
 Copyright by Carl Myers Kadie, 1995



SEER: MAXIMUM LIKELIHOOD REGRESSION
FOR LEARNING-SPEED CURVES

BY

CARL MYERS KADIE

B.S., University of Illinois, 1985
M.S., University of Illinois, 1989

THESIS

Submitted in partial fulfillment of the requirements
 for the degree of Doctor of Philosophy in Computer Science

 in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois



iii

Seer: Maximum Likelihood Regression

for Learning-Speed Curves

Carl Myers Kadie

Department of Computer Science

University of Illinois at Urbana-Champaign, 1995

David C. Wilkins, Advisor

The research presented here focuses on modeling machine-learning performance. The thesis

introduces Seer, a system that generates empirical observations of classification-learning performance

and then uses those observations to create statistical models. The models can be used to predict the

number of training examples needed to achieve a desired level and the maximum accuracy possible given

an unlimited number of training examples. Seer advances the state of the art with 1) models that embody

the best constraints for classification learning and most useful parameters, 2) algorithms that eff iciently

find maximum-likelihood models, and 3) a demonstration on real-world data from three domains of a

practicable application of such modeling.

The first part of the thesis gives an overview of the requirements for a good maximum-likelihood

model of classification-learning performance. Next, reasonable design choices for such models are

explored. Selection among such models is a task of nonlinear programming, but by exploiting appropriate

problem constraints, the task is reduced to a nonlinear regression task that can be solved with an eff icient

iterative algorithm. The latter part of the thesis describes almost 100 experiments in the domains of

soybean disease, heart disease, and audiological problems. The tests show that Seer is excellent at

characterizing learning-performance and that it seems to be as good as possible at predicting learning

performance. Finally, recommendations for choosing a regression model for a particular situation are

made and directions for further research are identified.
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1. Introduction

Inductive learning methods now routinely create the initial knowledge base of classification expert

systems from a library of classified examples [Gervarter, 1987]. Researchers have developed effective

inductive learning methods for a variety of classification expert system representations. These include:

• the back propagation method for artificial neural networks [Hinton, 1989], the ID3 and PLS

algorithms for decision trees [Quinlan, 1986; Rendell, 1986],

• the AQ15 and C4.5 methods for production rules [Michalski, 1986; Quinlan, 1992],

• parameter adjustment for Perceptrons [Minsky and Papert, 1988],

• the genetic algorithm for Holland classifiers [Booker, 1989],

• the Protos method for case-based systems [Porter, 1990], and

• algorithms for belief networks [Cooper, 1992].

For the expert system developer using these inductive approaches, the major effort in terms of time and

cost is usually the creation of the library of classified cases. In domains such as equipment and medical

diagnosis the data collection and encoding of a single case can take days of effort and considerable cost.

Regression on learning performance as a tool in the creation of classified examples offers these benefits:

regression models can tell whether the induction program can achieve a required level of classification

accuracy in a particular domain. This is important because the classification level achievable by

induction varies greatly from problem domain to problem domain. Shavlik et al. [1991] and Weiss

[1991] reported variation ranging from 55% to 100%. If a developer requires a level of classification

accuracy for a particular domain and this level is achievable by induction, regression models can also

specify the approximate number of classified cases that the developer must collect to achieve the desired

accuracy.

This thesis presents Seer, a system that generates observations of inductive-classification-learning

performance and then uses those observations to create models of learning performance. Compared to

earlier systems, Seer offers better and more useful models of learning performance, the abili ty to

eff iciently find the maximum-likelihood model, and validation with a practical inductive learning system
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(C4.5) on the real-world diagnosis domains of soybean disease, heart disease, and audiological proems.

In a broader sense, regression is among the most important tools in experimental science. It allows fields

as diverse as biometrics and econometrics make strong scientific conclusions based on the results of

empirical observation. Seer shows how regression can be a practical analysis tool for the field of

empirical machine learning.

The rest of this chapter offers a brief overview of the important ideas of the thesis. It defines

inductive classification learning task and the task of regression on learning-performance data. It then lists

the goals of this research. Finally, it previews the other chapters of this thesis.

1.1. Inductive Classification Learning

Inductive classification learning is the type of learning that Seer models and about which it makes

predictions. An instance of (inductive classification) learning has 6 components:

• An example space, E, of examples, e1, e2, e3, ... described in terms of attributes. For example,

here is an E and an e1 (from a made-up domain):

{ }E . . {red,blue,green} {true,false}= × ×00 100�

e . , ,i = 34 blue true

• A class space, C. For example:

{ }C = star,galaxy

• A target function , T E C: → , drawn from a space of possible targets

If  2.3 < brightness < 4.0 and

    color in {red, blue}

      then if symmetric then dangerous

                        else normal

      else normal

• A set of classified training examples in E×C drawn independently according to some fixed by

unknown probability distribution D
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{ }34 91. , . , . ,blue,true ,dangerous red,true ,normal�

• A classifi cation rule (or hypothesis), H E C: → produced by a learning program (e.g. C4.5)

from the training examples

If color in {blue}

      then if brightness < 5.0 then dangerous

                               else normal

      else normal

• A set of labeled testing examples drawn according to D

The accuracy of a classification rule is the fraction of testing examples it classifies the same as the

target.

1.2. Regression on Inductive Learning

The problem addressed by Seer is modeling and predicting learning performance based on learning-

performance data. The input to Seer has two parts: a set of classified examples and an inductive learning

program, such as C4.5. Figure 1.1 gives an example of classified examples from the domain of

audiological problems.

t,mild,t,?, ... ,p3,mixed_cochlear_age_fixation

t,mild,t,?, ... ,p4,mixed_cochlear_age_otitis_media

f,mild,f,normal, ... ,p8,cochlear_unknown

...

t,normal,f,elevated, ... ,t26,cochlear_age_and_noise

Figure 1.1: Classified examples from the domain of audiological problems -- Such examples are
part of the input to Seer. Each line is an example. The last value in the line is the example’s
classification. Chapter 5 gives more details of the Audiological and other real-world domains
used in this thesis.

The output of Seer is a model of learning performance that can questions such as:

1. How many examples like these would the learner need to achieve 78.8% accuracy?

2. What accuracy would be possible if unlimited examples were available?
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3. Factoring out the effects of noise, skewed classes, and multiple classes, what Vapnik-

Chervonenkis dimension would produce worst-case learning performance most like the

performance observed?

4. How would stratified sampling (changing the proportion of examples of each class) affect

learning?

Seer’s solution approach has two parts. First, it uses the classified examples to generate learning-

performance data. Figure 1.2 shows a plot of learning-performance data. Each dot in the plot shows the

result of one run of the learning program. For each run, Seer spli ts the classified examples into three

disjoint sets: training examples, testing examples, and a possibly empty set of unused examples. The

learning program is run on the training examples and the classification rule produced is tested on the

testing examples. In the plot, the x-axis shows the number of training examples. The y-axis shows the

accuracy of the classification rule on the testing examples.
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Number of Training Examples
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Figure 1.2: Learning-performance data -- Each dot shows the accuracy of a classification rule
created with the number of training examples specified by the x-axis.
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The second part of Seer’s solution approach is to find a good fitting model for the learning-

performance data. Figure 1.3 shows the model that Seer creates for the learning performance data of

Figure 1.2.. The thick line shows the deterministic part of the model. A nondeterministic part of the

model, not shown, predicts how far the “accuracy dots” will scatter from the thick line. The dotted line is

the model’s prediction of the largest possible accuracy.
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Figure 1.3: The thick curve shows the deterministic part of the learning-performance model
created by Seer. The dotted line is the model’s prediction of the largest achievable accuracy. The
model predicts that the expected number of examples needed. The diamond shows that the actual
accuracy achieved with 218 examples is very close to the 78.8% that the model predicted.

From the model, Seer can predict answers to the questions posed at the beginning of this section. (See

Chapter 5 for representative examples of Seer’s predictions.)

1. How many examples like these would the learner need to achieve 78.8% accuracy?

The model predicts that with 218 examples the learner would achieve 78.8%. The diamond in Figure 1.3

shows the actual accuracy achieved with 218 examples. It is very close to what is predicted.
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2. What accuracy would be possible if unlimited examples were available?

The model predicts a maximum accuracy of 86.2%.

3. Factoring out the effects of noise, skewed classes, and multiple classes, what Vapnik-

Chervonenkis dimension would produce worst-case learning performance most like the

performance observed?

Seer can create a model that predicting that a learning task with a VC dimension d=0.559 would have a

worst-case learning performance similar to the performance observed. (See Chapter 4 for details of how

the VC dimension is generalized to real-number values and to values less than 1.)

4. How would stratified sampling (changing the proportion of examples of each class) affect

learning?

The model’s start parameter has value 0.149 and its skew parameter has value 1.191. Chapter 4 details

how these parameters model the effect of class frequencies on learning performance.

1.3. Overview of Thesis

The thesis is organized as follows. Chapter 2 describes previous work in three areas. Its first section

reviews theoretical work on learning performance. Its second section discusses work characterizing the

form of learning curves. The third discusses previous work on the effect of skew and multiple classes on

learning performance. Chapter 3 gives an overview of learning-performance models. It defines them and

argues that maximum-likelihood is the most appropriate criterion by which to select among them. It

shows why popular regression methods, such as ordinary linear regression, are inappropriate for learning

data and it demonstrates how to generate learning-performance data from a relatively small set of

classified examples. Chapter 4 treats the selection of a set of candidate models as a design problem and

enumerates some possible design choices for both the deterministic and nondeterministic part of the

models. The chapter also develops a heuristic model of the effect of noise, skewed classes and multiple

classes on learning. Finally, it shows how to reduce the diff icult problem of finding the best model from a

set of candidates to a problem of nonlinear regression that can be solved with an eff icient iterative

algorithm. In Chapter 5, the models are put to the test in a series of almost 100 experiments on real data
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from three diagnosis domains: soybean disease, heart disease, and audiological problem. The chapter also

provides an analysis of the experiments. The thesis concludes with Chapter 6, which provides a summary

and suggestions for future work.
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2. Related Work

Researchers have been creating models of learning performance since at least 1919 [Thorstone,

1919]. This chapter divides previous work into two approaches. Section 2.1 describes theoretical

approaches, concentrating on computational learning theory. Section 2.2 covers empirical approaches

and includes a table summarizing previous curve-fitting approaches and showing how Seer advances the

state of the art. Finally, Section 2.3 describes specific previous work related to predicting the effect of

multiple classes and skewed classes on learning.

2.1. Theoretical Approaches: Computational Learning Theory

Work in computational learning theory (CLT) goes back at least to Gold [1967], but the work most

relevant to this thesis started with Valiant [1984]. In that paper, Valiant introduced what is now called

probably-approximately-correct (PAC) learning. Roughly, a set of concepts is said to be PAC learnable

if any concept in the set can be learned, with probabili ty 1-δ, to within error less than ε, in time (and

training-example set size) polynomial in 1/δ and 1/ε.

Blumer et al. [1989] refined Valiant’s approach by introducing Vapnik-Chervonenkis (VC)

dimension analysis. VC analysis can be used to measure the expressibili ty of some representation

schemes and to show if the schemes are PAC learnable. In addition to showing what is learning in

polynomial time (and with a polynomial number of examples), computational learning theory is also used

to determine worst-case learning performance bounds. Shawe-Taylor et al. [1993] give this upper bound

on the number of training examples needed to learn any concept in a concept set with VC dimension, d

(>=2):

m d

d

d
d

= m ( , , )
log(

( )
) log( )

( )
VC ε δ δ ε

ε ε
= − +

+

−
1

2
6

1 (2.1)
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For practical problems, such as estimating the number of additional classified learning examples

needed to achieve a classification rule with some desired accuracy, computational learning theory is of

limited utili ty. One limitation is that, to date, CLT only has results for classification rules with simple

representations, such as 3-term conjunctive normal form functions. Developers cannot easily use

computational learning theory on machine learning’s standard representations such as the ID3 decision

tree and the AQ15 rule representations, although research is proceeding in this direction. Another

limitation is that most computational learning theory analyzes only worst-case problems and classified-

example distributions; the resulting learning-performance curves are very difference from the average-

case analysis needed to predict learning performance within the context of a real-world application. A

third limitation is that the Vapnik-Chervonenkis dimension approach used by computational learning

theory cannot quantify the effect of noise, and essentially all real-world domains to an inductive learning

program will have some degree of noise. Finally, computational learning theory generally analyzes only

consistent learning algorithms, algorithms that produce classification rules that are consistent with all

training examples. They ignore the less-than-consistent algorithms used for real-world problems. A less-

than-consistent algorithm employs a stronger inductive bias to guide the search for a generalization of the

data, such as heuristically trying to choose the generalization with the fewest numbers of disjunctions.

With time some or all of these limitations might be overcome, and there are some hopeful signs of

progress. For example, the works of Kearns and Schapire [1989] and Goldman and Sloan [1992] deal

with worst-case learning in the presence of noise. The works of Pazzani and Sarrett [1990], Hirschberg

and Pazzani [1991], Iba and Langley [1992], and Langley et al. [1992] describe methods that produce

average-case analysis for some simple induction algorithms. The work of Ehrenfeucht and Haussler deals

with worst-case learning of a less heuristic variant of the ID3 algorithm [Ehrenfeucht and Haussler,

1989]. To date, these techniques are not suitable for everyday use. For example, Iba and Langley [1992]

perform an average-case analysis of a simple machine learning algorithm that creates one-level “decision

trees”. The resultant learning-performance model is a complex combinatorial expression that could take

more computer time to evaluate that would be taken to actually run a learning expression [Langley,

personal communications, 1994]. This eliminates any advantage that analytic methods might have over

empirical approaches.
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2.2. Empirical Approaches

In contrast to the theoretical approaches that start with some model of the learning task and then

predict (or bounds) learning performance, empirical approaches start with observations of learning

performance. Sometimes these observations are used to select a model from a set of models; sometimes

they stand on their own.

2.2.1. Learning Performance Analysis Without Model Selection

The work of Gaines [1989] is an empirical exploration of how the quality of training examples

created by an expert (called the expert’s case library) affects the number of training examples needed

create a satisfactory set of rules via induction.

Gaines used the INDUCT knowledge acquisition tool in the domain of diagnoses of contact lens. He

found that INDUCT created satisfactory rules when INDUCT was supplied with 18 “critical cases.”

This number of needed cases, however, jumped to 90 cases when INDUCT was supplied with a

representative sample of “merely correct cases.” In addition, INDUCT could still create satisfactory rules

even if these correct expert cases contained 25% errors; however, it then required 326 cases. Moreover,

the number of cases required jumped to 1970 cases when the cases contained 10% error and 1 irrelevant

attribute on the average. Gaines’ research results demonstrate how the quali ty of the data dramatically

affects the number of library cases required for induction.

Note that the method used by Gaines is empirical in nature. The determination of the effect of a

particular amount of noise, irrelevant attributes and the like was calculated by running more and more

cases under a particular set of conditions until a satisfactory set of rules was obtained.

Seer also gathers observations of learning performance, but in addition it has a set of candidate

models—for example, a family of curves. It selects the model from the model set that best fits the data. If

that data is representative and the model set is appropriate, the resulting model may be useful for

predicting future learning performance over a wider range conditions that was observed. For example,

Seer might be able to predict that approximately 2000 cases are required when the cases contain 10%

errors, without having to construct and run 2000 cases with these characteristics.
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2.2.2. Learning Performance Analysis With Model Selection

This section reviews 75 years of research analyzing learning-performance data by fitting models to

the data and highlighting Seer’s unique contributions.

