O Copyright by Carl Myers Kadie, 1995



SEER: MAXIMUM LIKELIHOOD REGRESSION
FOR LEARNING-SPEED CURVES

BY
CARL MYERS KADIE

B.S., University of lllinois, 1985
M.S., University of lllinois, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1995

Urbana, lllinois



Seer: Maximum Likelihood Regression

for Learning-Speed Curves

Carl Myers Kadie
Department of Computer Science
University of lllinois at Urbana-Champaign, 1995
David C. Wilkins, Advisor

The research presented here focuses on modding machine-learning performance. The thesis
introduces See, a system that generates empirical observations of classficationlearning performance
and then uses those observations to create statistical moddls. The modds can be used to predict the
number of training examples neaded to achieve a desired leve and the maximum accuracy possble given
an unlimited number of training examples. Sea advances the state of the art with 1) modes that embody
the best constraints for clasdfication learning and most useful parameters, 2) algorithms that efficiently
find maximum-likelihood moddls, and 3) a demonstration onreal-world data from three domains of a

practicable application of such modeling.

The first part of the thesis gives an owerview of the requirements for a good maximum-likelihood
modd of clasdficationtlearning performance. Next, reasonable design choices for such modds are
explored. Selection amongsuch moddsis atask of norinear programming, but by exploiting appropriate
problem constraints, the task is reduced to a norlinear regresson task that can be solved with an efficient
iterative algorithm. The latter part of the thesis describes almost 100 experiments in the domains of
soybean dsease, heart disease, and audiological problems. The tests ow that See is excdlent at
characterizing learning-performance and that it seems to be as good as possble at predicting learning
performance. Finally, recommendations for chocsing a regresson modd for a particular situation are

made and directions for further research are identified.
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1. Introduction

Inductive learning methods now routingly create the initial knowledge base of clasdfication expert
systems from a library of classfied examples [Gervarter, 1987. Researchers have developed effective

inductive learning methods for a variety of classification expert system representations. These include:

» the back propagation method for artificial neural networks [Hinton, 1989, the ID3 and PLS
algorithms for decision trees [Quinlan, 1986; Rendell, 1986],

« the AQ15 and C4.5 methods for production rules [Michalski, 1986; Quinlan, 1992],
» parameter adjustment for Perceptrons [Minsky and Papert, 1988],

» the genetic algorithm for Holland classifiers [Booker, 1989],

« the Protos method for case-based systems [Porter, 1990], and

» algorithms for belief networks [Cooper, 1992].

For the expert system developer using these inductive approaches, the major effort in terms of time and
cost is usually the creation d the library of clasdfied cases. In damains sich as equipment and medical
diagnasis the data coll ection and encoding d a singe case can take days of effort and considerable cost.
Regresson onlearning performance as a tod in the creation d classfied examples off ers these benefits:
regresson modds can tel whether the induction program can achieve a required level of classfication
acauracy in a particular domain. This is important because the clasdfication level achievable by
induction \aries greatly from problem domain to problem domain. Shavlik et al. [199] and Weiss
[199] reported variation ranging from 55% to 100%. If a developer requires a leve of classfication
acauracy for a particular domain and this level is achievable by induction, regresson models can also
specify the approximate number of clasdfied cases that the developer must coll ect to achieve the desired

accuracy.

This thesis presents See, a system that generates observations of inductive-classficationlearning
performance and then uses those observations to create modds of learning performance. Compared to
earlier systems, Sea offers better and more useful modds of learning performance, the ability to

eficiently find the maximumtlikdihoodmodd, and \alidation with a practical inductive learning system



(C4.5) on the real-world dagnasis domains of soybean disease, heart disease, and audiological proems.
In a broader sense, regresson is among the most important tods in experimental science. It allows fields
as diverse as biometrics and econametrics make strong scientific conclusions based on the results of
empirical observation. Seeg shows how regresson can be a practical analysis tod for the fidd o

empirical machine learning.

The rest of this chapter offers a brief overview of the important ideas of the thesis. It defines
inductive clasdfication learning task and the task of regresson onlearning-performance data. It then lists

the goals of this research. Finally, it previews the other chapters of this thesis.

1.1. Inductive Classification Learning

Inductive clasdfication learning is the type of learning that See modds and about which it makes
predictions. An instance of (inductive classification) learning has 6 components:

* Anexample space, E, of examples, ey, &, &, ... described in terms of attributes. For example,

here is ark and are;, (from a made-up domain):

E ={00...100} x{red,blue,green} x {true;false}

e =(34,blugtrue)

e Aclass spaceC. For example:

C ={star, galaxy}
» Atargetfunction,T:E — C, drawn from a space of possible targets

If 2.3 < brightness < 4.0 and
color in {red, blue}
then if symetric then dangerous
el se nor nal
el se nor nal

» A sa of clasdfied training examples in ExC drawn independently according to some fixed by
unknown probability distributio®



{((3.4, blue, true), dangerous)....., (94, red, true), normal >}

* A clasdfication rule (or hypothesis), H:E - Cproduced by a learning program (e.g. C4.5)

from the training examples

If color in {blue}
then if brightness < 5.0 then dangerous
el se nor nal
el se nor nal

* A set of labeledesting exampledrawn according tD

The acauracy of a clasdfication rule is the fraction d testing examples it clasdfies the same as the

target.

1.2. Regression on Inductive Learning

The problem addressed by See is modding and predicting learning performance based onlearning-
performance data. The input to Sea has two parts. a set of classfied examples and an inductive learning
program, such as C4.5. Figure 1.1 gives an example of classfied examples from the domain o

audiological problems.

t,mld,t,?, ... ,p3,mxed_cochlear_age fixation
t,mld, t,?, ... ,p4,mxed cochlear_age otitis_nedia
f,mld, f,normal, ... ,p8,cochlear_unknown

t,normal ,f,elevated, ... ,t26,cochlear_age_and noise

Figure 1.1 Classified examples from the domain of audiological problems -- Such examples are

part of the input to Seer. Each line is an example. The last value in the line is the example’s
classification. Chapter 5 gives more details of the Audiological and other real-world domains
used in this thesis.

The output of Seer is a model of learning performance that can questions such as:

1. How many examples like these would the learner need to achieve 78.8% accuracy?

2. What accuracy would be possible if unlimited example®agailable?



3. Factoring aut the dfects of noise, skewed classs, and multiple classes, what Vapnik-
Chervonenkis dimension would produce worst-case learning performance most like the

performance observed?

4. How would stratified sampling (changing the proportion d examples of each clasg affect

learning?

Sea’s lution approach has two parts. Firgt, it uses the clasdfied examples to generate learning-
performance data. Figure 1.2 shows a plot of learning-performance data. Each dd in the plot shows the
result of one run o the learning program. For each run, See splits the clasdfied examples into three
digoint sets: training examples, testing examples, and a possbly empty set of unused examples. The
learning program is run on the training examples and the classfication rule produced is tested onthe
testing examples. In the plot, the x-axis $hows the number of training examples. The y-axis shows the

accuracy of the classification rule on the testing examples.
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Figure 1.2 Learning-performance data -- Each dot shows the accuracy of a classification rule
created with the number of training examples specified by-&hxés.



The second part of Sea’s lution approach is to find a good fitting modd for the learning
performance data. Figure 1.3 shows the modd that See creates for the learning performance data of
Figure 1.2.. The thick line shows the deterministic part of the modd. A nondgterministic part of the
modd, nat shown, predicts how far the “accuracy das’ will scatter from the thick line. The datted lineis

the model’s prediction of the largest possible accuracy.

©
o
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Figure 1.3 The thick curve shows the deterministic part of the learning-performance model
created by Seer. The dotted line is the model’s prediction of the largest achievable accuracy. Tk
model predicts that the expected number of examples needed. The diamond shows that the act
accuracy achieved with 218 examples is very close to the 78.8% that the model predicted.

From the modd, See can predict answers to the questions posed at the beginning d this sction. (See

Chapter 5 for representative examples of Seer’s predictions.)

1. How mary examples like these would the learner need to achieve 78.8% accuracy?

The modd predicts that with 218 examples the learner would achieve 78.8%. The diamondin Figure 1.3

shows the actual accuracy achieved with 218 examples. It is very close to what is predicted.



2. What accuracy would be possible if unlimited examples were available?

The model predicts a maximum accuracy of 86.2%.

3. Factoring aut the dfects of noise, skewed classs, and multiple classes, what Vapnik-
Chervonenkis dimension would produce worst-case learning performance most like the

performance observed?

Sed can create a modd that predicting that a learning task with a VC dimension d=0.559 would have a
worst-case learning performance similar to the performance observed. (SeeChapter 4 for details of how

the VC dimension is generalized to real-number values and to values less than 1.)

4. How would stratified sampling (changing the proportion d examples of each clasg affect

learning?

The modd’s start parameter has value 0.149 and its skew parameter has value 1.191. Chapter 4 detail s

how these parameters model the effect of class frequencies on learning performance.

1.3. Overview of Thesis

Thethesis is organized as follows. Chapter 2 describes previous work in threeareas. Its first section
reviews theoretical work on learning performance. Its second section dscusses work characterizing the
form of learning curves. The third dscusses previous work onthe dfect of skew and multiple classs on
learning performance. Chapter 3 gives an owerview of learning-performance modds. It defines them and
argues that maximum-likelihood is the most appropriate criterion by which to sdect among them. It
shows why popular regresson methods, such as ordinary linear regresson, are inappropriate for learning
data and it demonstrates how to generate learning-performance data from a rdatively small set of
classfied examples. Chapter 4 treats the sdection d a set of canddate modds as a design problem and
enumerates me possble design chaces for both the deterministic and nondterministic part of the
modes. The chapter also develops a heuristic modd of the dfect of naise, skewed classes and multiple
classss onlearning. Finally, it shows how to reduce the difficult problem of findng the best modd from a
sat of candidates to a problem of norlinear regresson that can be solved with an efficient iterative

algorithm. In Chapter 5, the modds are put to the test in a series of almost 100 experiments on real data



from threediagnasis domains: soybean disease, heart disease, and audiological problem. The chapter also
provides an analysis of the experiments. The thesis concludes with Chapter 6, which provides a summary

and suggestions for future work.



2. Related Work

Researchers have been creating modds of learning performance since at least 1919 [Thorstone,
1919. This chapter divides previous work into two approaches. Section 2.1 describes theoretical
approaches, concentrating on computational learning theory. Section 2.2 covers empirical approaches
and includes a table summarizing previous curve-fitting approaches and showing hav See advances the
state of the art. Finally, Section 2.3 describes gecific previous work rated to predicting the dfect of

multiple classes and skewed classes on learning.

2.1. Theoretical Approaches: Computational Learning Theory

Work in computational learning theory (CLT) goes back at least to Gold [1967], but the work most
relevant to this thesis garted with Valiant [1984. In that paper, Valiant introduced what is now called
probably-approximatdy-correct (PAC) learning. Roughly, a set of concepts is sid to be PAC learnable
if any concept in the set can be learned, with probability 1-6, to within error lessthan €, in time (and

training-example set size) polynomial id Bhd 1¢.

Blumer et al. [1989 refined Valiant's approach by introducing Vapnik-Chervonenkis (VC)
dimension analysis. VC analysis can be used to measure the epresshility of some representation
schemes and to show if the schemes are PAC learnable. In addtion to showing what is learning in
polynomial time (and with a polynomial nhumber of examples), computational learning theory is also used
to determine worst-case learning performance bounds. Shawe-Taylor et al. [1993 give this upper bound
on the number of training examples neaded to learn any concept in a concept set with VC dimension, d
(>=2):

d 6
Iog(m) +2d Iog(;)

(1-+e)e (2.1)

m=m,(&,9,d) =



For practical problems, such as estimating the number of addtional classfied learning examples
needed to achieve a classfication rule with some desired accuracy, computational learning theory is of
limited utility. One limitation is that, to date, CLT only has results for classfication rules with ssimple
representations, such as 3-term conjunctive narmal form functions. Developers cannd easily use
computational learning theory on machine learning's dandard representations auch as the ID3 decision
tree and the AQL5 rule representations, although research is procedaling in this direction. Anather
limitation is that most computational learning theory analyzes only worst-case problems and classfied-
example distributions; the resulting learning-performance curves are very difference from the average-
case analysis neaded to predict learning performance within the context of a real-world application. A
third limitation is that the Vapnik-Chervonenkis dimension approach used by computational learning
theory canna quantify the dfect of noise, and essntially all real-world damains to an inductive learning
program will have some degreeof nase. Finaly, computational learning theory generally analyzes only
consistent learning algorithms, algarithms that produce classfication rules that are cornsistent with all
training examples. They ignae the lessthan-consistent algorithms used for real-world problems. A less
than-consistent algorithm employs a stronger inductive bias to guide the search for a generalization d the

data, such as heuristically trying to choose the generalization with the fewest numbers of disjunctions.

With time some or all of these limitations might be overcome, and there are some hopeful signs of
progress For example, the works of Kearns and Schapire [1989 and Goldman and Sloan [1997 deal
with worst-case learning in the presence of noise. The works of Pazzani and Sarrett [199(Q, Hirschberg
and Pazzani [199]], Iba and Langey [1993, and Landey et al. [1997 describe methods that produce
average-case analysis for some simpleinduction algarithms. The work of Ehrenfeucht and Hausder deals
with worst-case learning d a less heuristic variant of the 1D3 algarithm [Ehrenfeucht and Hausder,
1989. To date, these techniques are nat suitable for everyday use. For example, Iba and Langey [1992
perform an average-case analysis of a simple machine learning algorithm that creates one-leve “decision
trees’. The resultant learning-performance modd is a complex combinatorial expresson that could take
more computer time to evaluate that would be taken to actualy run a learning expresson [Landey,
personal communications, 1994. This diminates any advantage that analytic methods might have over

empirical approaches.
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2.2. Empirical Approaches

In contrast to the theoretical approaches that start with some modd of the learning task and then
predict (or bounds) learning performance, empirical approaches gart with doservations of learning
performance. Sometimes these observations are used to sdect a modd from a set of modds; sometimes

they stand on their own.
2.2.1. Learning Performance Analysis Without Model Selection

The work of Gaines [1989 is an empirical exploration d how the qudity of training examples
created by an expert (called the expert’s case library) affects the number of training examples needed

create a satisfactory set of rules via induction.

Gaines used the INDUCT knowledge acquisition tod in the domain o diagnases of corntact lens. He
found that INDUCT created satisfactory rules when INDUCT was suppied with 18 “critical cases.”
This number of neaded cases, however, jumped to 90 cases when INDUCT was auppied with a
representative sample of “merdy correct cases.” In addtion, INDUCT could still create satisfactory rules
even if these correct expert cases contained 25% errors; however, it then required 326 cases. Moreover,
the number of cases required jumped to 1970 cases when the cases contained 10% error and 1 irrlevant
attribute on the average. Gaines' research results demonstrate how the quality of the data dramatically

affects the number of library cases required for induction.

Note that the method used by Gaines is empirical in rature. The determination d the dfect of a
particular amount of naise, irrdevant attributes and the like was calculated by running more and more

cases under a particular set of conditions until a satisfactory set of rules was obtained.

Seqa also gathers observations of learning performance, but in addtion it has a set of canddate
modes—for example, a family of curves. It sdects the modd from the modd set that best fits the data. If
that data is representative and the modd set is appropriate, the resulting modd may be useful for
predicting future learning performance over a wider range condtions that was observed. For example,
Sea might be able to predict that approximatdy 2000 cases are required when the cases contain 10%

errors, without having to construct and run 2000 cases with these characteristics.
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2.2.2. Learning Performance Analysis With Model Selection

This sction reviews 75 years of research analyzing learning-performance data by fitting modds to

the data and highlighting Seer’s unique contributions.
Table2.1 summarizes the section’s conclusions.

