
SEER-MCache: A Prefetchable Memory Object
Caching System for IoT Real-Time Data
Processing

著者 LI Dingding, DONG Mianxiong, YUAN Yanting,
CHEN Jiaxin, OTA Kaoru, TANG Yong

journal or
publication title

IEEE Internet of Things Journal

volume 5
number 5
page range 3648-3660
year 2018-09-03
URL http://hdl.handle.net/10258/00009971

doi: info:doi/10.1109/JIOT.2018.2868334

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 1

SEER-MCache: A Prefetchable Memory Object
Caching System for IoT Real-time Data Processing

Dingding Li, Mianxiong Dong, Yanting Yuan, Jiaxin Chen, Kaoru Ota, and Yong Tang

Abstract—Memory object caching systems, such as Mem-
cached and Redis, have been proved to be a simple and high-
efficient middleware for improving the performance of IoT
(Internet of Things) devices querying the database in cloud.
However, its performance guarantee is built on the fact that the
target data, queried by the IoT device, will be accessed many
times and hit in the caching system. Therefore, when database
system is handling the unrepeated IoT queries, it usually presents
the sub-optimal performance, which greatly impairs the efficiency
of real-time data processing on IoT devices. To improve this issue,
we propose Seer-MCache, the memory object caching system
with a smart prefetching (read-ahead) function, to fill up the
caching system with the desired data before the intensive IoT
queries arriving. Seer-MCache includes a set of rules to launch
the specific behaviors of read-head. These rules are able to be
customized according to the workload characteristics and system
load. We implement a prototype system in Redis (caching layer)
and MySQL server (database system). Extensive experiments are
conducted to verify the effectiveness of Seer-MCache, the results
show that Seer-MCache can improve the performance of read-
intensive workload up to 61% (39.5% in average). Meanwhile,
the cost of the read-ahead behavior is moderate and controllable.

Index Terms—Internet of things (IoT), database, memory
object caching system, read-ahead.

I. INTRODUCTION

S Ince always-on IoT (Internet of Things) devices or sensors
proliferate, their data are required to be fetched and

actionable in the moment [1] [2]. Mainly for improving their
energy consumptions and lifetimes, usually a data infrastruc-
ture behind IoT applications, such as database in cloud, is
deployed to decouple the intensive computing and massive
storage from IoT devices [3] [4]. However, in the era of big
data, the IoT application produces data streams previously
unimaginable, both in variety and quantity [5]. As a result, the
main components in a typical database, such as query parser
(CPU-intensive, mainly for parsing the SQL statements) and
storage engine (I/O intensive, mainly for issuing the specific
read/write requests), are incurring the unprecedented load
pressure [6], consequently shows a performance bottleneck
either on CPU or I/O subsystem [7]. This problem greatly
affects the quality of real-time data processing on IoT devices
[8].

D. Li, Y. Yuan, J. Chen and Y. Tang are with the School of Computer
Science, South China Normal University, Guangzhou 510613, China.
E-mail: {dingdingli, sherryyuan, jiaxinchan, ytang}@m.scnu.edu.cn.

M. Dong and K. Ota are with the Department of Information and Electronic
Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan.
E-mail: {mx.dong, ota}@csse.muroran-it.ac.jp

Manuscript received January 11, 2018; revised April 4, 2018.

An improvement on such issue is horizontal scalability,
namely forking the extra database nodes and then distributing
the IoT data streams uniformly among them [9]. However,
it is not a cheap method, because: (1) a complex protocol
is required to run on different nodes collaboratively [10];
(2) the multiplied maintenance cost on many database nodes
is expensive [11]. To relieve this problem, memory object
caching system, such as Redis [12] [13], is deployed alongside
with the database in cloud, for decoupling a portion of work
from the traditional database system [14]. For example, Redis
acts as a front-end cache layer for the back-end database
system, storing a portion of SQL results for satisfying the
following IoT queries [15]. When the same or similar IoT
query arrives, it can directly return the results to devices,
instead of handling on the back-end. Not like a traditional
database, such memory object caching system is simple since
it is no need to maintain the ACID features (Atomicity,
Consistency, Isolation and Durability) [16]. Therefore, it is
much lightweight to be distributed, which allows it to be a
cost-effective method to scale the database performance as the
number of IoT devices increased. Currently, memory object
caching system is wildly used by many companies and in
countless IoT production environments1.

However, as a cache role, the modern memory object
caching systems lack the prefetch or read-ahead function,
mainly for keeping their own simplicities. But in fact read-
ahead is an important feature for a typical high-performance
database or file system, such as Superfetch service in
Windows 7 and linear/random read-ahead in InnoDB storage
engine of MySQL server [17]. By leveraging the principle
of locality, read-ahead function in a system can get the data,
which will be accessed in the near future, into the caching
layer in advance. If the used read-ahead policy is reasonable,
a portion of new IoT queries will be completed successfully in
the front-end cache, instead of incurring a process to find the
data in back-end, which involves both costs of communication
and disk I/O [18]. Therefore, the deficiency of read-ahead
function on a Redis-like caching layer may bring the following
downsides:

• Warming a cache needs an uncertain time, denoted by
Tw, to fill up the desired or correct data in front-end. But
Tw may be delayed in absence of the read-ahead function,
thus punishing the performance of IoT query which tries
to find the target items during Tw;

1https://www.infoworld.com/article/3063161/nosql/why-redis-beats-
memcached-for-caching.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 2

• During Tw, the back-end database system is almost
exposed to the external IoT queries directly. If the number
of IoT queries are massive, the database system is easily
congested and even off-line;

• IoT devices are less likely to always issue different
queries for the same item because the external physical
environment is complex. As a result, the issued IoT
queries do not benefit from the front-end caching layer.