Table 2.1 summarizes the section’s conclusions.

Over the years researchers in many fields have fit many curves (sets of candidate learning-

performance models) to learning-performance data from many kinds of learning. The most popular

candidate curves have been on these orders:

Exponential: log(ε) = m (2.2)

Hyperbolic: ε = 1/m (2.3)

Power Law : ε = 1/mx (2.4)

Logit: logit[ε] = m (2.5)

where m is the number of training examples and ε is some measure of error or reaction time., The most

popular kinds of learning considered have been skill acquisition (also called speed-up learning) and

classification learning. A rat learning to run a maze faster is an example of skill l earning. The time to

complete the maze would be ε.

Quantitative modeling of learning was first considered in the field of experimental psychology. In

Thorstone’s 1919 analysis of 40 curve shapes corresponding to data derived from humans learning to use

a typewriter, he concluded that the hyperbolic curve fit best. . Mazur and Hastie [1978] reviewed of 75

years of debate in the psychological community about whether learning curves are exponential or

hyperbolic. They then put these two curve famili es to the test on a word-recall task and concluded that

the hyperbolic fits the data better.
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Notes:

[ 1] Other kinds of learning are skill l earning (where reaction time is
measured) and pair-recall l earning where the abilit y to recall a word
indexed by another word is tested. Reaction times are continuous, not
binary. Pair-recall l earning, li ke classifi cation learning, has a binary
response.

[2] A practical machine learner is defined here as a learner stronger
than linear perceptron.

 [3] The expression derived is a complex combinatorial expression that
can take longer to evaluate on a computer than running the learning
experiment it is designed to predict.

Summary T19 M72 N81 A89 K91 C92 I92 A93 S93 Seer

Applied to classification
learning [1]

N N N N Y Y Y Y Y Y

Applied to practical machine
learners?[2]

N N N N Y Y N Y Y Y

Put to practical use? N N N N N N N N N Y

Used for accuracy prediction?
(not just testing fit)

N N N N N N Y N N Y

Orders considered (e.g. log,
1/mx,1/m)d

1/m
and

others

log,
1/m

log,
1/mx,
1/m

1/m,
1/mx

1/m 1/m,
log(e)

[3] 1/m all 1/m,
1/mx,
logit

Uses VC bounds? N N N N Y Y N N Y Y

Uses tightest VC bounds? N/A N/A N/A N/A N N N/A N/A Y Y

Models noisy concepts? Y Y Y N/A N N Y N N Y

Applied empiricall y to
learning performance data?

Y Y Y Y Y Y Y N N Y

Applied to learning on
“natural” examples

Y Y Y Y N N N N/A N Y

Applied to binary-response
data?[1]

Y Y N Y Y Y Y N/A N/A Y

Finds maximum-li kelihood
models

N N N/A N N N N/A N/A N/A Y

Uses a discrete distribution? N N N/A N N N Y N/A N/A Y

Binomial distribution? N/A N/A N/A N/A N/A N/A N/A N/A N/A Y

Beta-binomial distribution? N/A N/A N/A N/A N/A N/A N/A N/A N/A Y

KEY
I92 Iba and Langley 1992
A89 Anderson 1989
A93 Amari 1993
C92 Cohen 1992
K89 Kadie 1989.
K91 Kadie 1991
M72 Mazur and Hastie 1972
N81 Newell & Rosenbloom

1981
T19 L. L. Thurstone 1919
S93 Shaw-Taylor 1993
Seer This thesis

Table 2.1: Summary of previous work on the shape of learning curves
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Newell & Rosenbloom [1981] bridged the gap between psychology and artificial intelli gence.

Concentrating on skill l earning, they reviewed work with skill -learning curves back to 1926. They also

tested the applicability of the Power Law to a dozen skill-acquisition domains, concluding:

“There exists a ubiquitous quantitative law of practice: It appears to follow a power law`;

that is, plotting the logarithm of the time to perform a task against the logarithm of the trial

number always yields a straight line, more or less. We shall refer to this law variously as the log-

log linear learning law or the power law of practice.”

Anderson [1989] showed that the Power Law of Learning could be a consequence of “ rational” memory

retrieval. He also referred to other models of memory and skill l earning that are consistent with the Power

Law of Learning. Logan [1992] gave a useful overview of Power Law research on skill acquisition since

1981.

Kadie [1991] analyzed constructive-inductive classification learning by fitting a model/curve based

on the VC dimension bound to learning-performance data. The least squares fit resulted in an R2 of

greater than 0.99

Amari [1993] reviewed “1/m results” from the fields of general stochastic descent dynamics,

computational learning theory, statistical mechanics, information theory, and Bayesian statistics. Cohen

[1992] reviewed “1/m” computational learning theory work. Cohen fit linear perceptron and a more

complex artificial neural net to synthetic data from artificial targets and found some synthetic problems

in which the exponential models fit better and some where the hyperbolic models fit better.

This thesis does not examine speed-up learning. Its general goal is to provide the field of empirical

machine learning with a practical and useful regression tool for classifi cation learning. It extends the

work of Kadie [1991] and the others’ work in three ways.

Learning-performance models: Best constraints and most useful parameters -- We will see in

Chapter 5 that all models of the same order (e.g., hyperbolic) fit the (classification) learning-

performance data about equally well . What differentiates models is not their general shape but

the details of their constraints and parameters. For example, unlike Seer, many learning models
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do not capture the constraint that classification accuracy is bounded by 0.0 and 1.0. Such models

can predict expected accuracies less than 0 for low m values. Also, many models treat variance

as continuously distributed. Such models can erroneously predict that it is possible to achieve

101% classification accuracy. Chapter 4 will show that Seer correctly models variance as a

discrete distribution and that it can distinguish between variance caused by variation in the

training examples from variance cause by variation in the testing examples. Like most of the

models, Seer has a parameter, max, that models noise. Unlike the other models, it also has

parameters, start and skew, that directly measure (and can be used to predict) the effect of

multiple classes and skewed classes. Also, unlike other models, its measure of learning diff iculty,

d, can be calibrated to correspond to the Vapnik-Chervonenkis dimension from computational

learning theory.

Fitt ing criteria and algor ithm: Finds maximum-likelihood models efficiently -- As the quotation

from Newell & Rosenbloom [1981] above suggests, many systems do curve fitting by first

transforming the data and then applying linear regression. This introduces two problems. First,

the procedure can fail . For example, if a learner’s imperfect classification rule just happens to

correctly classify 5 of 5 examples, the observed error is 0. The fact that the logarithm of 0 is

undefined results in the failure of the procedure. The second problem is that a least-squares fit

does not find the maximum-likelihood model for classification learning. Even if nonlinear

regression is used rather than linear regression, least-squares fit only finds the maximum-

likelihood model if the data is continuous and the variance is constant. Neither assumption holds

for (classification) learning-performance data. (See Section 3.1.) Seer works directly on the data

(no transformations), finds the maximum-likelihood model directly, and makes the reasonable

assumption that variance, rather than being constant, is determined by the binomial or similar

discrete distribution. This would seem to make Seer’s fitting task one of diff icult nonlinear

programming, but as Section 4.4 details, Seer is able to reduce the problem to nonlinear

regression and which it can solve with a quickly converging iterative algorithm.

Application and experimental validation: Demonstrates a practical application on real-wor ld

data -- It is the author’s belief that Seer shows the first practical application for learning-
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performance modeling of machine learning data, namely, the estimation of the number of training

examples needed to develop a classification expert system via induction. Related to this, it is one

of the few efforts used to make predictions, not just characterizations. Although several other

efforts have applied learning-performance modeling to noisy learning situations, Seer is the first

(within the author’s knowledge) to use noisy data produced by a practical machine learning

system such as C4.5. Experimentally, Seer provides (to the best of the author’s knowledge), the

first learning-performance modeling of a machine learning algorithm on “natural” learning

examples (See Chapter 5). The other previous machine learning work has either been entirely

theoretical (and not applied to any empirical data) or has been applied only to synthetic learning

examples.

2.3. Effect of Skew and Multiple Classes on Learning Performance

One of the contributions of this thesis is an analysis of how skewed classes and multiple classes

affect learning performance and the learning curve. The analysis shows how class frequency information

constrains the form of the curve. Previous work on the effect of class frequencies developed from a

statistical design method called stratification [Brewer, 1982].

In some statistical problems, examples can be chosen by class. By way of ill ustration, a statistician

may decide to poll exactly 25 Libertarians and exactly 25 Republicans even if Libertarians are less

frequent than Republicans in the population being studied. Such a design would allow the statistician to

make better conclusions about Libertarians and about the differences between the two groups while

keeping cost constant relative to random sampling.

In inductive machine learning, work with skewed classes has concentrated on adapting algorithms

designed for even class frequencies to work well with skewed class frequencies. Buntine [1989] created a

decision tree learner that could be given class frequency information. Catlett [1991] performed a series of

experiments on the effect of reducing the number of examples in the most frequent class (so that the

learning algorithm would run faster). Although he concluded this is a useful tool for some situations, he

believed that throwing away training examples (even from the most frequent class) is not a general

solution to the problem of scaling to large data sets.
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Quinlan [1991] documented some of the diff iculty of learning with two skewed classes and shows

how machine learners can minimize some of the diff iculty by selectively adopting a “when in doubt,

guess the most frequent class” policy.

Seer provides an explicit and predictive empirical model of the effects that previous work has

observed.

2.4. Summary

Theoretical approaches of learning-performance modeling can be used, if enough is known about the

learning task, to predict bounds on learning performance. However, for practical problems with noise and

that use the best machine learning algorithms, theory cannot yet predict average-case performance.

Empirical approaches try to gather additional information, usually about a more narrow learning task, by

observing actual learning performance. This information can then be generalized into quantitative

models. Seer does this by fitting a curve (a learning-performance model) to observed learning-

performance data. It advances the state of the art with: 1) learning-performance models that embody the

best constraints (for classification learning) and most useful parameters 2) fitting algorithms that

eff iciently find maximum-likelihood models, and 3) a demonstration, on real-world data, of a practical

application.
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3. Overview of Learning-Performance Models

Our ultimate goal is to create a statistical model from observations of learning performance that can

predict future learning performance. This chapter addresses two prerequisite questions. First, given

enough learning-performance data and some candidate models of learning performance, how do we

evaluate the fit of those models on that data? Second, how can we generate enough learning-performance

data from a relatively small number of classified examples?

For both questions, assume learning-performance data is a set of tuples. Specifically, let

L L Lw1 2, , ,�  represent w runs of the learning program. For each run of the learning program a tuple

<mi,yi,ki> is recorded, where mi is the number of training cases given to the inductive learning program, yi

is the number of testing cases the classification rule classifies correctly, and ki is the number of cases

used to test the classification rule created by the learning program.. Figure 3.1 shows an example plot of

mi vs. yi/ki.
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Figure 3.1: Learning-performance data. The horizontal axis is mi, the number of training
examples. The vertical axis is yi/ki, the fraction of testing examples the learner’s classification
rule correctly classifies.
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3.1. Good-Fitting Models of Learning-Performance

This section will answer the question “What is a good-fitting model of learning performance?”.

3.1.1. Models of Learning Performance

A model is a function from m, the number of training examples, to a probabili ty density. Given a

value m, the number of training examples, and k, the number of testing examples, a model predicts the

probabili ty of each possible value of y, the number of correctly classified examples. Regression models

are often defined in two parts: a deterministic part and a nondeterministic part [Aldrich and Nelson,

1984; McClave and Dietrich, 1988]. For example, in the model in Figure 3.2a, the deterministic part of

the model has the form of a line z m= +a b , and the nondeterministic part of the model is a normal

distribution of fixed variance centered on z. This is the kind of model found by ordinary linear regression.

Figure 3.2b ill ustrates another model. Again, there is a deterministic part, in this case taking the form of

a curve, and a nondeterministic part, in this case taking the form of a discrete probabili ty density.

Chapter 4 will discuss specific candidates for the curve and the density. For now, our focus is on what a

model does.

a) m

z

  b) m

y/k

Figure 3.2: Two statistical models
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3.1.2. Regression Methods

Regression is well established as a field of statistics and includes many specific techniques, such as

ordinary linear regression via least-squares minimization. This section shows why continuous-response

methods such as ordinary linear regression are not adequate for learning-performance data.

In situations with one real-valued dependent variable and one real-valued independent variable (that

is, continuous-response data), one can think of ordinary linear regression as a method of finding the

straight line that best characterizes a set of observations. “Best” here means the line that minimizes the

sum of the squares of vertical distances between the data points and the line. Two properties of learning-

performance data make it inappropriate for ordinary linear regression. First, learning curves (plots of m

vs. y/k) are not typically linear. They range from 0% to 100% expected accuracy, typically rising quickly

and then slowly converging to or toward 100%. This violates ordinary-linear regression’s linearity

assumption and results in predicted accuracies that are greater than 100%, such as 110%. Second,

ordinary linear regression (and many other nonlinear continuous response methods) assume that errors --

that is, differences between the data and the model -- are distributed according to some constant variance.

In other words, They assume that a situation where the model predicts 30% accuracy and the data shows

50% is just as likely as a situation where the model predicts 99% accuracy and the data shows 79%

accuracy. In practice, the variance of the error shrinks significantly for learning-performance data as the

accuracy gets closer to 100%.

These problems can sometimes be overcome by transforming the data so that it has more appropriate

properties. For example, averaging observed accuracy and then transforming it with the ( )′ = −p plog 1

function [or the function ( )′ = −p p1 1 ] will tend to linearize its relation with the number of training

examples, m. Such a transformation will also tend to make the variance of the errors more constant.

A problem remains, however, for all regression methods that assume learning-performance data is

continuous-response, for example, by assuming that errors are normally distributed. Learning-

performance data is binary-response data, not continuous-response data; on each classification test case,

the classifier will either have an accuracy of 0 or an accuracy of 1. If p(m) is the accuracy predicted by

the model for a learning classification rule based on m training examples, the error on a single testing
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example will , with probabili ty p(m), be 1-p(m) and will , with probabili ty, 1-p(m), be 0-p(m). Thus, the

deviance between prediction and actual result will at best have a mean of zero and a variance equal to

p(m)[1-p(m)]. In other words, it is distributed discretely according to the binomial (or some similar

distribution), not continuously. Although the binomial distribution can sometimes be approximated with

the normal distribution, that approximation is not accurate if the sample size is small or if p(m) is near 1.

Because small samples and accuracies near 1 are of special interest to us when predicting learning

performance, we should not use continuous-response regression on learning-performance data.

An alternative to continuous-response regression is binary-response regression. For some types of

continuous-response regression, such as ordinary linear regression, finding a least-squares fit produces

the model with maximum likelihood. This is not true for binary-response regression so that it is usual to

use other, usually more direct, but less eff icient, methods for finding maximum-likelihood models

[Cramer, 1986; Hosmer and Lemeshow, 1989]. Chapter 4 demonstrates Seer’s use of nonlinear

optimization to this end. The next section discuses maximum likelihood further.

3.1.3. Maximizing Likelihood

If our general goal is to find the most probable model from a set { }M M Mi ∈ 1 2, ,� , given some

observed data D.:

Find { }M M Mi ∈ 1 2, ,� that maximizes ( )Pr |M Di (3.1)

Then by Bayes’ rule, this is the same task as:

Find { }M M Mi ∈ 1 2, ,� that maximizes 
Pr( ) Pr( | )

Pr( )

M D M

D
i i (3.2)

If the number of Mi’s is finite, all Mi's equiprobable (and that D is constant), this is the same task as:

Find { }M M Mi ∈ 1 2, ,� that maximizes ( )Pr |D M i (3.3)
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This assumption is typical but usually implicit in the field of statistics [Cramer, 1986, p. 7]. It is the

reasonable given that no other knowledge is available. The result is called the maximum-likelihood

model.

