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ABSTRACT 
Proactively providing services to mobile individuals is essential for 
emerging ubiquitous applications. The major challenge in providing 
users with proactive services lies in continuously monitoring their 
contexts based on numerous sensors. The context monitoring with 
rich sensors imposes heavy workloads on mobile devices with 
limited computing and battery power. We present SeeMon, a 
scalable and energy-efficient context monitoring framework for 
sensor-rich, resource-limited mobile environments. Running on a 
personal mobile device, SeeMon effectively performs context 
monitoring involving numerous sensors and applications. On top of 
SeeMon, multiple applications on the device can proactively 
understand users’ contexts and react appropriately. This paper 
proposes a novel context monitoring approach that provides 
efficient processing and sensor control mechanisms. We implement 
and test a prototype system on two mobile devices: a UMPC and a 
wearable device with a diverse set of sensors. Example applications 
are also developed based on the implemented system. Experimental 
results show that SeeMon achieves a high level of scalability and 
energy efficiency. 

Categories and Subject Descriptors 
K.8 [Personal Computing]: General; C.5.3 [Microcomputers]: 
Portable devices; C.3.3 [Special-Purpose and Application-based 
Systems]: Microprocessor/microcomputer applications 

General Terms 
Design, Experimentation, Measurement, Performance. 

Keywords 
Context monitoring, Sensor-rich mobile environment, Context 
Monitoring Query (CMQ), Shared and incremental processing, 
Sensor control, Essential Sensor Set (ESS).  

1. INTRODUCTION 
Proactively providing services to mobile individuals is essential for 
emerging ubiquitous applications. Situational provision of services 
without user intervention requires an involved process for acquiring 

individuals' contexts. Individual users have different service 
requirements and preferences such as the system’s level of 
proactiveness and users’ privacy concerns. Applications require 
different types of contexts in different degrees of awareness. 
Personal sensor networks will become increasingly complicated, 
composed of heterogeneous sensors with diverse capabilities, and 
densely deployed on users’ bodies or in their personal area. Future 
services will require much broader coverage and higher accuracy in 
recognized contexts. An effective personal mobile system must 
continuously process a large volume of contexts while supporting a 
number of concurrent applications. 

In this paper, we propose SeeMon, a scalable and energy-efficient 
context monitoring framework for sensor-rich and resource-limited 
mobile environments. A major challenge in providing users with 
proactive services lies in monitoring their contexts continuously. 
More important, the context monitoring in a sensor-rich 
environment imposes heavy workloads on personal mobile devices 
such as PDAs and mobile phones. These devices are often limited in 
computing and battery power. Running on such devices, SeeMon 
effectively performs context monitoring involving numerous sensors 
and applications. On top of SeeMon, multiple applications 
simultaneously operating on the device can understand the contexts 
of users and serve them appropriately. 

The key to the proposed framework is twofold. First, the context 
monitoring in SeeMon focuses on the continuous detection of 
context changes. Note that this semantics is different from 
conventional context recognition, which only identifies the current 
context. Once a change is identified, it is not necessary to recognize 
and notify the same context redundantly as long as it remains 
unchanged. 

Second, while conventional context processing occurs in a uni-
directional fashion, SeeMon approaches the context monitoring 
problem in a bi-directional way. In the uni-directional approach 
described in Figure 1, the processing flow proceeds in one direction 
through a pipeline which consists of several stages, i.e., 
preprocessing, feature extraction, context recognition, and change 
detection. The change detection is made at the last stage of the 
pipeline. However, the bi-directional approach in Figure 2 forms a 
feedback path in the pipeline. This approach gives an opportunity to 
achieve a high degree of efficiency in computation and energy 
consumption. Such an advantage results from careful reflection of 
the high-level application requirements such as monitoring requests 
and the low-level status of sensor resources. This makes it possible 
to elaborate the computational stages in the processing pipeline and 
hence to make a monitoring decision at an earlier stage, 
significantly saving computational overhead. As shown in Figure 2, 
in our approach, the context change is detected directly upon feature 
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data without going through the expensive context recognition stage. 
In addition, detailed resource status can be dynamically analyzed 
considering application requirements. Thus, resources can be 
intelligently allocated to save energy or increase utilization. The 
reflection of each high level requirement is performed only once 
whereas the savings in computational or energy cost are constantly 
achieved throughout successive monitoring operations. To the best 
of our knowledge, our work is the first attempt to present a scalable 
and energy-efficient context monitoring framework for mobile 
devices. 

1.1 Bi-directional Approach to Context 
Monitoring Problem 
Our approach is to effectively remove unnecessary expensive 
computation and communication in the context monitoring process. 
We look into the context monitoring process shown in Figure 1 and 
develop the proposed framework based on three observations. 

First, we observe that it is computationally efficient if change of 
context can be identified at an early stage of the processing pipeline. 
The conventional way to detect a change of context is to compare 
contexts after inferring them via an algorithm like decision tree 
logic. However, we can avoid such costly operation when we 
translate a high level application query into a lower level query. For 
example, we can skip the costly decision tree logic if we detect the 
change of activity using feature value changes from accelerometers. 
As far as we know, our work is the first attempt to exploit this novel 
observation for context change detection. 

Second, we observe and exploit context continuity. This is 
possible because we continuously capture context to notice its 
changes. It is not just a single recognition task. Rather, it is a 
sequence of successive tasks which should be performed 
continuously. From this perspective, we note that the context of an 
individual remains the same for a certain amount of time. This 
continuity of context can be understood in two levels: the context 
level as well as the source or feature data level. Consecutive 
readings from a data source change gradually and these small 
changes rarely lead to changes in context. 

Based on the locality of the feature data, we greatly reduce the 
processing cost of the change detection process. Among numerous 
data updates, we effectively sort out the updates which are expected 
to result in context changes. Then, only a small number of registered 
queries relevant to the updates are quickly searched for and 
evaluated. Combined with the mechanisms for feature data-level 
change detection described above, we achieve a high level of 
performance. 

Third, a small subset of sensors is often sufficient to answer 
queries. For example, consider a query for the context “studying in 
the library”. When the user is not in the library, her activity 
information is not useful; the query can be answered using only 
location information. However, even for such a simple query, 
finding the most efficient subset of sensors to activate is complex 
since it may involve numerous queries and many possible sensors. 
We develop a novel method for computing a reduced set of sensors 
that is sufficient for context monitoring and then only activate this 
subset. These techniques reduce the amount of wireless 
communication between sensors and a mobile device, leading to 
energy savings. 
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Figure 1. Conventional context monitoring process 
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Figure 2. Bi-directional approach to context monitoring problem  

Based on these observations, we develop three methods for 
context monitoring: CMQ (Context Monitoring Query) translation, 
shared and incremental CMQ evaluation, and ESS (Essential 
Sensor Set) selection. Our framework automatically translates 
CMQs issued by applications into queries with feature data-level 
monitoring conditions. While the translation is performed only 
once for each query, the performance benefit is achieved 
constantly throughout the entire query lifetime. The shared and 
incremental CMQ evaluation method maximally utilizes the 
context continuity. By exploiting the locality of feature data, the 
method significantly accelerates successive evaluation of 
numerous CMQs. Further, it only maintains compact light-weight 
data structures carefully designed. The method thereby achieves a 
high level of scalability even in a resource-limited environment. 
The framework is also successful in energy saving by computing 
the ESS and dynamically controlling sensors based on it. We 
show the complexity of ESS selection by proving that the 
problem is NP-complete. A practical heuristic algorithm with 
acceptable approximation ratio is developed to handle the ESS 
selection problem. Finally, we develop sensor control policies 
which can be alternatively used to cope with various 
environments and operational situations. 

1.2 Implementation and Evaluation 
We have implemented a SeeMon prototype as a prototype system 
with core components for scalable and energy-efficient context 
monitoring. We have also built two ubiquitous computing 
applications that use SeeMon for context monitoring. In order to 
examine heterogeneous mobile environments, we have been 
deploying and testing the prototype system on various types of 
mobile devices along with diverse sensors. We demonstrated the 
developed system with an example application, SympaThings 
which enables interactive objects to sympathize with user’s 
affective state, in a public exhibition.  

Experimental results show that SeeMon can achieve a high 
level of scalability and energy efficiency in sensor-rich and 
resource-limited mobile environments. SeeMon provides 4.6 
times better throughput than an alternative context monitoring 
method under a workload of 2,100 data samples per second. Also, 
SeeMon reduces the number of wireless data transmissions by 
more than 60% while evaluating 4,000 CMQs. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 presents the overview of 
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SeeMon framework. We describe the proposed processing-
efficient CMQ evaluation method in Section 4 and the energy-
efficient sensor control method in Section 5. Section 6 presents 
our prototype implementation and experiences on sample 
applications. Section 7 shows experimental results. Finally, 
Section 8 concludes the paper. 