Over the years researchers in many fidds have fit many curves (sets of canddate learning-
performance modds) to learning-performance data from many kinds of learning. The most popular

candidate curves have been on these orders:

Exponential: logf) = m (2.2)
Hyperbolic:e = 1/m (2.3)
Power Law £ = 1/ (2.4)
Logit: logit[e] = m (2.5)

where mis the number of training examples and € is me measure of error or reaction time., The most
popular kinds of learning considered have been skill acquisition (also called speed-up learning) and
clasdfication learning. A rat learning to run a maze faster is an example of skill 1earning. The time to

complete the maze would be

Quantitative modding d learning was first considered in the fidd o experimental psychdogy. In
Tharstone s 1919analysis of 40 curve shapes correspondng to data derived from humans learning to use
a typewriter, he concluded that the hyperbolic aurve fit best. . Mazur and Hastie [1979 reviewed of 75
years of debate in the psychdogical community about whether learning curves are exponential or
hyperbalic. They then put these two curve famili es to the test on a word-recall task and concluded that
the hyperbolic fits the data better.



Summary T19 M72 N81  A89 K91 C92 192 A93 S93 Seq
Applied to classfication N N N N Y Y Y Y Y Y
leaning [1]
Applied to practical machine N N N N Y Y N Y Y Y
leaners?2)
Put to practical use?
Used for acauracy prediction? Y
(not just testing fit)
Orders considered (e.g. 1og, 1Um log, log, 1m, 1Um 1m, [3] 1Um al 1m,
/m*,1/m)d and m Um*, 1m" log(e) m*,
others 1Um logt
Uses VC bounds? N N N N Y Y N N Y Y
Uses tightest VC bounds? N/A N/A N/A N/A N N N/A  N/A Y Y
Model's noisy concepts? Y Y Y N/A N N Y N N Y
Applied empirically to Y Y Y Y Y Y Y N N Y
leaning performance data?
Applied to leaning on Y Y Y Y N N N N/A N Y
“natural” examples
Applied to binary-response Y Y N Y Y Y Y N/A  N/A Y
data?[1]
Finds maximum-likeli hood N N N/A N N N N/A N/A  NA Y
models
Uses a discrete distribution? N N N/A N N N Y N/A  N/A Y
Binomial distribution? N/A N/A N/A N/A N/A N/A N/A  N/A N/A Y
Beta-binomial distribution? N/A N/A N/A N/A N/A N/A N/A  N/A N/A
Notes:
. . . . . . . KEY
[1] Other kinds of learning ae skill | earning (where reaction time is | |92 Iba andLangey 1992
measured) and par-recll learning where the ahility to recall a word | A89  Anderson 1989
indexal by anather word is tested. Reaction times are continuows, not | A93  Amari 1993
binary. Pair-recall learning, like dassdfication learning, has a binary | C92  Cohen 1992
req:)oml K89 Kadie 1989
) ) ) ] K91  Kadie1991
[2] A practical machine learner is defined here as a learner stronger | M72  Mazur andHastie 1972
thanlinear perceptron. N81  Newel & Rosenbloom
1981
[3] The expresson cerived is a complex @mbinatorial expressonthat | 119 | L. Thurstone 1919
can take longer to evaluate on acomputer than running the learning | s93  Shaw-Taylor 1993
experiment it isdesigned to predict. Seg  Thisthesis

Table 2.1 Summary of previous work on the shape of learning curves

12
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Newdl & Rosenbloom [1981 bridged the gap between psychdogy and artificial intelli gence.
Corcentrating onskill 1earning, they reviewed work with skill -learning curves back to 1926 They also

tested the applicability of the Power Law to a dozen skill-acquisition domains, concluding:

“There exists a ubiquitous quantitative law of practice: It appears to follow a power law’
that is, plotting the logarithm of the time to perform a task against the logarithm of the trial
number always yields a straight line, more or less. We shall refer to this law variously as the log

log linear learning law or the power law of practice.”

Anderson [1989 showed that the Power Law of Learning could be a consequence of “rational” memory
retrieval. He also referred to aher moddls of memory and skill | earning that are consistent with the Power
Law of Learning. Logan [1992 gave a useful overview of Power Law research onskill acquisition since
1981.

Kadie [199] analyzed constructive-inductive clasdfication learning by fitting a modd/curve based
on the VC dimension bound to learning-performance data. The least squares fit resulted in an R? of

greater than 0.99

Amari [1993 reviewed “1/m results’ from the fidds of general stochastic descent dynamics,
computational learning theory, statistical mechanics, information theory, and Bayesian statistics. Cohen
[1993 reviewed “1/m’ computational learning theory work. Cohen fit linear perceptron and a more
complex artificial neural net to synthetic data from artificial targets and found some synthetic problems

in which the exponential models fit better and some where the hyperbolic models fit better.

This thesis does nat examine spead-up learning. Its general goal is to provide the fidd o empirical
machine learning with a practical and useful regresson tod for classfication learning. It extends the

work of Kadie [1991] and the others’ work in three ways.

L ear ning-performance models: Best constraints and most useful parameters -- We will seein
Chapter 5 that al modds of the same order (e.g., hyperbalic) fit the (classfication) learning
performance data éout equally well. What diff erentiates modds is nat their general shape but

the detail s of their constraints and parameters. For example, unlike See, many learning modds
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do nd capture the constraint that classfication accuracy is bounded by 0.0 and 1.0. Such models
can predict expected accuracies lessthan O for low m values. Also, many models treat variance
as continuously distributed. Such modds can erroneously predict that it is possble to achieve
101% clasdfication accuracy. Chapter 4 will show that See correctly modds variance as a
discrete distribution and that it can dstinguish between variance caused by variation in the
training examples from variance cause by variation in the testing examples. Like most of the
modds, Sea has a parameter, max, that modes naise. Unlike the other modds, it also has
parameters, start and skew, that directly measure (and can be used to predict) the dfect of
multiple classes and skewed classes. Also, unlike other modds, its measure of learning dfficulty,
d, can be calibrated to correspond to the Vapnik-Chervonenkis dimension from computational

learning theory.

Fitting criteria and algorithm: Finds maximum-likelihood models efficiently -- As the quotation
from Newdl & Rosenbloom [198] above suggests, many systems do curve fitting by first
transforming the data and then applying linear regresson. This introduces two problems. First,
the procedure can fail. For example, if a learner’s imperfect classfication rule just happens to
correctly classfy 5 of 5 examples, the observed error is 0. The fact that the logarithm of O is
undefined results in the failure of the procedure. The second problem is that a least-squares fit
does nat find the maximum-likedihood modd for classfication learning. Even if norlinear
regresson is used rather than linear regresson, least-squares fit only finds the maximum-
likeihoodmodd if the data is cortinuous and the variance is constant. Neither assumption hdds
for (classfication) learning-performance data. (See Section 3.1.) Sea works directly onthe data
(no transformations), finds the maximum-likeihood modd directly, and makes the reasonable
asaumption that variance, rather than being constant, is determined by the binomial or similar
discrete distribution. This would seen to make Seea’s fitting task one of difficult norlinear
progrcamming, but as Section 4.4 details, See is able to reduce the problem to norinear

regression and which it can solve with a quickly converging iterative algorithm.

Application and experimental validation: Demonstrates a practical application on real-world
data -- It is the author’s belief that Sea shows the first practical application for learning
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performance modding d machine learning chta, namey, the estimation d the number of training
examples neaded to develop a clasdfication expert system via induction. Related to this, it is one
of the few efforts used to make predictions, nat just characterizations. Although several other
eff orts have applied learning-performance modding to ndsy learning situations, See is the first
(within the author’s knowledge) to use naisy data produced by a practical machine learning
system such as C4.5. Experimentally, Seea provides (to the best of the authar’s knowledge), the
first learning-performance modding d a machine learning algarithm on “natural” learning
examples (See Chapter 5). The other previous machine learning work has ether been entirey
theoretical (and nd applied to any empirical data) or has been applied oy to synthetic learning

examples.

2.3. Effect of Skew and Multiple Classes on Learning Performance

One of the contributions of this thesis is an analysis of how skewed classes and multiple classes
affect learning performance and the learning curve. The analysis shows how classfrequency information
constrains the form of the curve. Previous work on the dfect of class frequencies developed from a

statistical design method callsttatification[Brewer, 1982].

In some statistical problems, examples can be chosen by class By way of ill ustration, a statistician
may decide to poll exactly 25 Libertarians and exactly 25 Repulicans even if Libertarians are less
frequent than Repulicans in the population being studied. Such a design would allow the statistician to
make better conclusions about Libertarians and about the differences between the two groups while

keeping cost constant relative to random sampling.

In inductive machine learning, work with skewed classes has concentrated on adapting algarithms
designed for even classfreguencies to work well with skewed classfrequencies. Buntine [1989 created a
decisiontreelearner that could be given classfrequency information. Catlett [1997] performed a series of
experiments on the dfect of reducing the number of examples in the most frequent class (so that the
learning algarithm would run faster). Although ke concluded this is a useful tod for some situations, he
bdieved that throwing away training examples (even from the most frequent clasg is nat a general

solution to the problem of scaling to large data sets.
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Quinlan [199] documented some of the difficulty of learning with two skewed classes and shows
how machine learners can minimize some of the difficulty by sdectively adopting a “when in daubt,

guess the most frequent class” policy.

Sea provides an explicit and predictive ampirical modd of the dfects that previous work has

observed.

2.4. Summary

Theoretical approaches of |learning-performance modding can be used, if enough is known about the
learning task, to predict bounds onlearning performance. However, for practical problems with ndse and
that use the best machine learning algarithms, theory cannd yet predict average-case performance.
Empirical approaches try to gather additional information, usually about a more narrow learning task, by
observing actual learning performance. This information can then be generalized into quantitative
modds. Sea does this by fitting a curve (a learning-performance modd) to doserved learning
performance data. It advances the state of the art with: 1) learning-performance modds that embody the
best constraints (for clasdfication learning) and most useful parameters 2) fitting algorithms that
eficiently find maximum+-likelihood modds, and 3) a demonstration, on real-world data, of a practical

application.
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3. Overview of Learning-Performance Models

Our ultimate goal is to create a statistical modd from observations of learning performance that can
predict future learning performance. This chapter addresses two prerequisite questions. First, given
enough learning-performance data and some candidate modds of learning performance, how do we
evaluate the fit of those modds on that data? Second how can we generate enough learning-performance

data from a relatively small number of classified examples?

For both questions, assume learning-performance data is a sat of tuples. Specifically, let
L,L,,---, L, represent w runs of the learning program. For each run o the learning program a tuple
<m,V;,ki> is recorded, where m is the number of training cases given to the inductive learning program, v;
is the number of testing cases the clasdfication rule clasdfies correctly, and k; is the number of cases
used to test the clasdfication rule created by the learning program.. Figure 3.1 shows an example plot of
m vs.yi/ki.

0.6

Accur acy

0.4

L L L L
50 100 150 200 250
Nunber of Training Exanpl es

Figure 3.1 Learning-performance data. The horizontal axigjshe number of training
examples. The vertical axisyigk;, the fraction of testing examples the learner’s classification
rule correctly classifies.
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3.1. Good-Fitting Models of Learning-Performance
This section will answer the question “What is a good-fitting model of learning performance?”.

3.1.1. Models of Learning Performance

A modd is a function from m, the number of training examples, to a probability density. Given a
value m, the number of training examples, and k, the number of testing examples, a modd predicts the
probability of each posshle value of y, the number of correctly classfied examples. Regresson models
are often defined in two parts: a deterministic part and a nondterministic part [Aldrich and Nelson,
1984 McClave and Dietrich, 1988. For example, in the modd in Figure 3.2a, the deterministic part of
the modd has the form of a line z=a+bm, and the nondterministic part of the modd is a narmal
distribution d fixed variance centered onz. Thisisthekind d modd found by ordinary linear regresson.
Figure 3.2b ill ustrates anather modd. Again, there is a deterministic part, in this case taking the form of
a curve, and a nondterministic part, in this case taking the form of a discrete probability density.
Chapter 4 will discuss pecific canddates for the curve and the density. For now, our focus is on what a

model does.

yik

a) m b)

Figure 3.2 Two statistical models
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3.1.2. Regression Methods

Regressonis well established as a fidd o statistics and includes many specific techniques, such as
ordinary linear regresson via least-squares minimization. This section shows why continuous-response

methods such as ordinary linear regression are not adequate for learning-performance data.

In situations with ore real-valued dependent variable and ore real-valued independent variable (that
is, continuows-resporse data), one can think o ordinary linear regresson as a method d finding the
straight line that best characterizes a set of observations. “Best” here means the line that minimizes the
sum of the squares of vertical distances between the data points and the line. Two properties of learning-
performance data make it inappropriate for ordinary linear regresson. First, learning curves (plots of m
vs. y/K) are nat typically linear. They range from 0% to 100% expected accuracy, typically rising quickly
and then slowly conwerging to a toward 100%. This violates ordinary-linear regresson's linearity
asaumption and results in predicted accuracies that are greater than 100%, such as 110%. Second
ordinary linear regresson (and many ather norlinear continuous response methods) assume that errors --
that is, diff erences between the data and the modd -- are distributed according to some constant variance.
In ather words, They assume that a situation where the modd predicts 30% accuracy and the data shows
50% is just as likdy as a situation where the modd predicts 9% accuracy and the data shows 7%
accuracy. In practice, the variance of the eror shrinks sgrificantly for learning-performance data & the

accuracy gets closer to 100%.

These problems can sometimes be overcome by transforming the data so that it has more appropriate

properties. For example, averaging doserved accuracy and then transforming it with the p’ = Iog(l— p)
function [or the function p' = ]/ (1— p)] will tend to linearize its relation with the number of training

examplesm. Such a transformation will also tend to make the variance of the errors more constant.

A problem remains, however, for all regresson methods that assume learning-performance data is
continuous-response, for example, by asauming that errors are normally distributed. Learning
performance data is binary-resporse data, nat cortinuous-response data; on each clasdfication test case,
the classfier will either have an accuracy of 0 or an accuracy of 1. If p(m) is the accuracy predicted by

the modd for a learning classfication rule based onm training examples, the @ror on a singe testing
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example will, with probability p(m), be 1-p(m) and will, with probability, 1-p(m), be 0-p(m). Thus, the
deviance between prediction and actual result will at best have a mean o zero and a variance ajual to
p(m)[1-p(m)]. In aher words, it is distributed dscretely according to the binomial (or some similar
distribution), nat continuously. Although the binomial distribution can sometimes be approximated with
the normal distribution, that approximationis nat accurate if the sample sizeis small or if p(m) is near 1.
Because small samples and accuracies near 1 are of special interest to us when predicting learning

performance, we should not use continuous-response regression on learning-performance data.

