method which can accelerate repeated
CMQ evaluation. Consequently, as data scale increases, the gap
between SeeMon and the context recognition-based method
becomes relatively larger.

7.3 Energy Efficiency
In this experiment, we evaluate the energy efficiency of SeeMon
in terms of Transmission Reduction Ratio (TRR). TRR quantifies
the amount of reduction in wireless transmission, which is the
main factor of sensors’ energy consumption [36][25]. TRR is
defined as follows. TRRi denotes a TRR of a sensor i, and TRRS
denotes an averaged TRR of a sensor set S.

i

i
i ssionrOfTransmiTotalNumbe

missionberOfTransReducedNumTRR =
i

ii

onRateTransmissiTimeSimulation
onRateTransmissimeInactiveTi

×
×

=

 ∑
∑=

i

i
S ssionrOfTransmiTotalNumbe

missionberOfTransReducedNum
TRR

, Si ∈

To evaluate the energy efficiency under various query
workloads, we measured TRR as varying the number of registered
CMQs, the number of context elements in a CMQ, and the
context value distribution. Unless specified, the number of CMQs
and context elements is fixed to 256 and 4, respectively. Context
values follow a uniform distribution. Note that each TRR value is
obtained by averaging TRRs of 10 repeated measurements.

 Figure 13 shows TRRS, where s is the whole sensor set in
Table 3, as we increase the number of CMQs. SeeMon reduces
more than 90% of data transmissions when the number of CMQs
is fewer than 256. Even with 4096 queries, more than 60% of data
transmissions are eliminated. Such energy efficiency is achieved
through the ESS mechanism, which turns on only a small number
of sensors to evaluate all registered CMQs. The high level of
energy efficiency is critical in our target environments since high-
rate communication between a mobile device and a large number
of sensors will shorten the battery life of the mobile device and
the sensors. In addition, we observe that TRR decreases as the
number of CMQs increases. This is mainly due to the increase in

278

the number of true-state CMQs. More true-state CMQs make
more sensors active, which decreases TRR.

Table 3 describes the inactive time and TRRi of each sensor
when 16, 256 and 4096 CMQs are registered. Interestingly,
acceleration sensors show much higher TRRs than other sensors.
Since the transmission rate of the acceleration sensor is the
highest, sensor control mechanism of SeeMon frequently excludes
the acceleration sensors from the ESS, thereby increasing TRR.
This confirms that the transmission rate of sensors is correctly
reflected in the ESS calculation algorithm. The GPS sensor, timer
and indoor location sensor are always included in the ESS. Note
that the GPS sensor is not programmable. The timer and the
indoor sensor are software sensors, and thus there are no wireless
transmissions to eliminate.

In our second experiment, we measure TRRS as increasing the
number of context elements in a CMQ. Figure 14 demonstrates
that TRR increases as the number of context elements increases.
There are two main reasons for this. First, the number of active
sensors for true-state CMQs decreases. As the number of context
elements increases, CMQs are more likely to be false-state due to
their CNF structure. The reduction in true-state CMQs results in
fewer active sensors for them. Second, the number of active
sensors for false-state CMQs decreases. As the number of context
elements increases, the number of context elements associated
with a sensor increases. Then, the number of false-state CMQs
associated with the sensor also increases. Therefore, all false-state
CMQs can be covered by fewer sensors.

To investigate the effect of query distribution, we generate
three different CMQ distributions and measure TRR with them.
To model three different realistic distributions of context element
values, we generate Stat, Inverse-Stat, and Uniform distributions.
The Stat distribution represents a common querying pattern in
which users are interested in frequently occurring context values.
The Inver-Stat distribution represents the opposite case. By
analyzing our real data trace, we extract the probability density of
each context value, and then generate Stat and Inverse-Stat
distributions. The Uniform distribution is used for a primitive
comparison. The number of CMQs is varied from 4 to 4096, and
the number of context elements is fixed to 4.

 Figure 15 shows TRR according to the CMQ distributions.
The key observation is that the Stat and Inverse-Stat distributions
show the lowest and the highest TRRs, respectively. This holds
regardless of the number of queries. In the Stat distribution, most
CMQs contain frequently occurring context values. Thus, the
state of the CMQs can be true with a high probability.
Corresponding sensors have to be active, resulting in the lower
TRR. In contrast, sensors in the Inverse-Stat distribution are likely
to be inactive, resulting in the higher TRR.

7.4 Processing-Energy Efficiency Tradeoff
This experiment shows a tradeoff between processing efficiency
and energy efficiency determined by the sensor control policies
described in Section 5.3. Such a tradeoff characteristic is very
important to adapt SeeMon to various computing- and battery-
resource environments. We measure throughput as a processing
efficiency metric and TRR as an energy efficiency metric while
varying STL threshold values. Note that threshold 0 represents the
aggressive policy. Similar to the previous experiment, the data

scale 7 is used as a sensor data workload and a query workload is
generated with the default setting.