2. RELATED WORK 
Context-aware applications and application-specific systems have 
been proposed in several application domains including 
healthcare and medical applications [4][5], reminder applications 
[6], and activity recognition [7][8]. Each system mainly utilizes 
an application-specific context such as location, activity or 
biomedical information. However, the proposed framework is 
designed to support various applications which utilize diverse 
contexts generated from numerous sensors in BAN/PAN. Thus, 
the framework provides intuitive query interface to specify 
contexts of interest and corresponding processing mechanisms. 

Some existing projects have proposed middleware to support 
context-aware applications. Their aim is to hide the complicated 
issues related to context-awareness. Most middleware is designed 
to run in a centralized server environment [9][10][11] or a 
distributed environment [12][13]. This approach requires 
infrastructural support to deal with sensor data collection and 
context processing. Moreover, privacy issues can arise since 
context information of individual users is exposed to the server. 
Some context-aware middleware targets mobile devices 
[14][15][16], but does not consider devices with tens/hundreds of 
BAN/PAN sensors or devices’ processing and power limitations. 
Moreover, they do not focus on continuously detecting context 
changes. 

Recently, MyExperience [41] has been proposed to collect 
quantitative and qualitative usage data on personal mobile devices 
for studies of mobile technology usage and evaluation. For 
efficient data collection, it employs an efficient event-driven 
architecture of Sensors, Triggers, and Actions. Although the 
event-driven architecture is similar to SeeMon, SeeMon focuses 
on real-time context monitoring rather than the collection of usage 
data. In particular, SeeMon addresses the problem of sensor data 
processing in sensor-rich and resource-limited environments.  

Limited battery power has been a critical problem in the field 
of mobile computing. Many techniques have been proposed to 
improve the energy efficiency of mobile devices by reducing the 
wireless communication cost. They include a technique to delay 
the communication based on GPS-based movement prediction 
[20] and techniques to reduce the Wi-Fi connection establishment 
and maintenance cost based on a low-power radio interface [17], a 
Wi-Fi detector [18], or Wi-Fi network condition estimation [19]. 
SeeMon also enhances energy efficiency by reducing wireless 
communication. However, our approach utilizes the 
characteristics of personal context and applications’ requirement 
for context monitoring. 

Energy saving in wireless sensor networks is well studied, 
including MIMO systems at the physical layer [21], MAC 
protocols [22], routing mechanisms [23], and integrated solutions 
optimizing the energy consumption of all radio states [26]. 
SeeMon operates at the application layer and is complementary to 
these approaches. 

Our work on processing-efficient CMQ evaluation is broadly 
related to continuous query processing in Data Stream 
Management Systems [38][39][40]. These systems support 
monitoring query semantics over continuously streaming data and 
efficient processing mechanisms for the queries [40][27]. 
However, such methods are not directly applicable to the context-
monitoring problem because they are not designed for efficient 
detection of changes in data values. Instead, they support 
continuous query evaluation to retrieve all matching data values. 
SeeMon adopts an efficient solution to detect context changes in 
terms of computation cost and memory consumption which are 
especially critical in resource-limited mobile environments. 

3. CONTEXT MONITORING 
FRAMEWORK OVERVIEW 

3.1 Motivating Environment 
The rapid advance of device and mobile service technologies will 
lead to a new mobile environment in which personal sensor 
networks as well as personal context-aware applications will 
grow in scale, diversity and complexity. 

Diverse sensors and sensor networks are increasingly being 
deployed in personal areas and on human bodies. For example, 
acceleration sensors, biomedical sensors (e.g., ECG, BVP, GSR, 
and EMG sensors), and environment sensors (e.g., temperature, 
humidity, light sensors, RFIDs, and GPS) are widely deployed 
across many domains. Even for a single sensor type, tens of 
sensors are sometimes used for accurate context recognition [1]. 
At the current rate of advancement, future personal sensor 
networks will likely incorporate up to hundreds of sensors of 
various types.  

At the same time, many new personal context-aware 
applications are being developed and deployed based on personal 
sensor networks. Emerging sensor types will lead to even more 
applications for mobile users. These applications will be deployed 
in domains such as healthcare, personal assistance, dietary 
monitoring [2], interactive art [3], gaming, and education.  

An important characteristic of these applications is that they 
monitor individuals’ context and surroundings. In the future, these 
applications will require even finer-grained monitoring. For 
example, a current personal assistant service requires 
understanding the user’s activity such as running, walking, or 
sitting, which is recognized using several accelerometers. 
However, in the near future, applications may need to understand 
and reflect even finer movements such as delicate hand motions 
and individual fingers’ movements. This will require crafted 
placement of an increasing number of sensors and processing of 
much more monitoring requests. Most important, while personal 
applications expand in quantity and quality, users will not use 
separate hardware devices for each application. They will use a 
single mobile device as a full-fledged, integrated personal service 
agent and simultaneously run multiple applications on the device. 
In addition, the context monitoring requests from the applications 
will be long-standing, resulting in continuous operation of the 
mobile device, possibly for 24 hours per day 7 days per week. As 
a result, as an integrated personal service agent, personal mobile 
devices continuously process a high number of context 
monitoring requests as well as voluminous data from numerous 
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sensor devices in the environment. This introduces new technical 
obstacles for future ubiquitous services, which will be 
compounded by the resource limitations and heterogeneity of the 
sensors and mobile devices. 

3.2 Context Monitoring Query 
SeeMon provides Context Monitoring Query (CMQ), an intuitive 
monitoring query language that supports rich semantics for 
monitoring a wide range of contexts. It is important for 
applications to catch the changes in users’ context proactively. 
Applications do not necessarily know what the current context is, 
but must detect when the changes occur. CMQ is devised to 
support such monitoring semantics. The CMQ template has the 
following format. 

CONTEXT <context element> 
(AND <context element>)*

ALARM <type>
DURATION <duration>

 
A CMQ specifies three conditions: context, alarm, and duration 

conditions. First, the context condition describes the context of 
interest. It is presented as a Conjunctive Normal Form (CNF) of 
multiple context elements. Each context element is described by a 
specific context type, an operator and a context value. SeeMon 
supports two types of operators: equality (==, !=) and inequality 
(＜ , ≤,＞ , ≥) operators. The state of the context condition 
becomes true if and only if all context elements are true. Context 
conditions containing negation (¬) and OR operations can easily 
be supported in SeeMon. By using Boolean algebra, such context 
conditions are transformed into CNF containing only AND 
operation. 

Second, the alarm condition determines when SeeMon delivers 
an alarm event to applications. Currently, SeeMon supports two 
types of conditions: T  F and F  T. For instance, a condition F 

 T means that SeeMon gives a notification when the state of the 
context condition changes from false to true. We are developing 
more types of alarm conditions to support a wider range of 
monitoring semantics such as delivering an alarm event when a 
context condition remains true or false for a period of time. 

Finally, the duration condition specifies how long a registered 
CMQ should run. SeeMon maintains a CMQ for the specified 
duration as long as an application does not deregister the query. 

The following is an example CMQ. As shown in the example, 
the context monitoring semantics required for applications can be 
easily expressed by a simple CMQ. 

CONTEXT (location == Library) 
AND (activity == Sleeping) 
AND (time == Evening)

ALARM F T
DURATION 120 DAYS

 

3.3 Architecture 
SeeMon is a middle-tier framework between personal context-
aware applications and a personal sensor network (see Figure 3). 
SeeMon provides programming APIs and a run-time environment 
for applications. Multiple applications that require context 
monitoring can be developed through the APIs and can run on top 
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Figure 3. Architecture of SeeMon 

of SeeMon concurrently. Meanwhile, SeeMon receives and 
processes sensor data and controls the sensors in the personal 
sensor network. For the wireless communication between them, 
protocols such as ZigBee, Bluetooth, or 6LoWPAN can be used. 

In our architecture design, SeeMon directly performs context 
monitoring on mobile devices like PDAs and smart phones. As a 
design alternative, we can consider server-based context 
monitoring, in which a server processes sensor data for context 
monitoring and the mobile device only relays sensor data to the 
server and receives monitoring results. However, for context-
aware applications, especially based on personal contexts, our 
design choice makes more sense than the server-based approach1 
in two ways: privacy and network cost. First, the mobile device-
based approach avoids the exposure of private context, whereas 
the server-based one must be carefully designed for privacy 
protection. Second, the mobile device-based approach does not 
incur continuous mobile networking costs. Even though our 
approach requires processing in a resource-limited mobile device, 
we carefully address this problem, supporting processing-efficient 
context monitoring. 