An alternative to continuous-response regresson is binary-response regresson. For some types of
continuous-response regresson, such as ordinary linear regresson, finding a least-squares fit produces
the modd with maximum likdihood Thisis nat true for binary-response regresson so that it is usual to
use other, usually more direct, but less efficient, methods for findng maximum-likelihood modes
[Cramer, 1986 Hosmer and Lemeshow, 1989. Chapter 4 demonstrates Sea’s use of norlinear

optimization to this end. The next section discuses maximum likelihood further.
3.1.3. Maximizing Likelihood

If our general gaal is to find the most probable modd from a set M, D{ M,, MZ,...}, given some

observed datB.:
FindM; O{ My, M, ...} that maximizesPr(M, |D) (3.1)
Then by Bayes'’ rule, this is the same task as:

Pr(M;) Pr(D[M,)

Find M; O{ M, M,,...} that maximizes
Pr(D)

(3.2)

If the number oM;’s is finite, all M's equiprobable (and that D is constant), this is the same task as:

FindM; O{M,, M, ...} that maximizesPr(D|M, ) (3.3)
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This asaumption is typical but usually implicit in the fidd o statistics [Cramer, 1986 p. 7]. It is the
reasonable given that no dher knowledge is available. The result is called the maximumtlikdihood

model

Consider a simple example of computing the likdihood d a modd given some learning-performance

data. Suppose the learning performance data is

{<100, 1, 1>, <100, 0, 0>, <150, 0, 1>, <150, 1, 1>, <200, 1, 1>, <200, 1, 1>}. (3.4)

Suppose furthermore one of our candidate modds predicts an expected accuracy of 0.70 for
classgfication rules based on100training examples, an expected accuracy of 0.80 for classfication rules
based on 150 training examples, and an expected accuracy of 0.90 for clasdfication rules based on200
training examples. Table 3.1 shows the likdihood calculation. Note that maximizing likdihood is

eguivalent to minimizing the log likelihood; this fact is used to simplify some calculations..

Learning Performance  Model's Predicted Likelihood Log (natural) Likelihood
Datum Expected Accuracy

<100, 1, 1> 0.70 0.70 -0.36
<100, 0, 1> 0.70 0.30 -1.20
<150, 0, 1> 0.80 0.20 -1.61
<150, 1, 1> 0.80 0.80 -0.22
<200, 1, 1> 0.90 0.90 -0.11
<200, 1, 1> 0.90 0.90 -0.11

Total: 0.027 -3.60.

Table 3.1 An example of computing the likelihood of a model

3.2. Generalized Cross-Validation

In many applications, a small, fixed set of examples (a case library) must suppdy both training
examples for the inductive learning program and testing examples for measuring the performance of the
clasdficationrule the program produces. This sctiontels how to collect learning performance data from

a small number of classified examples with a heuristic cgbeeralized cross-validation
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The standard statistical technique of crossvalidation (seeFigure 3.3) would try to solve the problem
by dividing the |N| classfied examples into v digoint subsets, each o approximate size |N|/v. Then it
would repeatedly hdd ore subset out for testing and gve the other examples in the other v-1 subsets to

the learner for training. The result would be learning-performance data of the form:

{< rnlvylvkl>! <rr]21y21k2>! ey <nq\lvyV1k\l>} (35)

where the m’s are the number of training examples given to the learner (approximately (v-1)|N|/v). The
k’'s are the number of testing examples (approximatdy |N|/v). The sum of the k’s will be eactly |N|
because each case is used as a testing example eactly once. The y's are the number of examples a

classification rule classified correctly. They will range in value between &.and

Input: A setN of classified examples

Procedure:

1. Shuffle order of examples

2. Partition into subsets (saysubsets):

3. For each subset, train on the others, test on it.
Run 1: Train oriN- S;; Teston $

Runi: Train on the seil- S ; Teston &

Output: {<my,y1, ki>,<mp,yo,k>, ..., myy k>,...}

Figure 3.3 The cross-validation procedure

As an example, if |[N| is101and v is 20, then each subset will have 5 or 6 cases in it and resultant

learning-performance data will look something like:

{<951 y116>1 <967y215>’ <961Y2015>} (36)
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Crossvalidationis goodin that it uses each case exactly oncefor testing. This means that they,'s are
independent with respect to the testing examples (but nat the training examples). Crossvalidation is
inappropriate for learning-performance analysis, however, because it only provides data for one or two
distinct values of m. In the example, it only provided data for m=95 and m=96. To do learning-

performance analysis, we need data for many distinct valunas of

To med this neal, See uses generalized crossvalidation, a new heuristic. The idea is to perform

cross-validation for each distinct valuenabf interest (se€igure 3.3.

Input: A setN of classified examples, setmfvalues of interest
Procedure:
For eachm:
a. Shuffle the order of the examples
b. Partition the examples intcsubsets:
c. For each subset;, S
Train onm examples randomly selected without replacement from thé-Set

Teston §
Output: {<my,yi 1, Ki 1>, <my, Y12k 2>, ooy Y ki>,. 3

Figure 3.4 The generalized cross-validation procedure

For example, suppose |N| is 101 and that one m-value of interest is 45. We could dvide the data into
threesubsets a, b, and ¢ of size 33, 34, and 34, respectively. Next we could create threepairs of training

data and testing data:
{<N-c, c>, <N-b, b>, <N-a, a>} (3.7)

Each pair consists of 1) the union d all but one subset and 2) the remaining subset. The first dement of
the pair is the training set. In the example, each training set has 67 or 68 examples in it. That is more
than we want, so we randamly sdect (without replacement) 45 examples from each training subset to

actually be used for training. The process is repeated foralues of interest.
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In the example, the data was divided in the threeinitial subsets. In general, it will be divided into v
. - -1
subsets. The only constraint is that the number of initial subsets v must be such that ET@NI >m. In

other words, it must be large enough that there will be enough training examples. In the experiments of

Chapter 5, the default valuewfs 10. For largem, it is the minimum value that meets the constraint.

With generalized crossvalidation, for each dstinct value of m, each o the |N| cases is used for
testing orce and oy once. Because we asaume the |N| cases are independent, learning performance data
with the same m value is independent (with respect to the testing examples). Learning performance data
with dfferent values of m, however, are nat independent with respect to the testing examples because the
same eamples used for testing when, say, m=49 are reused for testing when m=50. Considered as a
whde, the learning performance data is, thus, nat mutually independent. This will prevent us from
making some statistical conclusions that depend heavily on the indegpendence of the data. For example, it
will make it impossble to create good corfidence intervals on predictions because such corfidence
intervals depend ona goodestimate of variance and that requires independent data. This is unfortunate,

but it is inevitable when working with a small amount of data.

3.3. Conclusion

This chapter gave an owverview of the regresson problems on which See works. It defined the form
of learning-performance data of interest to See as a set of tuples, {<my,y;,ki>, <myyki>, ..}, wherem
is the number of training examples given to a learning program, k; is the number of testing examples
given to the learner’s clasdfication rule, and y; is the number of testing examples the classfication rule
classgfies correctly. The chapter also defined modds of learning performance. A modd is a function that
given the number of training examples, m, and the number of testing examples, k, a modd tels the
probability of correctly classfyingany y; number of examples. The chapter also showed how to apply the
nation (from the fidd o statistics) of maximum likeihood and that continuous-reposes regresson
methods will nat findng maximum-likdihood modds of the learning-performance data. Finally, the
chapter showed that when the total number of classfied examples is gnall, a new procedure called
generalized crossvalidation can be used to gather learning-performance data (at a cost of some statistical

independence).
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The next chapter gives the specifics of Sea’s regresgon. It detail s the learning-performance modds that
Sea considers and shows how Sea uses norinear optimization to find maximum-likelihood moddls of

learning performance.
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4. Candidate Models of Learning Performance:

Design and Selection Method

The previous chapter defined learning-performance modes and showed how the maximum-likelihood
criterion defines the best modd in a posshly infinite set of candidate modds. But which sets of canddate
modds sould we consider? And hav can we, algarithmically, find the best modd from a set? This
chapter answers these two questions. The chapter treats the first question (which sets of modds to
consider) as a threepart design problem: 1) designing the deterministic part of the modd for nase-free
learning with two equiprobable classs, 2) generalizing the deterministic modd to hande multiple
classss, skewed classes, and nase, and 3) designing the nondterministic part of the modd. Figure 4.1
gives an owerview of the design chaices considered. The chapter answers the second question (how to
algorithmically find the best modd from a set) in Section 4.4 which detail s the optimization techniques
used. This chapter draws no conclusions about which designs are best. That question will be addressed in

Chapter 5 by putting the designs to the test on real learning-performance data.

77727} LOgit _— > 4 12
Probit 2 Binomial -2 2
/ Beta-binomial |,
s 1y [Modelgen |7
55 [Burry ?: NoExp
3 4

— EDit

Figure 4.1 Design of sets of candidate models. We will start with sets of deterministic models

based on logit, probit, Burrand ED. Then we will add Modg|or NoExp (NoExp defined in
the next chapter) to improve fit when classification classes are skewed, multiple, or noisy.

Finally, we will add a nondeterministic component to the (sets of) models. The numbered paths

show the five designs put to the test on real data in Chapter 5.
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4.1. Candidate Deterministic Models

Recall from section 3.1.1 that the deterministic part of a learning-performance modd is the part that,
given the number of training examples provided to the learner, predicts the expected accuracy of the
learner’s hypothesis. (The nondsterministic part of the modd predicts the earor in the accuracy
prediction) This sction finds me reasonable and some unreasonable deterministic (sets of) modds.
The most interesting d these, the df ective-dimension learning-performance modd, is inspired by modds

of learning developed by computational learning theory.

All the modds considered will be binary-resporse modds, that is;, they predict number of
occurrences of some binary event. In the context of learning-performance data, they predict the expected
number of correctly classfied examples, y, when the learner’ s clasdfication rule is tested onk examples.
Put anather way, they predict the expected accuracy, y/k, on a set of testing examples, where accuracy

can range from 0 to 1.

This sction will start out assuming that the learning task of interest is two-class classfication (for
example, distinguishing healthy people from sick people). Also, it will assume that the two classes are
equally probable and that clasdfication is naisefree In the example, this would mean that it assumes
that it will be asked to clasdfy about the same number of healthy people as sck people and that any two
people with the identical symptoms will have the same clasdfication (either healthy o sick). Section 4.2
relaxes this assumption. It shows how to generalize a learning-performance modd of learning two,
equiprobable, naise-free classs into a learning-performance modd of learning multiple skewed classes

with noise.
4.1.1. Popular Binary-Response Models

A common way to approach the problem of choasing a deterministic modd is to try to find a link
function. Its inverse, a regresson modd, shauld fit the data well with few parameters (simplicity). Four

candidate link functions and their corresponding regression models are summariiele if. 1
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Link Function Corresponding Regression Model
Name Value Name Value
logit z= log(p/(1-p)) logistic e?
p= Z
1+e
probit z =01(p) normal p=P(2)
: — Epirl
EDit 2|og(1 6 p) EDmodel p = EDit(z)
Z=
(1-y1-p)1-p)
Burr, M 0 BurrModel p=27(z+1)
z= -
3

Table4.1 SEERS link functions and regression model®-is the cumulative distribution
function for the normal distributiom,is a predicted probability amd is the number of training
examples. The variableis (m-1)/eé-1, wherem isthe number of training examples ahis a
parameter

The two most commonly used link functions for binary-response regresson are logit and probit.
They are based onstatistical distributions [McCullagh and Nelder, 1989. The logt link function is the
inverse of the cumulative distribution function (CDF) for the logistic probability distribution. Logt's

inverse is called thiegistic regression modelt is defined as:

z

p=— (4.1)

C1+¢€
Figure 4.2a shows its plot. Because the logistic regresson modd is a CDF, it maps values from the

range-o to +o to the interval 0 to 1. The probit link function's inverse is called the normal

regresson model becauseit is the CDF of the standard namal distribution. Figure 4.2b plots the normal

regression model.
4.1.2. Models Inspired by Computational Learning Theory

EDit and Burr; are link functions especially designed to fit learning-performance curves. The EDit
link is inspired by results in computational learning theory [Shawe-Taylor et al., 1993. The next section
explains the rdationship. The Burr, link, a simplification d the EDit link, is of a classof functions (the
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inverse polynamials) that have been used for least-squares regresson [Nelder, 1964, but na (to the

author’s knowledge) for binary-response regression [Nelson, 1994].

a) 10 -5

b) =7 -2

X

e
1+¢*

Figure 4.2 a) Logistic modelp =

b) Probit (normal) modep = ®(X)
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4.1.2.1.The Effective-Dimension Model

Informally, the dfective dimension is just a backward version d the Vapnik-Chervonenkis (VC)
dimension [Blumer et al., 1984. It is a measure of complexity based on the epressveness of a

hypothesis (classification-rule) language.

Taking as input the complexity of the hypothesis gace of the learning problem, a given VC
dimension, d, defines a (worst-case) learning curve. In contrast, the dfective dimension d a learning
problem is defined by a learning curve. Given a set of learning-performance data, the df ective dimension
is the d that defines a curve that best fits the data. Thus, unlike the way that computational |earning
theory uses the VC dimension, effective dimension analysis can take advantage of existing empirical
performance data of an induction algarithm to make quantitative predictions of the behavior of the
learning algorithm if it was given addtional cases or was subjected to dff erent environmental condtions,

such as different levels of noise, irrelevant attributes, number of hidden units, etc.

Formally, Shawe-Taylor et al [1993 gives this upper bound onthe number of cases needed to learn

any hypothesis in a hypothesis space with VC dimension, d (>=2):

d 6
Iog(m) +2d Iog(g)

1-e)e

m=m,,(€,0,d) =

(4.2)

In these auations € is the maximum allowed error (and 1 minus the minimum required accuracy). J is
the minimum probability of failure. Logis natural logarithm. An intriguing aspect of this formulationis
that the VC-dimension approach dfers gdatistical guarantees about induction which we think o as

offering no guarantee.

The Shawe-Taylor et al. reation, as used in computational learning theory, is unsuitable as a
regresson modd for average-case learning. It is only defined oninteger d greater than 2, but even d=2
gives a slower raising learning curve than is typically seen with average-case learning. The first step to
defining the EDit link function d SEER is to change the VC bound so that it is defined onall nonregative

real-valued:



31

2Iog(§)
for constan®, X (&) =lim(m,.(&,6,d)/d) = —==— 4.3
co(€) = im(myc(&.80) o) = 5 4.3)
Also, the function is expressed in terms of accurpcsather than errok;
2Iog(16)
EDit,(p) = Xgo (1~ P) = P (4.9)

(1-y1-p)d-p)

EDit, corresponds to a fixed learning curve. To alow it to be fit to data, parameters must be added.

Putting in the effective dimension parametemllows the curve to expand and compress horizontally:

6
1- p)

(1-y1-p)2-p)

2dlog(

EDit,(p,d) =dx,,(1-p)= (4.5)

Figure 4.3 plots the original VC curve and EDit at d=2, the value of d at which they are most

different. Even here they are close.

0.9

0.8

0.6

0.5

200 400 600 800 1000 1200 1400

Figure 4.3 The solid line is the learning accuracy curve forrg. (1— p,0.5,d) for d=2. The
dashed line is foEDit, (p, d) for d=2.
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We will seein the next section that a learning curve for learning problems with two equiprobable
classs hould map ore training example to an accuracy of 0.5. We can do this with this curve by
shifting it to the left:

O 6 O
0 2|09(_7) 0
m= EDit, (p,d) =d(Xc,[1- p] - 32936 =dU. -32936- (4.6)
i - @(1—\/ D) -
The effective-dimension model is defined in terms of the inver&eof:
o= EDmodel(m d) = EDitgl(%zg%) 4.7)

Because EDit, is of the form zlog(z) it has no closed-form inverse. EDit, is, however,
differentiable, so its inverse can be computed rumerically using Newton's method For even geater
spedl, a table can store sdected values of EDitgl, and dher values can be determined via linear

interpolation.

4.1.2.2. The Burr,Model

The Burg model is similar in shape to, but simpler than, the EDmodel:
p = BurrModelg) = z/(z+1) (4.8)

where z = (m-1)/d+1. Nelder [1966 describes a classof regresson modds he calls inverse palynomial
models and develops procedures for using these modds with continuous-response data. The reciprocal
modd is a specialization d this classof modds. Aldrich and Nelson [1984 mention the function, which
they call Burr, as a canddate for regresson, but in personal communications Nelson[1994 says that, as
far as he knows, no ore has used it for regresson onbinary-response data before. See Chapter 2 for a

discussion of the use of similar functions with continuous-response data.
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4.1.3. A Comparison of the Deterministic Models

In this sction the four deterministic modds are compared. The comparison shows that the two modds
based oncomputational learning theory (EDmodd, based onEDit, and BurrModd, based onBurr;) have
different shapes than the better-known logistic and probit (normal) binary-response modds. We will see

in the next chapter that, as one might suspected, the learning-inspired modds fit and predict learning-
performance data better.