Consider a simple example of computing the likelihood of a model given some learning-performance

data. Suppose the learning performance data is

{<100, 1, 1>, <100, 0, 0>, <150, 0, 1>, <150, 1, 1>, <200, 1, 1>, <200, 1, 1>}. (3.4)

Suppose furthermore one of our candidate models predicts an expected accuracy of 0.70 for

classification rules based on 100 training examples, an expected accuracy of 0.80 for classification rules

based on 150 training examples, and an expected accuracy of 0.90 for classification rules based on 200

training examples. Table 3.1 shows the likelihood calculation. Note that maximizing likelihood is

equivalent to minimizing the log likelihood; this fact is used to simplify some calculations..

Learning Performance
Datum

Model’s Predicted
Expected Accuracy

Likelihood Log (natural) Likelihood

<100, 1, 1> 0.70 0.70 -0.36
<100, 0, 1> 0.70 0.30 -1.20
<150, 0, 1> 0.80 0.20 -1.61
<150, 1, 1> 0.80 0.80 -0.22
<200, 1, 1> 0.90 0.90 -0.11
<200, 1, 1> 0.90 0.90 -0.11

Total: 0.027 -3.60.

Table 3.1. An example of computing the likelihood of a model

3.2. Generalized Cross-Validation

In many applications, a small , fixed set of examples (a case library) must supply both training

examples for the inductive learning program and testing examples for measuring the performance of the

classification rule the program produces. This section tells how to collect learning performance data from

a small number of classified examples with a heuristic called generalized cross-validation.
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The standard statistical technique of cross-validation (see Figure 3.3) would try to solve the problem

by dividing the |N| classified examples into v disjoint subsets, each of approximate size |N|/v. Then it

would repeatedly hold one subset out for testing and give the other examples in the other v-1 subsets to

the learner for training. The result would be learning-performance data of the form:

{<m1,y1,k1>, <m2,y2,k2>, ..., <mv,yv,kv>} (3.5)

where the mi’s are the number of training examples given to the learner (approximately (v-1)|N|/v). The

ki’s are the number of testing examples (approximately |N|/v). The sum of the ki’s will be exactly |N|

because each case is used as a testing example exactly once. The yi’s are the number of examples a

classification rule classified correctly. They will range in value between 0 and ki.

Input: A set N of classified examples

Procedure:

1. Shuffle order of examples

2. Partition into subsets (say, v subsets):

S1, S2, ... Sv

3. For each subset, train on the others, test on it.

Run 1: Train on N- S1; Test on S1

...

Run i: Train on the set N- Si ; Test on Si

...

Output: {<m1,y1, k1>,<m2,y2,k2>, ..., <mi,yi,ki>,...}

Figure 3.3: The cross-validation procedure

As an example, if |N| is 101 and v is 20, then each subset will have 5 or 6 cases in it and resultant

learning-performance data will look something like:

{<95, y1,6>, <96, y2,5>, ... <96, y20,5>} (3.6)
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Cross-validation is good in that it uses each case exactly once for testing. This means that the yi’s are

independent with respect to the testing examples (but not the training examples). Cross-validation is

inappropriate for learning-performance analysis, however, because it only provides data for one or two

distinct values of m. In the example, it only provided data for m=95 and m=96. To do learning-

performance analysis, we need data for many distinct values of m.

To meet this need, Seer uses generalized cross-validation, a new heuristic. The idea is to perform

cross-validation for each distinct value of m of interest (see Figure 3.4).

Input: A set N of classified examples, set of m-values of interest

Procedure:

For each m:

a. Shuffle the order of the examples

b. Partition the examples into v subsets:

c. For each subset, Si

Train on m examples randomly selected without replacement from the set M-Si

Test on Si

Output: {<m1,y1,1, k1,1>,<m1,y1,2,k1,2>, ..., <mi,yi,1,ki,1>,...}

Figure 3.4: The generalized cross-validation procedure

For example, suppose |N| is 101 and that one m-value of interest is 45. We could divide the data into

three subsets a, b, and c of size 33, 34, and 34, respectively. Next we could create three pairs of training

data and testing data:

{<N-c, c>, <N-b, b>, <N-a, a>} (3.7)

Each pair consists of 1) the union of all but one subset and 2) the remaining subset. The first element of

the pair is the training set. In the example, each training set has 67 or 68 examples in it. That is more

than we want, so we randomly select (without replacement) 45 examples from each training subset to

actually be used for training. The process is repeated for all m-values of interest.
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In the example, the data was divided in the three initial subsets. In general, it will be divided into v

subsets. The only constraint is that the number of initial subsets v must be such that 
v

v
N m

−





>
1

. In

other words, it must be large enough that there will be enough training examples. In the experiments of

Chapter 5, the default value of v is 10. For larger m, it is the minimum value that meets the constraint.

With generalized cross-validation, for each distinct value of m, each of the |N| cases is used for

testing once and only once. Because we assume the |N| cases are independent, learning performance data

with the same m value is independent (with respect to the testing examples). Learning performance data

with different values of m, however, are not independent with respect to the testing examples because the

same examples used for testing when, say, m=49 are reused for testing when m=50. Considered as a

whole, the learning performance data is, thus, not mutually independent. This will prevent us from

making some statistical conclusions that depend heavily on the independence of the data. For example, it

will make it impossible to create good confidence intervals on predictions because such confidence

intervals depend on a good estimate of variance and that requires independent data. This is unfortunate,

but it is inevitable when working with a small amount of data.

3.3. Conclusion

This chapter gave an overview of the regression problems on which Seer works. It defined the form

of learning-performance data of interest to Seer as a set of tuples, { <m1,y1,k1>, <m1,y1,k1>, ...} , where mi

is the number of training examples given to a learning program, ki is the number of testing examples

given to the learner’s classification rule, and yi is the number of testing examples the classification rule

classifies correctly. The chapter also defined models of learning performance. A model is a function that

given the number of training examples, m, and the number of testing examples, k, a model tells the

probabili ty of correctly classifying any yi number of examples. The chapter also showed how to apply the

notion (from the field of statistics) of maximum likelihood and that continuous-reposes regression

methods will not finding maximum-likelihood models of the learning-performance data. Finally, the

chapter showed that when the total number of classified examples is small , a new procedure called

generalized cross-validation can be used to gather learning-performance data (at a cost of some statistical

independence).
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The next chapter gives the specifics of Seer’s regression. It details the learning-performance models that

Seer considers and shows how Seer uses nonlinear optimization to find maximum-likelihood models of

learning performance.
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4. Candidate Models of Learning Performance:

Design and Selection Method

The previous chapter defined learning-performance models and showed how the maximum-likelihood

criterion defines the best model in a possibly infinite set of candidate models. But which sets of candidate

models should we consider? And how can we, algorithmically, find the best model from a set? This

chapter answers these two questions. The chapter treats the first question (which sets of models to

consider) as a three-part design problem: 1) designing the deterministic part of the model for noise-free

learning with two equiprobable classes, 2) generalizing the deterministic model to handle multiple

classes, skewed classes, and noise, and 3) designing the nondeterministic part of the model. Figure 4.1

gives an overview of the design choices considered. The chapter answers the second question (how to

algorithmically find the best model from a set) in Section 4.4 which details the optimization techniques

used. This chapter draws no conclusions about which designs are best. That question will be addressed in

Chapter 5 by putting the designs to the test on real learning-performance data.
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Figure 4.1:  Design of sets of candidate models. We will start with sets of deterministic models
based on logit, probit, Burr1, and ED. Then we will add Modelgen or NoExp (NoExp defined in
the next chapter) to improve fit when classification classes are skewed, multiple, or noisy.
Finally, we will add a nondeterministic component to the (sets of) models. The numbered paths
show the five designs put to the test on real data in Chapter 5.
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4.1. Candidate Deterministic Models

Recall from section 3.1.1 that the deterministic part of a learning-performance model is the part that,

given the number of training examples provided to the learner, predicts the expected accuracy of the

learner’s hypothesis. (The nondeterministic part of the model predicts the error in the accuracy

prediction.) This section finds some reasonable and some unreasonable deterministic (sets of) models.

The most interesting of these, the effective-dimension learning-performance model, is inspired by models

of learning developed by computational learning theory.

All the models considered will be binary-response models, that is; they predict number of

occurrences of some binary event. In the context of learning-performance data, they predict the expected

number of correctly classified examples, y, when the learner’s classification rule is tested on k examples.

Put another way, they predict the expected accuracy, y/k, on a set of testing examples, where accuracy

can range from 0 to 1.

This section will start out assuming that the learning task of interest is two-class classification (for

example, distinguishing healthy people from sick people). Also, it will assume that the two classes are

equally probable and that classification is noise-free. In the example, this would mean that it assumes

that it will be asked to classify about the same number of healthy people as sick people and that any two

people with the identical symptoms will have the same classification (either healthy or sick). Section 4.2

relaxes this assumption. It shows how to generalize a learning-performance model of learning two,

equiprobable, noise-free classes into a learning-performance model of learning multiple skewed classes

with noise.

4.1.1. Popular Binary-Response Models

A common way to approach the problem of choosing a deterministic model is to try to find a link

function. Its inverse, a regression model, should fit the data well with few parameters (simplicity). Four

candidate link functions and their corresponding regression models are summarized in Table 4.1.
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Link Function Corresponding Regression Model
Name Value Name Value
logit z= log(p/(1-p)) logistic

p
e

e

z

z
=

+1

probit z = Φ-1(p) normal p = Φ(z)

EDit

z
p

p p
= −

− − −

2
6

1

1 1 1

log( )

( )( )

EDmodel p = EDit-1(z)

Burr1
z

p
= −







1

1
1

BurrModel p = z/(z+1)

Table 4.1 SEER's link functions and regression models -- Φ is the cumulative distribution
function for the normal distribution, p is a predicted probability and m is the number of training
examples. The variable z is (m-1)/d+1, where m is the number of training examples and d is a
parameter.

The two most commonly used link functions for binary-response regression are logit and probit.

They are based on statistical distributions [McCullagh and Nelder, 1989]. The logit link function is the

inverse of the cumulative distribution function (CDF) for the logistic probabili ty distribution. Logit's

inverse is called the logistic regression model. It is defined as:

p
e

e

z

z
=

+1
(4.1)

Figure 4.2a shows its plot. Because the logistic regression model is a CDF, it maps values from the

range - ∞  to +∞  to the interval 0 to 1. The probit link function's inverse is called the normal

regression model because it is the CDF of the standard normal distribution. Figure 4.2b plots the normal

regression model.

4.1.2. Models Inspired by Computational Learning Theory

EDit and Burr1 are link functions especially designed to fit learning-performance curves. The EDit

link is inspired by results in computational learning theory [Shawe-Taylor et al., 1993]. The next section

explains the relationship. The Burr1 link, a simpli fication of the EDit link, is of a class of functions (the
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inverse polynomials) that have been used for least-squares regression [Nelder, 1966], but not (to the

author’s knowledge) for binary-response regression [Nelson, 1994].
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Figure 4.2: a) Logistic model:p
e

e

x

x=
+1

 b) Probit (normal) model: p = Φ(x)
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4.1.2.1. The Effective-Dimension Model

Informally, the effective dimension is just a backward version of the Vapnik-Chervonenkis (VC)

dimension [Blumer et al., 1986]. It is a measure of complexity based on the expressiveness of a

hypothesis (classification-rule) language.

 Taking as input the complexity of the hypothesis space of the learning problem, a given VC

dimension, d, defines a (worst-case) learning curve. In contrast, the effective dimension of a learning

problem is defined by a learning curve. Given a set of learning-performance data, the effective dimension

is the d that defines a curve that best fits the data. Thus, unlike the way that computational learning

theory uses the VC dimension, effective dimension analysis can take advantage of existing empirical

performance data of an induction algorithm to make quantitative predictions of the behavior of the

learning algorithm if it was given additional cases or was subjected to different environmental conditions,

such as different levels of noise, irrelevant attributes, number of hidden units, etc.

Formally, Shawe-Taylor et al [1993] gives this upper bound on the number of cases needed to learn

any hypothesis in a hypothesis space with VC dimension, d (>=2):

m=m ( , , )
log(

( )
) log( )

( )
VC ε δ δ ε

ε ε
d

d

d
d

= − +
+

−
1

2
6

1
(4.2)

In these equations ε is the maximum allowed error (and 1 minus the minimum required accuracy). δ is

the minimum probabili ty of failure. Log is natural logarithm. An intriguing aspect of this formulation is

that the VC-dimension approach offers statistical guarantees about induction which we think of as

offering no guarantee.

The Shawe-Taylor et al. relation, as used in computational learning theory, is unsuitable as a

regression model for average-case learning. It is only defined on integer d greater than 2, but even d=2

gives a slower raising learning curve than is typically seen with average-case learning. The first step to

defining the EDit link function of SEER is to change the VC bound so that it is defined on all nonnegative

real-valued d:
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for constant δ, x ( ) lim(m ( , , ) / )
log( )

( )ED VCε ε δ ε
ε ε

= =
−→∞d

d d
2

6

1
(4.3)

Also, the function is expressed in terms of accuracy, p, rather than error, ε:

EDit ( ) x ( )ED0 1p p= − =

2
6

1

1 1 1

log( )

( )( )

−
− − −

p

p p
(4.4)

EDit0 corresponds to a fixed learning curve. To allow it to be fit to data, parameters must be added.

Putting in the effective dimension parameter, d, allows the curve to expand and compress horizontally:

EDit ( , ) x ( )ED1 1p d d p= − =
2

6
1

1 1 1

d
p

p p

log( )

( )( )

−
− − −

(4.5)

Figure 4.3 plots the original VC curve and EDit at d=2, the value of d at which they are most

different. Even here they are close.
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Figure 4.3: The solid line is the learning accuracy curve for the m ( , . , )VC 1 0 5− p d  for d=2. The

dashed line is for EDit ( , )1 p d  for d=2.
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We will see in the next section that a learning curve for learning problems with two equiprobable

classes should map one training example to an accuracy of 0.5. We can do this with this curve by

shifting it to the left:

m p d d p= = − −EDit ( , ) (x [ ]ED2 1 32.936) =d
p

p p

2
6

1

1 1 1
32936

log( )

( )( )
.

−
− − −

−



















(4.6)

The effective-dimension model is defined in terms of the inverse of EDit0:

p m d
m

d
= = +−EDmodel( , ) EDit (

.
)0

1 32936
(4.7)

Because EDit0 is of the form z zlog( )  it has no closed-form inverse. EDit0 is, however,

differentiable, so its inverse can be computed numerically using Newton's method. For even greater

speed, a table can store selected values of EDit0
1− , and other values can be determined via linear

interpolation.