To improve above issues, we propose Seer-MCache, a
dedicated and lightweight read-ahead function for the memory
object caching system of IoT devices. The idea behind Seer-
MCache is straightforward: when an item I , has been fetched
from the back-end database system to respond a IoT query,
not only I is cached in the front-end caching layer, but also
{J}, a set of items which have correlations with I , are cached
in front-end. Seer-MCache defines these correlations as {Ci},
which are designed to allow {J} to be accessed later with
high probability. All elements in {Ci} are rules built from the
principle of locality [19], at the layer of database semantic.

However, many rules used in Seer-MCache trigger many
read-ahead behaviors in the back-end, which involve a lot
of disk I/O and networking, thus incurring a large resource
consumption on the original system. This side-effect will
degrade the response time of IoT query in a loaded data infras-
tructure. Therefore, Seer-MCache provides a modular design
on {Ci} deployment. Namely, rules in {Ci} can be applied
into system as any combination and be featured in the hot-
plug manner. In this way, Seer-MCache can orchestrate {Ci}
carefully depending on the system load of data infrastructure
and workload characteristics of IoT application.

We implement Seer-MCache in a real system with Re-
dis (front-end) and MySQL server (back-end). Extensive ex-
periments, including micro-benchmarks and realistic work-
loads, are conducted to demonstrate the effectiveness of Seer-
MCache. The results show that Seer-MCache can: (1) reduce
the latencies of IoT queries at the period of cold cache; (2)
bring the controllable cost for running read-ahead function and
(3) present better IoT querying performance on an original
system.

In summary, we have made the following contributions in
this paper:

1) For the caching system of IoT applications, we devise
a full read-ahead framework in a typical memory object
caching system;

2) We propose two read-ahead policies to drive the specific
read-ahead procedure: passive and proactive;

3) We implement the practical read-ahead mechanisms in
a real memory object caching system of IoT devices;

4) Finally, We not only use both the quantitative and
qualitative experiments to show the performance benefits
of Seer-MCache, but also reveal its penitential cost when
dealing with the read-intensive, read-write mixture and
write-intensive IoT workloads.

The rest of this paper is organized as follows. In section II,
we provide a motivating and real example to exemplify the
necessity of read-ahead function in a memory object caching
system of IoT. Then, we describe the design and implementa-

tion of Seer-MCache in section III and IV respectively. Section
V describes the experimental methodology and discusses the
results. Then we discuss the related work in section VI. Finally,
section VII concludes the paper.

II. A MOTIVATING EXAMPLE

Here exemplifies a real system for large-scale real-time face
recognition. Generally, there are three stages to recognize a
persons face: S1, capturing the video streaming and selecting
several key frames based on the shot content change ratio
[20] at the sensor layer2; S2, sending the key frames to the
computation layer and extracting the face features of people at
the computation layer; S3, delivering these features to the data
layer, for finding the matched records of the captured people
in S2.

Under rudimentary design, we use a variant algorithm of
Eigenface to identify the faces, in which a serial of features
(denoted by {Fi}) is extracted at S2. Then we use {Fi} to find
the matched record from the backing database system at the
data layer, in which a query is issued from the computation
layer to the data infrastructure to find the best-matched record
according to {Fi}. Each record in the database also has the
unique features, denoted by {fi}. If {Fi}={fi}, then we treat
the owner of {fi} as the matched record. Finally, the result is
returned to the recognition node at the computation layer.

With trial running in several days, we have observed that the
intensive networking and disk I/O would appear in the system
if too many facial data being sensed within a very short period
of time, such as the cameras being deployed in the populated
area. The networking I/O is not a problem, because the links,
which connect the different layers, are 10 Gbps Ethernet based
on the optical fiber. But for maintaining the data consistency
simply [21], we only keep a centralized database in the back-
end, instead of using the distributed one. This design results
in an over-burden database and hurt the S3 performance.

To relieve the problem, we have deployed memory object
caching system, such as Redis, in the computation layer,
trying to decouple a portion of work from the busy database.
However, the original memory object caching system at the
computation layer cannot relieve the load of the back-end
database effectively. One main reason for this problem is that
the IoT queries from the computation layer are less likely to
issue the different queries for the same person during a short
time interval. In such a way, too many queries rush into the
cold cache at the computation layer, then are sent to the data
layer to find their target data, allowing the storage of the data
infrastructure to be congested.