SeeMon consists of four components: the CMQ Processor, the 
Sensor Manager, the Application Broker, and the Sensor Broker. 
The CMQ Processor is responsible for scalable context 
monitoring. It efficiently evaluates numerous CMQs over a 
continuous stream of sensor data. The Sensor Manager enables 
SeeMon to achieve a high level of energy efficiency. It 
dynamically controls sensors to avoid unnecessary data 
transmissions. The Application Broker manages interactions with 
applications and the Sensor Broker deals with communication 
with various heterogeneous sensors. 

Based on these components, the operation of SeeMon is 
performed in three phases: query registration, query processing 

                                                                 
1 Note that there are certain types of context-aware applications 
that require a server and a mobile device to cooperate with each 
other to provide services such as services based on context 
information derived from aggregated data from multiple 
individuals or environments. 
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and sensor control. First, applications initiate context monitoring 
by registering CMQs to the CMQ Processor through the 
Application Broker. Then, the CMQ Processor performs context 
monitoring by evaluating CMQs over data delivered by the 
Sensor Broker; monitoring results are then forwarded to 
applications. Finally, the Sensor Manager finds a minimal set of 
sensors that is necessary to evaluate all registered CMQs. Then, 
the Sensor Manager forces unnecessary sensors to stop 
transmitting data to SeeMon, thereby saving energy. Details of 
each component are described as follows. 

The Application Broker consists of the Application Interface, 
the Access Controller, and the Context Translator. First, the 
Application Interface provides an interface to applications. Table 
1 summarizes the APIs provided by SeeMon. The Access 
Controller manages privacy and security parameters in SeeMon. 
Since remote applications can request context monitoring, private 
context information can be exposed to other individuals. Thus, it 
is important to provide an appropriate control mechanism for 
privacy and security. In our current design, the Access Controller 
utilizes an ACL-based approach [37], checking whether a 
requesting application is registered in an access control list (ACL). 
The Context Translator translates a CMQ issued by a permitted 
application into a feature data-level CMQ (see Section 4.1 for 
details). The translated data-level CMQ is registered with the 
CMQ Processor.  

The CMQ Processor consists of the CMQ-Table and the CMQ-
Index. The CMQ-Table stores registered CMQs and their 
evaluation results. Through the CMQ-Index, context elements for 
each feature data can be quickly evaluated. The evaluation of a 
CMQ is triggered by state changes in context elements of the 
CMQ. When the CMQ Processor detects that a certain CMQ is 
satisfied, an alarm event is promptly forwarded to corresponding 
applications. 

The Sensor Broker consists of the Input Handler, the 
Preprocessor, and the Feature Generator. The Input Handler 
manages communication with sensors and receives data from 
sensors. The Preprocessor removes noise and error from input 
data and performs simple computation such as data format 
conversion. The Feature Generator performs complex 
computation on data from the Preprocessor, such as Fast Fourier 
Transform, to derive feature data. It then inputs derived feature 
data into the CMQ Processor. Since different types of feature and 
computation are needed to analyze sensor data, the Sensor Broker 
is designed to be extensible enough to incorporate many types of 
sensors. Some sensor data is used directly by the CMQ Processor 
after preprocessing without feature generation (e.g., temperature 
and humidity data). For simplicity, we will regard all the output 
data from the Sensor Broker as feature data in the following 
sections. 

The Sensor Manager consists of the ESS Calculator and the 
Sensor Controller. The ESS Calculator discovers an Essential 
Sensor Set (ESS) necessary to evaluate CMQs and identifies 
unnecessary sensors based on the evaluation results of the CMQ 
Processor. As described in Section 5.1, we abstract ESS 
calculation as a variation of Minimum Set Cover problem and 
employ a practical heuristic solution. Based on the calculated ESS, 
the Sensor Controller sends selected sensors control messages to 
reconfigure the sensors to stop transmitting data. This sensor 
control is performed whenever the result of any CMQ changes. 

Table 1. SeeMon API 

Functionality API List

Context
Monitoring

registerCMQ (CMQ_statement)

deregisterCMQ (CMQ_ID)

Context
Customization

createMAP ([Parent_Map_ID])

deleteMAP (Map_ID)

insertContextElement ([Map_ID,] context_level_semantic, 
data_level_semantic) 

deleteContextElement ([Map_ID,] context_level_semantic) 

updateContextElement ([Map_ID,] context_level_semantic, 
data_level_semantic) 

Context
Browsing

browseMAP ()

browseContextElement (Map_ID [, context_level_semantic])
 

4. PROCESSING-EFFICIENT CMQ 
EVALUATION 
Multiple applications running on SeeMon will be interested in 
different contexts. Thus, the CMQ Processor should handle a 
large number of CMQs issued by applications. To notify changes 
of context immediately, CMQs must be continuously evaluated 
over data streams from the sensors. It is costly to evaluate all 
CMQs upon every data arrival. Furthermore, dealing with such 
voluminous data streams must be done in a resource-limited 
environment. SeeMon employs novel methods to significantly 
improve the evaluation performance under such query and data 
workloads. 

SeeMon avoids the expensive context recognition process such 
as decision tree traversal and Bayesian network evaluation by 
translating CMQs into feature data-level queries. The CMQ 
translation provides a chance to reduce the processing overhead 
by pruning out unnecessary context recognition at an early stage 
of the processing. SeeMon develops a shared and incremental 
processing method to efficiently process the translated feature 
data-level queries in the CMQ Processor. 

The shared processing method efficiently processes a large 
number of data-level CMQs using a query index called the CMQ-
Index. Once the index is built for all registered CMQs, upon a 
data arrival, only relevant queries will be searched for. This 
method provides significant performance benefit compared to 
CMQ evaluation without shared processing. 

The key idea behind our incremental processing method is to 
utilize the locality of feature data streams and develop a stateful 
query index for incremental evaluation. Consecutive updates from 
a data stream usually show gradual changes. (Data may show 
sudden changes from time to time; however, we believe that 
changes are more often gradual, especially in the streams of 
physical data.) Thus, in many cases, consecutive updates from 
each sensor do not change the states of registered queries. For 
example, consider a query to monitor an energy feature value 
stream from an accelerometer with a range [70 < energy < 75]. If 
the energy feature values are [72, 71, 73, 74], the state of this 
query is true and it remains unchanged. Even if data updates incur 
state changes, it is highly possible that the changes will be 
restricted to a small number of queries that are interested in 
nearby ranges. The CMQ-Index exploits such locality and 
consequent overlaps between previous and current state 
evaluation results by remembering the previous states of all 
queries. Furthermore, it pre-computes the queries whose states 
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change at each value range. The CMQ-Index also partitions the 
domain space of a feature into consecutive range segments, and 
computes the difference of sets of queries whose state changes 
across consecutive segments. This structure is also memory-
efficient, since it only stores the differences between queries over 
successive ranges without replication. 

The structure often requires no further evaluation since a data 
update may fall into the same segment as before. Even if it does 
not, it is most likely that the update will fall into a nearby segment. 
In this case, a new evaluation can be performed by computing the 
union of the pre-computed differences. No complex computations 
are involved in this process other than the union of differences. 
The union is taken over just a small number of consecutive 
segments starting from the previous segment. This approach 
outperforms state-of-the-art query indexing mechanisms [27][28] 
by orders of magnitude.  

The CMQ evaluation approach, the shared and incremental 
processing, is based on our previous work [29]. In this paper, we 
extend the work for efficient CMQ evaluation. 

4.1 CMQ Translation 
CMQ translation is the first step to enable scalable CMQ 
evaluation. This process converts CMQs specified in context-level 
semantics into range predicates over continuous feature data. 
Through this translation, SeeMon avoids the overhead of 
continuous context recognition. The CMQ translation requires 
two major steps. First, SeeMon maps a context type to one or 
more features. A feature represents data values generated via 
preprocessing and feature extraction from sensor data. One or 
more features can be derived from a sensor. For example, DC and 
energy features are derived from an accelerometer [7]. Note that 
currently we consider features derived from a single sensor, 
although features derived from multiple sensors can be 
incorporated. Second, SeeMon transforms a context value to 
numerical data value ranges for corresponding features 2 . For 
example, (noise == Quiet) can be mapped to (20dB ≤  sound 
pressure level ≤  30dB). Note that the query translation cost is 
negligible since the translation is a simple one-time operation 
performed during query registration. 