4.1.2.2.  The Burr 1 Model

The Burr1 model is similar in shape to, but simpler than, the EDmodel:

p = BurrModel(z) = z/(z+1) (4.8)

where z = (m-1)/d+1. Nelder [1966] describes a class of regression models he calls inverse polynomial

models and develops procedures for using these models with continuous-response data. The reciprocal

model is a specialization of this class of models. Aldrich and Nelson [1984] mention the function, which

they call Burr1 as a candidate for regression, but in personal communications Nelson [1994] says that, as

far as he knows, no one has used it for regression on binary-response data before. See Chapter 2 for a

discussion of the use of similar functions with continuous-response data.
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4.1.3. A Comparison of the Deterministic Models

In this section the four deterministic models are compared. The comparison shows that the two models

based on computational learning theory (EDmodel, based on EDit, and BurrModel, based on Burr1) have

different shapes than the better-known logistic and probit (normal) binary-response models. We will see

in the next chapter that, as one might suspected, the learning-inspired models fit and predict learning-

performance data better.

Figure 4.4 plots BurrModel, EDmodel, and the logistic and probit (normal) regression models fitted so

that all four intersect at p = 0.70 and p = 0.75.
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Figure 4.4: Four regression models fitted to intersect at accuracies 0.70 and 0.75. The top two
curves are the logistic and probit (normal) regression models. The lower dashed line is
BurrModel. The lower solid line is EDmodel.

Figure 4.5 shows the slope in the curves of Figure 4.4 as a function of accuracy. It shows that

EDmodel and BurrModel are similar to each and quite different from the logistic model and the normal

model. Figure 4.6 shows the ratio of EDit to Burr1. It highlights the difference between EDit and Burr1.

As accuracy goes to 1, EDit becomes infinitely larger than Burr1.
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Figure 4.5: The slopes of the four curves as a function of accuracy. It shows that the logit and
probit models are much different than the new models designed for learning curves.
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Figure 4.6: The ratio for EDit and Burr1 as a function of accuracy. At high accuracies, the
functions are not identical
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4.2. Modeling the Effect of Multiple Classes, Skewed Classes, and

Noise

This section develops a learning-performance model for learning in the presence of multiple classes,

skewed classes, and noise. Like any good model, it makes predictions. Three of the model’s most

interesting predictions are:

1. The effects of class skew and class multiplicity can be predicted from the class frequencies.

Actual learning-performance data need not be considered.

2. Once the effects of skew, multiple classes, and noise are factored out, learning performance can

be well characterized by a single parameter.

3. When classes are skewed, learning error does not decrease linearly with the reciprocal of the

number of examples; rather, it decreases in a predictable exponential way with that reciprocal.

The learning-performance model presented in this section is not meant to be a statement of

computational learning theory. Rather, it is meant to be a heuristic that will be tested empirically.

Intuitively, we would expect multiple classes to make learning more diff icult. For example, learning

to distinguish 19 diseases should be harder than learning to distinguish two. Similarly, noise should also

make learning harder. For example, if 10% of the training and testing examples given to a learner have

the wrong class label, the ultimate achievable accuracy as measured on those noisy testing examples is

reduced to at least 90%. On the other hand, skewed data can make learning easier. For example, suppose

the learning problem is skewed so that 95% of the training and testing data is of one class. The learner

could be 95% accurate just by always guessing the most frequent class. Even with just one training, the

learner would have a 95% chance of seeing the most frequent class, and thus by hypothesizing that

everything is of the class it sees, obtain an expected accuracy of at least 90.25% (=95%×95%).

The model ultimately developed in this section, modelgen[z,start,skew,max], is this parameterized

function from examples, m, to accuracy, p (as illustrated in Figure 4.7):
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where:

• model5[z] is a learning-performance model for the base case: 2 classes, 50%/50% class

frequencies, no noise. One possible candidate is z/(z+1), the BurrModel of Section 4.1.2.2.

• d measures the learning rate.

• start is the expect accuracy when the number of training examples, m, is 1.

• skew is a measure of skew. A value of 1 is the skew when all classes are equiprobable.

• max is the highest possible expected accuracy. It is a measure of noise.

d

skew

max

start
p

m

model5

Figure 4.7: Function modelgen[z,start,skew,max] maps m, the number of examples, into p, the
expected accuracy. It is defined in terms of a function model5[m]. Its d parameter expands or
contracts the curve along the x-axis. Its start and max parameters define the low and high y-axis
values. Its skew parameter makes the curve more concave or less concave.

The modelgen[z,start,skew,max] learning-performance model depends on a model5[z] learning-

performance model must be assumed. Section 4.1 discusses reasonable candidates for model5[z]. Values

for start and skew can be determined from the class frequencies observed in the training examples
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(Section 4.2.5). Values for d and max can be determined with maximum likelihood estimation. That is the

topic of Section 4.2.

4.2.1. Learning from Only One Example

As a base case, consider the learning performance of an inductive learning when it is given only a

single training example. Its best strategy if it has no other knowledge is to guess what it sees. That is, it

should hypothesize that all examples are of the same class as the only training example it has seen.

• Observation 4.1: If there are two classes each with probabili ty 0.5, the expected accuracy of the

guess-what-you-see classification rule on independent testing data is 0.5.

• Observation 4.2: If there is only one class with class frequency 100% -- in other words, if all the

testing and training examples have the same class label -- then the expected accuracy is 1.

• Observation 4.3: As the number of classes goes to infinity each with an infinitesimal probabili ty

of appearing, the expected accuracy goes to 0.

• Observation 4.4: If there are two classes, class “A” with probabili ty 0.9 and class “B” with

probability 0.1 -- the expected accuracy is:

 The example is A: probability 0.9, expected accuracy 0.9, 0.81

The example is B: probability 0.1, expected accuracy 0.1, 0.01

TOTAL EXPECTED ACCURACY = 0.82

• Observation 4.5: Generalizing, given 1 example, if the probabili ty of any class c is f[c], then the

expected accuracy on that class is f[c]. Let fvector be the vector of class probabili ties, then

overall expected accuracy is:

p c fvector fvector
c classes

= = ⋅
∈
∑ f[ ] T2 (4.10)

So, if fvector is <0.9, 0.1>, p = <0.9, 0.1>T · <0.9, 0.1> = 0.92 + 0.12 = 0.82
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4.2.2. Learning from m Examples

Modeling the effect of m training examples requires some additional assumptions.

• Assumption 4.1: For learning tasks with two classes each with frequency 0.5, the expected

accuracy p can be well estimated by some function model5[z], where z is (m-1)/d+1, m is the

number of training examples and d is a parameter related to learning rate. From Observation

4.1, the function should have the property that:

model5[1]=0.5 (4.11)

This assumption and possible candidates for model5[z] were the subject of Section 4.1. One candidate for

the function is BurrModel:

model5[z] = z/(z+1) (4.12)

It is plotted in Figure 4.8.
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Figure 4.8. The z/(z+1) function, a candidate for model5[z]. The function maps z -- z is (m-
1)/d+1, where m is the number of training examples and d is a constant -- to p , accuracy.
model5[z] is assumed to model the learning on data with two classes, each with a 0.5 frequency.
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• Observation 4.6: If there is only one class with probabili ty 1, the expected accuracy for all m is 1

(as before).

• Observation 4.7: As the number of classes all with an infinitesimal probabili ty of appearing goes

to infinity, the expected accuracy goes to 0 (for all finite m).

• Definition 4.1: Let modelcla[z,f[c]] , where z is (m-1)/d+1, be the expected accuracy on any class c

with class probabili ty f[c] of a learner given m training examples. This definition assumes that

expected accuracy on a class is only a function of class frequency and number of examples and

not of the class itself.

• Assumption 4.2: If f1 < f2, modelcla[z,f1] < modelcla[z,f2] (for all finite z). In other words, for a

given number of training examples, the expected accuracy on a class will be greater the larger

that class's frequency.

In general, given m examples, the expected accuracy on all classes is:

[ ] [ ]p z fvector f z f
f fvector

= = ⋅
∈
∑model , model ,all cla (4.13)

the weighted average of the accuracy on each class. Note that when there are two classes and each has

probability 0.5, by (4.13) and Definition 4.1:

[ ]
[ ] [ ]

[ ] [ ] [ ]

p z

z z

z z z

=

= +

= + =

model , . , .

. model , . . model , .

. model , . model model

all

cla cla

05 05

05 05 05 05

05 055 5 5

(4.14)

In other words, model5[z] is both the total expected accuracy on all classes when there are 2 classes of

50%/50% probability and the expected accuracy on a single class with 50% probability.
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4.2.3. Heuristic for modelcla[z,f] in Terms of model5[z]

The next goal is to find a simple heuristic expression of model5[z] in terms of model5[z]. The

constraints are:

modelcla[z,0.5] = model5[z] Assumption 4.1

modelcla[z,0.0] = 0.0 (for finite z) Observation 4.7

modelcla[z,1.0] = 1.0 Observation 4.6

modelcla[1,f]= f Observation 4.5

If f1 < f2, modelcla[z,f1] < modelcla[z,f2] (for finite z) Assumption 4.2

The intuition motivating the heuristic is that the model5[z] curve is our standard learning curve and

that when a class probabili ty is large, this standard curve will be pulled up toward higher accuracy and

that when a class probability is low the class probability will be pulled low toward zero.

Figure 4.9. How a standard learning-performance model which has value 0.5 when z=1, might be
pulled up to produced a curve with greater value when z=1 or pulled down to produced a lesser
value when z=1.

For any z and f,
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if 0.0 < f < 0.5, 0.0 < modelcla[z,f] < model5[z] (4.15)

and

if 0.5 < f < 1.0, model5[z] < modelcla[z,f] < 1.0 (4.16)

Here is a simple function with the right properties:

[ ] [ ] [ ]p z f z
f= = −

model , modelcla

Log

5

2 11 2 (4.17)

For example, if model5[z] is z/(z+1), here are the curves for f= 0.0, 0.1, …, 1.0.
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Figure 4.10: Learning-performance models for classes with class frequencies f= 0.0, 0.1, …, 1.0.
Each model is a learning curve function, modelcla[z,f], that maps z (a linear function of the
number of training examples) to p, accuracy in identifying that class. Note that when the number
of training examples is 1 (and z=1), the accuracy is the class frequency. This plot assumes that
the “standard” learning-performance model, model5[z], is z/(z+1) .
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Applying the heuristic to modelall[z,fvector] gives

[ ] [ ] [ ]p z fvector f z
f

f fvector

= = ⋅ −

∈
∑model , modelall

Log
5

2 11 2 (4.18)

4.2.4. Learning with Multiple, Equiprobable Classes

If we have classnum classes each of equiprobability, the heuristic predicts this overall accuracy:
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4.2.5. Learning with Skewed Classes

If we have classnum classes with a variety of class probabili ties, the heuristic predicts an overall

accuracy of:
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(4.20)

This is the weighted sum of modelcla[z,f] functions. The sum can't be expressed exactly as a

modelcla[z,f] curve, but it can be closely approximated with a generalization of the modelcla[z,f] function.

Such an approximation makes sense since the modelcla[z,f] function is itself only a heuristic.

To see the intuition behind the approximation, start with the modelcla[z,f] function:

[ ] [ ] [ ]p z f z
f= = −

model , modelcla

Log

5

2 11 2 (4.21)

Recall that when z=1, , the modelcla[z,f]= f. Thus, the exponent, Log½[f/2]-1, and value when z=1

coupled. The approximation is a generalization that uncouples these two values:
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where start is the expected accuracy when z=1 and skew is the exponent.

The final step in the approximation is setting the parameters start and skew so that

modelskew[z,start,skew] ≈  modelall[z,fvector]. The strategy will be to set start and skew so that the two

functions intersect for three values of z.

First, we would like them to intersect as z goes to infinity. This is automatic because both functions

do go to 1 as z goes to infinity.

Second, we would like them in intersect when z=1. The value of modelall[1,fvector] is fvectorT·

fvector. The value of modelskew[1,start,skew] is start. So we can make the two functions intersect be

setting start  to fvectorT· fvector.

Third, we would like them to intersect at a third point. A convenient point is that z  such that

model5[z]=0.75. At that value of z, modelskew[z,start,skew] will equal modelall[z,<f1,f2,…,fclassnum> ] if and

only if:
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(4.23)

The only unknown is skew; its value can be determined numerically with, for example, the secant

method or with the Newton-Raphson Method [Press et al., 1992].

Here is how modelskew[z,start,skew] f its in with our previous results for learning in which all the

classes are equiprobable. When number of classes is two and each has 50%/50% probabili ty, our model

is model5[z]. This exactly equals modelskew[z,0.5,1]. More generally, when number of classes is classnum
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and each has the same probabili ty, our model was model5[z]
 Log

½
[f/2]-1. This exactly equals

modelskew[z,1/classnum,1]

The plot shows modelskew[z,0.5,skew] for skew=0.001, 1, 2, 4, and 8. The topmost curve is

skew=0.001.
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Figure 4.11: Learning-performance models with a start value of .5 and skew values of 0.001, 2,
4, and 8. Each model is a learning curve function, modelskew[z,start,skew], that maps z (a linear
function of the number of training examples) to p, accuracy in identifying that class. This plot
assumes that the “standard” learning-performance model, model5[z], is z/(z+1).

Here is an example from soybean-disease diagnoses in which there are many classes and the class

frequencies vary widely . Suppose the class frequencies are:

<0.0130293, 0.00325733, 0.019544, 0.019544, 0.130293, 0.130293, 0.0325733,

0.0651466, 0.0325733,0.0325733, 0.0325733, 0.130293, 0.0325733, 0.0325733,

0.0651466, 0.130293,0.0325733, 0.0325733, 0.0325733 > (4.24)
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The modelall[z,fvector] heuristic for these class frequencies is:

0.521172 model5[z]
2.94017 + 0.130293 model5[z]

3.94017 + 0.29316 model5[z]
4.94017 +

0.039088 model5[z]
5.67713 + 0.0130293 model5[z]

6.2621 + 0.00325733 model5[z]
8.26209 (4.25)

If model5[z] is assumed to be z/(z+1), modelall[z,fvector] looks like
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Figure 4.12: A learning-performance model for the soybean disease data. The model is a
function, modelall[z,fvector], that maps z (a linear function of the number of training examples) to
p , accuracy in identifying that class. The quantity fvector is the vector of class frequencies for
the soybean data. This plot assumes that the “standard” learning-performance model, model5[z],
is z/(z+1).

To determine the modelskew[z,start,skew] approximation to modelall[z,fvector], we need to determine

start and skew. The value of start is just fvectorT· fvector = 0.0868867.

To determine skew, we want to find a value for it such that

modelskew[z,start,skew]=modelall[z,fvector] when model5[z]=0.75. (4.26)
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 Substituting in values, we want to find a value for skew that will solve

( )
0.0868867+

0.9131130.75 0.5

0.5

3.52472 3.52472 

3.52472 

skew skew

skew

−

−
=

1
0 346491. (4.27)

The value is found numerically to be 1.07556. So, modelskew[z,start,skew] is

0.0157871 + 0.984213 model5[z]
3.79106 (4.28)

which is much simpler than modelall[z,fvector].

Again assuming that model5[z] is z/(z+1), here is a plot of both the modelall[z,fvector] heuristic and its

modelskew[z,start,skew] approximation:
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Figure 4.13: Two almost indistinguishable learning-performance models for the soybean disease
data. One is the same modelall[z,fvector] function plotted in Figure 4.12. The other is
modelskew[z,start,skew], a simpler function with much the same shape. This plot assumes that the
“standard” learning-performance model, model5[z], is z/(z+1).
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4.2.6. Learning with Noise

There are many possible ways to define noise. For the purposes of this thesis, it is defined as the

difference between 100% accuracy and max, the expected accuracy as z (and m) go to infinity.