Table I describes the current performance of our system,
which is further divided into two cases according to the latency
of S3. Namely, this division depends on that the back-end
database is congested or not by the IoT queries from the
computation layer. The NORMAL refers to the case of the
number of people in the captured picture is less than 10,
while the INTENSIVE refers to that the number is greater
than or equal to 10. According to the statistics of a random
day, 39% frames or pictures fall into the NORMAL case (5.4

2The format of the key frame is *.jpg and its average size is less than 2MB.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 3

TABLE I
PERFORMANCE OF OUR MOTIVATING EXAMPLE. THE THREE

COMPONENTS OF THE TIME FIELD REFER TO THE AVERAGE TIME COST OF
A USER QUERY FOR EXECUTING S1 , S2 AND S3 RESPECTIVELY. THE UTIL
FIELD ALSO INCLUDES THREE PARTS: (1) THE CPU UTILIZATION OF THE
COMPUTATION LAYER; (2) THE DISK UTILIZATION OF THE DATA LAYER

AND (3) THE NETWORK UTILIZATION BETWEEN THE TWO LAYERS.

Cases Time (ms) Util (%) Cache Hit Rate (%)
NORMAL 2014/0574/0873 34/47/25 27.1

INTENSIVE 2310/0617/4625 62/99/70 18.9

people in average), while the remaining ones fall into the
INTENSIVE case (22.4 people in average). The field of Time
refers to the average time overhead of user query (measured by
millisecond), which is broken down into the three stages we
just described. Util indicates the main hardware utilizations
in our system during the sample day, which is also divided
into three pieces: (1) the average CPU utilization on the
computation layer (denoted by CPUf); (2) the average disk
utilization on the data layer (denoted by Diskb) and (3) the
average network utilization between the two layers (denoted
by Netfb)3. In the case of INTENSIVE, it can be clearly seen
that:

• Compared with the Normal case, time for executing S3

is increased from 873ms to 4,625ms, incurring about 5.3
times delay;

• Diskb is increased about 2.1 times, due to the busy data
layer, which also directly contributes to the multiplied S3;

• CPUf is increased from 34% to 62%, but still leaves
large room (38%) for being fully saturated;

• The cache hit rate of Redis is even lower, from 27.1%
to 18.9%, because the queries for a single face data
are hardly repeated many times in a short time window,
thereby hurting the cache hit rate of Redis while dimin-
ishing the role of caching layer we just deployed.

Therefore, we consider to devise a read-ahead function
(termed Seer-MCache) for not only improving the original
cache hit rate of Redis, but also utilizing the remaining CPUf

enough in the computation layer. A challenge is that the
newly devised function of Redis should keep lightweight or
customizable, because it cannot hurt the performance of S2,
which is a computing-intensive process. Meanwhile, we also
highly desire that the read-ahead function can be applied to
different IoT scenarios, not only in our system.

III. SYSTEM DESIGN

In this section we first present the overview structure of our
work. Then, we describe the specific design in detail.

A. Overview

Figure 1 shows the overall design of our work, namely
Seer-MCache, on a typical memory object caching system. A
split/modularity design is employed by Seer-MCache to add
the read-ahead function. Without any intrusive modifications

3Currently, we deploy the computation layer and data layer in the different
physical machines. Besides, both layers of caching and computation are
located in the same host.

Database (Back-end)Database (Back-end)

Cache-Info

Monitor

AA

B CD

A

B CD

II

Caching Layer (Front-end)

EE

F G H

E

F G H

Pre-Cache

0

n

1

2

Pre-Cache

0

n

1

2

Cache-BufferCache-Buffer

Mes-Queue

Passive Procedure

Proactive Procedure

Both

Fig. 1. Overview of Seer-MCache design, which follows the split/modularity
style. The light arrows with dot/solid lines refer the passive/proactive read-
ahead procedure. The heavy arrow indicates the path that both procedures of
passive and proactive need to walk.

on the original systems, Seer-MCache provides a controllable
trigger to enable/disable the read-ahead function expediently
depending on the specific system load. Moreover, this kind of
design allows Seer-MCache to collect the information, which
are necessary for running the read-ahead function, from both
sides of the front-end and back-end easily.

Seer-MCache mainly includes two policies to trigger the
read-ahead behavior: (1) passive, which is caused by a cache
miss of user query in the caching layer; (2) proactive, which
is started by the light load of system. To achieve them, Seer-
MCache consists of the following five components:

• Cache-Info is used to monitor the data, which are ac-
cessed frequently in the original memory object caching
system;

• Monitor is used to analyze the user request (or IoT
query) and hotspot data, and then generates a read-ahead
request, which will be placed in the Mes-Queue;

• Mes-Queue is used to store the read-ahead requests gen-
erated by the Monitor, in which all requests constitute
a read-head process;

• Pre-Cache is a key-value queue for storing the result
of a passive read-ahead procedure, and a data loading
process is responsible for populating the read-ahead result
into the front-end;

• Cache-Buffer is used to store the result of a proactive
read-ahead.

B. Passive Read-ahead
A typical passive read-head process of Seer-MCache is

described as follows:
(1) The user or IoT application sends a query request,

denoted by ReqQ, to the system.
(2) ReqQ first reaches the memory object caching system in

front-end. If ReqQ is hit in caching layer, the memory object

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 4

caching system will complete this request directly and produce
an acknowledge, denoted by ACK, to user or IoT application.
Otherwise, goto step (3).