SeeMon maintains a context translation map to support the 
CMQ translation effectively. Figure 4 shows an example map. 
The map manages mappings between context-level semantics and 
data-level semantics for a context type and its possible value. By 
using it, SeeMon easily translates context elements in a CMQ into 
a set of corresponding features and data value ranges. The context 
translation map can be built through a machine learning process 
such as building a C4.5 decision tree [7][24]. The decision tree 
can be easily transformed into the map. 

SeeMon supports two types of maps: generic and customized 
maps. The generic map maintains mapping information generally 
usable to many applications. It is provided by the SeeMon 
framework and cannot be modified. For the customization of 
   

                                                                 
2 This kind of mapping between a context and feature values is 
based on crisp limits, one of quantization methods used for 
context recognition [14]. 

Context-level semantic Data-level semantic

Type Value
Feature1 Feature2 ...

ID Low High ID Low High ...
location Playground longitude 36°22’04 36°22’05 latitude 127°21’56 127°21’57

...temperature Hot Temp. 28 °C 38 °C

… …

Meta-information
Map_ID: 14
Map_Type: instance

Parent_Map_ID: 3
Application_ID: 14

 
Figure 4. An example of context translation map 

 

mappings between context-level semantics and data-level 
semantics, application developers can create customized maps. It 
is very useful to satisfy the different need of a specific application. 

4.2 CMQ-Index and CMQ-Table 
For efficient CMQ evaluation, the CMQ Processor maintains two 
important data structures: the CMQ-Table and the CMQ-Index. 
First, the CMQ-Table stores CMQs using a hash structure, 
providing O(1) lookup time. It contains three attributes: query id, 
state (evaluation result), and context element list (see Figure 5). In 
the context element list, a context element is specified with three 
attributes: feature id, range condition, and state. A feature id 
indicates a feature associated with the context element. A range 
condition presents a data value range for the feature as described 
in Section 4.1. Note that the state of the context element is one of 
three states: true, false and undecided. In particular, undecided 
states occur when feature data is unavailable due to dynamic 
sensor control. After the states of a set of context elements are 
decided, the state of the query is decided according to the 
following rules (see the examples in Figure 5). 

1) The state of CMQ is false if the number of false context 
elements >= 1.  

2) The state of CMQ is undecided if there is no false context 
element and the number of undecided context elements >= 1. 

3) The state of CMQ is true if all context elements are true. 

Second, the CMQ-Index is a query index to quickly access 
context elements relevant to incoming data. Using the index, 
context elements within range of where the data value falls can be 
easily identified. The index consists of multiple RS (Region 
Segment) lists and a feature table. An RS list is assigned to each 
feature and is built to maintain the value ranges of the context 
elements associated with the corresponding feature. Each entry of 
the feature table maintains a pointer to the value range where the 
last data value fell. 

The RS list is composed of a set of RS nodes, partitioning the 
domain space of feature values. Each RS node includes a set of 
context elements covered by its range (see Figure 5). For each 
context element, a query id of the element is stored into only two 
RS nodes where the range starts and ends. Compared to other 
indices [27][28], the CMQ-Index is more storage-efficient. 

The RS list is formally defined as follows. Let CE = {CEi} be a 
set of context elements associated with a feature where CEi has 
the range (li, ui). Let B denote the set of lower and upper bounds 
of the range of each CEi and minimum and maximum values of 
domain space, bmin and bmax, i.e., B = {b | b is either li or ui of a 
CEi ∈ CE} ∪ {bmin, bmax}. We denote the elements of the set B 
with a subscript in the increasing order of their values. That is, b0 
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< b1 < … < bm. An RS list is a list of RS nodes, <N1, N2, …, Nm>. 
Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti), where 

 Ri is the range of region segment (bi–1, bi), bi ∈ B 
 +DQSeti is the set of CMQs, where the CMQs contain a 

context element CEk such that lk = bi–1 for the range (lk, uk) 
of CEk 

 –DQSeti is the set of CMQs, where the CMQs contain a 
context element CEk such that uk = bi–1 for the range (lk, uk) 
of CEk 

In Figure 5, two RS lists are shown as an example. The upper 
RS list is built for six context elements, CE(Q1), …, CE(Q5), and 
CE(Q8). Eight RS nodes are created and each of them has a range 
and ±DQSet. 

CMQs can be dynamically registered and deregistered. A CMQ 
Qin is registered as follows. First, an entry for Qin is added to the 
CMQ-Table. Since the states of Qin and its context elements are 
not determined yet, the CMQ Processor evaluates the states of Qin 
and context elements through current data values. Then, the 
CMQ-Index is updated. That is, the CMQ Processor updates the 
RS lists associated with features of context elements of Qin. 
Consider a context element of Qin, CEi, whose range condition is 
(li, ui). First, the CMQ Processor locates the RS node, Ni, which 
contains li, i.e., bi–1 ≤ li < bi. If li is equal to bi–1, Qin is inserted into 
the +DQSeti of Ni. Otherwise, Ni is split into two RS nodes: the 
left node with the range of (bi–1, li) and the right node with the 
range of (li, bi). The left node has the ±DQSet of Ni and the right 
node contains Qin in its +DQSet. Second, the CMQ Processor 
locates and processes the RS node, Nj containing ui in a similar 
way. CMQs can be deregistered similarly. 

4.3 CMQ Evaluation Mechanism 
CMQ evaluation is performed in two steps. First, using the CMQ-
Index, the CMQ Processor searches for the context elements 
whose state changes based on the arrival of feature data. Second, 
the CMQ Processor updates the CMQ-Table for the state-changed 
context elements. Then, it checks whether the state of 
corresponding CMQs should change or not. If they should, the 
CMQ Processor updates the CMQ-Table and notifies the 
applications that issued the CMQs. 

Searching the CMQ-Index is done as follows. Upon feature 
data arrival, the CMQ-Index locates an RS list associated with the 
feature and searches for an RS node that contains the value, i.e., a 
matching RS node. Queries with state-changed context elements 
are simply retrieved by traversing from the previous matching 
node to the current matching node. Due to data locality, an 
updated data value will probably be available in a nearby node. 
Thus, the linear traversal is normally fast. 

The CMQ-Index search results in two sets of queries containing 
state-changed context elements. (1) QSet+, a set of queries 
containing context elements whose state changes from false to 
true. (2) QSet−, a set of queries containing context elements whose 
state changes from true to false.  

Given values of two consecutive updates, vt-1 and vt, let vt–1 fall 
in the range of a RS node Nj and vt fall in that of Nh, i.e., bj–1 ≤ vt–1 
< bj and bh–1 ≤ vt < bh. While traversing from Nj to Nh, QSet+ and 
QSet− are computed as follows. 

 
 

 
Figure 5. An example CMQ-Table and CMQ-Index:  

CMQ-Table shows four CMQs, Q1 ~ Q4, and their states as well as the 
lists of included context elements. CMQ-Index shows two RS lists, one 
for feature F1 and the other for feature F2. The RS list for feature F1 
currently has 8 RS nodes, N1 ~ N8. 

If j = h,  QSet+ = QSet− = φ 
If j < h,  QSet+ = [ h

ji 1+=U +DQSeti] − [ h
ji 1+=U −DQSeti] 

              QSet− = [ h
ji 1+=U −DQSeti] − [ h

ji 1+=U +DQSeti] 
If j > h,  QSet+ = [ 1+

=
h

jiU −DQSeti] − [ 1+
=

h
jiU +DQSeti] 

              QSet− = [ 1+
=

h
jiU +DQSeti] − [ 1+

=
h

jiU −DQSeti] 

In Figure 5, we assume that the previous value vt-1 of feature F2 
was located in N4 of RS list (F2). If the current value vt is located in 
N2,  ±DQSet are retrieved while visiting from N4 to N2. Thus, QSet+ 

= {Q9} and QSet− = {Q3, Q6, Q8} are obtained. Then, entries for 
queries in QSet+ and QSet− are updated in the CMQ-Table. For 
instance, the context element of Q3, [F2, (b2, b4), true] is updated to 
[F2, (b2, b4), false] since Q3 is included in QSet−. The state of Q3 is 
also updated to false.  