Figure 4.4 plots BurrModd, EDmodd, and the logistic and probit (normal) regresson modds fitted so
that all four intersect gi = 0.70 ang = 0.75.

1r

0.9}

L

Figured.4: Four regression models fitted to intersect at accuracies 0.70 and 0.75. The top two
curves are the logistic and probit (normal) regression models. The lower dashed line is
BurrModel. The lower solid line is EDmodel.

5 10 15 20 25

Figure 4.5 shows the slope in the curves of Figure 4.4 as a function d accuracy. It shows that
EDmodd and BurrModd are similar to each and quite different from the logistic modd and the narmal
modd. Figure 4.6 shows the ratio o EDit to Burry. It highlights the diff erence between EDit and Burr;.

As accuracy goes to 1, EDit becomes infinitely larger than,Burr
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Figure4.5: The slopes of the four curves as a function of accuracy. It shows that the logit and
probit models are much different than the new models designed for learning curves.
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Figure4.6: The ratio for EDit and Buyrras a function of accuracy. At high accuracies, the
functions are not identical
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4.2. Modeling the Effect of Multiple Classes, Skewed Classes, and

Noise

This sction develops a learning-performance modd for learning in the presence of multiple classes,
skewed classes, and nase. Like any good modd, it makes predictions. Three of the modd’s most

interesting predictions are:

1. The dfects of class &«ew and class multiplicity can be predicted from the class frequencies.

Actual learning-performance data need not be considered.

2. Oncethe dfects of skew, multiple classes, and nase are factored aut, learning performance can

be well characterized by a single parameter.

3. When classs are skewed, learning error does nat decrease linearly with the reciprocal of the

number of examples; rather, it decreases in a predictable exponential way with that reciprocal.

The learning-performance modd presented in this «ction is na meant to be a statement of

computational learning theory. Rather, it is meant to be a heuristic that will be tested empirically.

Intuitively, we would expect multiple dasses to make learning more difficult. For example, learning
to dstinguish 19 diseases shoud be harder than learning to distinguish two. Similarly, noise should also
make learning harder. For example, if 10% of the training and testing examples given to a learner have
the wrong classlabel, the ultimate achievable accuracy as measured onthose naisy testing examples is
reduced to at least 90%. On the other hand, skewed data can make learning easier. For example, suppose
the learning problem is skewed so that 95% of the training and testing data is of one class The learner
could be 95% accurate just by always guessng the most frequent class Even with just one training, the
learner would have a 95% chance of sedéng the most frequent class and thus by hypothesizing that

everything is of the class it sees, obtain an expected accuracy of at least 90.25%9698%%

The modd ultimately developed in this section, modd [z start,skew,max], is this parameterized

function from examplesn, to accuracyp (as illustrated ifFigure 4.7:
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p=mode . [(m-1)/d +Lstart,skew,max]

mode 5[(m _ 1)/d + 1] skeN(Logj/z[start/Z]—l) _ O.5§<5N(LOQ]/2[S‘an/2]—1) (4.9)

skew(Logy/2[ start/2]-1)

1-05

oo

= start + (max - start)

where:
« modd5[Z] is a learning-performance modd for the base case 2 classs, 50%/50% class
frequencies, no noise. One possible candidaiézisl), the BurrModel of Sectiofh.1.2.2
* dmeasures the learning rate.
e startis the expect accuracy when the number of training exanmplés,1.
» skewis a measure of skew. A value of 1 is the skew when all classes are equiprobable.

* maxis the highest possible expected accuracy. It is a measure of noise.

1 max modes

v

Figure 4.7 Function modgl{zstartskewmax mapsm, the number of examples, inothe
expected accuracy. It is defined in terms of a function rdadlellts d parameter expands or
contracts the curve along tRexis. Is startandmaxparameters define the low and high y-axis
values. Itsskewparameter makes the curve more concave or less concave.

The modd [z start,skew,max] learning-performance model depends on a modds[z] learning-
performance mode must be assumed. Section 4.1 discusses reasonable candidates for modds[Z]. Values

for start and skew can be determined from the class frequencies observed in the training examples
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(Section 4.2.5). Values for d and max can be determined with maximum likelihoodestimation. That is the
topic of Sectiort.2

4.2.1. Learning from Only One Example

As a base case, consider the learning performance of an inductive learning when it is given orly a
single training example. Its best strategy if it has no aher knowledge is to guesswhat it sees. That is, it

should hypothesize that all examples are of the same class as the only training example it has seen.

e Obsarvation4.1: If there are two classes each with probabili ty 0.5, the expected accuracy of the

guess-what-you-see classification rule on independent testing data is 0.5.

e Obsarvation4.2: If thereis only ore classwith classfrequency 100% -- in ather words, if all the

testing and training examples have the same class label -- then the expected accuracy is 1.

e Observation 4.3: Asthe number of classes goes to infinity each with an infinitesimal probabili ty

of appearing, the expected accuracy goes to 0.

e Observation 4.4: If there are two classss, class “A” with probability 0.9 and class “B” with

probability 0.1 -- the expected accuracy is:

The example is A:  probability 0.9, expected accuracy 0.9,0.81
The example is B:  probability 0.1, expected accuracy 0.1,0.01
TOTAL EXPECTED ACCURACY = 0.82

e Obsarvation 4.5: Generalizing, given 1 example, if the probability of any classc is f[c], then the
expected accuracy on that classis f[c]. Let fvedor be the vector of class probabilities, then

overall expected accuracy is:

p= Zf[c]z = fvedor " Cfvedor (4.10)

cliclasses

So, iffvectoris <0.9, 0.1>p = <0.9, 0.13- <0.9, 0.1> = 0%+ 0. = 0.82
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4.2.2. Learning from m Examples
Modeling the effect ofn training examples requires some additional assumptions.

e Asaimption 4.1: For learning tasks with two classes each with frequency 0.5, the expected
accuracy p can be wdl estimated by some function modes[Z], where zis (m-1)/d+1, misthe
number of training examples and d is a parameter related to learning rate. From Observation

4.1, the function should have the property that:
mode§[1]=0.5 (4.11)

This assumption and possble candidates for modds[Z] were the subject of Section 4.1. One candidate for

the function is BurrModel:
model[Z] = Z/(z+1) (4.12)

It is plotted inFigure 4.8

1 1 1 1 1
5 10 15 20 2t

Figure4.8. Thez/(z+1)function, a candidate for model5[z]. The function mapszis (m
1)/d+1, wheremis the number of training examples ahid a constant -- tp , accuracy.
model5[z] is assumed to model the learning on data with two classes, each with a 0.5 frequency



39

Observation 4.6: If thereis only one classwith probability 1, the expected accuracy for all mis 1

(as before).

Observation 4.7: As the number of classes all with an infinitesimal probability of appearing gaes

to infinity, the expected accuracy goes to 0 (for all finije

Definition4.1: Let moddy{zf[c]], where zis (m-1)/d+1, be the expected accuracy onany classc
with class probability f[c] of a learner given m training examples. This definition asaumes that
expected acauracy ona classis only a function d classfrequency and rumber of examples and

not of the class itself.

Asaumption 4.2: If f; < f,, moddyzf] < moddyzf,] (for al finite Z). In aher words, for a
given rumber of training examples, the expected accuracy on a classwill be greater the larger

that class's frequency.

In general, givem examples, the expected accuracy on all classes is:

p = model [z, fvector] = f Omodel C,a[z, f] (4.13)

f Ofvector

the weighted average of the accuracy on each class Note that when there are two classes and each has
probability 0.5, by(4.13)andDefinition 4.1

p=modd [z, <0.5,0.5>]
= 05model 4,[2,05] + 05mode! 4,[2,05] (4.14)
= 05model5[z] +05model 5[] = model [ Z]

In ather words, modds[Z] is both the total expected accuracy on all classs when there are 2 classes of

50%/50% probability and the expected accuracy on a single class with 50% probability.
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4.2.3. Heuristic for modelqa[zf] in Terms of modek[Z]

The next gaal is to find a simple heuristic expresson d modds[Z] in terms of modds[Z]. The

constraints are:

modé{z,0.5] = modejZ] Assumption 4.1
mode}z,0.0] = 0.0 (for finitez) Observation 4.7
mode}z1.0] = 1.0 Observation 4.6

model1,f]= f Observation 4.5

If f,<f,, modelzf,] < modelzf,] (for finite 2) Assumption 4.2

The intuition motivating the heuristic is that the modds[Z] curve is our standard learning curve and
that when a class probability is large, this dandard curve will be pulled up toward higher accuracy and

that when a class probability is low the class probability will be pulled low toward zero.

0.8 /'{{_
\
0.6
0.4
0.2
0

S 10 15 a0 25

Figure4.9. How a standard learning-performance model which has value 0.5zahemight be
pulled up to produced a curve with greater value vayéror pulled down to produced a lesser
value wherg=1.

For anyz andf,
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if 0.0 <f< 0.5, 0.0 < modgl{zf] < model[Z] (4.15)
and
if 0.5 <f < 1.0, mode[Z] < mode}zf] < 1.0 (4.16)

Here is a simple function with the right properties:

p=modd [z f]= model5[2]“’@”2[”2]'1 (4.17)

cla

For example, if modgllZ] is z/(z+1), here are the curves fier 0.0, 0.1, ..., 1.0.

0.8 F

0.6 |

0 . . . . 1 . . . . 1 . . . . 1 . . . . 1 . . . . )
5 10 15 20 25

Figure4.10: Learning-performance models for classes with class frequéndies, 0.1, ..., 1.0.
Each model is a learning curve function, mggeff], that maps (a linear function of the

number of training examples) pp accuracy in identifying that class. Note that when the number
of training examples is 1 (arzetl), the accuracy is the class frequency. This plot assumes that

the “standard” learning-performance model, mgdglis z/(z+1) .
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Applying the heuristic to modg]zfvectol gives

p = model , [z, fvedor| = f Cinodel [ 7] el 2% (4.18)

f Ofvector

4.2.4. Learning with Multiple, Equiprobable Classes

If we haveclassnuntlasses each of equiprobability, the heuristic predicts this overall accuracy:

1 1 >D
classum’ ' classum/H

moddl 5[2] Logy,[1/(2classnum)] -1 ot

p = modd %<

_ 1
classnum

= modd 5[2] Log,,[ Y/ (2classnum)] -1

= modd

moddl 5[2] Logy,[1/(2classnum)] -1 (419)
classnum

[z,1/classnum]

cla

4.2.5. Learning with Skewed Classes

If we have classnum classes with a variety of class probabilities, the heuristic predicts an owerall

accuracy of:

p= model aII[Z1<f11 f21'”1 fclasmum>]

Logy,| f1/2]-1 Logy,| f,/2]-1 (4.20)
= f, model[z] ™9 + f, model 5[ Z] T f

Log fq assnum/2 -1
classnum mOdeI 5[2] ]/2[ | ]

This is the weighted sum of moddy{zf] functions. The sum can't be epressd exactly as a
modd 4z f] curve, but it can be closdy approximated with a generalization d the modd 4z f] function.

Such an approximation makes sense since the ga@féfunction is itself only a heuristic.

To see the intuition behind the approximation, start with the mdzlglfunction:

p = model

cla

[ 1] = model [7]" %" (4.21)

Recall that when z=1, , the moddyzf]= f. Thus, the eponent, Log,[f/2]-1, and value when z=1

coupled. The approximation is a generalization that uncouples these two values:
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p = model 4, [z start, skew]|
model[(m-1)/d +1] g5 @22)

Logy2 [ start/2]-1

1-05

= gtart + (1 - start)

wherestartis the expected accuracy wherl andskewis the exponent.

The final step in the approximation is <tting the parameters start and skew so that
modd gen[z start,sken] = modd, [z fvedor]. The strategy will be to set start and skew so that the two

functions intersect for three valueszof

First, we would like them to intersect as z goes to infinity. This is automatic because both functions

do go to 1 ag goes to infinity.

Second, we would like them in intersect when z=1. The value of moddy[1fvedor] is fvedor'-
fvedor. The value of modd ye,[1,start,skew] is start. So we can make the two functions intersect be

setting start to fvector - fvector,

Third, we would like them to intersect at a third point. A convenient point is that z such that
models[Z]=0.75. At that value of z, modd ye.[z start,skew] will equal mode 4 [z,<fy,f,,. .. foaseum™>] if and
only if:

0 7Sske/\/(Logyz[start/z]—l) -0 5ske/\/(LogM[start/z]—l)

start + (1 start)

skew(Logy/2 [start/2]-1)

1-05 (4.23)

— f10-75L091/2[f1/2]—1 + f2 0-75L091/2[f2/2]—1.”+f 0-75L091/2[fda5mm/2]—1

classnum
The only unknown is skew; its value can be determined rumerically with, for example, the secant
method or with the Newton-Raphson Method [Petsal., 1992].

Here is how moddye,[zstart,skew] fits in with aur previous results for learning in which all the
classs are equiprobable. When number of classes is two and each has 50%/50% probabili ty, our modd

is modds[Z]. This exactly equals mode ge,[2,0.5,1]. More generally, when number of classsis classium
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[fr2-1

and each has the same probability, our modd was modds[7] “*%"4! This exactly equals

model{z.1/classnuni]

The plot shows moddge.[z,0.5,sken] for sken=0.001, 1, 2, 4, and 8. The topmost curve is

skew0.001.

0.8

0.6

0.4

1 n n n n 1 n n n n 1 n n n n 1 n n n n J

5 10 15 20 25

Figure4.11: Learning-performance models wittstart value of .5 andgkewvalues of 0.001, 2,
4, and 8. Each model is a learning curve function, mggelstart,skewv}, that map< (a linear
function of the number of training examplespi@ccuracy in identifying that class. This plot
assumes that the “standard” learning-performance model, fmhdslz/(z+1).

Here is an example from soybean-disease diagnases in which there are many classes and the class

frequencies vary widely . Suppose the class frequencies are:

<0.0130293, 0.00325733, 0.019544, 0.019544, 0.130293, 0.130293, 0.0325733,
0.0651466, 0.03257380325733, 0.0325733, 0.130293, 0.0325733, 0.0325733,
0.0651466, 0.130293,0325733, 0.0325733, 0.0325733 > (4.24)
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The mode)|[zfvectol heuristic for these class frequencies is:

0.521172 modglZ]*****"+ 0.130293 modgliz]***°*"+ 0.29316 modeflz]*****" +
0.039088 modglZ]>®""**+ 0.0130293 modgk]***** + 0.00325733 modgh]*****  (4.25)

If modelk[Z] is assumed to k#(z+1), mode),[zfvectol] looks like

0.6 |

0.4 F

1 L L L L 1 L L L L 1 L L L L 1

n n n n J
20 40 60 80 100

Figure4.12: A learning-performance model for the soybean disease data. The model is a
function, modej[zfvectol, that map< (a linear function of the number of training examples) to
p, accuracy in identifying that class. The quarfiigctoris the vector of class frequencies for
the soybean data. This plot assumes that the “standard” learning-performance modgk]model
is z/(z+1).