(3) ReqQ is perceived by Monitor, which is referred by
1© in figure 1. During this process, Monitor first searches

the target data of ReqQ, denoted by A, in Pre-Cache (4©
in figure 1). If A exists, ReqQ is satisfied and A will be
pushed from Pre-Cache to the original caching layer (14©).
Then, Monitor records the related information about ReqQ
to prepare for launching a passive read-ahead behavior (5©),
goto step (5). If A is not in Pre-Cache, ReqQ is transferred
to the database in back-end, goto step (4).

(4) Database receives ReqQ and searches A in back-end
(8©). After A was found, ACK is sent to the corresponding
user. Subsequently, A is also read to the original caching
layer (10©). Meanwhile, Monitor records the associated in-
formation of ReqQ (8©), in order to start a passive read-head
behavior.

(5) A passive read-head process Pp, triggered by ReqQ,
is started. According to the related passive read-head rule
(will be described in section III-B1), Monitor generates a
serial of query requests {Reqp}, which are firstly registered
in Mes-Queue (7©).

(6) Mes-Queue scans the queue from the top down and
delivers the requests in {Reqp} in turn to the database in
back-end (9©©). Then, the target data, denoted by {A}, to feed
{Reqp}, are read into Pre-Cache (13©). If any old data in
Pre-Cache share the same meta-data (such as the identical
storage position in database) with the ones in {A}, they are
substituted by the newer ones.

(7) A daemon process in Pre-Cache continually pushes
the data to the original caching layer in front-end (14©).

During both procedures of (3) and (4), Monitor is required
to extract several information from ReqQ, in order to prepare
a passive read-ahead procedure in the underlying database.
In detail, the information comprises of four fields: 1) the
database name which A belongs to; 2) the table names which
are involved by A; 3) the primary and foreign keys contained
by these tables; 4) the specific row numbers of A involving.
By the help of these information, Seer-MCache can define the
accurate read-ahead rules for a single read query. The specific
descriptions of the rules are presented as follows.

1) Rules for Passive Read-ahead: Seer-MCache mainly
utilizes the semantic locality of database to build the passive
read-ahead behavior, which is constituted by three specific
rules:

• Spatial-Associated (SA): When the ith row of
data in a database table D was read, the rows, from the
(i−N)th row to the (i+N)th one, are treated as the read-
ahead candidates, in which (i −N) ≥ 0 and (i −N) ≤
(L− 1). L is the length of D and N is the window size
of SA;

• Temporal-Associated (TA): When a row was read
at time t, the rows across all tables, which were just
modified or inserted, from time t− T to t, are treated as
the read-ahead candidates, where T is the window size
of TA;

• Foreign-Associated (FA): When a row of data
was read from the secondary table D, the associated
primary tables {M}, which are traversed by referring the
foreign keys of D, select a portion of their own data as
the read-ahead candidates. The window size of FA has
two dimensions denoted by {X,Y }, where X refers to
the number of tables contained in {M} while Y refers
to the row number of a certain table of {M}. FA will
determine the value of {X,Y } randomly from 0 to X and
0 to Y respectively when a passive read-ahead activity is
aroused.

It should be noted that Seer-MCache uses the principle
of locality only at the level of database semantic (logical
level), because modern databases usually establish a strict
corresponding relationship between the views of logical and
physical for performance [22].

The aforesaid three rules can be applied to Seer-MCache as
any combinations. Empty rule means the passive read-ahead
is disabled completely, which often happens when the system
is very busy. In addition, because each IoT query arriving
in database causes a passive read-ahead behavior, intensive
query flow not only results in the heavy resource consumption
on database, but also may produce many redundant read-
ahead data in Pre-Cache, degrading the space utilization.
To relieve such issue, Seer-MCache sets a time window W to
prevent the passive read-ahead being started frequently: only
after W has passed away, Seer-MCache permits a new passive
read-ahead behavior to be started.

2) Customization: In current Seer-MCache design, Only
DBAs (DataBase Administrators) have the privilege of cus-
tomizing read-ahead rules. One consideration of this regulation
is that the inappropriate read-ahead rules may overburden the
server and thus hurt the response times of IoT queries. If the
external entities, such as the upper applications, can devise
and apply any read-ahead rules, the real-time system would
take the risk of being disturbed maliciously.

According to the specific scenario, basically the read-ahead
rules leverage the RDBMS-level semantic locality during the
process of database logical design. If a new rule is needed
to be added into the running Seer-MCache, the system must
halt and then apply it. However, each applied rule in Seer-
MCache has a flag to indicate its status: disabled or active.
A privileged process can change the status during system
running. Specifically, applying new read-ahead rule into the
system requires the source code to be recompiled and restarted
manually. However, triggering the added but disabled rules is
automatic. In our system, when the system load is lightweight,
one privileged process injects a signal to the specific read-
ahead procedure, telling it to use the pre-defined and added
rules or part of them. In contrast, when the system is overbur-
den, the privileged process also injects a signal to the specific
read-ahead procedure, allowing it to disable one or more
applied read-ahead rules. This privileged process is invoked
by the DBAs.