4.4 Analysis of Processing and Storage costs 
The processing cost of the CMQ Processor can be represented as the 
total number of retrieved context elements for each feature. The 
average number of retrieved context elements U is determined by 
two factors. First, U is proportional to the average distance between 
two consecutive data values. As the distance increases, more RS 
node visits are required to locate a new matching node, thereby 
increasing the number of retrieved context elements whose state 
changes. We define Fluctuation Level (FL) as the average distance 
normalized with respect to the domain size. 
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Second, U is proportional to the average density of context 
elements in an RS list. As the density increases, more context 
elements are retrieved with the same FL. The average density of 
context elements in an RS list can be approximated as (2 × Nq / 
Domain size), where Nq is the number of CMQs, because each 
query id is inserted into only two nodes of an RS list. Thus, the 
average processing cost of the CMQ Processor for each feature can 
be formulated as Θ(2 × Nq × FL). 

The storage cost of the CMQ Processor is decided by the size of 
the CMQ-Table and the CMQ-Index. First, the size of the CMQ-
Table is proportional to the number of CMQs, i.e., Θ(Nq). Second, 
the size of the CMQ-Index is a function of the size of the feature 
table and the RS lists. The size of the feature table is proportional to 
the number of input data sources, Nd, i.e., Θ(Nd). The size of an RS 
list is Θ(2Nq) since each context element is inserted once into 
+DQSet and −DQSet, respectively. The number of RS lists is the 
same as the number of entries in the feature table. Thus, the storage 
cost of CMQ-Index is Θ(Nd + 2NqNd). 

5. ENERGY-EFFICIENT SENSOR 
CONTROL 
SeeMon employs a novel sensor control method to enhance the 
energy efficiency of sensors and mobile devices. The key idea for 
efficient sensor control is that only a small number of sensors are 
necessary to determine the states of all registered CMQs. It is true 
that an increasing number of sensors will be required for various 
applications, especially for fine-grained monitoring and quality 
service. However, in a specific context, evaluation of the registered 
CMQs can be accomplished by monitoring a subset of sensors. We 
call a set of such sensors the Essential Sensor Set (ESS). The ESS 
dynamically changes depending on the current context and 
registered CMQs. However, once a context is set to a situation, it 
tends to stay. Likewise, the ESS does not abruptly change. Once we 
know the ESS, sensors not in the ESS do not have to transmit data. 
In this section, we present the problem of ESS calculation and our 
sensor control methods in detail. 

5.1 ESS Problem 
Calculating the ESS is a complicated problem. The ESS should 
include as few sensors as possible to save energy without 
compromising correct CMQ evaluation. It is also important to 
consider data transmission rates of sensors as well as the number of 
sensors in the ESS. To effectively identify the ESS, the Sensor 
Manager utilizes the characteristics of a CMQ’s structure. A CMQ 
is specified in a CNF of multiple context elements. A false state of a 
context element in a CMQ leads to a false state of the CMQ itself. 
The other context elements included in the CMQ are not necessary 
to determine the state of the CMQ. On the other hand, a CMQ in a 
true state requires all context elements included in the CMQ to be 
monitored. As described before, the core of CMQ evaluation is to 
detect whether the states of CMQs change or not. For a true-state 
CMQ, if the state of a single context element changes to false, the 
state of the CMQ changes to false as well. Thus, we should monitor 
all the context elements in the CMQ to see if the CMQ state changes. 
All sensors related to the context elements should be included in the 
ESS. A CMQ in an undecided state should be handled similarly. To 
decide a CMQ’s state, the states of all context 
 

Sensor_ID S0 S1 S2 S3 S4 S5

Update Rate 1 1 1 1 1 1

Feature_ID F0 F1 F2 F3 F4 F5 F6

Value 19 27 2 U 6 72 38

(a) Sensor set S U: undecided

S = {S0, S1, S2 , S3, S4 , S5}  
QID Condition Result

A (12<F0<25) Λ (50<F5<90) T

B (F0<10) Λ (F1<16) Λ (60<F3) Λ (F4<20) F

C (12<F1<24) Λ (6<F2<9) Λ (5<F4<10) F

D (40<F3<60) Λ (10<F4<15) Λ (50<F5<60) F

E (3<F2<9) Λ (10<F4<20) Λ (60<F5<80) F

F (1<F4<10) Λ (75<F5<80) F

G (3<F2) Λ (40<F3<60) Λ (39<F6<52) F

H (3<F2<6) Λ (F5<80) Λ (F6<26) F

I (9<F2<18) Λ (50<F3<60) Λ (10<F4<20) F

J (20<F0) Λ (F2<6) Λ (40<F3<50) F

(b) Query set 
Bold character: false feature
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T-QSet = {A}
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Figure 6. An example of ESS problem 

elements must be checked and sensors related to the context 
elements should be included in the ESS. However, for false-state 
CMQs, monitoring only a single context element in a false state is 
sufficient as long as its state remains the same. Only when its 
state changes do the states of the other elements need to be 
monitored. Thus, the opportunity to save energy comes from 
exploiting false-state CMQs. We select a single context element 
in a false state; sensors unrelated to the element can be put into an 
inactive state. It is also important to choose a false-state context 
element associated with the most energy-efficient sensor. For 
simplicity of discussion, we use data transmission rate as a stand-
in for energy consumption. 

The ESS problem consists of two sub-problems: to find 
essential sensors for true-state and undecided-state CMQs and to 
find the essential sensors for false-state CMQs. Figure 6 shows an 
example of ESS problem for a set of sensors and CMQs. Only 
query A is true. Thus, features F0 and F5 have to be monitored 
since they are related to the context elements of A. Accordingly, 
sensor S0 and S4 should be in the ESS and update data. On the 
other hand, query B is false and its state can be determined either 
by feature F0 or F1. Thus, we can put either S0 or S1 into an 
inactive state. Similarly, other CMQs can be evaluated using a 
small number of sensors. Sensor S0, S1 and S4 suffice to evaluate 
all the registered CMQs. 

As described above, it is simple to calculate ESS for the true-
state CMQs and undecided-state CMQs. However, it is 
complicated to compute the set of essential sensors with minimum 
cost for the false-state CMQs. We call this problem minimum cost 
false-query covering sensor selection (MCFSS). We formally 
define MCFSS problem as follows. 

Minimum Cost False-query covering Sensor Selection Problem: 
Given a finite set of false-state CMQs F-QSet and a set S of 

sensors, each of which covers a subset of F-QSet, find a subset S’ 
= {S’1, … S’k} of S such that k

i 1=U F-QSet’(S’i) covers F-QSet and  

∑ =

k

i 1
COST(S’i) is minimal, where F-QSet’(S i) is the set of false-
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state CMQs which become false by a sensor S’i and COST(S’i) is 
the data transmission rate of S’i. 
 

Theorem 1: MCFSS is NP-complete. 
Proof: We prove that MCFSS is NP-complete by reducing a well-
known NP-complete problem, Minimum Cost Set Cover (MCSC) 
to MCFSS. MCSC consists of a finite set of elements U and a 
collection L of subsets of U. Each subset Li has a cost Ci. The 
objective is to choose a minimum cost subset S’ from S that covers 
all elements of U. 

Define F-QSet to be the set of all false-state CMQs which are 
false by the sensors of S, and define each sensor Si ∈ S to be the 
set of false-state CMQs which become false by Si. Now, MCSC is 
easily transformed into MCFSS in polynomial time by considering 
U as F-QSet and L as Si. 

We have shown a reduction from MCSC to MCFSS, and 
therefore MCFSS is NP-hard. Since solutions for the decision 
problem (i.e., ∑ =

k

i 1
COST(S’i) < w, where w is a positive 

constant) of MCFSS are verifiable in polynomial time, it is in NP. 
Consequently, the MCFSS problem is NP-complete. 

5.2 ESS Calculation and Sensor Control 
Figure 7 shows the ESS calculation process. The ESS is computed 
through two steps: computing required sensors for CMQs in a true 
or undecided state, and then for CMQs in a false state. We call the 
sensors required for true-state CMQs and undecided state CMQs 
the TQCover and UQCover, respectively. Including TQCover and 
UQCover in the ESS in advance can reduce the overhead while 
computing sensors for the MCFSS problem, because there are 
false-state CMQs whose state can be identified by sensors in 
TQCover and UQCover. Since those sensors are already in the 
ESS, we can remove such CMQs from the problem space of 
MCFSS, F-QSet. 

As the MCFSS problem is NP-complete, we employ a heuristic 
algorithm, Greedy-MCFSS (see Figure 8). The objective in 
designing the algorithm is to reduce the energy cost as much as 
possible while simplifying the computation. For this purpose, the 
algorithm iteratively selects the most cost-effective sensor until 
all false-state CMQs are covered. The cost-effectiveness of a 
sensor Si is defined as the average cost incurred by Si covering 

new false-state CMQs, i.e., )| F-QSet'(MF-QSet ) |F-QSet'(S
)COST(S

i

i

−∩ , 
where M is the set of sensors already selected at the beginning of 
an iteration and F-QSet’(M) is the set of false-state CMQs that are 
falsified by sensors in M.  