Figure 16 shows a tradeoff between throughput and TRR. As
we expected, the aggressive policy (threshold 0) shows the
highest TRR, but shows the lowest throughput. As an STL
threshold value increases, the TRR linearly decreases, but the
throughput increases accordingly. Compared to the aggressive
policy, the conservative policy with threshold 0.7 achieves 4.2
times greater throughput with 3.6 times less TRR. Such results are
mainly due to SeeMon performing complex ESS calculations less
frequently with a higher STL threshold value. Thus, the energy
efficiency degrades while processing efficiency is enhanced.

8. CONCLUTION
We have presented SeeMon, a scalable and energy-efficient
context monitoring framework for sensor-rich and resource-
limited mobile environments. The key idea behind SeeMon is
twofold. First, context monitoring in SeeMon focuses on the
continuous detection of context changes. Second, SeeMon
approaches the context monitoring problem in a bi-directional
way. Applying the bi-directional approach, SeeMon achieves a
high degree of efficiency in computation and energy consumption.
We implemented the prototype of SeeMon system architecture,
carefully applying scalable CMQ processing and energy-efficient
sensor control mechanisms. We also developed several example
applications on top of it, in which SeeMon plays a critical role as
an underlying context-monitoring platform.

Table 3. TRR of each sensor

16 256 4096

ID Name Inactive
Time(s) TRR Inactive

Time(s) TRR Inactive
Time(s) TRR

0 Light 21092 0.4554 11427 0.2467 205 0.0044

1 Temperature 21100 0.4556 42 0.0009 1 0

2 Humidity 18091 0.3906 28 0.0006 75 0.0016

3

Acceleration
(we assign a
sensor ID per

axis)

46234 0.9984 45145 0.9748 33439 0.7220

4 46296 0.9997 455971 0.9846 30749 0.6640

5 46048 0.9943 37905 0.8185 7519 0.1623

6 462944 0.9996 45003 0.9718 36743 0.7934

7 462938 0.9996 44903 0.9696 32821 0.7087

8 46300 0.9998 45844 0.9899 42142 0.9100

Sensor # of CMQ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9

TR
R

The number of context elements

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

4 16 64 256 1024 4096

TR
R

The number of CMQs

Uniform
Stat
Inverse‐Stat

Figure 14. TRR for # of CEs Figure 15. TRR for distributions

0

1000

2000

3000

4000

5000

6000

7000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.3 0.5 0.7

Th
ro

ug
hp

ut

TR
R

STL threshold

TRR
Throughput

Figure 16. Processing and Energy Efficiency Tradeoff

279

9. ACKNOWLEDGMENTS
We thank Chulhong Min for developing and demonstrating
applications and Yongjoon Son for his initial work on the project.
We also thank the anonymous reviewers for their valuable
comments. Our special thanks go to our shepherd, Landon Cox,
for his valuable suggestions to improve the quality of this paper.

10. REFERENCES
[1] K. V. Laerhoven, A. Schmidt and H. Gellersen, “Multi-

Sensor Context Aware Clothing,” In Proc. of ISWC, 2002.
[2] O. Amft, et al., “Analysis of Chewing Sounds for Dietary

Monitoring,” In Proc. of UbiComp, 2005.
[3] C. Park, et al., “A wearable wireless sensor platform for

interactive dance performances,” In Proc. of PerCom, 2006.
[4] M. Sung, C. Marci, and A. Pentland, “Wearable feedback

systems for rehabilitation,” Journal of Neuro Engineering
and Rehabilitation, vol.2, no. 1, 2005.

[5] J.E. Bardram, “Applications of Context-Aware Computing
in Hospital Work – Examples and Design Principles,” In
Proc. of ACM SAC, 2004.

[6] T. Sohn, et al., “Place-Its: A Study of Location-Based
Reminders on Mobile Phones,” In Proc. of UbiComp, 2005.

[7] L. Bao and S.S. Intille, “Activity recognition from user-
annotated acceleration data,” In Proc. of Pervasive, 2004.

[8] J. Lester, et al., “A Practical Approach to Recognizing
Physical Activities,” In Proc. of Pervasive, 2006.

[9] P. Fahy and S. Clarke, “CASS – a middleware for mobile
context-aware applications,” In Proc. of Workshop on
Context Awareness, MobiSys 2004.

[10] T. Gu, et al., “A Middleware for Building Context-Aware
Mobile Services,” In Proc. of IEEE VTC, 2004.