This suggests that noise can be added to a learning curve model through scaling a learning curve

model by the quantity max. This doesn't quite work because it would scale down start. The start value is

determined from the observed class frequencies. If there is noise, the noise will already be reflected in

these class frequencies and in start. Thus, a model of noise should not affect start.

We will do the next simplest thing, scale down the learning curve model, but do so with start as the

origin.
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The result is an expression very similar to the expression for modelskew[z,start,skew]. The plot shows

modelgen[z,0.5,1,0.8] with model5[z] defined as z/(z+1). Notice that modelgen[z,start,skew,1] =

modelskew[z,start,skew].

4.2.7. Working with model gen[z,start,skew,max]

In outline, the steps to fitting a modelgen[z,start,skew,max] curve to data are:

1. From the training data, measure fvector, the class frequencies.

2. From fvector, compute start and skew.
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3. Into modelgen[z,start,skew,max] substitute the values of start and skew, also substitute in (m-

1)/d+1 for z and whatever function is being used for model5[z]. For example, using the z/(z+1)

for model5[z] and the soybean frequencies we saw earlier produces:

( )p = 0.0868867 +  1.07787 max - 0.0868867
3.79106d m

d m

+ −
+ −







1

2 1
(4.30)

4. The learning-performance data gives observed values for m, the number of training examples,

and p, the observed accuracy. Find the values of d and max that produce the curve that best fits

the data. The details on how to do this are the subject of Section 4.4.
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Figure 4.14: A learning-performance model that models the effect of 20% noise. The learning-
performance model is modelgen[z,0.5,1,0.8]. The 0.8 parameter is 100%-20%, the maximum
attainable accuracy. This plot assumes that the “standard” learning-performance model,
model5[z], is z/(z+1).
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4.2.8. Simplified Model

But is the complexity of Equation (4.29) really necessary? To find out, we create modelnoexp,, a

simpler model based on Equation (4.29) but without the exponents.

[ ]

( ) ( )[ ]
p m d start max

start max start
m d

= − +

= + −
− + −
−

model ( ) / , ,

model .

.
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1 1 05

1 05
5

(4.31)

In these case of two equiprobable classes, Equation (4.29) reduces to Equation (4.31), but in the next

chapter we will true it on other situations to see how important the exponents are.

4.3. Nondeterministic Design Choices

Recall from Section 3.1.1 that regression models are often constructed in two parts, a deterministic

part and a nondeterministic part. In ordinary linear regression, for example, the deterministic part of the

model is a line and the nondeterministic part is a normal distribution around the points in the line. Section

3.1.4 showed why the popular normal distribution was inappropriate for learning-performance data. This

section develops two appropriate candidates for the nondeterministic part of learning-performance

models.

The learning-performance data with which Seer works includes y, the number of testing examples

correctly classified. This is necessarily an integer between 0 and k, the number of testing examples. If the

testing examples are selected independently, the number of correct classifications should be binomially

distributed because it is the result of independent identically distributed Bernoulli trials. For example, if

the expected accuracy of the classification rule being tested is 0.705 and it is tested on 100 examples, the

binomial distribution will specify the probabili ty that the classification rule will get 70 examples correct,

the probability it will get 71 correct, 69 correct, and so on for the range from 0 to 100.

The binomial distribution is:
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p p
k

y
y k y( ) ( )1−







− (4.32)

where y is the number of correctly classified testing examples, k is the total number of testing examples,

p is the probabili ty that a given testing example will be classified correctly, and 
k

y







 is the number of

distinct subsets of size y of a set of size k.

The binomial distribution accounts for the randomness in testing examples, but not for other sources

of randomness. For example, a learning program might produce a classification rule based on 49 training

examples that is more accurate (as measured on an extremely large number of testing examples) than one

based on 50 training examples. This could happen with a decision tree learner, for example, if the learner

tended to make a spli t with 50 training examples that it didn’ t make when given only 49 examples. In

other words, even with an infinite number of training examples, real-li fe learning curves may have an

inherent roughness caused by the randomness in the training examples.

A reasonable way to model this roughness is with the beta distribution. Intuitively, it can be thought

of as a normal distribution that is bounded by 0 and 1. The beta distribution is usually parameterized

with two values, α and β. For our purposes, however, it is more convenient to parameterize it with p, its

mean, and pvar, a parameter related to variance. With this parameterization the beta distribution has this

density:

( )

Beta[ , ]

( ) /1
1

1
1

1
1−

−

− − −p p
p

pvar

p

pvar

p pvar pvar p pvar

, where p1 ranges from 0 to 1. (4.33)

To see how this could be put together with the binomial distribution, consider a random learning-

performance-like data generator. The input to the deterministic model would be m, the number of training

examples. The output will be p, the expected accuracy before considering the randomness in the training

and testing examples. This p and a pvar value are the input into a beta random generator. The output is

p1 the expected accuracy after taking into account the randomness in the training examples. This p1 along
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with k, the number of testing examples, is the input into a random binomial random generator. The output

y is the number of correctly classified training examples according to the random generator.

Combining a beta distribution with a binomial distribution, as done here, creates a beta-binomial

distribution:

Beta[ ,( ) ]

Beta[ , ]

y
p

pvar
k y

p

pvar

k

y
p

pvar

p

pvar

+ − + 



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−1
(4.34)

where y is the number of testing examples, k is the number of testing examples classified correctly, p is

the output of the deterministic part of the model, and pvar is related to the amount of roughness caused

by randomness in the training examples. When pvar is zero, this distribution is becomes the binomial

distribution.

The distribution is also known as the Polya, Polya-Eggenberger, negative hypergeometric, and

generalized hypergeometric type IIA [Johnson et al., 1992; Griff iths, 1973]. It has been used in the past

to model the scores of students in a class on a test, but not, so far as the author knows, as the

nondeterministic part of a regression model [Wilcox, 1981].

When used as part of a regression model, y and k will be given as part of the learning-performance

data. The value p will be provided by the deterministic part of the model. The pvar parameter, however,

will need to be estimated. The estimation method is analogous to estimating the variance of the data for

linear regression except that instead of minimizing least square error, the method must find the value of

pvar that maximizes likelihood. The next section has computational details on this.

4.4. Fitting Models to Data Efficiently

Chapter 3 defined the criteria with which to select the best learning-performance model for a set of

data (namely maximizing likelihood). The previous sections of this chapter detailed the sets of learning-

performance models to be considered. This section specifies the numerical techniques Seer uses to

eff iciently find the model with the maximum likelihood. Eff iciency is important because the algorithms
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used are iterative. The difference in speed between a good implementation and a poor one could easily be

1000 to 1, and even more if the poor implementation doesn’t converge.

For any given problem, Seer is given 1) learning performance data, 2) a nondeterministic model

(either the binomial distribution or the beta-binomial distribution) and a deterministic model (for

example, modelgen with the BurrModel as model5). Seer’s task is to find the parameters of the

deterministic model (e.g. d and max) and the parameters of the nondeterministic model (e.g. none or pvar)

that produce a model with the maximum likelihood with respect to the data. Such parameters are called

the maximum likelihood estimators.

As posed, the problem is an instance of nonlinear programming. The nonlinear-programming

constraints relate to the parameters. For example, pvar and d must be greater than 0 and max must range

between start and 1.0. The problem can be simpli fied by eliminating these constraints. This can be done

by making the original parameters functions of parameters that can take any real value [Dixon, 1972, p.

89]. For example, d can be replaced with daug2 and pvar can be replaced with pvaraug2. Then maximum

likelihood estimators can be found for daug and pvaraug. The square root of these estimators will be the

estimators for d and pvar. The max parameter can be replaced with

( )1

2

1

2

+ + −start start
maxargsin (4.35)

which will guarantee that max will be in the range from start to 1.

Removing the constraints turns the problem from one of nonlinear programming into one of nonlinear

optimization. Seer uses the very fast Levenberg-Marquardt method of nonlinear optimization

[Marquardt, 1963; Press et al., 1992]. This method smoothly varies between inverse-Hessian methods

(like Newton-Raphson) and steepest descent methods. Its use normally requires both the first partial

derivatives (the gradient) and second partial derivatives (the Hessian) of the function to optimize. Seer

does require the first derivatives, but it avoids the need for the Hessian estimating the Hessian Q as

- q qi i
T

i

( ) ( )θ θ∑ (4.36)
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where qi is the vector of first partial derivatives evaluated on the ith learning performance tuple [Cramer,

1986, p. 27].

When the learning-performance data is independent, covariance can be approximated. The

asymptotic covariance matrix of the estimated parameters can be approximated with -Q-1. [Cramer,

1986]. When the generalized cross-validation method of Section 3.2 is used, the data is not independent,

so covariance cannot be estimated.

4.5. Summary

This chapter detailed the design and selection method of the learning-performance models that Seer

uses. We considered the design problem in three parts: First, create deterministic models for noise-free

learning of two equally probable classes. We saw that the two models inspired by computational learning

theory, EDmodel and BurrModel, have a much different shape than the two most popular binary-

response regression models. The second part of the model design was modeling the effect of multiple

classes, skewed classes, and noise. By considering progressively more complex cases, we traced the

development of the new modelgen heuristic. It models the effects of interest with remarkably few

parameters. The third part of model design involved creating a nondeterministic model. We saw that the

Binomial distribution should be suff icient if variation in testing data was our only concern. However, if

we are also concerned about variation in the training data, then the Beta-Binomial distribution might be

better. Finally, after all the design choices were enumerated, Section 4.4 specified how to eff iciently find

the best model in a possibly infinite set of models. The basic method is nonlinear optimization with an

iterative algorithm.

Given these design choices and this selection method, which sets of models work best on real

learning-performance data? That is the topic of the next chapter.
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5. Experimental Procedure and Results

The previous chapter dealt with designing various reasonable components of learning-performance

models. In this chapter we assemble these components into five learning-performance model sets. Using

Seer, each set is tested on three real-world learning domains . Each model set is tested on how well i t can

characterize learning-performance data (3 trials) and on how well i t can predict learning performance

data (30 trials). Figure 5.1 summarizes the experimental variables (domain, task, and learning-

performance model set) investigated. The experiments show that many of the model sets characterize well

and predict as well as the data permits. They suggest that the choice of a model set is a tradeoff between

computational ease and the ability to measure interesting aspects of the learning problem.

Domain Description # Examples # Attr # Classes
Soybean Soybean Disease Diagnosis 307 35 19

Heart Heart Disease Diagnosis 303 13 2
Audio Audiological Problems 226 69 24

×

Task # Trials
Characterize 3

Predict 30

×

Model Set Det. #2 Det. #1 Nondet.
Modelgen Burr1 modelgen binomial
Logistic Logistic model - binomial

ED EDit modelgen binomial
NoExp Burr1 modelnoexp binomial
Pvar Burr1 modelgen beta-binomial

Figure 5.1: Experimental variables (domain, task, and model set) explored.

5.1. Experimental Procedure

This section details the learning examples and inductive learning system Seer used in the

experiments. It details the domain and task experimental variables. The model set experimental variable
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is the subject of chapter 4. Also, the section discusses how results were measured and statistical

significance determined.

5.1.1. Experimental Variable: Domain

The experiments were run on classified learning examples from three domains, the same as were used

in Shavlik et al. [1991] The sets used were:

Soybean disease diagnosis (“Soy”)

These classified examples come originally from R.S. Michalski and R.L. Chilausky [1980]. The

collection consists of 307 examples with 35 attributes labeled with one of 19 classes. The classified

examples are available on the Internet in <ftp://ics.uci.edu/pub/machine-learning-

databases/soybean/>.

Heart disease diagnosis (“Heart”)

Robert Detrano, M.D., Ph.D., created these classified examples at the V.A. Medical Center, Long

Beach and Cleveland Clinic Foundation. They were originally used in Sandhu et al., [1989]. The

examples consist of 303 examples with 13 attributes and 2 classes. The classified examples are available

on the Internet in <ftp://ics.uci.edu/pub/machine-learning-databases/heart-

disease/>.

Audiological problems (“Audio”)

Professor Jergen developed these classified examples at the Baylor College of Medicine. They were

originally used in Bareiss & Porter [1987]. The examples consist of 226 examples with 69 attributes

labeled with one of 24 classes. The examples are available on the Internet in

<ftp://ics.uci.edu/pub/machine-learning-databases/audiology/>.

5.1.2. Experimental Variable: Task

Seer was tested on two tasks: characterization and prediction. For the characterization task, all

available classified learning examples were used to generate learning-performance data (using the
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generalized-cross-validation procedure described in Section 3.2). From each model set, Seer found the

maximum-likelihood model. Success at characterization was measured (as detailed in Section 5.1.4) by

how well a model fit the data in terms of loglikelihood. In order to see the variation caused by generalized

cross-validation, three trials were run for each combination of domain and model set.

For the prediction task, 100 classified learning examples were randomly selected (without

replacement) from all the available examples. Using generalized cross-validation on the 100 examples,

Seer produced learning-performance data. For each model set, Seer found the model with maximum

likelihood with respect to the learning-performance data. Success at prediction was measured by how

well the model, which was based on only 100 classified examples, predicted learning-performance when

the learner was given the entire data set. Figure 5.2 ill ustrates the process. To see the variation caused by

the selection of the 100 examples and by generalized cross-validation, 30 trials were run for each

combination of domain and model set. Section 5.1.4 details how Seer compared the models to observed

learning performance.

5.1.3. Inductive Learning Program

All the experiments reported here used the C4.5 machine-learning program [Quinlan, 1992]. C4.5

does its initial learning with decision trees and then tries to improve its generalization and noise handling

by turning the trees to rules. It was run with its default settings.

5.1.4. Measuring Results

Results were measured primarily with loglikelihood:

L1 = log ( )Pr |D M1 (5.1)

where Pr is probabili ty, D is observed learning-performance data, and M1 is a learning-performance

model. Because probably (or likelihood) ranges between 0 and 1, loglikelihood is a negative number. One

disadvantage of the loglikelihood measure is that it depends on the amount of learning-performance data.

Doubling the amount of data tends to double the value of the loglikelihood. This is a common problem in

the field of statistics. The usual solution is to develop a normalized measure of it. By analogy to the R2
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measure of linear regression, these measures are usually named R2
X where “X” is some identifier. The

rest of these section will develop an R2
X measure for use on learning-performance model.

mall  classified
examples

random
selection (no
replacement)

generali zed
cross-validation

100 classified
examples

learning-
performance data

maximum-
likelihood
regression

maximum-
likelihood model

cross-
validation

learning-perforance
data for mall -most-all

training examples

predicted learning
performance  on

mall -most-all  examples

The number
“mall -most-all”

Compare
observed to
predicted

maximum-
likelihood model

Figure 5.2: Prediction task -- From 100 classified examples, Seer predicts the learning
performance if all most all available l classified examples were available, where mall-most-all =300,
290, 218 for the Soy, Heart, and Audio domains, respectively.

5.1.4.1.  Input to the R2
X Measure

The measures needs to take as input:

1. A learning-performance model or, if repeated experiments are conducted, a set of learning-

performance models. This model is produced by a system such as Seer from a small set of

classified examples.
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2. A likelihood criterion, for example, the binomial distribution

3. Learning-performance data based on a larger set of classified examples -- Each datum is of the

form <m, y, k>, where m is the number of training examples, y is the number of testing examples

the learner's hypothesis classified correctly, and k is the number of testing examples.