To devise the specific rules: (1) the DBAs should learn the
read/write ratio of the upper workloads which are talking with
the back-end database. The metric can be sampled by using
several common tools in the modern operating system and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 5

database, such as iostat4 or innotop5. (2) The DBAs
should learn the method to activate or disable one or more
rules which have applied into Seer-MCache. Currently, we
implement this by a privilege process, which uses the pipe6

to transfer the signal to the main process of Seer-MCache. The
DBAs simply need to execute the process to activate or disable
the related rules. It should be noted the above two requirements
can be devised to an automatic method without the obvious
manual labor. Since it is another complicated work, we leave
it for future work. (3) The DBAs should be familiar with
the logical database design of the upper IoT application or
scenario. In doing so, based on the principle of locality at the
level of database semantic, the suitable read-ahead rule can
be customized and then be applied into Seer-MCache via the
former two requirements.

C. Proactive Read-ahead

A consideration on the design of passive read-ahead is
constraining its cost on the original system. Therefore, Seer-
MCache should control the window sizes of read-ahead rules
carefully, even disables one or more to keep its lightweight.
However, in doing so the read-ahead coverage is narrowed,
which indirectly degrades the cache hit rates of IoT queries in
the caching layer. On the other hand, if system is running with
the light load, a portion of memory spaces in the front-end are
also under-utilized.

To improve these problems, Seer-MCache devises the
proactive read-ahead behavior. It uses an more aggressive
method, but with weak locality, to select the read-ahead
candidates and then read them to fill up the caching layer.
Due to its coarse-grain, Seer-MCache should run the proactive
procedure when system load is somewhat light. To do this,
three metrics are taken into account for preparing a proactive
read-ahead behavior, namely CPUf , Diskb and Netfb. They
are already defined in section II. Obviously, when the values of
the above three metrics satisfy a set of conditions, denoted by
{C}, Seer-MCache is qualified to launch the proactive read-
ahead.

After that, Seer-MCache runs the proactive read-head pro-
cess on the basis of Hot-Spot, which is a technology to monitor
the hot data in the memory object caching system (front-end).
Specifically, Hot-Spot uses Cache-Info in figure 1 to trace
the related information of the potential hot data. A table called
Key-Counter is maintained for this task, where Key refers to
the key data type corresponding to an item in the original
memory object caching system and Counter refers to the
number of this item being accessed. Whenever an item in the
caching layer is read, the associated Counter is increased,
and then Cache-Info will extend the life time of the data.
In contrast, if a Key is not active for a time, Cache-Info
will treat it as the eviction candidate, decrease its life time and
seek opportunity for replacing it with a new memory page.

Hot-Spot always takes the most recently accessed item in
Key-Counter as the initialization reference to start the process

4https://linux.die.net/man/1/iostat
5https://github.com/innotop/innotop
6https://linux.die.net/man/7/pipe

Algorithm 1: Process of proactive read-ahead in Seer-
MCache.
Input: A, which is the most hot item in

Key-Counter during a Th.
Output: Flag, which indicates the process of

proactive read-ahead is completed or not.

1 ITEM ARRAY {Ap} = NULL; /*{Ap} is a set of
items, which are read by a read-ahead procedure.*/

2 ITEM ARRAY IA = NULL; /*IA is a temporary
array to store a set of items.*/

3 ITEM temp = NULL;
4 int i = 0;
5 Bool Flag = False;

6 CleanCacheBuffer();/*Emptying Cache-Buffer.*/
7 IA = Readahead(A);/*Starting a read-ahead procedure

according to A, the used rules are described in
section III.A.*/

8 CacheBuffer.Add(IA);/*Putting IA into Cache-Buffer.*/

9 while i ≤ (CacheBuffer.Length) do
10 temp = CacheBuffer.Get(i);
11 {Ap} = Readahead(temp);
12 PushingToFrontend({Ap});/*Pushing {Ap} into the

original caching layer.*/
13 CacheBuffer.Delete(i);
14 i++;
15 end

16 Flag = True;
17 Return Flag;

of proactive read-ahead. A time period Th is set to enable the
timeliness of Key-Counter. Namely, the value of Counter is
legitimated only in a Th. If a Th has passed way, Counter
must be reset. Meanwhile, Th is also the time interval of Hot-
Spot to periodically check if {C} are satisfied, where {C} are
the conditions to decide whether the system is in a lightweight
load.

In summary, a typical procedure of proactive read-ahead in
Seer-MCache is described as follows:

1) Th kicks off. Data A, which locates in the front-end,
is accessed frequently during Th, which allows it to
become the most hot item in Key-Counter, as 2© in figure
1 showing;

2) When Th is up, Hot-Spot in Cache-Info is invoked
to check {C}. If conditions are satisfied, goto step 3, or
else, go back to 1;

3) Seer-MCache first disables both the trigger of passive
read-ahead and Th counting, and then passes the meta-
data of A from Cache-Info to Monitor (3© in figure
1;

4) Monitor starts the specific procedure of proactive read-
ahead (6© in figure 1), which is described in algorithm
1 in detail;

5) The procedure of proactive read-ahead is finished. Seer-
MCache re-enables the trigger of passive read-ahead and
then go back to step 1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 6

The readahead() function in algorithm 1 corresponds
to one invocation of the passive read-ahead procedure. There-
fore, a single proactive read-ahead process is composed of a
group of passive read-ahead procedures, which are launched
simultaneously. To allow the concurrent read-head procedures,
we need to clear the time window W at the beginning of each
proactive read-ahead behavior. After finished, we set it again.
Due to the light load of the current system, multiple read-ahead
procedures did not overburden the system.