[11] H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-
Aware Pervasive Computing Environments,” In Proc. of the
Workshop on Ontologies in Agent Systems (AAMAS), 2003.

[12] D. Salber, A. K. Dey, and G. D. Abowd, “The Context
Toolkit: Aiding the Development of Context-Enabled
Applications,” In Proc. of the ACM CHI, 1999.

[13] A. Ranganathan and R. H. Campbell, “A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments,” In Proc. of Middleware, 2003.

[14] P. Korpipää, et al., “Managing Context Information in
Mobile Devices,” IEEE Pervasive Computing, 2003.

[15] T. Hofer, et al., “Context-Awareness on Mobile Devices –
the Hydrogen Approach,” In Proc. of the 36th Hawaii Int.
Conf. on System Sciences, 2003.

[16] O. Riva, “Contory: A Middleware for the Provisioning of
Context Information on Smart Phones,” In Proc. of
Middleware, 2006.

[17] E. Shih, et al., “Wake-on-wireless: An Event Driven Energy
Saving Strategy for Battery Operated Devices,” In Proc. of
MobiCom, 2002.

[18] J. Sorber, et al., “Turducken: Hierarchical Power
Management for Mobile Devices,” In Proc. of MobiSys,
2005.

[19] A. Rahmati and L. Zhong, “Context-for-Wireless: Context-
Sensitive Energy-Efficient Wireless Data Transfer,” In Proc.
of MobiSys, 2007.

[20] S. Chakraborty, et al., “On the Effectiveness of Movement
Prediction to Reduce Energy Consumption in Wireless

Communication,” IEEE Trans. on Mobile Computing, vol. 5,
no. 2, 2006.

[21] S. Cui, et al., “Energy-Efficiency of MIMO and Cooperative
MIMO Techniques in Sensor Networks,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 6, 2004.

[22] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” In Proc. of
IEEE INFOCOM, 2002.

[23] K. Seada, et al., “Energy-Efficient Forwarding Strategies for
Geographic Routing in Lossy Wireless Sensor Networks,” In
Proc. of SenSys, 2004.

[24] I.H. Witten and E. Frank, “Data Mining: Practical Machine
Learning Tools and Techniques,” Morgan Kaufmann, 2005.

[25] G. Anastasi, et al., “Performance Measurements of Motes
Sensor Networks,” In Proc. of MSWiM, 2004.

[26] G. Xing, et al., “Minimum Power Configuration for Wireless
Communication in Sensor Networks”, ACM Tran. on Sensor
Networks (TOSN), vol. 3, no. 2, 2007.

[27] K. L. Wu and P. S. Yu, “Interval Query Indexing for
Efficient Stream Processing,” In Proc. of CIKM, 2004.

[28] E. Hanson and T. Johnson, “Selection Predicate Indexing for
Active Databases using Interval Skip Lists,” Information
Systems, vol. 21, no. 3, pp. 269-298, 1996.

[29] J. Lee, et al., “BMQ-Index: Shared and Incremental
Processing of Border Monitoring Queries over Data
Streams,” In Proc. of MDM 2006.

[30] KAIST UFC project. http://ufc.kaist.ac.kr
[31] HUINS. http://www.huins.com/
[32] MIT Affective,

http://affect.media.mit.edu/areas.php?id=sensing
[33] FFTW. http://www.fftw.org/
[34] Weka 3: Data Mining Software in Java.

http://www.cs.waikato.ac.nz/~ml/weka/index.html
[35] Next Generation Computing Show 2007.

http://www.nextcomshow.com/en/
[36] V. Shnayder, et al., “Simulating the Power Consumption of

Large-Scale Sensor Network Applications,” In Proc. of
SenSys, 2004.

[37] R.S. Sandhu and P. Samarati, “Access Control: Principles
and Practice,” IEEE Communications Magazine, 1994.

[38] D. Abadi, et al., “Aurora: A New Model and Architecture for
Data Stream Management,” VLDB Journal, vol. 12, no. 2,
2003.

[39] R. Motwani, et al., “Query Processing, Resource
Management, and Approximation in a Data Stream
Management System,” In Proc. of CIDR, 2003.

[40] S.R. Madden, et al., “Continuously Adaptive Continuous
Queries over Streams,” In Proc. of SIGMOD, 2002.

[41] J. Froehlich, et al., “MyExperience: A System for In situ
Tracing and Capturing of User Feedback on Mobile Phones,”
In Proc. of MobiSys, 2007.

[42] P. J. Lang, et al., “International affective picture system
(IAPS): Instruction manual and affective ratings,” Tech. Rep.
No. A-4, The Center for Research in Psychophysiology in
University of Florida, 1999.

280