For example, suppose we wish to compare “A” and “B”, two ways of producing learning-

performance models. They could, for example, could select the maximum-likelihood model from two sets

of candidate models. Suppose that we give each method three sets of learning-performance data, each

based on 100 classified examples, and call the resulting models “A1,” “A2,” “A3,” “B1,” “B2,” and

“B3.” . Next, we ask each of the six models to predict the learning performance when m is 300. Suppose

they predict: pA1 = 0.89, pA2=.091, pA3=.095, pB1 = 0.81, pB2=0.85, pB3=0.89. To create the final piece of

input information, we put the predictions to the test. For example, suppose we have a total of 400

examples and do 4-way cross-validation with these results:

{<300, 92, 100>, <300, 100, 100>, <300, 96, 100>, <300, 89, 100>} (5.2)

where the first element of each tuple is the number of training examples, the second element is the

number of correctly classified testing examples, and the third element is the total number of testing

examples.

5.1.4.2.  Output of the Measure

Intuitively, the output should be a better measure for better predictions. Hosmer and Lemeshow

[1989, p. 148] recommends this measure that returns a value between 0 and 1 for logistic regression:

R  =
L

L
2

L
0

0

−
−

L

L
1

S

(5.3)

L1 is the loglikelihood of the model of interest. L0 is the loglikelihood of the baseline model, the model

that predicts the same accuracy regardless of m. LS is the loglikelihood of the perfect, saturated model.

The saturated model is the model with as many parameters are there are distinct values of m; for each m,
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it returns exactly the frequency observed. It is the optimum model with respect to likelihood (assuming

error is measured with a distribution such a the binomial or the normal).

For our purposes, R2
L is unsatisfactory. The problem is that it assumes that L0, the log likelihood of

the baseline model has a worse fit than L1. Because our model is being tested on learning data it has not

seen before, the assumption does not necessarily hold.

A new measure that avoids the problems and is, thus, more suitable is:

R2
Seer = Ls / L1 (5.4)

Returning to the example, if the likelihood criterion is the binomial distribution, loglikelihood is:

ll ( , , ) log( ) ( ) log( ) log(binomial( , ))binom p y k y p k y p k y= + − − +1 (5.5)

where p is predicted accuracy, y is the number of testing examples classified correct, and k is the total

number of testing examples. Hosmer's measure can ignore the combinatorial term binomial(k,y) because

the term cancels out. The term does not cancel out of the R2
Seer measure and so must be considered.

The loglikelihood of model “A1” with respect to observations is:

l1A1 = llbinom(0.89,92,100) + llbinom(0.89,100,100) + llbinom(0.89,96,100) + llbinom(0.89, 89,100) = -20.9849

(5.6)

The value of the saturated model when m=300 is minimized (for the binomial li kelihood criterion)

when the saturated model predicts the mean observed frequency [Cramer, 1986, p. 159], which in this

case is 0.9425.

The loglikelihood of this saturated model is:

llbinom(0.9425,92,100) + llbinom(0.9425,100,100) + llbinom(0.9425,96,100) + llbinom(0.9425, 89,100)

= -14.2974 (5.7)

So R2
Seer is -14.2974/-20.9849 = 0.681316.
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The loglikelihood and R2Seer values for all of the example models are given in Table 5.1.

Model Loglike. R2
Seer

A1 -20.9849 0.681316
A2 -17.2222 0.830170
A3 -14.5238 0.984412
B1 -43.9230 0.325510
B2 -31.1878 0.458429
B3 -20.9849 0.681316

Table 5.1: R2
Seer values for six models

5.1.4.3.  Composite R2
Seer Results

The R2
Seer measure can be generalized to produce a single measure for a group of related models,

using the fact that the loglikelihood of a set of independent models is the sum of the loglikelihood of each.

RSeer
2 = ∑

∑
loglikelihood of saturated models

loglikelihood of models
(5.8)

Applied to our example, this yields:

R2
Seer(A’s) = 

-14.2974 +  -14.2974 +  -14.2974 

- 20.9849+  -17.2222+  -14.5238
= 0.813417 (5.9)

and

R2
Seer (B’s) = 

-14.2974 +  - 14.2974 +  -14.2974

- 43.923+  - 31.1878+  - 20.9849
= 0.446349 (5.10)

5.1.5. Comparing Results from Two Model Sets

Two methods of generating model sets can be compared by looking at composite R2
Seer values, but it

is hard to evaluate the statistical significance of the values. Seer solves this problem by using paired-

difference analysis, a standard statistical method [McClave & Dietrich, 1988]. With paired-difference

analysis, each model-generation method is compared, head-to-head, in a series of trials In each trial,

every individual model-generation method is applied to the same set of learning-performance data. As

Table 5.2 ill ustrates -- using the example from Section 5.1.4 -- the loglikelihoods of the two models are
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found and the difference is calculated. Finally, these difference values are evaluated with the two-tailed

Student t-test to determine if the mean of the differences is significantly different than zero.

A B
Trial Loglike. Loglike. Diff.

1 -20.9849 -43.9230 22.9381
2 -17.2222 -31.1878 13.9656
3 -14.5238 -20.9849  6.4611

Table 5.2: The first step of paired-difference analysis: For each trial’s learning-performance data
set, find the loglikelihood of the model produced by each of the two model-generation methods.
Then, calculate the difference. The set of differences is evaluated with the two-tailed Student t-
test to see if it is different than zero.

5.2. Experimental Results

Each series of experiments tested a set of learning-performance models The goals of this chapter

were to:

1) Find which (if any) of the model sets’ designs were useful for characterizing and predicting

learning performance, and

2) Help develop criteria for choosing which of the useful models to use in a particular situation.

5.2.1. Modelgen Experiments

The Modelgen experiments tested the set of learning-performance models described in Table 5.3. The

set’s deterministic component is made up of the modelgen and Burr1. Its nondeterministic component is the

binomial distribution. The three goals of the Modelgen experiments were 1) to measure how well modelgen

can characterize machine learning performance data 2) to measure how well modelgen can predict machine

learning performance 3) to establish a benchmark for the other experiments.



62

Com-
ponent

Sub-
model

Value

Det. #1 modelgen [ ]

( ) ( )[ ] [ ] [ ]

[ ]

p m d start skew max

start max start
m d

skew start skew start

skew start

= − +

= + −
− + −

−

− −

−

model ( ) / , , ,

model .

.

gen

(Log ) (Log )

(Log )

1 1

1 1 05

1 05

5

2 11 2 1 2 2 1

1 2 2 1

Det. #2 Burr1 model5[z] = z/(z+1)
Nondet. binomial

py p k y k

y
( )( )1− − 








Table 5.3: Learning-performance model set tested in the Modelgen experiments

5.2.1.1.  Characterizing Data with Modelgen

Figure 5.3 shows the first of three characterization trials for each of the three domain. The

characterization task can be thought of as 1) generating accuracy points and 2) fitting a curve to those

points. Table 5.4 quantifies the goodness-of-f it for all 3 trials in all 3 domains. The R2
Seer values are near

1.0 indicating that modelgen can fit learning-performance data well . (To get a perfect R2
Seer value of 1.0, a

learning-performance model would need to go through every accuracy point, which is generally

undesirable).

Domain  Loglike.  R2
Seer

 Soy (3)  -7654.25  0.974
 Heart (3)  -7568.45  0.984
 Audio (3)  -5582.62 0.955

Table 5.4: Goodness-of-fit for Modelgen on the characterization task -- Fit is measured with
loglikelihood and R2Seer. A perfect fit has a R2Seer value of 1.0. All measures are composites of
three trials.

5.2.1.2.  Predicting in the Audiological Domain

The next several subsections look at prediction with modelgen. We focus first on just the Audio

domain. In each of the 30 trials, Seer was given 100 classified examples. From those, it tried to answer

two questions: 1) what accuracy could be expected with 218 training examples, and 2) what accuracy

could be expected given an infinite number of training examples (asymptotic accuracy).
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Figure 5.3: Characterization trial #1 for the three domains using Modelgen -- The points show the learning-performance data
generated with generalized cross-validation. The solid curve is the deterministic part of the maximum likelihood Modelgen
model. The dotted line is the estimated asymptotic accuracy, the
accuracy given an infinite number of training examples.
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Seer’s first step toward answering these questions is to generate learning-performance data. The

plots of Figure 5.4 represents the learning-performance data (for 3 of the trials) as accuracy points. (We

will see in the next section that these 3 trials were the best, median, and worst of the 30 trials, as

measured by prediction accuracy.)

The curves in Figure 5.5 show Seer’s predictions for these 3 trials. The dotted lines show its estimate

of the asymptotic accuracy. In the plots, the diamond shows “ true” accuracy given 218 training

examples. (Empirically, determining the real true accuracy would require an infinite number of testing

examples; This “true” value is determined with cross-validation on all 226 available classified examples.)

Table 5.5 shows the accuracies Seer predicts would be observed if the learner was given 218 training

examples or an infinite number of examples. Thirty trials were run; the best, median, and worst trial are

shown in the table. The “ true” accuracy, if an infinite number of training examples were provided, is

estimated by the model fit on 226 examples in Section 5.2.1.1.

p218  p∞

Best 0.788  0.862
Median 0.717 0.757
Worst 0.606 0.619
“True” 0.788 0.823

Table 5.5: Modelgen’s predicted accuracies (based on 100 classified examples) if the learner is
given 218 or an infinite number of training examples -- The predictions from the best, median,
and worst trials are shown. The “true” values are estimated from the full set of 226 classified
examples.

Table 5.6 first quantifies how well the models fit the learning-performance data (shown in Figure

5.5) generated from the 100 classified examples. The models do well and have a composite R2
Seer of

0.981. Second, the table quantifies how well the models predicted p218. Here they do less well , with a

composite R2
Seer of 0.925. This suggests that the problem may not be with prediction given the 100

classified examples, but rather that the 100 classified examples are sometimes not representative of the

full set of 218 classified examples We will further investigate this problem in the next section.
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Figure 5.4: Audio-domain learning-performance data based on 100 classified examples for the best, median, and worst
Modelgen trials -- Seer must find the Modelgen model that best fits each set of data. This maximum-likelihood model is used to
predict the expected learning performance if more training examples were available.
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Figure 5.5: Audio-domain maximum-likelihood models for the best, median, and worst trials for Modelgen -- The solid curves
are the deterministic models. The dotted lines are the estimated asymptotic accuracies. The diamond shows the “true” accuracy
given 218 training examples.
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Characterize the 100 Predict p218

 Loglike.  R2
Seer  Loglike.  R2

Seer

Best  -1838.29  0.979  -43.81  1.000
Median  -1847.15  0.980  -46.76  0.937
Worst  -1902.73  0.981  -60.74  0.721

All (30)  -55923.45  0.981  -1420.50  0.925

Table 5.6: Modelgen goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- The better the prediction, the closer the “Predict
p218” R

2
Seer value will be to 1.000.

5.2.1.3.  Predicting in All Three Domains

This subsection looks at prediction with modelgen on all three domains. The curves in Figure 5.6 show

Seer’s predictions for all 30 trials. The plots provide a graphical way to see the variation caused, mostly,

by starting with different sets of 100 classified examples. In the plots, the diamond shows “ true”

accuracy given nearly all the available classified examples as training examples. In all three domains,

some models predict too high, others too low. Particularly in the Soy and Heart domains, the models

seem unbiased; that is, they are as likely to go too high as to go too low.

Table 5.7 quantifies the characterization and prediction in all three domains. For the Soy domain, the

composite R2
Seer for prediction, 0.982, is high, higher even than the R2

Seer for characterization. For the

Heart domain, the R2
Seer for characterization is higher, 0.978, and the R2

Seer for prediction is a li ttle bit

lower, 0.963. For the Audio domain, as we saw in the previous section, the R2
Seer for characterization is

high, but the R2Seer for prediction is relatively low.

Characterize the 100 Predict pall most all

Domain Loglike. R2
Seer Loglike.  R2

Seer

Soy (30) -54507. 0.969 -1664.62  0.982
Heart (30) -54166. 0.978 -1446.20  0.963
Audio (30) -55923. 0.981 -1420.50  0.925

Table 5.7: Modelgen’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- The better the prediction, the closer the “Predict
p218” R

2
Seer value will be to 1.000. All values are composites from the 30 trials.
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Figure 5.6: Modelgen’s predictive models for 30 trials in 3 domains -- The diamond shows the “true” accuracy.
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Why don’ t all the predictions hit the target exactly? We can get insight into this question by looking

in more detail at the worst prediction in each domain. Figure 5.7 shows those predictions and the

learning-performance data on which they are based. As the plots show and Table 5.8 confirms, even the

worst-predicting models characterize the given learning-performance data well . The problem is that the

learning-performance data from 100 classified examples is unrepresentative of the learning-performance

of the full set of classified examples. This is most obvious in the Heart domain. Here, working with only

100 classified examples, Seer observed accuracies greater than 0.80, but working with the full set of 303

examples, the observed accuracy p290 was 0.752. This strongly suggests that the main cause of bad

predictions is that a random subset of classified examples may be unrepresentative of a larger set. Put

more optimistically, Seer -- using modelgen -- seems to be doing as well as possible with the classified

learning examples it has available.

Characterize the 100 Predict pall most all

Domain Loglike. R2
Seer Loglike.  R2

Seer

Soy (worst)  -1855.  0.979  -66.28  0.822
Heart (worst)  -1710.  0.968  -65.10  0.713
Audio (worst)  -1903.  0.981  -60.74  0.721

Table 5.8: Modelgen’s goodness-of-fit on learning-performance data from the worst trials

5.2.1.4.  Estimating Parameters in All Three Domains

Another way to analyze the experiments is to plot the parameters estimated by each model. Because

30 trials were run for each domain, standard deviations can be estimated after the fact. The Modelgen

model set has 4 parameters. Seer estimates two of the parameters, start and skew, from the class

frequency of the classified examples. Seer estimates the other two parameters, d and max, from the

learning-performance data. Figure 5.8 is a scatter plot for the Heart domain of the d and max parameters.

In the plot, the letters “A”, “B”, and “C” are the parameter estimates in the 3 characterization trials. The

numbers, 1 ... 30, are the parameters estimates for the 30 prediction trials. Note that the prediction points

(which are based on only 100 classified examples) cluster well around the characterization points (which

are based on the full sets of classified examples).
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Figure 5.7: Modelgen maximum-likelihood models for the worst trials in the three domains -- The models, represented by the
solid curves, fit the available learning-performance data well. The learning-performance data, however, is misleading, so the
predictions of the accuracy to be expected on the set of training examples are inaccurate.
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Figure 5.8: Scatter plot for the Heart domain of the d and max Modelgen parameters. The letters
shows the parameter values for the 3 characterization trials. The numbers show the parameter
values in for the 30 prediction trials.

Table 5.9 gives the mean and observed standard deviation for all parameters in all three domains.

The Soy and Heart parameters estimates seem unbiased, clustering around the “ true” parameter values.

Audio’s d estimate is off apparently because the estimates of max are too low, and this affects the

estimated accuracy.

5.2.1.5.  Summary of Modelgen experiments

These experiments showed that Modelgen can characterize learning-performance data well . The

R2
Seer values for the three domains were 0.974, 0.984, and 0.955. The predictions were generally good,

too, with composite R2
Seer values (over all 30 trials) for the three domains of 0.982, 0.963, and 0.925. In

the worst of the trials the predictions were not as good. (R2
Seer values 0.822, 0.713, and 0.721.) Even in

these cases, however, the Seer using Modelgen seemed to be doing about as well as possible. The

problem seemed to be that some samples of classified examples were not representative of the entire set.

The Soy and Heart parameter estimates seem unbiased, clustering around the “ true” parameter values.