To determine the modd y.,[zstart,skew] approximation to modd [z fvedor], we neal to determine

start andskew The value oftartis justfvector - fvector= 0.0868867

To determineskew we want to find a value for it such that

model..[z start,skey=mode}[z fvecto] when mode[Z]=0.75. (4.26)
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Substituting in values, we want to find a valuedkewthat will solve

0.913118§0.75°2472s%en _ g gaa2ir2sen]

1_ 0.53.52472 skew

0.086886#

= 0.346491 (4.27)

The value is found numerically to be 1.07556. So, medelstart,skew is
0.0157871 + 0.984213 mode]>'*'® (4.28)
which is much simpler than moggt,fvectoli.

Again assuming that moddls[Z] is z/(z+1), hereis a plot of both the modd 4 [z fvedor] heuristic andits

modely..[z,start,skew approximation:

O n n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n J
20 40 60 80 100

Figure4.13: Two almost indistinguishable learning-performance models for the soybean disease
data. One is the same maglelfvectol function plotted irFigure 4.12 The other is
model..[z,startskew, a simpler function with much the same shape. This plot assumes that the
“standard” learning-performance model, mg#l is z/(z+1).
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4.2.6. Learning with Noise

There are many posshble ways to define naise. For the purposes of this thesis, it is defined as the

difference between 100% accuracy amak the expected accuracy aé@ndm) go to infinity.

This suggests that naise can be added to a learning curve modd through scaling a learning curve
moded by the quantity max. This doesn't quite work because it would scale down start. The start value is
determined from the observed class frequencies. If there is naise, the naise will already be reflected in

these class frequencies andtart Thus, a model of noise should not affstetrt.

We will dothe next simplest thing, scale down the learning curve modd, but do so with start as the

origin.

p = model [z start, skew, max]
model [z start, skew] - start

= start + (max — start) (4.29)
1-sart
model [ (m—1)/d +1]*/ el D _ g gt
=dart + (max - ﬂart) 5[( )/ ] skaw(Logy 2 [sart/2]-1)
1-05

Theresult is an expresson very similar to the expresson for modd e[z start,skew]. The plot shows
MOodel er[2,0.5,1,0.8] with modds[z] defined as Z/(z+1). Notice that modd e[z start,skew,1] =
modely..[z,start,skew.

4.2.7. Working with model ge{ z,start,skew,max]
In outline, the steps to fitting a moglglz,start,. skewmay curve to data are:

1. From the training data, meastivector, the class frequencies.

2. Fromfvector, computestart andskew
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INto model e[z, start,skew,max] substitute the values of start and skew, also substitute in (m-
1)/d+1 for z and whatever function is being used for modds[z]. For example, using the z/(z+1)

for modei[Z] and the soybean frequencies we saw earlier produces:

d+m-1 F7ows
p = 0.0868867+ 1.07787(max - 0.086886 (4.30)
d+m-1

The learning-performance data gives observed values for m, the number of training examples,
and p, the observed accuracy. Find the values of d and max that produce the curve that best fits

the data. The details on how to do this are the subject of Sdation

1 L L L L 1 L L L L 1 L L L L 1

n n n n J
20 40 60 80 100

Figured.14: A learning-performance model that models the effect of 20% noise. The learning-
performance model is moggz,0.5,1,0.8]. The 0.8 parameter is 100%-20%, the maximum
attainable accuracy. This plot assumes that the “standard” learning-performance model,
moded[Z], is z/(z+1).
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4.2.8. Simplified Model

But is the complexity of Equation (4.29) really necessary? To find aut, we create modd e, @

simpler model based on Equation (4.29) but without the exponents.

P = Model e, [(M=1) / d + 1, start, max]
model5[(m—1)/d +]] -05 (4.31)

= start + (max - start) =05

In these case of two equiprobable classes, Equation (4.29) reduces to Equation (4.31), but in the next

chapter we will true it on other situations to see how important the exponents are.

4.3. Nondeterministic Design Choices

Recall from Section 3.1.1 that regresson modedls are often constructed in two parts, a deterministic
part and a nondeterministic part. In ardinary linear regresson, for example, the deterministic part of the
modd is aline and the nonceterministic part is anormal distribution around the points in the line. Section
3.1.4 showed why the popular normal distribution was inappropriate for learning-performance data. This
section ceveops two appropriate candidates for the nondterministic part of learning-performance

models.

The learning-performance data with which Sea works includes y, the number of testing examples
correctly classfied. Thisis necessarily an integer between 0 and k, the number of testing examples. If the
testing examples are sdected independently, the number of correct classfications sould be binomially
distributed because it is the result of independent identically distributed Bernaulli trials. For example, if
the expected accuracy of the classfication rule being tested is 0.705and it is tested on100 examples, the
binomial distribution will specify the probability that the classfication rule will get 70 examples correct,

the probability it will get 71 correct, 69 correct, and so on for the range from 0 to 100.

The binomial distribution is:
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p’ (1-p)“ @ﬁ (4.32)

wherey is the number of correctly classfied testing examples, k is the total number of testing examples,
: . . : : . kO,

p is the probability that a given testing example will be classfied correctly, and ByHIS the number of

distinct subsets of sizeof a set of sizé&.

The binomial distribution accounts for the randannessin testing examples, but nat for other sources
of randamness For example, alearning program might produce a classfication rule based on49 training
examples that is more accurate (as measured onan extremey large number of testing examples) than ore
based on50 training examples. This could happen with a decision treelearner, for example, if the learner
tended to make a split with 50 training examples that it didn't make when gven orly 49 examples. In
other words, even with an infinite number of training examples, real-life learning curves may have an

inherent roughness caused by the randomness in the training examples.

A reasonable way to modd this roughressis with the beta distribution. Intuitively, it can be thought
of as a normal distribution that is bounded by 0 and 1. The beta distribution is usually parameterized
with two values, a and 3. For our purposes, however, it is more convenient to parameterize it with p, its
mean, and pvar, a parameter related to variance. With this parameterization the beta distribution hes this
density:

(1_ pl)(1—p—pvar)/pvar p p/ pvar -1

1= , Wherep; ranges from 0 to 1. (4.33)
Bete P, P

pvar pvar

To seehow this could be put together with the binomial distribution, consider a randam learning-
performance-like data generator. The input to the deterministic mode would be m, the number of training
examples. The output will be p, the expected accuracy before considering the randamnessin the training
and testing examples. This p and a pvar value are the input into a beta randam generator. The output is

p: the expected accuracy after taking into account the randamnessin the training examples. This p; along
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with k, the number of testing examples, is the input into a randam binamial randam generator. The output

y is the number of correctly classified training examples according to the random generator.

Combining a beta distribution with a binomial distribution, as dore here, creates a beta-binomial

distributiorn
kO
Bely + P (k=y)+ P I 0
pvar pvar
1= (4.34)
Beta[i J]

pvar ' pvar

wherey is the number of testing examples, k is the number of testing examples clasdfied correctly, p is
the output of the deterministic part of the modd, and pvar is related to the amount of roughress caused
by randamnessin the training examples. When pvar is zero, this distribution is becomes the binomial

distribution.

The distribution is also knavn as the Polya, Polya-Eggenberger, negative hypergeometric, and
generalized hypergeometric type Il A [Johrson et al., 1992 Griffiths, 1973. It has been used in the past
to modd the scores of students in a class on a test, but nat, so far as the author knows, as the

nondeterministic part of a regression model [Wilcox, 1981].

When used as part of a regresson modd, y and k will be given as part of the learning-performance
data. The value p will be provided by the deterministic part of the modd. The pvar parameter, however,
will need to be estimated. The estimation methodis analogaus to estimating the variance of the data for
linear regresson except that instead of minimizing least square aror, the method must find the value of

pvar that maximizes likelihood. The next section has computational details on this.

4.4. Fitting Models to Data Efficiently

Chapter 3 defined the criteria with which to sdlect the best learning-performance modd for a set of
data (namey maximizing likdihood. The previous sctions of this chapter detail ed the sets of learning-
performance modds to be considered. This sction specifies the numerical techniques Sea uses to

eficiently find the modd with the maximum likelihood Efficiency is important because the algarithms
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used areiterative. The diff erence in speal between a goodimplementation and a poor one could easily be

1000 to 1, and even more if the poor implementation doesn’t converge.

For any gven problem, See is given 1) learning performance data, 2) a nondgterministic moded
(either the binomial distribution a the beta-binomial distribution) and a deterministic modd (for
example, mooel, with the BurrModd as modds). See’s task is to find the parameters of the
deterministic modd (e.g. d and max) and the parameters of the nondeterministic modd (e.g. nore or pvar)
that produce a modd with the maximum likelihoodwith respect to the data. Such parameters are called

the maximum likelihood estimators.

As posed, the problem is an instance of norlinear programming. The norinear-programming
constraints relate to the parameters. For example, pvar and d must be greater than 0 and max must range
between start and 1.0. The problem can be simplified by diminating these constraints. This can be dore
by making the original parameters functions of parameters that can take any real value [Dixon, 1972 p.
89]. For example, d can be replaced with daud and pvar can be replaced with pvaraugf. Then maximum
likelihoodestimators can be found for daugand pvaraug The sguare roat of these estimators will be the

estimators fod andpvar. Themaxparameter can be replaced with

1+start 1-start .
+ Si
2 2

n(maxarg) (4.35)

which will guarantee thahaxwill be in the range frorstartto 1.

Removing the constraints turns the problem from one of norinear programming into ore of norlinear
optimization. Sea uses the veay fast Levenberg-Marquardt method d norlinear optimization
[Marquardt, 1963 Presset al., 1993. This method smoathly varies between inverse-Hessan methods
(like Newtor+Raphson) and steegpest descent methods. Its use narmally requires both the first partial
derivatives (the gradient) and second partial derivatives (the Hessan) of the function to gotimize. See

does require the first derivatives, but it avoids the need for the Hessian estimating the Hessian Q as

- 6.(6)a (®)' (4.36)
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where g is the vector of first partial derivatives evaluated onthe ith learning performance tuple [Cramer,

1986, p. 27].

When the learning-performance data is independent, covariance can be approximated. The
asymptotic covariance matrix of the estimated parameters can be approximated with -Q* [Cramer,
1984. When the generalized crossvalidation method d Section 3.2 is used, the data is nat independent,

SO covariance cannot be estimated.

4.5. Summary

This chapter detailed the design and sdection method d the learning-performance modds that See
uses. We considered the design problem in three parts: First, create deterministic models for nase-free
learning d two equally probable classes. We saw that the two modds inspired by computational |earning
theory, EDmoddl and BurrModd, have a much dfferent shape than the two most popular binary-
response regresson modes. The second part of the modd design was modding the dfect of multiple
classss, skewed classes, and ndse. By considering progressvely more complex cases, we traced the
development of the new modely, heuristic. It modds the dfects of interest with remarkably few
parameters. The third part of modd design invaved creating a nondeterministic modd. We saw that the
Binomial distribution should be sufficient if variation in testing data was our only concern. However, if
we are also concerned about variation in the training cata, then the Beta-Binomial distribution might be
better. Finally, after al the design chaices were enumerated, Section 4.4 specified haw to efficiently find
the best modd in a possbly infinite set of modds. The basic method is norinear optimization with an

iterative algorithm.

Given these design chaices and this slection method which sets of modds work best on real

learning-performance data? That is the topic of the next chapter.
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5. Experimental Procedure and Results

The previous chapter dealt with designing various reasonable components of learning-performance
modes. In this chapter we assemble these components into five learning-performance modd sets. Using
Sed, each set is tested onthreereal-world learning danains . Each modd set is tested on hav well it can
characterize learning-performance data (3 trials) and on hev well it can predict learning performance
data (30 trials). Figure 5.1 summarizes the &perimental variables (domain, task, and learning
performance modd set) investigated. The experiments show that many of themodd sets characterize well
and predict as well as the data permits. They suggest that the chaice of a modd set is a tradeoff between

computational ease and the ability to measure interesting aspects of the learning problem.

Domain Description # Examples  # Attr # Classes
Soybean Soybean Disease Diagnos 307 35 19
Heart Heart Disease Diagnosis 303 13 2
Audio Audiological Problems 226 69 24
X
Task # Trials
Characterize 3
Predict 30
X
Model Set Det. #2 Det. #1 Nondet.
Modelgen Burry modelen binomial
Logistic Logistic model - binomial
ED EDit modelen binomial
NoEXxp Burry modehoexp binomial
Pvar Burry modelen beta-binomial

Figure 5.1 Experimental variables (domain, task, and model set) explored.

5.1. Experimental Procedure

This sction dtails the learning examples and inductive learning system Sea used in the

experiments. It detail s the domain and task experimental variables. The model set experimental variable
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is the subject of chapter 4. Also, the section dscusses how results were measured and statistical

significance determined.
5.1.1. Experimental Variable: Domain

The &periments were run onclassfied learning examples from threedomains, the same as were used

in Shavliket al. [1991] The sets used were:
Soybean disease diagnosis (“Soy”)

These clasdfied examples come originally from R.S. Michalski and R.L. Chilausky [1980. The
collection comsists of 307 examples with 35 attributes labded with ore of 19 classs. The classfied
examples are available on the Internet in <ft p:/ /i cs. uci . edu/ pub/ machi ne-1| ear ni ng-

dat abases/ soybean/ >.
Heart disease diagnosis (“Heart”)

Robert Detrano, M.D., Ph.D., created these clasdfied examples at the V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation. They were originally used in Sandhu et al., [1989. The
examples consist of 303 examples with 13 attributes and 2 classes. The classfied examples are available

onthe Internet in <f t p: / /i cs. uci . edu/ pub/ machi ne- | ear ni ng- dat abases/ heart -
di sease/ >.

Audiological problems (“Audio”)

Professor Jergen developed these clasdfied examples at the Baylor College of Medicine. They were
originally used in Bareiss & Porter [1987. The examples corsist of 226 examples with 69 attributes

labded with ore of 24 classes. The &amples are avalable on the Interngt in
<ftp://ics.uci.edu/ pub/nmachi ne-1 ear ni ng- dat abases/ audi ol ogy/ >.

5.1.2. Experimental Variable: Task

Sea was tested on two tasks: characterization and prediction. For the characterization task, all

available classfied learning examples were used to generate learning-performance data (using the
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generali zed-crossvalidation procedure described in Section 3.2). From each modd set, See found the
maximum-likelihood modd. Success at characterization was measured (as detailed in Section 5.1.4) by
how well a modd fit the data in terms of lodikelihood In order to seethe variation caused by generali zed

cross-validation, three trials were run for each combination of domain and model set.

For the prediction task, 100 clasdfied learning examples were randamly sdected (without
replacement) from all the available examples. Using generalized crossvalidation onthe 100 examples,
Sea produced learning-performance data. For each modd set, See found the modd with maximum
likelihood with respect to the learning-performance data. Success at prediction was measured by how
well the modd, which was based ononly 100 clasdfied examples, predicted learning-performance when
the learner was given the atire data set. Figure 5.2 ill ustrates the process To seethe variation caused by
the sdection d the 100 examples and by generalized crossvalidation, 30 trials were run for each
combination d domain and modd set. Section 5.1.4 details how Sea compared the modds to doserved

learning performance.
5.1.3. Inductive Learning Program

All the experiments reported here used the C4.5 machine-learning program [Quinlan, 1997. C4.5
doesitsinitial learning with decision trees and then tries to improve its generali zation and nase handing

by turning the trees to rules. It was run with its default settings.
5.1.4. Measuring Results
Results were measured primarily with loglikelihood:
L, = logPr(D|M,) (5.1)

where Pr is probability, D is observed learning-performance data, and M; is a learning-performance
mode. Because probably (or likdihood ranges between 0 and 1, lodikelihoodis a negative number. One
disadvantage of the lodlikelihoodmeasure is that it depends on the amount of learning-performance data.
Doubling the amount of data tends to dauble the value of the lodgikelihood This is a common problem in

the field of statistics. The usual solution is to develop a normalized measure of it. By analogy to the R?
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measure of linear regresson, these measures are usually named R where “X” is ome identifier. The

rest of these section will develop afx Rieasure for use on learning-performance model.

random
seledion (no
replacement)

A 4

100classfied

examples

generali zed
crossvalidation

my, classfied
examples

cross
validation
[l
'
learning-perforance

data for my;_most-ai
training examples

Compare
learning- observed to
performance data predicted
maximum-
likelihood
regresson
7 : ~ predicted learning
Ihe numb?r _’l'kgix?dum(;d o performance on
My -mogt-all (li kelihood model Mol €XEMplES

Figure 5.2 Prediction task -- From 100 classified examples, Seer predicts the learning
performance if all most all availahlelassified examples were available, wheggmestan =300,
290, 218 for the Soy, Heart, and Audio domains, respectively.