The Greedy-MCFSS yields a MCFQCover whose cost is 
guaranteed to be no more than log |F-QSet| times the cost of an 
optimal solution. It is intuitive to see that the time complexity of 
the algorithm is O(|S|2) in the worse case, where |S| is the number 
of sensors. For the brevity of presentation, we do not present the 
details of the algorithm analysis in this paper.  

The Sensor Controller controls sensors based on the calculated 
ESS. It sends a control message to the sensors that are not 
included in the ESS. The message configures the sensors to stop 
transmitting data. Afterwards, the ESS Calculator updates the 
state of context elements related to the controlled sensors in the 
CMQ-Table. Specifically, it changes the state of those context 
 

 

 
Figure 7. ESS calculation algorithm 

 
Figure 8. Greedy-MCFSS algorithm 

elements to undecided. On the other hand, the Sensor Controller 
sends a different type of control message to sensors that are newly 
included in the current ESS. When a sensor receives this message, 
it is reconfigured to transmit data. 

5.3 Sensor Control Policy 
For sensor control based on the ESS, we carefully consider the 
ESS computation overhead. The ESS needs to be calculated 
whenever the evaluation result of any CMQ changes. Such a 
frequent ESS computation may be burdensome even with a 
heuristic-based algorithm. To address this problem, we propose 
two different policies for sensor control: an aggressive policy and 
a conservative one. The aggressive one is the default policy. It 
aims to maximize energy saving. In contrast, the conservative 
policy is designed to reduce the processing cost while sacrificing 
some energy efficiency. The conservative policy will be most 

// ESS Calculation (T-QSet, F-QSet, U-QSet, S) 
S: a set of all sensors 
T-QSet: a set of all true-state CMQs 
F-QSet: a set of all false-state CMQs 
U-QSet: a set of all undecided-state CMQs 
q.sensor: a set of sensors which are associated with the context 
elements of a CMQ q. 
 

1. TQCover, UQCover, TUQcover, RF-QCover  ∅ 
2. for ∀ qi, where qi ∈ T-QSet, 

TQCover  TQCover ∪ qi .sensor 
3. for ∀ qi, where qi ∈ U-QSet, 

UQCover  UQCover ∪ qi .sensor 
4. TUQCover TQCover ∪ UQCover 
5. RF-QSet  F-QSet 
6. for ∀ si, where si ∈ TUQCover, 

for ∀ qi, where qi ∈ F-QSet, 
if qi evaluates to false by sensor si  

RF-QSet  RF-QSet – { qi } 
7. for ∀ qi, where qi ∈ RF-QSet, 

for ∀ si, where si ∈ qi.sensor, 
if qi evaluates to false by sensor si 

RF-QCover  RF-QCover ∪ { si } 
8. Greedy-MCFSS (RF-QSet, RF-QCover) 

// Greedy-MCFSS (F-QSet, S)
   F-QSet: a set of false-state CMQs 
   S: a set of sensors, each of which covers a subset of F-QSet 
1. M ← ∅ // a minimum cost subset 
   S’ = S 
2. while F-QSet’(M) ⊂ F-QSet do 
   Find Sc in S’ such that a(Sc) = min s∈S’(a(s)), 

   where a(s)  =
)| F-QSet'(MF-QSet ) |F-QSet'(S

)COST(S
i

i

−∩
, 

     i.e., the cost-effectiveness of s 
   M ← M ∪ Sc 
   S’ = S’ – {Sc} 
3. Output the chosen sensors M 
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effective when mobile devices’ computing power is limited or 
processing overhead is high due to numerous CMQs.  

Under the aggressive policy, the ESS Calculator continuously 
updates the ESS to find the most cost effective sensors. On the other 
hand, under the conservative policy, the ESS Calculator delays ESS 
computation to reduce the processing overhead. It calculates only 
TQCover and UQCover to identify necessary sensors for correct 
CMQ evaluation. While the ESS computation is being delayed, 
sensors can be added to the TQCover and UQCover and become 
active. However, to maintain a certain level of energy efficiency, the 
ESS must be updated before too many sensors are activated. Thus, 
the ESS Calculator monitors the ratio of active sensors using a 
metric called the Sensor Turn-on Level (STL) defined below. To 
drop the number of active sensors, it updates the ESS when the STL 
goes beyond a predefined threshold value. 

STL = Ninactive active / Ninactive 
(Ninactive is the number of sensors that became inactive at the last 

ESS calculation and Ninactive active is the number of sensors that 
become newly active among the sensors that were inactive at the 
last ESS calculation.) 

Such configurability is important to adapt SeeMon to various 
processing capacity and battery power constraints. We are currently 
developing a method that performs automatic adaptation. The 
method dynamically changes the STL threshold value to cope with 
different throughput demands. To maximize energy efficiency, the 
default STL threshold value is set to 0, or the equivalent of the 
aggressive policy. When the number of CMQs becomes larger than 
the currently achievable throughput, SeeMon automatically 
increases the STL threshold value. While increasing the value, the 
method tries to find a value to meet the requested throughput 
without sacrificing too much energy efficiency. 

6. IMPLEMENTATION 
We have implemented the SeeMon system architecture as a 
prototype system, carefully applying the scalable CMQ evaluation 
and energy-efficient sensor control mechanisms. We have also 
built two example applications on top of it, where SeeMon plays a 
critical role as an underlying context monitoring platform. 
Currently, the prototype is implemented in C++ on a Linux. The 
total lines of prototype system code are about 8,700. We have 
been deploying the prototype on various types of mobile devices 
such as smart phones and wearable devices. In addition, we 
continue to incorporate diverse and numerous sensors to support 
rich and fine-grained context specifications. Multiple application 
developers have used our prototype system and considered it 
effective, efficient, and stable. Furthermore, we demonstrated an 
application called SympaThings on top of SeeMon at the 
Nextcom Show 2007 [35], one of the biggest IT exhibitions in 
Korea, held in Seoul in November 2007. 

 
Figure 9. H/W setup 

 

Table 2. Sensor-Feature-Context 

Sensor Sampling 
rate Feature Feature 

generation rate

Context type
(# of possible 

values)

Context Value 
Examples

BVP sensor 60 Hz
Heart rate ~ 3 Hz Heart rate (10) Fast, Normal

Stress ~ 3 Hz Stress (4) High, Low

GSR sensor 60 Hz
Skin 

conductance 60 Hz Strain (4) High, Low

Startle event 60 Hz Startle event (2) Yes, No

Light sensor 0.72 Hz Illumination 0.72 Hz Light (7) Dark, Bright

Temperature sensor 0.36 Hz Temperature 0.36 Hz Temperature (8) Cool, Hot

Humidity sensor 0.18 Hz Humidity 0.18 Hz Humidity (6) Dry, Humid

Three 2-axial 
acceleration sensors

48.08 Hz
× 6

DC 4.808 Hz × 6
Activity (12) Running, 

SittingEnergy 4.808 Hz × 6

GPS sensor 2 Hz

Longitude 2 Hz Outdoor 
location (9)

CS building, 
East restaurantLatitude 2 Hz

Speed 2 Hz Speed (5) Walking, 
Bicycling

Direction 2 Hz Direction (8) North, West

S/W sensor (timer) - Time 0.1 Hz Time (8) Dawn, Noon

S/W sensor (indoor 
location)

manual 
input Indoor location 1 Hz Indoor 

location(12)
1st floor lobby,

Room 2432  

6.1 Prototype Hardware 
Deploying SeeMon requires two important hardware sets: mobile 
devices and sensors. Currently, we have deployed the SeeMon 
prototype and its applications on two different mobile devices: (1) 
an Ultra Mobile PC (UMPC), SONY VAIO UX27LN with Intel® 
U1500 1.33 GHz CPU and 1GB RAM, and (2) a custom-designed 
wearable device with Intel® PXA270 processor 3  and 128MB 
RAM. The former represents powerful future mobile devices and 
the latter a relatively resource-limited current mobile device. We 
plan to port our system to widely used smart phones as well. 
Figure 9 shows a snapshot of currently used hardware including 
the two mobile devices and sensors. 