Audio’s d estimate is seemed to be systematically off, perhaps because its estimates of max were too low.
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Characterization (all available
classified examples, 3 trials)

Prediction (100 classifies
examples, 30 trials)

mean s.d. mean s.d.
Soy
d 12.680 0.1659 14.253 2.1784

max 0.999 0.0018 0.988 0.0459
start 0.087 0.0010 0.093 0.0089
skew 1.075 0.0019 1.081 0.0169
p300 0.840 0.0209 0.840 0.0321

Heart
d 6.129 1.1067 6.207 4.4863

max 0.753 0.0023 0.760 0.0516
start 0.503 0.0000 0.509 0.0110
skew 1.015 0.0000 1.042 0.0516
p290 0.752 0.0248 0.749 0.0452

Audio
d 7.718 4.3788 4.635 1.5372

max 0.884 0.1016 0.795 0.0855
start 0.141 0.0000 0.149 0.0162
skew 1.196 0.0000 1.191 0.0345
p218 0.788 0.0272 0.746 0.0650

Table 5.9: Mean and standard deviation of estimated Modelgen parameters

In the next series of experiments, logistic models were found for exactly the same learning-

performance data as was generated for these Modelgen experiments. This will allow head-to-head

comparison between Modelgen, a model set that was designed especially for learning prediction, and the

Logistic model set, the most popular model set for binary-response data.

5.2.2. Logistic Experiments

The Logistic experiments tested the set of learning-performance models described in Table 5.12. The

set’s deterministic component is the logistic model. Its nondeterministic component is the binomial

distribution. This experiment was designed to see how bad (or good) logistic models are for learning data.

The model set was applied to the characterization task and prediction task, then it was compared to

Modelgen, trial-by-trial.
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Table 5.10: Learning-performance model set tested in the Logistic experiments

Table 5.11 and Figure 5.9 show the Logistic model set trying to characterize the learning-

performance data from the three domains. The composite R2
Seer values reported in the table show that the

fit is not good. In two domains, it is less than 0.9. The plots in Figure 5.9 (from trial #1, but the other

two trials were similar) show the problem: the curve defined by logistic models are not the right shape for

the learning-performance data. The Logistic model set only does best in the Heart domain and from the

plot we can see the reason is that this data is the most linear and hence is easiest to model.

Domain  Loglike.  R2
Seer

 Soy (3)  -9023.51  0.826
 Heart (3)  -7730.06  0.963
 Audio (3)  -5971.10  0.893

Table 5.11: Goodness-of-fit for Logistic on learning-performance data from the three domains

Given the problems the Logistic model set has predicting learning performance, we would expect it to

do even worse at predicting from a subset of 100 classified examples. Table 5.12 and Figure 5.10

confirm this expectation. In all 30 trials and in all 3 domains, every prediction is off . Even worse, the

predictions are very biased; every prediction is too optimistic. Even though all the R2
Seer values for

characterization of the 100 examples is greater than 0.90, the best prediction R2
Seer value is a poor 0.501.

Characterize the 100 Predict pall most all

Domain Loglike. R2
Seer Loglike.  R2

Seer

Soy (30) -55725. 0.947 -7100. 0.230
Heart (30) -54648. 0.970 -2778. 0.501
Audio (30) -58556.99 0.937 -2898. 0.454

Table 5.12: Logistic’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set -- Values are composites from the 30 trials.



50 100 150 200 250 300

Number of Training Examples

0

0.2

0.4

0.6

0.8

1
A
c
c
u
r
a
c
y

lols.soy.modellogit.01

50 100 150 200 250 300

Number of Training Examples

0

0.2

0.4

0.6

0.8

1

A
c
c
u
r
a
c
y

lols.heart.modellogit.01

50 100 150 200 250

Number of Training Examples

0

0.2

0.4

0.6

0.8

1

A
c
c
u
r
a
c
y

lols.audio.modellogit.01

Figure 5.9: Characterizing learning-performance data with logistic models -- The curves defined by the models do not fit the
data well.
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Figure 5.10: Logistic’s predictive models for 30 trials in 3 domains -- All 90 predictions are too high.
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Table 5.13 compares, using paired-difference analysis, the performance of the Logistic model set to

that of the Modelgen model set in all three domains. Both the performance characterizing the learning

performance and performance predicting learning performance are shown. The table tells if one model set

(Modelgen or Logistic) produced significantly better learning-prediction models than the other in each

scenario. For Soy/Predict, for example, there were 30 learning-prediction problems. For every problem,

the two model sets each produced a learning-prediction model. The loglikelihoods of these two learning-

prediction models provide a measure of their goodness. A two-tailed t-test was used to test if the mean

difference between the two loglikelihood values was significantly different from zero. For these tests an α

value less than 0.05 was considered significant. For every combination of task and domain, the fit of the

Modelgen models (as measured by loglikelihood) was on average better than the fit of the logistic models

and this difference was statistically significant.

Scenario Task Domain # of Trials Sig.Diff? Better α test stat.
1 characterize soy 3 yes modelgen <0.001 24.730
2 characterize heart 3 yes modelgen 0.001 12.946
3 characterize audio 3 yes modelgen <0.001 26.300
4 predict soy 30 yes modelgen <0.001 24.888
5 predict heart 30 yes modelgen <0.001 6.750
6 predict audio 30 yes modelgen <0.001 8.980

Table 5.13: Results of paired-difference analysis -- For all six combinations of task and domain,
the Modelgen models produce statistically-significantly better loglikelihoods than the Logistic
models.

Analysis: The logistic models characterized learning performance poorly and predicted learning

performance even more poorly. Paired-difference analysis showed that the Modelgen models were better

than the logistic models in every combination of task and domain investigated.

5.2.3. ED Experiments

The ED experiments tested the set of learning-performance models described in Table 5.14. The set’s

deterministic component is made up of the modelgen and EDit. Its nondeterministic component is the

binomial distribution. The purpose of this experiment was to see if the EDit model, which is based more

closely on computational learning results, performs better than the simple Burr1 model.

}



77

Com-
ponent

Sub-
model

Value

Det. #1 modelgen [ ]

( ) ( )[ ] [ ] [ ]

[ ]

p m d start skew max

start max start
m d

skew start skew start

skew start

= − +

= + −
− + −

−

− −

−

model ( ) / , , ,

model .

.

gen

(Log ) (Log )

(Log )

1 1

1 1 05

1 05

5

2 11 2 1 2 2 1

1 2 2 1

Det. #2 EDit

model5[z] = EDit-1[z], where EDit[p] = 
2

6
1

1 1 1

log( )

( )( )

−
− − −

p

p p

Nondet. binomial
py p k y k

y
( )( )1− − 








Table 5.14: Learning-performance model set tested in the ED experiments

Figure 5.11 shows a typical characterization trial. Table 5.15 quantifies all the characterization trials

in all three domains. The ED model set does well; all R2
Seer values are greater than 0.95.
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Figure 5.11: Characterizing learning-performance data from the Heart domain (Trial #1) using a
ED model

Domain  Loglike.  R2
Seer

 Soy (3)  -7828.60  0.952
 Heart (3)  -7570.18  0.984
 Audio (3)  -5426.34  0.983

Table 5.15: Goodness-of-fit for ED predicting learning-performance data in three domains



78

Figure 5.12 shows all the models found for all 30 prediction trials in the Audio domain. As Table

5.16 shows, the ED model set predicts well based on a subset of examples. The lowest R2
Seer values as

0.939. Also, as the plot illustrates, the predictions are clustered around the true value.
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Figure 5.12: ED’s predictive models for the 30 trials of the Audio domain -- The diamond shows
the “true” accuracy.

Characterize Predict
Domain Loglike. R2

Seer Loglike. R2
Seer

Soy(30)  -55315.  0.954  -1669.  0.980
Heart(30)  -54184.  0.978  -1467.  0.949
Audio(30)  -56057.  0.979  -1400.  0.939

Table 5.16: ED’s goodness-of-fit on learning-performance data from 1) the given 100 classified
examples and 2) the full data set -- Values are composites from the 30 trials.

Table 5.17 gives the mean and observed standard deviation for all parameters in all three domains.

The values of start and skew are by definition exactly the same as for Modelgen. The ED model set

estimated slightly more optimistic max values, but they did not seem to be reliably closer or further from

the "true" max value. Both models have a d parameter, but the d’s are used differently within the model

set and so are not directly comparable. In the Soy domain, the ratio between the two d’s is 9.2. In Heart,

it is 6.3 and in Audio it is 8.3. On the other hand, ED’s d parameter is comparable to the Vapnik-

Chervonenkis (VC) dimension from computational learning theory. For example, the mean d value for

the Soy-domain characterization task was 47.692. After factoring out the effects of noise, multiple
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classes, and skew, a ED model will approximate the worst-case learning model of a learning task with a

VC dimension of 48.

Characterization (all available
classified examples, 3 trials)

Prediction (100 classifies
examples, 30 trials)

mean s.d. mean s.d.
Soy
d  1.186  0.0086  1.555  0.2212

max  1.000  0.0000  0.997  0.0171
start  0.087  0.0010  0.093  0.0089
skew  1.075  0.0019  1.081  0.0169
p300  0.840  0.0209  0.814  0.0220

Heart
d  0.711  0.1503  0.979  1.0641

max  0.760  0.0035  0.783  0.0695
start  0.503  0.0000  0.509  0.0110
skew  1.015  0.0000  1.042  0.0516
p290  0.752  0.0248  0.761  0.0504

Audio
d  0.562  0.0629  0.559  0.1956

max  0.852  0.0148  0.840  0.0934
start  0.141  0.0000  0.149  0.0162
skew  1.196  0.0000  1.191  0.0345
p218  0.788  0.0272  0.764  0.0640

Table 5.17: Mean and standard deviation of estimated ED parameters

So how does the ED model set do compared to the Modelgen data set? The question is interesting

because the two model sets are identical except that Modelgen uses the simple Burr1, while ED uses the

computational-learning inspired EDit. Table 5.18 shows which did best in each combination of task and

domain. Modelgen characterized better in 2 of the 3 domains. For the more important prediction task,

Modelgen did better in one domain, ED did better in another, and there was no significant difference in

the third domain.

Analysis: There is no reliable, measurable performance difference for prediction between ED and

Modelgen, but Modelgen may characterize better. Both models have the same number of parameters (two

determined by the class frequency of the classified examples and two determined by fitting learning-

performance data). Modelgen’s Burr1 component is simpler and computationally much easier to work
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with than the ED models’ EDit component. The ED model set is worth using if we want a d parameter

we can interpret as the empirical analog of the VC dimension.

Scenario Task Domain Sig.Diff? Better α test stat.
1  characterize  soy  yes modelgen  0.002  10.868
2  characterize  heart  yes modelgen  0.016  3.702
3  characterize  audio  no  -  0.144  -0.995
4  predict  soy  no  -  0.180  0.362
5  predict  heart  yes modelgen  0.018  1.847
6  predict  audio  yes ED  <0.001  -3.745

Table 5.18: Results of paired-difference analysis -- Neither the Modelgen nor the ED predicts
consistently better.

5.2.4. NoExp Experiments

The NoExp experiments tested the set of learning-performance models described in Table 5.19. The

set’s deterministic component is made up of the modelnoexp and Burr1. Its nondeterministic component is

the binomial distribution. The purpose of this experiment was to see if an even simpler submodel than

modelgen could be as effective. The alternative, modelnoexp, still scales the curve between start and max,

but it does not adjust for skew using exponentiation. The hope is that the d in modelnoexp can take the role

of both d and skew in modelgen and that exponentiation can be avoided, simplifying the model.
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Table 5.19: Learning-performance model set tested in the NoExp experiments

Figure 5.13 shows a typical characterization trial. Table 5.20 quantifies all the characterization trials

in all three domains. The NoExp model does well; all R2
Seer values are greater than 0.96.
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Figure 5.13: Characterizing learning-performance data from the Heart domain (Trial #1) with
the NoExp model

Domain Loglike. R2
Seer

Soy (3) -7736.67 0.964
 Heart (3)  -7568.44 0.984
 Audio (3) -5424.74 0.983

Table 5.20: Goodness-of-fit for NoExp characterizing learning-performance data from the three
domains

Figure 5.14 shows all the models found for all 30 prediction trials in the Heart domain. As Table

5.21 shows, the NoExp models predicts fairly well based on a subset of examples but the lowest R2
Seer

value, 0.866 in Heart domain, is lower than we have seen before. The plot suggests a cause: in a minority

of the Heart-domain trials, the estimate of max, the asymptotic accuracy, was far off.

Table 5.22 gives the mean and observed standard deviation for all parameters in all three domains.

The d parameter of the NoExp model set is incomparable with both the d parameter of Modelgen and the

d parameter of ED.

Characterize Predict
Domain Loglike. R2

Seer Loglike. R2
Seer

Soy(30) -54903. 0.962 -1657. 0.987
Heart(30) -54283. 0.976 -1607. 0.866
Audio(30) -55972. 0.980 -1420. 0.926

Table 5.21: NoExp’s goodness-of-fit on learning-performance data from 1) the given 100
classified examples and 2) the full data set
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Figure 5.14: NoExp’s predictive models for the 30 trials of the Heart domain

Characterization (all available
classified examples, 3 trials)

Prediction (100 classifies
examples, 30 trials)

mean s.d. mean s.d.
Soy
d  39.561  0.3780  47.692  7.5012

max  1.000  0.0000  0.995  0.0268
start  0.087  0.0010  0.093  0.0089
p300  0.840  0.0209  0.828  0.0244

Heart
d  8.668  1.5806  10.866  9.9616

max  0.753  0.0024  0.773  0.0792
start  0.503  0.0000  0.509  0.0110
p290  0.752  0.0248  0.758  0.0621

Audio
d  15.259  1.6522  15.096  6.6226

max  0.835  0.0136  0.825  0.0992
start  0.141  0.0000  0.149  0.0162
p218  0.788  0.0272  0.762  0.0683

Table 5.22: Mean and standard deviation of estimated NoExp parameters
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Table 5.23 compares NoExp to Modelgen on each combination of task and domain. For

characterization, Modelgen did better in one domain, NoExp did better in the Heart domain, and there

was no noticeable difference in the third domain. For prediction, in two domains, there was no significant

difference in predictive power. In the Heart domain, Modelgen predicted better.

Scenario Task Domain Sig.Diff? Better α test stat.
1  characterize  soy yes modelgen 0.002 8.963
2  characterize  heart yes NoExp 0.026 -2.846
3  characterize  audio no - 0.105 -1.007
4  predict  soy no - 0.157 -0.916
5  predict  heart yes modelgen 0.006 2.321
6  predict  audio no - 0.221 -0.139

Table 5.23: Results of paired-difference analysis -- Modelgen predicted better in one domain.

Analysis: In most of the scenarios investigated, the exponent in the Modelgen model set is not

important. The d parameter can be adjusted to compensate for the lack of an exponent. The NoExp

models have the advantage of being simpler and easier to work with. On the other hand, they gets its

simplicity by conflating two parameters (skew and d), one of which can be determined without fitting by

just by looking at class frequencies. Modelgen’s d parameter is thus more useful because it comes closer

to quantifying the inherent hardness of learning a classification rule without regard to class frequencies

and skew.

5.2.5. Pvar Model Set

The Pvar experiments tested the set of learning-performance models described in Table 5.24. The

set’s deterministic component is made up of the modelgen and Burr1, just as in the Modelgen experiments.