Intuitively, multiple concurrent read-ahead procedures may
conflict each other. In our proposed system, the conflicts
between the applied rules mainly lead to two results: (1) a
portion of data are prefetched by a rule, and then they are
read again by another rules, namely, the redundant data occurs
during the read-ahead procedures; (2) correspondingly the read
overhead is amplified, since several read operations in the
back-end are unnecessary. To maintain the procedure of read-
ahead simple, currently, we did not tailor-made a technique to
solve this issue. Instead, Seer-MCache has a module called
Pre-Cache, which stores the data have been prefetched.
When the specific read procedure put data into this module,
the redundant item(s) will be checked and then be eliminated
automatically.

On the other hand, a proactive read-ahead process may be
terminated abnormally, such as power outage. In this case,
there are several items stayed in Cache-Buffer, which have
lost the locality to their parent item such as A in algorithm 1.
Therefore, the line 6 in algorithm 1 shows a clean procedure
in Cache-Buffer to delete all old items before beginning
the new proactive read-ahead process.

IV. IMPLEMENTATION

We implement Seer-MCache in a Redis (front-end) and
MySQL (back-end) server system. We split Seer-MCache into
two parts, placing them on the front-end and back-end respec-
tively.

The front-end of Seer-MCache includes only Cache-Info
component, which is mainly for tracing the hottest item of the
original caching layer by maintaining the Key-Counter ta-
ble. Cache-Info uses the logical-level semantic of database
to name the read-ahead items in Redis. For example, a row of
data R will be named Ti, where T refers the table name of R
and i indicates the identifier (ID) of R in T . In such a way,
a IoT user query can find its target data in the front-end by
parsing Ti.

Besides, in order to monitor the access frequency of items in
the caching layer, we leverage Jedis7, a client library in Java
for Redis, to acquire the related information inside Redis.

Finally, Cache-Info is required to collect the system
information of front-end, such as CPUf which is described
in section III-C, for preparing a proactive read-ahead process.
To implement this, we employ Sigar8, which is a library
providing interface to low-level information on computer
hardware and operating system activity.

7https://github.com/xetorthio/jedis
8https://github.com/hyperic/sigar

We deploy Monitor, Mes-Queue, Pre-Cache and
Cache-Buffer in the same physical machine with the back-
end database system, for reducing the unnecessary data across
the network thus providing a better interactive performance
among them.

Except for intercepting the missed user query from front-
end, an additional function of Monitor is to collect the low-
level system information of back-end by using Sigar, namely
Diskb described in section III-C. On the other hand, since a
database can deploy one or more caching layers in multiple
front-ends, Seer-MCache also allows Monitor to collect the
global network utilization between front-ends and back-end,
namely Netfb described in section III-C.

V. EVALUATION

A. Experimental Setup

Two separated physical machines act as the roles of front-
end and back-end respectively. Both of them have dual Intel
Xeon CPU E5-2620 2.1GHz with hyper-threading enabled,
96GB DDR4 RAM, 2TB TOSHIBA hard disk drive and
Intel Ethernet connection I217-LM (Gbit/s). Two machines are
connected via a 10Gb switch.

CentOS 7 (1511) with Linux kernel 4.1.25 are used as their
operating systems. On the front-end side, Redis-3.2.11 is
installed while MySQL-5.6.24 is deployed on the back-end
side. Because many parameters in Seer-MCache are required
to be determined in actual operation, Table II summaries their
values which are used through our experiments. It should be
noted that most of them are given according to our practical
experience, however, it does not follow that they are the
optimal ones in all cases. We will investigate this issue in
our future work.

We use three kinds of evaluations to test Seer-MCache:
(1) synthetic benchmark; (2) realistic benchmark and (3)
trace replay. The first one further includes three kinds of
workloads: (1) write-intensive (read operations account for
about 20%); (2) read-write mixture (read accounts for 50%)
and (3) read-intensive (read accounts for 80%). The second
one, realistic workload, uses OLTPBench to simulate three
realistic workloads, namely TPCC, TATP and SmallBank.
Finally, a trace, which is collected from table I in section II,
is replayed to verify the effectiveness of Seer-MCache in a
real scenario. Before each test, we reboot both front-tend and
back-end to exclude the interference from the warm cache.

As we will describe in section VI, the prefetchers can be im-
plemented at hardware-level, block-level and application-level.
Because to the best of our knowledges there is no suitable
counterpart at the application-level, in this paper we compare
our work with the original system, which deploys the memory
object caching system without the application-level prefetcher.
But we activated the existed prefetchers of the underlying file
system (block-level), database storage engine (block-level) and
hardware during all experimental configurations.

B. Synthetic Workloads

Initially, we create one million records in total at the back-
end side, which are scattered across 22 tables uniformly. Each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 7

TABLE II
DESCRIPTIONS OF SEER-MCACHE PARAMETERS, WHICH ARE USED IN

OUR EXPERIMENTS.

Name Description

N
Used in the window size of spatial-associated rule

(SA).The value is set to 50 rows.

T
Used in the time interval of temporal-associated rule

(TA). The value is set to 3 seconds.

X
Used in the foreign-Associated (FA) rule, indicating
the number of primary tables which are associated
with a secondary table. The value is set to 5 tables.