The diversity and scale of sensors determine the coverage and 
accuracy of context monitoring of SeeMon. From this viewpoint, 
we have been incorporating as many as sensors that a person can 
carry. Table 2 shows the sensors that we used in our current 
prototype. We prefer small-size controllable sensors with 
processing and wireless communication capabilities appropriate 
for mobile environments. Such sensors can be deployed in a 
wearable or a carry-able form and adopt the sensor control 
mechanism of SeeMon easily. Considering this, we mainly use 
five of USS-2400 [31] sensor nodes, i.e., a light sensor, a 
temperature/humidity sensor, and three 2-axial acceleration 
sensors. They are equipped with Atmega 128L MCU4, CC2420 
RF module supporting 2.4GHz band ZigBee protocol, and 
TinyOS as an operating system. To provide communication 
between the mobile device and sensors, we attach one base sensor 
node to the mobile device using serial or USB interfaces. The 
node receives sensor data from other sensor nodes and forwards 
the data to a mobile device. Also, it transmits control messages to 
the sensor nodes on behalf of the mobile device. 

We incorporated several additional sensors to provide 
important context types not supported by USS-2400 nodes. First, 
we use a Bluetooth-enabled GPS sensor to position outdoor 
location. We also incorporate two biomedical sensors, a BVP 
(Blood Volume Pulse) sensor and a GSR (Galvanic Skin 
                                                                 
3 This processor supports flexible clocking from 104 to 624 MHz. 
4 This processor supports maximum 8 MHz 8MIPS CPU Clock. 
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Response) sensor, which are essential to recognizing the user’s 
affective context [32] and medical context. Finally, two software 
sensors are used for time and indoor location. Indoor location is 
positioned by manual input of predefined location. To automate 
this manual process, we plan to couple SeeMon and in-door 
positioning system deployed in our university [30]. 

6.2 SeeMon Implementation 
Implementing a working prototype of the SeeMon architecture 
requires a careful choice of programming models. First, we 
implemented SeeMon as a multi-thread system for performance. 
Each system component runs as a single thread while the 
Application Broker is separated into two threads for query 
registration and result forwarding. Note that the Sensor Broker 
handles input data from multiple sources in a thread as well using 
efficient event-driven I/O multiplexing. The inter-component 
communication is performed through message queues. To support 
frequent data transfer from the Sensor Broker to the CMQ 
Processor, we used double-buffering. Currently, we are extending 
the prototype to include an advanced thread scheduler and queue 
management mechanism to further improve system performance. 

The Sensor Broker extracts 15 features from data delivered 
from the sensors, as shown in Table 2. We implemented several 
simple techniques and utilized several existing libraries to 
compute features from sensor data. First, we used FFTW, a Fast 
Fourier Transform library [33], to obtain DC and energy features 
from acceleration data. Second, we implemented a NMEA data 
parser to extract the longitude, latitude, speed, and direction 
features from GPS data based on the NMEA 0183 protocol. Third, 
we utilized a convolution filter to remove errors, smooth signals, 
and detect peaks from BVP sensor data. The heart rate feature is 
derived from the detected peaks and stress feature is obtained 
through further frequency domain analysis. Fourth, to get the 
strain feature from GSR data, we implemented simple technique 
to analyze the magnitude, relative to normal conditions, of GSR 
signals. Finally, we implemented simple conversion functions to 
compute features from other USS-2400 sensors such as 
illumination and temperature features.  

The Application Broker uses the context translation map for 
CMQ translation. Since the context translation map influences the 
quality of monitoring, the learning process had to be extensive. 
We obtained mappings for activity contexts through user 
annotation-based learning [7]. The learning was done with C4.5 
decision tree provided by Weka, a Java-based open source 
machine learning tool [34]. The learning for the level of strain, the 
level of stress and startle event were conducted based on IAPS 
experiment [42]. 

The CMQ Processor and the Sensor Manager involve many 
operations and result in relatively high processing cost in SeeMon. 
We noticed that set operations such as union and difference are 
dominant and reducing their number and cost is essential to 
improve system performance. Thus, we developed a fine-tuned 
module for set operations to reduce their overhead. We observed 
that the CMQ Processor and the Sensor Manager generated many 
intermediate results that can be reused several times afterwards. 
By effectively reusing the results, we reduced the number of set 
operations. In particular, we designed a bit-map like data structure 
to store the detailed information of false-state CMQs. It improves 
ESS calculation performance significantly.  

   
Figure 10. Running Bomber       Figure 11. SympaThings 

6.3 Application Development 
Emerging areas such as ubiquitous gaming and affective computing 
are domains in which many new applications will be developed. For 
evaluation, we have prototyped two applications for each of them: 
Running Bomber and SympaThings. 

Running Bomber is the first step toward applying the SeeMon 
framework to ubiquitous games (U-games). U-games utilize users’ 
various contexts and reflect their physical actions from their 
everyday activities. Running Bomber is a U-game designed to make 
treadmill running less boring. Figure 10 shows a picture of Running 
Bomber demo. For the Running Bomber game, a player holding a 
bomb should pass the bomb to others within 3 seconds. Bomb 
passing is signaled by shaking an arm wearing an acceleration 
sensor. With SeeMon, developing U-games is much simpler; game 
developers only need to define the game rules and design user 
interfaces. In Running Bomber’s case, complexities such as 
processing acceleration data and recognizing the motion are 
completely handled by SeeMon while the game rules can be 
reduced to a simple CMQ registration with SeeMon. 

SympaThings, an application inspired by affective computing, is 
a demonstration of SeeMon’s wide applicability. SympaThings runs 
on a wearable device and controls nearby smart objects to 
sympathize with a person’s affective context. For example, a picture 
frame changes the picture inside and a lighting fixture adjusts its 
color (e.g., red color for the high degree of strain or yellow color for 
the low degree of strain). Efficient processing is crucial in the 
operating environment of SympaThings: high-rate data from BVP 
and GSR sensors, and many queries for nearby smart objects. 
SeeMon’s shared and incremental processing is essential to satisfy 
these requirements. SympaThings is a collaborative project with 
HCI Lab of ICU and Semiconductor System Lab of KAIST. Figure 
11 shows the demonstration of SympaThings at Nextcom Show 
2007. 

7. EXPERIMETS 
7.1 Experimental Setup 
We have conducted extensive experiments to evaluate the 
scalability and energy efficiency of SeeMon. We generated sensor 
data and CMQ workloads based on our motivating environment. 
First, we produced a data workload by collecting raw sensor data 
from the daily activities of a person. For data collection, a student in 
our laboratory carried a UMPC with eight sensors for 12 hours in 
campus. The eight sensors were a light sensor, a temperature 
/humidity sensor, three 2-axial acceleration sensors, a GPS sensor, 
and two software sensors for time and indoor location (see Table 2 
for details). The total data rate was 291.74 Hz. Feature data was 
generated from the sensor data with the rate of 68.06 Hz. We 
implemented a simple data sender to replay and feed the collected 
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data to SeeMon. Thus, we were able to conduct our experiments 
multiple times under the same data workload. 

We synthetically generated CMQ workloads to simulate 
numerous CMQs registered by multiple applications. They reflected 
various monitoring conditions on different types of contexts. We 
generated different sets of CMQs with four parameters: the number 
of CMQs, the number of context elements per CMQ, the 
distributions of context types and values in context elements. (see 
Table 2 for the possible context types and values) The default CMQ 
settings were four context elements per CMQ with uniform 
distributions for selecting context types and values. 

For all experiments, we ran SeeMon on the UX27LN UMPC. We 
scaled down the CPU frequency to 200MHz to validate our system 
under a resource-limited mobile environment5. Memory constraints 
were not seriously considered since SeeMon consumes less than 5 
MB even with 2,000 registered CMQs. This amount of memory is 
reasonable for most smart phones. The default sensor control policy 
was the aggressive policy. 

7.2 Scalability 
In this experiment, we compare the scalability of SeeMon with that 
of an alternative approach called context recognition-based 
monitoring method, which carefully models existing context-aware 
systems [13][14][15][16]. It receives and pre-processes continuously 
arriving data from sensors, processes the data to recognize contexts, 
and evaluates monitoring queries to detect specified context changes 
as shown in Figure 1. We assume that the alternative processes each 
query independently since existing work does not consider the 
efficient shared processing of concurrent queries. 

We measure the scalability in terms of throughput while 
increasing input data scale from 1 to 7. Throughput is the maximum 
number of queries that can be handled without causing system 
overload6. Data scale 1 is the data workload under our initial sensor 
settings described in Section 7.1. We synthetically increase the size 
of data workload by replicating data traces of data scale 1. At the 
data scale k, the number of sensors and data rate becomes k times 
larger than the initial sensor setting. We assume that the data scale 7, 
i.e., 56 sensors and 2100 samples/sec, is sufficient to represent a 
large-scale personal sensor network. We use query workloads 
generated by our default setting. 