Its nondeterministic component is the beta-binomial distribution. This experiment was designed to tell i f

there is any significant difference between using the binomial distribution and using the more

sophisticated beta-binomial. The only diff iculty in this comparison is that each distribution defines

“goodness” differently. If one is much better than the other, however, it ought to be able to beat the other

at prediction by either likelihood standard.

Table 5.26 gives the mean and observed standard deviation for all parameters in all three domains. A

pvar value of 0 reduces the beta-binomial distribution to the binomial distribution. On all three domains,
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for the characterization task, the mean pvar is several standard deviations away from 0, suggesting the

parameter is significant. On the prediction task, however, the mean pvar value is a best two standard

deviations from 0 and, in the Soy domain, only one standard deviation from 0. This suggests that, for

these prediction tasks, the beta-binomial distribution was not useful.
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Table 5.24: Learning-performance model set tested in the Pvar experiments

Table 5.26 compares Pvar to Modelgen on each combination of task and domain. Assuming that the

binomial distribution is correct, Modelgen did significantly better in two of the six scenarios. In the other

four, neither model set did significantly better. On the other hand, if we assume that beta-binomial is

correct, then Pvar does significantly better in 4 of the scenarios, Modelgen does significantly better in

one, and neither does significantly better in the remaining scenario.

Analysis: Only prediction matters here (since each finds the best characterizing fit by its criteria).

Neither model set consistently beats the other by the other’s criteria. Thus, while the beta-binomial

distribution has intuitive appeal as a way to measure variance in training examples, for these scenarios

the simpler and more popular binomial distribution seems to suffice.



85

Characterization (all available
classified examples, 3 trials)

Prediction (100 classifies
examples, 30 trials)

mean s.d. mean s.d.
Soy
d  12.773  0.0887  14.252  2.1762

max  1.000  0.0000  0.988  0.0458
pvar  0.013  0.0016  0.010  0.0060
start  0.087  0.0010  0.093  0.0089
skew  1.075  0.0019  1.081  0.0169
p300  0.840  0.0209  0.840  0.0321

Heart
d  6.113  1.1021  6.188  4.5237

max  0.753  0.0023  0.760  0.0516
pvar  0.002  0.0009  0.006  0.0063
start  0.503  0.0000  0.509  0.0110
skew  1.015  0.0000  1.042  0.0516
p290  0.752  0.0248  0.749  0.0451

Audio
d  5.067  0.5460  4.645  1.5405

max  0.823  0.0127  0.795  0.0856
pvar  0.006  0.0027  0.010  0.0052
start  0.141  0.0000  0.149  0.0162
skew  1.196  0.0000  1.191  0.0345
p218  0.788  0.0272  0.746  0.0650

Table 5.25: Mean and standard deviation of estimated Pvar parameters

Scenario Task Domain Sig.Diff? Better α test stat.
Assuming the Binomial Distribution is Correct

1  characterize  soy  yes modelgen  0.049  1.912
2  characterize  heart  yes modelgen  0.015  3.840
3  characterize  audio  no  -  0.144  -1.000
4  predict  soy  no  -  0.150  -0.863
5  predict  heart  no  -  0.155  -0.511
6  predict  audio  no  -  0.140  -0.794

Assuming the Beta-Binomial Distribution is Correct
1  characterize  soy  yes pvar  0.004  -7.425
2  characterize  heart  yes pvar  0.025  -2.903
3  characterize  audio  no  -  0.099  -1.078
4  predict  soy  yes modelgen  <0.001  7.091
5  predict  heart  yes pvar  0.015  -1.947
6  predict  audio  yes pvar  0.005  -2.405

Table 5.26: Results of paired-difference analysis -- Neither model predicts consistently better.
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5.3. Summary and Conclusion

The goal of this chapter was to find which (if any) of the model set designs were useful for

characterizing and predicting learning performance. The goal was also to help develop criteria for

choosing which of the useful models to use in a particular situation.

To meet these goals, Seer generated 99 learning-performance data sets (3 characterization trials and

30 prediction trials × 3 domains) using generalized cross-validation and thousands of runs of the C4.5

learning algorithm. For each of the 99 learning-performance data sets, Seer found the maximum-

likelihood model from 5 model sets. Results were measured with loglikelihood and R2
Seer, a measure of

goodness-of-f it. The maximum-likelihood models were compared to each other using paired-difference

analysis.

The Logistic model set was the only one that did poorly on both characterization and prediction. This

model set is not appropriate for learning-performance data. The other models all did well on

characterization and seemed to do as well as possible on prediction. The poor prediction seen in some

trials seemed mostly attributable to unrepresentative subsets of the classified examples.

One way to select among the good performing model sets would be to always use the simplest.

Simplicity is often measured by number of parameters. Most of the models had two parameters that

needed to be fitted to the learning-performance data (max and d) and two parameters (start and skew)

that could be determined from the class frequency of the classified examples. The NoExp model set did

not have a skew parameter. The Pvar model set had an additional parameter, pvar, to fit to the data.

Simplicity can also be evaluated by how easy a model set is to work with, computationally. By this

criterion, NoExp is again the simplest. The next simplest would be Modelgen, whereas. ED and Pvar

would be the most complex.

Another way to select among candidate model sets is to choose the most useful and meaningful

parameters. For example, the max parameter found in most of the models is very useful because it is an

estimate of asymptotic accuracy. Likewise, start and skew quantify the effect of multiple classes and

skewed classes on the learning. Also, the pvar parameter tries to quantify variance in the training data.

Finally, most of the model sets have a d parameter. This is a measure of learning diff iculty after other

parameterized effects are factored out. Uniquely among the model sets, the ED model set produces a d
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that is comparable to the d produced through Vapnik-Chervonenkis-dimension analysis. Thus, although

one model set is worst, selection of the best model set depends on a tradeoff between simplicity and

usefulness. Table 5.27 summarizes the tradeoff.

Model Set Fit Complexity Measured effects
Modelgen good medium multiple classes, skew, noise, difficulty
Logistic poor - -

ED good high multiple classes, skew, noise, VC-comparable difficulty
NoExp good low multiple classes, noise, difficulty
Pvar good high multiple classes, skew, noise, variance from training examples

Table 5.27: Tradeoffs in selection of a model set. Except for Logistic, all the model sets characterize

well and predict as well as the data allows. Some of the model sets are more simple, but others have

useful and interesting parameters.
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6. Conclusion

This concluding chapter highlights the important points of the preceding chapters, suggests

possibilities for future work, and discusses the principle contributions of this research.

6.1. Summary

Inductive classification learning is the process of creating a classification rule based on a set of

training examples. Two questions are of interest when constructing an expert system from classified

examples:

1. How many classified examples will be needed to create a classification rule of the desired

accuracy?

2. If an unlimited number of examples were possible, what accuracy would be possible?

 Seer answers these questions by first generating learning-performance data from a set of existing

classified examples. Then, it fits a learning-performance model to the data.

Seer advances the start of the art by making regression on learning-performance data practicable.

Theoretical approaches to modeling learning performance, when applicable, can make predictions over a

broad scope of learning tasks. For practical problems, however, with noise and the most useful machine-

learning algorithms, theory cannot yet predict average-case performance. Empirical approaches such as

Seer are more narrow in scope. They work by gathering observations of actual learning-performance and

then generalizing it. (They are in essence empirically learning about empirical learning.) Seer’s basic

approach, which goes back at least 75 years, is to use regression to fit a curve (a learning-performance

model) to the observed learning-performance data. Seer differs from previous learning-curve-regression

work:

1. with learning-performance models that embody the best constraints for classification learning

and most useful parameters

2. with algorithms that efficiently find maximum-likelihood models, and
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3. with a demonstration on real-world data of a practicable application.

Formally, Seer’s task starts with learning-performance data in the form of a set of tuples,

{ <m1,y1,k1>, <m1,y1,k1>, ...} , where mi is the number of training examples given to a learning program, yi

is the number of testing examples the classification rule classifies correctly, and ki is the number of

testing examples given to the learner’s hypothesis. When the total number of classified examples given to

Seer is small , it uses a new procedure called generalized cross-validation to generate learning-

performance data (at a cost of some statistical independence). Although we can informally think of the

models Seer fits to that data as “curves”, more formally a learning-performance model is a function.

From the number of training examples, m, and the number of testing examples, k, a model predicts the

probability of correctly classifying exactly y examples.

To create Seer, two questions needed answers: first, which sets of candidate learning-performance

models should Seer consider, and, second, how should Seer eff iciently find the maximum-likelihood

model from a model set. The question of creating candidate models was treated as a three-part design

problem. The first involved creating deterministic models for noise-free learning of two equally probable

classes. Two models inspired by computational learning theory, EDmodel and BurrModel, were found to

have a much different shape than the models of logit and probit regression. The second part of the design

involved modeling the effect of multiple classes, skewed classes, and noise. The new modelgen

heuristically models the effects of interest with remarkably few parameters. The third part involved

creating a nondeterministic model. The binomial distribution should be suff icient if variation in testing

data is the only concern. However, if variation in the training data is also a concern, then the beta-

binomial distribution might be better.

The second question of how to find the maximum-likelihood model cannot be solved with popular

and simple techniques such as least-squares regression because the assumptions of least-squares

regression, such as constant variance, are not reasonable for learning-performance data. The problem of

finding the maximum-likelihood model for learning-performance data is an instance of nonlinear

programming. Seer, however, overcomes the diff iculties of nonlinear programming by exploiting problem

constraints and using appropriate transformations to reduce the problem to nonlinear regression, which

Seer solves with an efficient iterative algorithm.
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Experiments were conducted to determine which, if any, of the model sets designs were useful for

characterizing and predicting learning performance. Seer generated 99 learning-performance data sets (3

characterization trials and 30 prediction trials × 3 domains). It used generalized cross-validation and

thousands of runs of the C4.5 learning algorithm. For each of the 99 learning-performance data sets, Seer

found the maximum-likelihood model from the 5 model sets. Results were measured with loglikelihood

and R2
Seer, a measure based on loglikelihood but normalized to the range 0.0 to 1.0. The maximum-

likelihood models were compared head-to-head using paired-difference analysis. All the model sets

(except the logistic model set) did well on characterization and seemed to do as well as possible on

prediction. The poor prediction seen in some trials seemed mostly attributable to unrepresentative subsets

of the classified examples.

One way to select among the good performing model sets would be to always use the simplest. Of the

model sets considered, the one named NoExp had fewer parameters than the other models and was the

easiest with which to work computationally. Another way to select model sets, however, would be to

choose the one with the most useful and meaningful parameters. For example, the max parameter found

in most of the models is very useful because it is an estimate of asymptotic accuracy. Likewise, start and

skew quantify and predict the effect of multiple classes and skewed classes on the learning. Also, the pvar

parameter tries to quantify variance in the training data. Finally, most of the model sets have a d

parameter. This is a measure of learning diff iculty after other parameterized effects are factored out.

Uniquely among the model sets, the ED model set produces a d that is comparable to the d produced

through Vapnik-Chervonenkis-dimension analysis. Thus, except for the Logistic model set, all the model

sets characterize well and predict as well as the data allows. Some of the model sets are more simple, but

others have useful and interesting parameters. Selecting the best one will always involve tradeoffs.

6.2. Future Work

This section discusses opportunities for future work. Three directions are considered: 1) expanding

the amount of performance-data available, 2) exploring the pvar and dED model parameters, and 3)

generalizing the models to be multivariate.
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Infinite Data Supply -- If our only interest is in estimating how many more classified examples we

need to create an acceptable expert system, then Seer’s current method of generating learning-

performance data suff ices. However, what if we are interested in characterizing the behavior of our

inductive learning under specific distributions of learning targets and learning examples? In that case, the

distributions can be used to generate random targets and examples. This gives Seer an inexhaustible

supply of classified examples. By using each of these synthetic examples only once, the learning-

performance data Seer creates is statistically independent. Confidence intervals can be obtained for all

parameter estimates either from the covariance matrix created during model fitting or via Monte Carlo

simulation [Press et al. 1992, p. 695]. The down side to this method is that it is no longer based on real-

world data, but rather on a synthetic-data generator.

The pvar and dED Parameters -- This thesis presented the pvar parameter from the beta-binomial

distribution as a way to characterize variation in training examples. This parameter could be important

because it captures a source of uncertainty that is otherwise ignored. For example, it could tell us that

although one inductive learner appears to have greater predictive accuracy than another (as measured

with ordinary cross validation) that the difference is not statistically significant because it could be

explained by training-example variation. In the experiments of this thesis, however, the pvar parameter

did not contribute, in a compelli ng way, to prediction accuracy. Further work is needed to determine if

and when reliable pvar values can be estimated. One way to try to gain an understanding of the problem

might be to use infinite supplies of data as suggested above.

The thesis also presented the ED model, a model designed to create a parameter d that would be

comparable to the Vapnik-Chervonenkis dimension. Haussler [1988] promotes the VC-dimension, dVC as

a measure of inductive bias. Because dED can be determined in many cases where dVC cannot (and visa

versa), it may be a useful measure of inductive bias. Future work is needed to explore this application.

Multivar iate Models -- When predicting learning performance, the number of training examples is

typically the most important dependent variable, but it is not the only one of possible interest. We might

also want to model how other variables affect performance. Examples of such variables include:

• Choice of inductive learning algorithm; for example, C4.5 versus ID3



92

• Configuration of learning algorithm; for example, number of hidden units in a neural-net

algorithm

• Number of irrelevant attributes in the classified examples

• Complexity of the target; for example, number of disjuncts in the target

Some of these variables are nearly always available, for example, the learning algorithm and its

configuration are typically known. Other variables, such as number of disjuncts in the target, would only

be known for synthetically-generated learning problems.

The result of multivariate regression would be a model that might look something like the plot in

Figure 6.15. It would map dependent variables into expected accuracy, capturing with only a few

numbers the general effects of learning-task attributes.
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Figure 6.15: Example of what a multivariate learning-performance regression model might look
like. In this example, the vertical axis represents accuracy, the horizontal axis represents number
of training examples, and the axis that goes into the page represents the number of disjuncts in
the learning target.
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6.3. Contributions

The general contribution of the thesis was to show how regression could be used to practically and

eff iciently analyze inductive classification learning. More specifically, given a set of classified examples

and a learning system, such as C4.5, the thesis presented a way to predict learning average-case learning

performance and asymptotic accuracy. The data could be noisy and could originate from multiple and

skewed classes. Furthermore, the thesis developed and evaluated several reasonable and effective model

sets of learning performance. These models varied in their simplicity and in the usefulness of their

parameters. One model set, EDmodel, produced a d parameter comparable to the Vapnik-Chervonenkis

dimension from Computation Learning Theory. It developed a heuristic that predicts, without needing

learning-performance data, the effect of skewed classes and multiple classes on learning. It developed a

measure, pvar, of the variation caused by different training-example sets. (Most similar statistical

methods only measure the variation caused by different testing example sets.) It argued that maximum

likelihood is the most appropriate criterion for selecting a model within a family of models that best fits

the data and it showed how such maximum-likelihood models could be found eff iciently.. It introduced a

new method called generalized cross-validation to create learning-performance data from a finite set of

classified examples, if dependencies in the data are allowed. It was observed that learning-performance

data based on subsets of the classified examples are sometimes unrepresentative. The thesis identified

likelihood as the most appropriate way to judge the goodness-of-f it of a model to data and defined R2
Seer

(a new measure based on likelihood) as a convenient way to normalize likelihood. Finally, the thesis

showed how to use pair-difference analysis to compare competing learning-performance models.
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