5.1.4.1. Input to the R’ Measure

The measures needs to take as input:

1. A learning-performance modd or, if repeated experiments are conducted, a set of learning

performance modds. This modd is produced by a system such as Sea from a small set of

classified examples.
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2. Alikelihood criterion, for example, the binomial distribution

3. Learning-performance data based ona larger set of classfied examples -- Each datum is of the
form <m, y, k>, where mis the number of training examples, y is the number of testing examples

the learner's hypothesis classified correctly, kaisdthe number of testing examples.

For example, suppose we wish to compare “A” and “B”, two ways of producing learning
performance modds. They could, for example, could sdect the maximum-likeihoodmodd from two sets
of canddate modds. Suppose that we give each method three sets of learning-performance data, each
based on 100 classfied examples, and call the resulting modds “Al,” “A2,” “A3,” “Bl,” “B2,” and
“B3.”. Next, we ask each o the six modds to predict the learning performance when mis 300. Suppose
they predict: pa; = 0.89, par=.091, pas=.095, ps; = 0.81, ps»=0.85, pgz=0.89. To create the final piece of
input information, we put the predictions to the test. For example, suppose we have a total of 400

examples and do 4-way cross-validation with these results:
{<300, 92, 100>, <300, 100, 100>, <300, 96, 100>, <300, 89, 100>} (5.2)

where the first dement of each tuple is the number of training examples, the second dement is the
number of correctly classfied testing examples, and the third dement is the total number of testing

examples.

5.1.4.2. Output of the Measure

Intuitively, the output should be a better measure for better predictions. Hosmer and Lemeshow
[1989, p. 148] recommends this measure that returns a value between 0 and 1 for logistic regression:
R2, _Lo-Ly (5.3)
Lo —Ls
L, is the lodikdihood d the modd of interest. Lg is the lodikdihood d the basdine modd, the modd
that predicts the same accuracy regardiessof m. Ls is the logikdihood d the perfect, saturated modd.

The saturated modd is the modd with as many parameters are there are distinct values of m; for each m,
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it returns exactly the frequency observed. It is the optimum modd with respect to likdihood (assuming

error is measured with a distribution such a the binomial or the normal).

For our purposes, R%. is unsatisfactory. The problem is that it assumes that Lo, the log likelihood &
the basdine modd has a worse fit than L;. Because our modd is being tested onlearning data it has not

seen before, the assumption does not necessarily hold.
A new measure that avoids the problems and is, thus, more suitable is:
Rseer= Ls/ L1 (5.4)
Returning to the example, if the likelihood criterion is the binomial distribution, loglikelihood is:
Il irom (P Y, K) = ylog(p) + (k — y)log(1~ p) +log(binomial(k, y)) (5.5)

where p is predicted accuracy, y is the number of testing examples classfied correct, and Kk is the total
number of testing examples. Hosmer's measure can ignare the combinatorial term binomial(k,y) because

the term cancels out. The term does not cancel out oftherReasure and so must be considered.
The loglikelihood of model “Al” with respect to observations is:

1Za1 = llbinon(0.89,92,100) + Hon(0.89,100,100) + fhor(0.89,96,100) + bhor(0.89, 89,100) = -20.9849
(5.6)

The value of the saturated modd when m=300 is minimized (for the binomial likdihood criterion)
when the saturated modd predicts the mean doserved frequency [Cramer, 1986 p. 159, which in this
case is 0.9425.

The loglikelihood of this saturated model is:

linor(0.9425,92,100) + Jhon(0.9425,100,100) +4hor(0.9425,96,100) + dhon(0.9425, 89,100)
=-14.2974 (5.7)

S0 Reeris -14.2974/-20.9849 = 0.681316.
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The loglikelihood and R..,values for all of the example models are givehable 5.1

Model Loglike. R%eer
Al -20.9849 0.681316
A2 -17.2222 0.830170
A3 -14.5238 0.984412
Bl -43.9230 0.325510
B2 -31.1878 0.458429
B3 -20.9849 0.681316

Table 5.1 R’ values for six models

5.1.4.3. Composite Rseer Results

The R%s.¢ measure can be generalized to produce a singe measure for a group of rdated models,

using the fact that the loglikelihood of a set of independent models is the sum of the loglikelihood of eacl

, Z loglikelihood d saturated models
sea = 3 loglikelihood d moddls

(5.8)

Applied to our example, this yields:

R (As) = TLA2974 + 142074+ -142074 _ 0oy (5.9)
-209849+ -17.2222+ -145238

and

R (Bs) = 142974 + 142974+ 142974 \1ooso (5.10)
-43923+ -311878+ -20.9849

5.1.5. Comparing Results from Two Model Sets

Two methods of generating model sets can be compared by looking at composite R%s.q values, but it
is hard to evaluate the statistical significance of the values. Sea solves this problem by using paired-
difference analysis, a standard statistical method [McClave & Dietrich, 1989. With paired-diff erence
analysis, each modd-generation method is compared, head-to-head, in a series of trials In each trial,
every indvidual modd-generation method is applied to the same set of learning-performance data. As

Table 5.2 ill ustrates -- using the example from Section 5.1.4 -- the lodikeihoods of the two moddls are
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found and the difference is calculated. Finally, these diff erence values are evaluated with the two-tailed

Student-test to determine if the mean of the differences is significantly different than zero.

A B
Trial  Loglike.  Loglike. Diff.
1 -20.9849 -43.9230 22.9381
2 -17.2222 -31.1878 13.9656
3 -14.5238 -20.9849 6.4611

Table 5.2 The first step of paired-difference analysis: For each trial’s learning-performance data
set, find the loglikelihood of the model produced by each of the two model-generation methods.
Then, calculate the difference. The set of differences is evaluated with the two-tailed Student
test to see if it is different than zero.

5.2. Experimental Results

Each series of experiments tested a set of learning-performance modds The gaals of this chapter

were to:

1) Find which (if any) of the modd sets' designs were useful for characterizing and predicting

learning performance, and
2) Help develop criteria for choosing which of the useful models to use in a particular situation.

5.2.1. Modelgen Experiments

The Moddgen experiments tested the set of learning-performance models described in Table 5.3. The
set’s deterministic component is made up of the model g, and Burr 1ts nondsterministic comporent is the
binomial distribution. The threegaals of the Modd gen experiments were 1) to measure how well mooel g,
can characterize machine learning performance data 2) to measure how well modelg, can predict machine

learning performance 3) to establish a benchmark for the other experiments.
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Com- | Sub- | Value
ponent | model |
] ]
Det. #1 | modelen | p=modd ,[(M-1) /d +1 start, skew, mex|
- mochf{m-1) 0 +] T g™
| | =dart+ (rrax - start) > — —
1_05 aw ogl/z[slart/] )
| |
_______ L
Det.#2, Burrp, modelz]=z/(z+1)

Table 5.3 Learning-performance model set tested in the Modelgen experiments

5.2.1.1. Characterizing Data with Modelgen

Figure 5.3 shows the first of three characterization trials for each o the three domain. The
characterization task can be thought of as 1) generating accuracy points and 2) fitting a curve to those
points. Table 5.4 quantifies the goodressof-fit for al 3 trialsin all 3 domains. The R%«q values are near
1.0 indicating that model e, can fit learning-performance data well. (To get a perfect R%s.q value of 1.0, a
learning-performance modd would nead to go through every accuracy point, which is generally

undesirable).

Domain Loglike. R’scer

Soy (3) -7654.25 0.974
Heart (3) -7568.45 0.984
Audio (3)  -5582.62 0.955

Table 5.4 Goodness-of-fit for Modelgen on the characterization task -- Fit is measured with
loglikelihood and Rseer A perfect fit has a Reevalue of 1.0. All measures are composites of
three trials.

5.2.1.2. Predicting in the Audiological Domain

The next several subsections look at prediction with moddl,, We focus first on just the Audio
domain. In each d the 30 trials, See was given 100 classfied examples. From those, it tried to answer
two questions: 1) what accuracy could be expected with 218 training examples, and 2) what accuracy

could be expected given an infinite number of training examples (asymptotic accuracy).
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Sed’s first step toward answering these questions is to generate learning-performance data. The
plots of Figure 5.4 represents the learning-performance data (for 3 of the trials) as accuracy points. (We
will seein the next section that these 3 trials were the best, median, and worst of the 30 trials, as

measured by prediction accuracy.)

Thecurvesin Figure 5.5 show Sea’s predictions for these 3 trials. The datted lines show its estimate
of the asymptotic accuracy. In the plots, the diamond shows “trug’ accuracy given 218 training
examples. (Empirically, determining the real true accuracy would require an infinite number of testing

examples; This “true” value is determined with cross-validation on all 226 available classified examples

Table 5.5 shows the accuracies Seea predicts would be observed if the learner was given 218training
examples or an infinite number of examples. Thirty trials were run; the best, median, and worst trial are
shown in the table. The “true’ accuracy, if an infinite number of training examples were provided, is

estimated by the model fit on 226 examples in Se&idril.1

P21s P
Best 0.788 0.862
Median 0.717 0.757
Worst  0.606 0.619
“True” 0.788 0.823

Table 5.5 Modelgen’s predicted accuracies (based on 100 classified examples) if the learner is
given 218 or an infinite number of training examples -- The predictions from the best, median,
and worst trials are shown. The “true” values are estimated from the full set of 226 classified
examples.

Table 5.6 first quantifies how wel the modds fit the learning-performance data (shown in Figure
5.5) generated from the 100 classfied examples. The modds do well and have a composite R%.q of
0.981 Second the table quantifies how well the modds predicted p,1s Here they do lesswell, with a
composite R%s.¢ of 0.925 This suggests that the problen may na be with prediction gven the 100
classfied examples, but rather that the 100 classfied examples are sometimes nat representative of the

full set of 218 classified examples We will further investigate this problem in the next section.
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Characterize the 10(C Predictp,is
Loglike. R’scer Loglike. R’scer
Best -1838.29 0.979 -43.81 1.000
Median -1847.15 0.980 -46.76 0.937
Worst -1902.73 0.981 -60.74 0.721

All(30)  -55923.45 0.981  -1420.50 0.925

Table 5.6 Modelgen goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- The better the prediction, the closer the “Predict
Pag’ R%seervalue will be to 1.000.

5.2.1.3. Predicting in All Three Domains

This subsection looks at prediction with model e, on all threedomains. The curves in Figure 5.6 show
Sea’s predictions for all 30trials. The plots provide a graphical way to seethe variation caused, mostly,
by starting with dfferent sets of 100 classfied examples. In the plots, the diamond shows “true’
acauracy given nearly al the available clasdfied examples as training examples. In all three domains,
some modes predict too high, others too low. Particularly in the Soy and Heart domains, the modds

seem unbiased; that is, they are as likely to go too high as to go too low.

Table 5.7 quantifies the characterization and prediction in all threedomains. For the Soy damain, the
composite R for prediction, 0.982, is high, higher even than the R?sq for characterization. For the
Heart domain, the R’sq for characterization is higher, 0.978 and the R%«q for prediction is a little bit
lower, 0.963 For the Audio damain, as we saw in the previous sction, the R%s.q for characterization is

high, but the Re.for prediction is relatively low.

Characterize the 100 Predictpay most al
Domain Loglike. R%seer Loglike. R’scer
Soy (30) -54507. 0.969 -1664.62 0.982
Heart (30) -54166. 0.978 -1446.20 0.963
Audio (30) -55923. 0.981 -1420.50 0.925

Table 5.7 Modelgen’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- The better the prediction, the closer the “Predict
Po1s’ R%seervalue will be to 1.000. All values are composites from the 30 trials.
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Why dorit all the predictions hit the target exactly? We can get insight into this question by looking
in more detail at the worst prediction in each damain. Figure 5.7 shows thase predictions and the
learning-performance data on which they are based. As the plots $iow and Table 5.8 confirms, even the
worst-predicting modes characterize the given learning-performance data well. The problem is that the
learning-performance data from 100 classfied examples is unrepresentative of the learning-performance
of the full set of clasdfied examples. Thisis most obvious in the Heart domain. Here, working with orly
100classfied examples, See observed accuracies greater than 0.80, but working with the full set of 303
examples, the observed accuracy p.go Was 0.752 This drondy suggests that the main cause of bad
predictions is that a randan subset of clasdfied examples may be unrepresentative of a larger set. Put
more optimistically, Seg -- using moodel,, -- seams to be doing as well as possble with the classfied

learning examples it has available.

Characterize the 100 Predictpay most al
Domain Loglike. R%seer Loglike. R’scer
Soy (worst) -1855. 0.979 -66.28 0.822
Heart (worst) -1710. 0.968 -65.10 0.713
Audio (worst) -1903. 0.981 -60.74 0.721

Table 5.8 Modelgen’s goodness-of-fit on learning-performance data from the worst trials

5.2.1.4. Estimating Parameters in All Three Domains

Ancther way to analyze the experiments is to plot the parameters estimated by each modd. Because
30 trials were run for each damain, standard deviations can be estimated after the fact. The Moddgen
modd set has 4 parameters. Sea estimates two o the parameters, start and skew, from the class
frequency of the classfied examples. Sea estimates the other two parameters, d and max, from the
learning-performance data. Figure 5.8 is a scatter plot for the Heart domain o the d and max parameters.
Inthe plot, the letters “A”, “B”, and“C” are the parameter estimates in the 3 characterization trials. The
numbers, 1 ... 30, are the parameters estimates for the 30 predictiontrials. Note that the prediction points
(which are based on orty 100 classfied examples) cluster well around the characterization points (which

are based on the full sets of classified examples).
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Figure 5.8 Scatter plot for the Heart domain of thandmaxModelgen parameters. The letters
shows the parameter values for the 3 characterization trials. The numbers show the parameter

values in for the 30 prediction trials.

Table 5.9 gives the mean and dhserved standard deviation for all parameters in all three domains.
The Soy and Heart parameters estimates san unbiased, clustering around the “true’ parameter values.
Audio's d estimate is off apparently because the estimates of max are too low, and this affects the

estimated accuracy.

5.2.1.5. Summary of Modelgen experiments

These &periments $owed that Moddgen can characterize learning-performance data wel. The
Rsq Values for the threedomains were 0.974, 0.984, and 0.955 The predictions were generally good
too, with composite R%«q values (over al 30trials) for the threedomains of 0.982 0.963 and 0.925 In
the worst of the trials the predictions were nat as good (R%«e Values 0.822, 0.713 and 0.721) Even in
these cases, however, the Sea using Moddgen seaned to be doing about as wel as posdble. The
problem seamed to be that some samples of clasdfied examples were nat representative of the atire set.
The Soy and Heart parameter estimates em unbiased, clustering around the “true€’ parameter values.