Figure 12 demonstrates the high level of scalability of SeeMon. 
First, SeeMon scales well with data scale. Even under data scale 7, 
SeeMon can process 1400 queries, which is a reasonably large 
number, given the device’s limited computing resources (200MHz 
CPU) and the high rate of sensor data (2100 samples/sec). Note that 
such a high level of scalability is critical since the number of 
  

                                                                 
5 We consider widely used mobile devices, Nokia N95 (330MHz 
CPU, 64MB of RAM) and Samsung Blackjack (220MHz CPU, 
64MB of RAM). 
6 Currently, overload is determined by the size of the data queue 
which should be processed by the CMQ Processor. It is important 
to detect context changes without long delay. We assume a delay 
of a couple of seconds is tolerable. Accordingly, acceptable 
maximum queue size is set to three times of data rate. 
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sensors and data rate will dramatically increase to deal with 
broader and more accurate contexts. Second, SeeMon scales 
better than a context recognition-based monitoring method. For 
all data scales, the throughput of SeeMon is higher than that of the 
alternative. Furthermore, the benefit of SeeMon becomes 
relatively larger as data scale increases. At data scale 1, SeeMon 
processes three times more queries than the context recognition-
based monitoring method. However, it processes 4.6 times more 
queries at data scale 7. Such benefit mainly comes from the 
shared and incremental processing of SeeMon. In contrast, 
context recognition-based monitoring method processes 
monitoring queries independently. Moreover, it does not employ 
any incremental processing method which can accelerate repeated 
CMQ evaluation. Consequently, as data scale increases, the gap 
between SeeMon and the context recognition-based method 
becomes relatively larger. 

7.3 Energy Efficiency 
In this experiment, we evaluate the energy efficiency of SeeMon 
in terms of Transmission Reduction Ratio (TRR). TRR quantifies 
the amount of reduction in wireless transmission, which is the 
main factor of sensors’ energy consumption [36][25]. TRR is 
defined as follows. TRRi denotes a TRR of a sensor i, and TRRS 
denotes an averaged TRR of a sensor set S. 
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To evaluate the energy efficiency under various query 
workloads, we measured TRR as varying the number of registered 
CMQs, the number of context elements in a CMQ, and the 
context value distribution. Unless specified, the number of CMQs 
and context elements is fixed to 256 and 4, respectively. Context 
values follow a uniform distribution. Note that each TRR value is 
obtained by averaging TRRs of 10 repeated measurements. 

  Figure 13 shows TRRS, where s is the whole sensor set in 
Table 3, as we increase the number of CMQs. SeeMon reduces 
more than 90% of data transmissions when the number of CMQs 
is fewer than 256. Even with 4096 queries, more than 60% of data 
transmissions are eliminated. Such energy efficiency is achieved 
through the ESS mechanism, which turns on only a small number 
of sensors to evaluate all registered CMQs. The high level of 
energy efficiency is critical in our target environments since high-
rate communication between a mobile device and a large number 
of sensors will shorten the battery life of the mobile device and 
the sensors. In addition, we observe that TRR decreases as the 
number of CMQs increases. This is mainly due to the increase in 
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the number of true-state CMQs. More true-state CMQs make 
more sensors active, which decreases TRR. 

Table 3 describes the inactive time and TRRi of each sensor 
when 16, 256 and 4096 CMQs are registered. Interestingly, 
acceleration sensors show much higher TRRs than other sensors. 
Since the transmission rate of the acceleration sensor is the 
highest, sensor control mechanism of SeeMon frequently excludes 
the acceleration sensors from the ESS, thereby increasing TRR. 
This confirms that the transmission rate of sensors is correctly 
reflected in the ESS calculation algorithm. The GPS sensor, timer 
and indoor location sensor are always included in the ESS. Note 
that the GPS sensor is not programmable. The timer and the 
indoor sensor are software sensors, and thus there are no wireless 
transmissions to eliminate. 

In our second experiment, we measure TRRS as increasing the 
number of context elements in a CMQ. Figure 14 demonstrates 
that TRR increases as the number of context elements increases. 
There are two main reasons for this. First, the number of active 
sensors for true-state CMQs decreases. As the number of context 
elements increases, CMQs are more likely to be false-state due to 
their CNF structure. The reduction in true-state CMQs results in 
fewer active sensors for them. Second, the number of active 
sensors for false-state CMQs decreases. As the number of context 
elements increases, the number of context elements associated 
with a sensor increases. Then, the number of false-state CMQs 
associated with the sensor also increases. Therefore, all false-state 
CMQs can be covered by fewer sensors. 

To investigate the effect of query distribution, we generate 
three different CMQ distributions and measure TRR with them. 
To model three different realistic distributions of context element 
values, we generate Stat, Inverse-Stat, and Uniform distributions. 
The Stat distribution represents a common querying pattern in 
which users are interested in frequently occurring context values. 
The Inver-Stat distribution represents the opposite case. By 
analyzing our real data trace, we extract the probability density of 
each context value, and then generate Stat and Inverse-Stat 
distributions. The Uniform distribution is used for a primitive 
comparison. The number of CMQs is varied from 4 to 4096, and 
the number of context elements is fixed to 4. 

  Figure 15 shows TRR according to the CMQ distributions. 
The key observation is that the Stat and Inverse-Stat distributions 
show the lowest and the highest TRRs, respectively. This holds 
regardless of the number of queries. In the Stat distribution, most 
CMQs contain frequently occurring context values. Thus, the 
state of the CMQs can be true with a high probability. 
Corresponding sensors have to be active, resulting in the lower 
TRR. In contrast, sensors in the Inverse-Stat distribution are likely 
to be inactive, resulting in the higher TRR. 

7.4 Processing-Energy Efficiency Tradeoff 
This experiment shows a tradeoff between processing efficiency 
and energy efficiency determined by the sensor control policies 
described in Section 5.3. Such a tradeoff characteristic is very 
important to adapt SeeMon to various computing- and battery-
resource environments. We measure throughput as a processing 
efficiency metric and TRR as an energy efficiency metric while 
varying STL threshold values. Note that threshold 0 represents the 
aggressive policy. Similar to the previous experiment, the data 

scale 7 is used as a sensor data workload and a query workload is 
generated with the default setting. 

Figure 16 shows a tradeoff between throughput and TRR. As 
we expected, the aggressive policy (threshold 0) shows the 
highest TRR, but shows the lowest throughput. As an STL 
threshold value increases, the TRR linearly decreases, but the 
throughput increases accordingly. Compared to the aggressive 
policy, the conservative policy with threshold 0.7 achieves 4.2 
times greater throughput with 3.6 times less TRR. Such results are 
mainly due to SeeMon performing complex ESS calculations less 
frequently with a higher STL threshold value. Thus, the energy 
efficiency degrades while processing efficiency is enhanced. 

8. CONCLUTION 
We have presented SeeMon, a scalable and energy-efficient 
context monitoring framework for sensor-rich and resource-
limited mobile environments. The key idea behind SeeMon is 
twofold. First, context monitoring in SeeMon focuses on the 
continuous detection of context changes. Second, SeeMon 
approaches the context monitoring problem in a bi-directional 
way. Applying the bi-directional approach, SeeMon achieves a 
high degree of efficiency in computation and energy consumption. 
We implemented the prototype of SeeMon system architecture, 
carefully applying scalable CMQ processing and energy-efficient 
sensor control mechanisms. We also developed several example 
applications on top of it, in which SeeMon plays a critical role as 
an underlying context-monitoring platform. 

Table 3. TRR of each sensor 

16 256 4096

ID Name Inactive 
Time(s) TRR Inactive 

Time(s) TRR Inactive 
Time(s) TRR

0 Light 21092 0.4554 11427 0.2467 205 0.0044

1 Temperature 21100 0.4556 42 0.0009 1 0

2 Humidity 18091 0.3906 28 0.0006 75 0.0016

3

Acceleration 
(we assign a 
sensor ID per  

axis)

46234 0.9984 45145 0.9748 33439 0.7220

4 46296 0.9997 455971 0.9846 30749 0.6640

5 46048 0.9943 37905 0.8185 7519 0.1623

6 462944 0.9996 45003 0.9718 36743 0.7934

7 462938 0.9996 44903 0.9696 32821 0.7087

8 46300 0.9998 45844 0.9899 42142 0.9100

Sensor # of CMQ
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