Y
Used in the foreign-Associated (FA) rule, indicating

the row number of a certain primary table which will
be read-ahead. The value is set to 10 rows.

W
A time window permitting only one passive read-ahead

process to be launched. The value is set to 500ms.

CPUf

CPU utilization of the Redis process in the
front-end. If CPUf ≥ 50%, the trigger of

proactive read-head process is disabled.

Diskb

Idle disk utilization of the back-end. If
CPUb ≤ 50%, the trigger of proactive read-head

process is disabled.

Netfb

Network utilization between the font-end and
back-end. If Netfb ≥ 75%, the trigger of proactive
read-head process is disabled. We sample this metric

in the back-end side.

Th

Expiry time of the counter value of Key-Counter
table in Cache-Info. This parameter also indicates the
time window that allows only one proactive read-ahead
process to be launched. The value is set to 3 minutes.

table at least has a foreign key associated with the other
table(s). Then we write a program to deliver three different
workloads to the back-end. The program executes an infinite
loop to issue the random user queries across all 22 tables,
but with the relatively high priority (w = 0.3) to issue them
into the same table, which is just accessed by the prior user
query, or into its primary tables (w = 0.3). The remainder
weights (w = 0.4) are distributed uniformly throughout the
other tables. During this procedure, the testing program issues
the intensive queries as the uninterrupted and continuous flow.
Each test procedure maintains at least 30 minutes and then we
terminate it manually.

1) Write-intensive Workload: Figure 2 shows the result of
write-intensive workload. It can be seen that the single read-
ahead rule, namely SA, TA and FA, can improve the cache hit
rate of front-end from 15% to 24%, 31% and 23% respectively.
TA performs better because it reads-ahead the rows which
have just be modified or created under this write-intensive
workload.

As for performance, SA, TA and FA outperform the original
system about 28%, 38.4% and 22.9% respectively on read
throughput. To the write, they surprisingly incur 0.2%, 2%
and 4% overhead individually versus the original one. We
conjecture the reason is that the database system in back-
end is required to serve more disk I/O requests brought by
the additional read-head processes, which inevitably enforce
the resource contention on the shared disk device to the write
queries.

Rules applied in pair, namely SA+TA, SA+FA and TA+FA,
achieve about 133%, 147% and 129% improvements respec-
tively on the cache hit rate of front-end. Correspondingly, their
read throughputs obtain 44.3%, 34.9% and 32.5% performance

Or
igi
na
l SA TA FA

SA
+T
A

SA
+F
A

TA
+F
A

SA
+F
A+
TA All

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ro

ug
hp

ut
 (C

om
pl

et
ed

 Q
ue

rie
s /

 S
ec

on
ds

)

 Write Throughput
 Read Throughput

14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

55%48%37% 34.4%35%31%
23%

24%
15%

 Response Time (ms)

Re
sp

on
se

 T
im

e (
M

ill
ise

co
nd

s)

Fig. 2. Results under write-intensive workload (the read user query accounts
for about 20%). The numeric label on top of each bar is the cache hit rate
of user read query on the font-end. ”Original” refers to the original system,
”SA” means the passive read-ahead process with spatial associated rule, ”TA”
refers to the temporal associated rule, ”FA” refers to the foreign associated
rule, ”All” means the combination of three passive read-ahead rules and the
proactive read-head process. Each value is the mean of 5 trials.

benefit respectively. But the write throughputs respectively
show 8.4%, 4.4% and 4.2% performance penalty against the
original one due to the amplified read-ahead activity. On the
other hand, the response time of user query, is increased
against the single read-ahead rule, from the average 21.3ms
to 31.7ms. We attribute this cost to the write portion of this
workload, where most of user queries (write operations) are
delayed due to the additional read-ahead process on the shared
disk device.

The triple rule, namely SA+FA+TA, reaps the roughly
220% benefit on the cache hit rate of front-end versus the
original one, from 15% to 48%, alongside with the 57.8%
improvement of read throughput, from 2,087 queries/second to
3,294 queries/second, but it comes at a relatively large cost of
write throughput, from 4,601 to 3,965, incurring about 13.8%
performance penalty, because the data amount of read-ahead
on SA+FA+TA is further increased. For the response time
of user query, SA+FA+TA shows 42ms on average, which is
increased about 33% than the rules in pair.

Finally, the proactive read-ahead process plus the aforesaid
triple rules of passive read-ahead, namely All in figure 2,
shows the highest cache hit rate in the font-end. But compared
with SA+FA+TA, the performance benefit on throughput is
trivial because the number of read user query is limited by
the write-intensive workload. However, All still improves the
response time of user query about 14.3% against SA+FA+TA,
due to the higher cache hit rate of front-end.