Audio’s d estimate is seemed to be systematically off, perhaps because its estimeates/efe too low.
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Characterization (all available  Prediction (100 classifies

classified examples, 3 trials) examples, 30 trials)
mean s.d. mean s.d.

| Soy
d 12.680 0.1659 14.253 2.1784
max 0.999 0.0018 0.988 0.0459
start 0.087 0.0010 0.093 0.0089
skew 1.075 0.0019 1.081 0.0169
Psoo 0.840 0.0209 0.840 0.0321

| Heart
d 6.129 1.1067 6.207 4.4863
max 0.753 0.0023 0.760 0.0516
start 0.503 0.0000 0.509 0.0110
skew 1.015 0.0000 1.042 0.0516
P290 0.752 0.0248 0.749 0.0452

| Audio
d 7.718 4.3788 4.635 1.5372
max 0.884 0.1016 0.795 0.0855
start 0.141 0.0000 0.149 0.0162
skew 1.196 0.0000 1.191 0.0345
Po1s 0.788 0.0272 0.746 0.0650

Table 5.9 Mean and standard deviation of estimated Modelgen parameters

In the next series of experiments, logstic modds were found for exactly the same learning
performance data & was generated for these Moddgen experiments. This will allow head-to-head
comparison between Moddgen, a modd set that was designed especially for learning prediction, and the

Logistic model set, the most popular model set for binary-response data.
5.2.2. Logistic Experiments

The Logstic experiments tested the set of learning-performance modds described in Table 5.12. The
set’s deterministic component is the logistic modd. Its nondeterministic component is the binomial
distribution. This experiment was designed to seehow bad (or good logistic models are for learning chta.
The modd set was applied to the characterization task and prediction task, then it was compared to
Modelgen, trial-by-trial.
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Component Submodel Value
Det. . logistic | %
| | =
! ! 1+¢’
" Nondet | binomial | . c— KO
| pYa-pkY)
| |

&

Table 5.10Learning-performance model set tested in the Logistic experiments

Table 5.11 and Figure 5.9 show the Logstic modd set trying to characterize the learning
performance data from the threedomains. The composite R%.¢ Values reported in the table show that the
fit isnat good In two damains, it is lessthan 0.9. The plots in Figure 5.9 (from trial #1, but the other
two trials were similar) show the problem: the curve defined by logistic modds are nat the right shape for
the learning-performance data. The Logstic modd set only does best in the Heart domain and from the

plot we can see the reason is that this data is the most linear and hence is easiest to model.

Domain Loglike. R’scer

Soy (3)  -902351 0.826
Heart (3) -7730.06 0.963
Audio (3)  -5971.10 0.893

Table 5.11 Goodness-of-fit for Logistic on learning-performance data from the three domains

Given the problems the Logistic modd set has predicting learning performance, we would expect it to
do even worse at predicting from a subset of 100 classfied examples. Table 5.12 and Figure 5.10
confirm this expectation. In all 30 trials and in al 3 domains, every prediction is off. Even worse, the
predictions are very biased; every prediction is too gtimistic. Even though all the R%s.q values for
characterization of the 100 examples is greater than 0.90, the best predigtioraRe is a poor 0.501.

Characterize the 100 Predictpay most al
Domain Loglike. R%seer Loglike. R’scer
Soy (30) -55725. 0.947 -7100. 0.230
Heart (30) -54648. 0.970 -2778. 0.501
Audio (30) -58556.99 0.937 -2898. 0.454

Table 5.12Logistic’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- Values are composites from the 30 trials.
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Table 5.13 compares, using paired-diff erence analysis, the performance of the Logistic modd set to
that of the Modedgen modd set in all three domains. Both the performance characterizing the learning
performance and performance predicting learning performance are shown. Thetable tels if one modd set
(Moddgen o Logistic) produced significantly better learning-prediction modds than the other in each
scenario. For Soy/Predict, for example, there were 30 learning-prediction problems. For every problem,
the two modd sets each produced a learning-prediction modd. The lodikeihoods of these two learning-
prediction modds provide a measure of their goodress A two-tailed t-test was used to test if the mean
diff erence between the two lodikeihood \alues was sgnificantly different from zero. For thesetests an a
value lessthan 0.05 was considered significant. For every combination d task and damain, the fit of the
Modelgen modes (as measured by lodikdihood was on average better than the fit of the logistic models

and this difference was statistically significant.

Scenario Task Domain # of Trials  Sig.Diff? Better o test stat.
1 characterize soy 3 yes modelgen <0.001 24.730
2 characterize  heart 3 yes modelgen  0.001 12.946
3 characterize  audio 3 yes modelgen <0.001 26.300
4 predict soy 30 yes modelgen <0.001 24.888
5 predict heart 30 yes modelgen <0.001 6.750
6 predict audio 30 yes modelgen <0.001 8.980

Table 5.13Results of paired-difference analysis -- For all six combinations of task and domain,
the Modelgen models produce statistically-significantly better loglikelihoods than the Logistic
models.

Analysis: The logstic modds characterized learning performance poarly and predicted learning
performance even more poarly. Paired-diff erence analysis showed that the Modegen modd s were better

than the logistic models in every combination of task and domain investigated.
5.2.3. ED Experiments

The ED experiments tested the set of learning-performance modds described in Table 5.14. The set’s
deterministic component is made up of the moddy, and EDit Its nondterministic component is the
binomial distribution. The purpose of this experiment was to seeif the EDit modd, which is based more

closely on computational learning results, performs better than the simpjeridde.
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Com- |, Sub- | Value
ponent | model |
] ]
Det. #1 | modeen | p= modelgen[(m—l)/d +Lstart,skew,rrax]
- model (- 1)+ g™
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Det. #2 : EDit : 2log(1 Gp)
| | model[z] = EDit-1[z], where EDitp] = _
| | ’
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|
|
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Table 5.14 Learning-performance model set tested in the ED experiments

Figure 5.11 shows atypical characterizationtrial. Table 5.15 quantifies all the characterization trials

in all three domains. The ED model set does well; @ll.Ralues are greater than 0.95.
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Figure 5.11 Characterizing learning-performance data from the Heart domain (Trial #1) using a
ED model

Domain Loglike. R’scer

Soy (3)  -7828.60 0.952
Heart (3) -7570.18 0.984
Audio (3) -5426.34 0.983

Table 5.15Goodness-of-fit for ED predicting learning-performance data in three domains



78

Figure 5.12 shows all the modds found for all 30 prediction trials in the Audio damain. As Table
5.16 shows, the ED modd set predicts well based ona subset of examples. The lowest R values as

0.939. Also, as the plot illustrates, the predictions are clustered around the true value.
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Figure 5.12ED'’s predictive models for the 30 trials of the Audio domain -- The diamond shows
the “true” accuracy.

Characterize Predict
Domain Loglike. R’seer  Loglike.  Rlseer
Soy(30) -55315. 0.954 -1669. 0.980
Heart(30) -54184. 0.978 -1467. 0.949
Audio(30) -56057. 0.979 -1400. 0.939

Table 5.16 ED’s goodness-of-fit on learning-performance data from 1) the given 100 classified
examples and 2) the full data set -- Values are composites from the 30 trials.

Table 5.17 gives the mean and doserved standard deviation for all parameters in all three domains.
The values of start and skew are by definition exactly the same as for Modegen. The ED modd set
estimated dlightly more optimistic max values, but they did na seam to be rdiably closer or further from
the "true' max value. Both moddls have a d parameter, but the d's are used dff erently within the model
set and so are nat directly comparable. In the Soy damain, the ratio between the two d’'s is 9.2. In Heart,
it is 6.3 and in Audio it is 8.3. On the other hand, ED’s d parameter is comparable to the Vapnik-
Chervonenkis (VC) dimension from computational |earning theory. For example, the mean d value for

the Soy-domain characterization task was 47.692 After factoring aut the dfects of nase, multiple
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classes, and skew, a ED modd will approximate the worst-case learning modd of a learning task with a

VC dimension of 48.

Characterization (all available  Prediction (100 classifies

classified examples, 3 trials) examples, 30 trials)
mean s.d. mean s.d.

| Soy
d 1.186 0.0086 1.555 0.2212
max 1.000 0.0000 0.997 0.0171
start 0.087 0.0010 0.093 0.0089
skew 1.075 0.0019 1.081 0.0169
Psoo 0.840 0.0209 0.814 0.0220

| Heart
d 0.711 0.1503 0.979 1.0641
max 0.760 0.0035 0.783 0.0695
start 0.503 0.0000 0.509 0.0110
skew 1.015 0.0000 1.042 0.0516
P290 0.752 0.0248 0.761 0.0504

| Audio
d 0.562 0.0629 0.559 0.1956
max 0.852 0.0148 0.840 0.0934
start 0.141 0.0000 0.149 0.0162
skew 1.196 0.0000 1.191 0.0345
Po1s 0.788 0.0272 0.764 0.0640

Table 5.17 Mean and standard deviation of estimated ED parameters

So haw does the ED modd set do compared to the Moddgen data set? The question is interesting
because the two modd sets are identical except that Mode gen uses the simple Burr;, while ED uses the
computational-learning inspired EDit. Table 5.18 shows which dd best in each combination d task and
domain. Modegen characterized better in 2 of the 3 domains. For the more important prediction task,
Modelgen dd better in ore domain, ED did better in anather, and there was no significant difference in

the third domain.

Analysis: There is no reiable, measurable performance diff erence for prediction between ED and
Modegen, but Mode gen may characterize better. Both models have the same number of parameters (two
determined by the class frequency of the classfied examples and two determined by fitting learning-

performance data). Modegen's Burr,; component is smpler and computationally much easier to work
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with than the ED moddls’ EDit component. The ED modd set is worth using if we want a d parameter

we can interpret as the empirical analog of the VC dimension.

Scenario Task Domain  Sig.Diff? Better o test stat.
1 characterize soy yes modelgen  0.002 10.868
2 characterize  heart yes modelgen  0.016 3.702
3 characterize  audio no - 0.144 -0.995
4 predict soy no - 0.180 0.362
5 predict heart yes modelgen  0.018 1.847
6 predict audio yes ED <0.001 -3.745

Table 5.18Results of paired-difference analysis -- Neither the Modelgen nor the ED predicts
consistently better.

5.2.4. NoExp Experiments

The NoExp experiments tested the set of learning-performance models described in Table 5.19. The
set’s deterministic component is made up of the modelnex, and Burry. 1ts nondeterministic component is
the binomial distribution. The purpose of this experiment was to seeif an even simpler submodd than
model g, could be as effective. The alternative, model nex,, Still scales the curve between start and max,
but it does nat adjust for skew using exponentiation. The hope is that the d in model e, can take the role

of bothd andskewin modele,and that exponentiation can be avoided, simplifying the model.

Component, Submodel Value
Det. #1 | modehoeyp | p=model [ (m-1)/d +1 start,max]
| |
! ! model{(m-1)/d +1| - 05
: : = start + (max — start) 5[( )/ :q
_________ =05
Det.#2 . Burp, o 7 modedz] = z/(z+1)
Nondet binomial y(l p)(k y) LK

Table 5.19 Learning-performance model set tested in the NoExp experiments

Figure 5.13 shows atypical characterizationtrial. Table 5.20 quantifies all the characterization trials

in all three domains. The NoExp model does well; &llRvalues are greater than 0.96.
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Figure 5.13 Characterizing learning-performance data from the Heart domain (Trial #1) with
the NoExp model

Domain Loglike. R%eer
Soy (3) -7736.67 0.964
Heart (3) -7568.44 0.984
Audio (3) -5424.74  0.983

Table 5.20 Goodness-of-fit for NOExp characterizing learning-performance data from the three
domains

Figure 5.14 shows all the modds found for all 30 prediction trials in the Heart domain. As Table
5.21 shows, the NoExp modds predicts fairly well based ona subset of examples but the lowest R%q
value, 0.866in Heart domain, is lower than we have seen before. The plot suggests a cause: in a minority

of the Heart-domain trials, the estimataradx the asymptotic accuracy, was far off.

Table 5.22 gives the mean and doserved standard deviation for all parameters in all three domains.
Thed parameter of the NoExp modd set is incomparable with both the d parameter of Modelgen and the

d parameter of ED.

Characterize Predict
Domain Loglike. R’seer  Loglike.  Rlseer
Soy(30) -54903. 0.962 -1657. 0.987

Heart(30)  -54283.  0.976  -1607.  0.866
Audio(30)  -55972.  0.980  -1420.  0.926

Table 5.21 NoExp’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set



0.8

=

N

Accuracy
o
=)

e
IS

0.2 |

L s . s . s
50 100 150 200 250 300
Nurmber of Traini ng Exanpl es

Figure 5.14NoExp’s predictive models for the 30 trials of the Heart domain

Characterization (all available  Prediction (100 classifies

classified examples, 3 trials) examples, 30 trials)
mean s.d. mean s.d.

| Soy
d 39.561 0.3780 47.692 7.5012
max 1.000 0.0000 0.995 0.0268
start 0.087 0.0010 0.093 0.0089
Psoo 0.840 0.0209 0.828 0.0244

| Heart
d 8.668 1.5806 10.866 9.9616
max 0.753 0.0024 0.773 0.0792
start 0.503 0.0000 0.509 0.0110
P290 0.752 0.0248 0.758 0.0621

| Audio
d 15.259 1.6522 15.096 6.6226
max 0.835 0.0136 0.825 0.0992
start 0.141 0.0000 0.149 0.0162
Po1s 0.788 0.0272 0.762 0.0683

Table 5.22 Mean and standard deviation of estimated NOExp parameters
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Table 5.23 compares NoExp to Moddgen on each combination o task and damain. For
characterization, Modelgen dd better in ore domain, NoExp did better in the Heart domain, and there
was no ndiceable difference in the third damain. For prediction, in two damains, there was no significant

difference in predictive power. In the Heart domain, Modelgen predicted better.

Scenario Task Domain  Sig.Diff? Better o test stat.
1 characterize soy yes modelgen  0.002 8.963
2 characterize  heart yes NoEXp 0.026 -2.846
3 characterize  audio no - 0.105 -1.007
4 predict soy no - 0.157 -0.916
5 predict heart yes modelgen  0.006 2.321
6 predict audio no - 0.221 -0.139

Table 5.23Results of paired-difference analysis -- Modelgen predicted better in one domain.

Analysis: In most of the scenarios investigated, the eponent in the Modelgen modd set is nat
important. The d parameter can be adjusted to compensate for the lack of an exponent. The NoExp
modds have the advantage of being simpler and easier to work with. On the other hand, they gets its
simplicity by corflating two parameters (skew and d), one of which can be determined withaut fitting by
just by looking at classfrequencies. Modelgen’'s d parameter is thus more useful because it comes closer
to quantifying the inherent hardness of learning a classfication rule without regard to class frequencies

and skew.
5.2.5. Pvar Model Set

The Pvar experiments tested the set of learning-performance modds described in Table 5.24. The
Set’s deterministic component is made up of the model e, and Burry, just as in the Modelgen experiments
Its nonceterministic component is the beta-binamial distribution. This experiment was designed to tell if
there is any significant difference between using the binomial distribution and using the more
sophisticated beta-binomial. The only difficulty in this comparison is that each dstribution dfines
“goodress’ differently. If oneis much better than the other, however, it ought to be able to beat the other

at prediction by either likelihood standard.

Table 5.26 gives the mean and doserved standard deviation for all parametersin all threedomains. A
pvar value of 0 reduces the beta-binomial distribution to the binomial distribution. On all threedomains,
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for the characterization task, the mean pvar is ®veral standard deviations away from 0, suggesting the
parameter is dggnificant. On the prediction task, however, the mean pvar value is a best two standard
deviations from 0 and, in the Soy damain, only ore standard deviation from 0. This suggests that, for

these prediction tasks, the beta-binomial distribution was not useful.

Com- Sub- Value
ponent model
Det. #1 | modelen | p=mode ,[(M-1)/d +1 start, skew, mex|

skaw(Logy/2[ start/2]-1)

moae 5[(m— 1)/d+ 1]§<M(L°g”[san/ A0 o5

skew(Logy/2[ start/2]-1)

= gart + (rrax - start)
1-05

-t ——-

e ———————— T ——

_Det#2 Bur | modeliz]=zlz+l) ________________
Nondet. | beta- k[
| binomial Beta[y + > (k—y) +—"] E/H
| pvar pvar
| —_
| pvar pvar

Table 5.24 Learning-performance model set tested in the Pvar experiments

Table 5.26 compares Pvar to Moddgen oneach combination d task and damain. Assuming that the
binomial distributionis correct, Moddgen dd significantly better in two o the six scenarios. In the other
four, neither modd set did significantly better. On the other hand, if we asaume that beta-binomial is
correct, then Pvar does sgnificantly better in 4 of the scenarios, Moddgen daes sgnificantly better in

one, and neither does significantly better in the remaining scenario.

Analysis: Only prediction matters here (since each finds the best characterizing fit by its criteria).
Neither modd set corsistently beats the other by the other’s criteria. Thus, while the beta-binomial
distribution has intuitive appeal as a way to measure variance in training examples, for these scenarios

the simpler and more popular binomial distribution seems to suffice.
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Characterization (all available  Prediction (100 classifies

classified examples, 3 trials) examples, 30 trials)
mean s.d. mean s.d.
| Soy
d 12.773 0.0887 14.252 2.1762
max 1.000 0.0000 0.988 0.0458
pvar 0.013 0.0016 0.010 0.0060
start 0.087 0.0010 0.093 0.0089
skew 1.075 0.0019 1.081 0.0169
Psoo 0.840 0.0209 0.840 0.0321
| Heart
d 6.113 1.1021 6.188 4.5237
max 0.753 0.0023 0.760 0.0516
pvar 0.002 0.0009 0.006 0.0063
start 0.503 0.0000 0.509 0.0110
skew 1.015 0.0000 1.042 0.0516
P290 0.752 0.0248 0.749 0.0451
| Audio
d 5.067 0.5460 4.645 1.5405
max 0.823 0.0127 0.795 0.0856
pvar 0.006 0.0027 0.010 0.0052
start 0.141 0.0000 0.149 0.0162
skew 1.196 0.0000 1.191 0.0345
Po1s 0.788 0.0272 0.746 0.0650
Table 5.25Mean and standard deviation of estimated Pvar parameters
Scenario Task Domain  Sig.Diff? Better o test stat.
| Assuming the Binomial Distribution is Correct |
1 characterize soy yes modelgen  0.049 1.912
2 characterize  heart yes modelgen  0.015 3.840
3 characterize  audio no - 0.144 -1.000
4 predict soy no - 0.150 -0.863
5 predict heart no - 0.155 -0.511
6 predict audio no - 0.140 -0.794
| Assuming the Beta-Binomial Distribution is Correct |
1 characterize soy yes pvar 0.004 -7.425
2 characterize  heart yes pvar 0.025 -2.903
3 characterize  audio no - 0.099 -1.078
4 predict soy yes modelgen <0.001 7.091
5 predict heart yes pvar 0.015 -1.947
6 predict audio yes pvar 0.005 -2.405

Table 5.26 Results of paired-difference analysis -- Neither model predicts consistently better.
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5.3. Summary and Conclusion

The gaoal of this chapter was to find which (if any) of the modd set designs were useful for
characterizing and predicting learning performance. The goal was also to help develop criteria for

choosing which of the useful models to use in a particular situation.

To med these goals, Sea generated 99 learning-performance data sets (3 characterization trials and
30 pediction trials x 3 domains) using generalized crossvalidation and thousands of runs of the C4.5
learning algarithm. For each o the 99 learning-performance data sets, See found the maximum-
likdihoodmode from 5 modd sets. Results were measured with logikeihood and R%«q, a measure of
goodressof-fit. The maximum-likelihood modds were compared to each aher using paired-diff erence

analysis.

The Logistic modd set was the only ore that did poorly on both characterization and prediction. This
modd set is nat appropriate for learningperformance data. The other modds all did wel on
characterization and seamed to do as well as possble on prediction. The poor prediction seen in some
trials seemed mostly attributable to unrepresentative subsets of the classified examples.

One way to sdect among the good performing modd sets would be to always use the simplest.
Simplicity is often measured by number of parameters. Most of the modds had two parameters that
needed to be fitted to the learning-performance data (max and d) and two parameters (start and skew)
that could be determined from the classfrequency of the classfied examples. The NoExp modd set did
not have a skew parameter. The Pvar modd set had an additional parameter, pvar, to fit to the data.
Simplicity can also be evaluated by how easy a modd set is to work with, computationally. By this
criterion, NoEXxp is again the simplest. The next simplest would be Moddgen, whereas. ED and Pvar
would be the most complex.

Ancther way to sdect among candidate modd sets is to choase the most useful and meaningful
parameters. For example, the max parameter found in most of the modds is very useful because it is an
estimate of asymptotic accuracy. Likewise, start and skew quantify the dfect of multiple classes and
skewed classs on the learning. Also, the pvar parameter tries to quantify variance in the training chta.
Finally, most of the modd sets have a d parameter. This is a measure of learning dfficulty after other
parameterized eff ects are factored cut. Uniquely among the modd sets, the ED modd set produces a d
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that is comparable to the d produced through Vapnik-Chervonenkis-dimension analysis. Thus, although
one modd set is worst, sdection d the best modd set depends on a tradeoff between simplicity and

usefulnessTable 5.27summarizes the tradeoff.

Model Set  Fit Complexity Measured effects
Modelgen good medium  multiple classes, skew, noise, difficulty
Logistic poor - -

ED good high multiple classes, skew, noise, VC-comparable difficulty
NoEXxp good low multiple classes, noise, difficulty
Pvar good high multiple classes, skew, noise, variance from training examg

Table 5.27: Tradeoffs in sdection d a modd set. Except for Logstic, all the modd sets characterize
well and predict as well as the data dlows. Some of the modd sets are more simple, but others have

useful and interesting parameters.
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6. Conclusion

This concluding chapter highlights the important points of the preceding chapters, suggests

possibilities for future work, and discusses the principle contributions of this research.

6.1. Summary

Inductive clasdfication learning is the process of creating a clasdfication rule based on a set of
training examples. Two questions are of interest when constructing an expert system from classfied

examples:

1. How many classfied examples will be nealed to create a classfication rule of the desired

accuracy?

2. If an unlimited number of examples were possible, what accuracy would be possible?

Seg answers these questions by first generating learning-performance data from a set of existing

classified examples. Then, it fits a learning-performance model to the data.

Sea advances the start of the art by making regresson onlearning-performance data practicable.
Theoretical approaches to modding learning performance, when applicable, can make predictions over a
broad scope of learning tasks. For practical problems, however, with ndse and the most useful machine-
learning algorithms, theory canna yet predict average-case performance. Empirical approaches duch as
Sea are more narrow in scope. They work by gathering doservations of actual learning-performance and
then generalizing it. (They are in essence enpirically learning about empirical learning) Sea’s basic
approach, which goes back at least 75 years, is to use regresson to fit a curve (a learning-performance
mode) to the observed learning-performance data. See differs from previous learning-curve-regresson

work:

1. with learning-performance modds that embody the best constraints for classfication learning

and most useful parameters

2. with algorithms that efficiently find maximum-likelihood models, and
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3. with a demonstration on real-world data of a practicable application.

Formally, See’s task starts with learning-performance data in the form of a sa of tuples,
{<myy,ki>, <myy k>, ..}, wherem is the number of training examples given to a learning program,
is the number of testing examples the clasdfication rule classfies correctly, and k; is the number of
testing examples given to the learner’ s hypothesis. When the total number of classfied examples given to
Sea is gnall, it uses a new procedure called generalized crossvalidation to generate learning
performance data (at a cost of some statistical independence). Although we can informally think o the
modds See fits to that data & “curves’, more formally a learning-performance modd is a function.
From the number of training examples, m, and the number of testing examples, k, a modd predicts the

probability of correctly classifying exactljyexamples.

To create Seq, two questions needed answers: first, which sets of candidate learning-performance
modds dould See consider, and, second how should Seea dficiently find the maximum-likelihood
modd from a modd set. The question d creating candidate models was treated as a threepart design
problem. Thefirst invaved creating deterministic modds for naise-freelearning d two equally probable
classes. Two modds inspired by computational learning theory, EDmodd and BurrModd, were found to
have a much dfferent shape than the modds of logit and probit regresson. The second part of the design
invdved moading the dfect of multiple classes, skewed classes, and nase. The new mMoOE g,
heuristically modds the dfects of interest with remarkably few parameters. The third part invdved
creating a nonceterministic modd. The binomial distribution should be sufficient if variation in testing
data is the only concern. However, if variation in the training chta is also a concern, then the beta-

binomial distribution might be better.

The second question d how to find the maximum-likelihood modd canna be solved with popular
and simple techniques duch as least-squares regresson because the assumptions of least-squares
regresson, such as constant variance, are nat reasorable for learning-performance data. The problem of
findng the maximum-likedihood modd for learning-performance data is an instance of norlinear
programming. See, however, overcomes the difficulties of norlinear programming by exploiting problem
constraints and using appropriate transformations to reduce the problem to norinear regresson, which

Seer solves with an efficient iterative algorithm.
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Experiments were conducted to determine which, if any, of the modd sets designs were useful for
characterizing and predicting learning performance. Sea generated 99 learning-performance data sets (3
characterization trials and 30 prediction trials x 3 domains). It used generalized crossvalidation and
thousands of runs of the C4.5 learning algorithm. For each o the 99 learning-performance data sets, Sea
found the maximum+likelihoodmodd from the 5 modd sets. Results were measured with loglikdihood
and R’s.q, @ measure based on loglikdihood but normalized to the range 0.0 to 1.0. The maximum-
likelihood moddls were compared head-to-head using paired-difference analysis. All the modd sets
(except the logstic modd set) did wel on characterization and seemed to do as well as possble on
prediction. The poor prediction seen in sometrials saned mostly attributable to unrepresentative subsets

of the classified examples.

One way to sdect amongthe goodperforming modd sets would be to always use the simplest. Of the
modd sets considered, the one named NoExp had fewer parameters than the other modds and was the
easiest with which to work computationally. Ancather way to sdect modd sets, however, would be to
choase the one with the most useful and meaningful parameters. For example, the max parameter found
in most of the modds is very useful because it is an estimate of asymptotic accuracy. Likewise, start and
skew quantify and predict the dfect of multiple classes and skewed classes on the learning. Also, the pvar
parameter tries to quantify variance in the training data. Finally, most of the modd sets have a d
parameter. This is a measure of learning dfficulty after other parameterized effects are factored aut.
Uniquely among the modd sets, the ED modd set produces a d that is comparable to the d produced
through Vapnik-Chervonenkis-dimension analysis. Thus, except for the Logistic modd set, all the moddl
sets characterize well and predict as well as the data dlows. Some of the modd sets are more simple, but

others have useful and interesting parameters. Selecting the best one will always involve tradeoffs.

6.2. Future Work

This sction dscusses opportunities for future work. Threedirections are considered: 1) expanding
the amount of performance-data available, 2) exploring the pvar and dgp modd parameters, and 3)

generalizing the models to be multivariate.
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Infinite Data Supply -- If our only interest is in estimating hav many more clasdfied examples we
neal to create an acceptable epert system, then Sea’s current method d generating learning
performance data suffices. However, what if we are interested in characterizing the behavior of our
inductive learning under specific distributions of learning targets and learning examples? In that case, the
distributions can be used to generate randam targets and examples. This gives Sea an inexhaustible
supdy of clasdfied examples. By using each o these synthetic examples only orce, the learning
performance data See creates is datistically independent. Corfidence intervals can be obtained for all
parameter estimates either from the covariance matrix created during modd fitting a via Monte Carlo
simulation [Presset al. 1992 p. 695. The down side to this method s that it is nho longer based onreal-

world data, but rather on a synthetic-data generator.

The pvar and dgp Parameters -- This thesis presented the pvar parameter from the beta-binomial
distribution as a way to characterize variation in training examples. This parameter could be important
because it captures a source of uncertainty that is otherwise ignared. For example, it could tdl us that
although ore inductive learner appears to have greater predictive accuracy than anather (as measured
with ardinary cross validation) that the difference is nat statistically significant because it could be
explained by training-example variation. In the experiments of this thesis, however, the pvar parameter
did na cortribute, in a compeling way, to prediction accuracy. Further work is needed to determine if
and when reliable pvar values can be estimated. One way to try to gain an understanding d the problem

might be to use infinite supplies of data as suggested above.

The thesis also presented the ED modd, a modd designed to create a parameter d that would be
comparable to the Vapnik-Chervonenkis dimension. Hausder [1988 promotes the VC-dimension, dyc as
a measure of inductive bias. Because dgp can be determined in many cases where dy¢ cannd (and visa

versa), it may be a useful measure of inductive bias. Future work is needed to explore this application.

Multivariate Modéls -- When predicting learning performance, the number of training examples is
typically the most important dependent variable, but it is nat the only ore of possble interest. We might

also want to model how other variables affect performance. Examples of such variables include:

e Choice of inductive learning algorithm; for example, C4.5 versus ID3
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e Configuration d learning algorithm; for example, number of hidden units in a neural-net

algorithm
* Number of irrelevant attributes in the classified examples
« Complexity of the target; for example, number of disjuncts in the target
Some of these variables are nearly always available, for example, the learning algarithm and its

configuration are typically knowvn. Other variables, such as number of diguncts in the target, would orly

be known for synthetically-generated learning problems.

The result of multivariate regresson would be a modd that might look something like the plot in
Figure 6.15. It would map dependent variables into expected accuracy, capturing with orly a few

numbers the general effects of learning-task attributes.

100

10

Figure 6.15Example of what a multivariate learning-performance regression model might look
like. In this example, the vertical axis represents accuracy, the horizontal axis represents numb
of training examples, and the axis that goes into the page represents the number of disjuncts in
the learning target.
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6.3. Contributions

The general cortribution d the thesis was to show how regresson could be used to practically and
eficiently analyze inductive classfication learning. More specifically, given a set of classfied examples
and a learning system, such as C4.5, the thesis presented a way to predict learning average-case learning
performance and asymptotic accuracy. The data could be naisy and could aiginate from multiple and
skewed classs. Furthermore, the thesis developed and evaluated several reasonable and eff ective model
sets of learning performance. These modds varied in their simplicity and in the usefulness of their
parameters. One modd set, EDmodd, produced a d parameter comparable to the Vapnik-Chervonenkis
dimension from Computation Learning Theory. It developed a heuristic that predicts, without needing
learning-performance data, the dfect of skewed classes and multiple classes on learning. It developed a
measure, pvar, of the variation caused by different training-example sets. (Most similar statistical
methods only measure the variation caused by different testing example sets.)) It argued that maximum
likelihoodis the most appropriate criterion for sdecting a modd within a family of modds that best fits
the data and it showed howv such maximum-likeihoodmodes could be found efficiently.. It introduced a
new method called generalized crossvalidation to create learning-performance data from a finite set of
classfied examples, if dependencies in the data ae allowed. It was observed that learning-performance
data based on subsets of the clasdfied examples are sometimes unrepresentative. The thesis identified
likelihoodas the most appropriate way to judge the goodressof-fit of a modd to data and dfined Rgeq
(a new measure based on likdihood as a convenient way to namalize likdihood Finally, the thesis

showed how to use pair-difference analysis to compare competing learning-performance models.
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