2) Write-Read Mixture Workload: Figure 3 shows the result
of write-read mixture workload. Due to the proportion of read
query increasing, from 20% to 50%, the overall performances
across all cases are improved versus the write-intensive work-
load.
SA, TA and FA improve the cache hit rate of front-end from

19% to 32%, 35% and 31% respectively against the original

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 8

Or
igi
na
l SA TA FA

SA
+T
A

SA
+F
A

TA
+F
A

SA
+F
A+
TA All

0

2000

4000

6000

8000

10000

Re
sp

on
se

 T
im

e (
M

ill
ise

co
nd

s)

Th
ro

ug
hp

ut
 (C

om
pl

et
ed

 Q
ue

rie
s /

 S
ec

on
ds

)
 Write Throughput
 Read Throughput

8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

 Response Time (ms)

59%
48%38%41%39%31%35%32%

19%

Fig. 3. Results under write-read mixture workload (the read user query
accounts for about 50%). The numeric label on top of each bar is the cache
hit rate of user read query on the font-end. Each value is the mean of 5 trials.

system. The associated read throughputs are also increased
about 14.2%, 14.6% and 14.8% respectively. In contrast, the
write throughput incurs about 6.63% performance penalty on
average in SA, TA and FA. One main reason contributes this
cost: read-ahead requests contend the resource of shared disk
device with the write ones in the back-end. All three single
rules improve the response time of original system about 6.6%
on average. The benefit mainly derives from the fact that more
read queries are hit in the front-end due to the passive read-
ahead behaviors, instead of finding the data in back-end.
SA+TA, SA+FA and TA+FA obtain the better cache hit rate

of front-end for their twice passive read-ahead rules, from the
original 19% to 39.3% on average, but trade with the write
throughput about 14.8% on average versus the original one.
Moreover, the average response times of all user queries are
delayed from 20ms to 25ms on average. The performance
penalty is caused by the write queries, which must touch the
disk device of back-end (for maintain the integrity of database
transaction) and thus be involved with the concurrent read-
ahead disk I/O.

Similarly, compared with the original system, SA+FA+TA
achieves 152.6% improvement over the cache hit rate of front-
end. As a result, the read throughput is also enhanced about
36.9%. However, the amplified read-ahead process in back-
end punishes the write throughput about 24.5%, from 3,995 to
3016. Meanwhile, the mean response times of all user queries
are affected negatively from 20ms to 37ms.

With the proactive read-ahead process, SA+FA+TA reaps
the largest cache hit rate of front-end and the read throughput.
It should be noted that these benefits almost come at no cost
of write throughput by comparing with the single SA+FA+TA,
even improve its response times of user queries lightly, from
37ms to 36ms. The reason is that 59% read queries are
served in the front-end. They do not trigger the corresponding
passive read-ahead processes in the back-end, thus reducing
the concurrent disk I/O with the write ones. This result justifies
that we only start the proactive read-ahead process when

Or
igi
na
l SA TA FA

SA
+T
A

SA
+F
A

TA
+F
A

SA
+F
A+
TA All

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (C

om
pl

et
ed

 Q
ue

rie
s /

 S
ec

on
ds

)

 Write Throughput
 Read Throughput

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

53%
61%

43.7%45%46%
39%39%38%

26%

 Response Time (ms)

Re
po

ns
e T

im
e (

M
ill

ise
co

nd
)

Fig. 4. Results under read-intensive workload (the read user query accounts
for about 80%). The numeric label on top of each bar is the cache hit rate of
user read query on the font-end. Each value is the mean of 5 trials.

system is in a light load while demonstrating the rationality
of interleaving the passive read-ahead and the proactive one.

3) Read-intensive Workload: Figure 4 shows the results of
read-intensive workload. In general, the overall performances
across all cases are improved due to the read queries account-
ing for a large proportion in this workload. On the cache
hit rate of front-end, SA, TA and FA respectively outperform
the original system about 46.2%, 50% and 50%. As a result,
the read throughputs are improved about 13.1% on average.
Meanwhile, the response times of all user queries are also
reduced versus the original one, from 20ms to 12.3ms on
average, mainly due to the large proportion of read queries.
Write throughput in this workload is unaffected, even be
improved from 1,833 to 1,895. The reason is that the per-
formance benefit brought by the read-ahead process offsets
the associated overhead under the read-intensive workload.
SA+TA, SA+FA and TA+FA further increase the cache

hit rate of front-end to 46%, 45% and 43.7% respectively.
Both read throughputs and response times of user queries
are improved about 24.7% and 46.7% on average. Write
throughputs are also benefited from the relatively high cache
hit rate of front-end, because write queries are handled more
quickly with the read ones being hit in the front-end, instead
of forming the concurrent disk I/Os in the back-end.
SA+FA+TA shows 53% cache hit rate of font-end, with

about 100% improvement over the original system. Its
read/write throughput is improved about 38.9%/27.9%. The
response times of all user queries are also reduced by approx-
imately 50%. By combining the proactive read-ahead process,
SA+FA+TA improves the cache hit rate from 53% to 61%.
Both throughputs of read and write are increased about 48.4%
and 29.2 % respectively, with a 55% reduction on response
time of user query.

4) Summary: It should be noted that the average response
time of each user query is delayed by Seer-MCache in figure
2 and 3, in which the cases of stacked read-ahead rules are
more obvious. Instead, in the case of read-intensive workload,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 9

50ms 100ms 200ms 500ms 1000ms
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n
Fu

nc
tio

n
(%

)

 Original
 TA
 Proactive

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. CDF plot of query latencies on the TPC-C workload. ”Original”
refers to the original system, ”TA” means the temporal-associated rule and
”Proactive” refers to the temporal-associated rule plus the proactive read-ahead
process.

Seer-MCache provides the original system with the improved
response time of user query, as figure 4 showing. The reason
is that activating the read-ahead technologies in all systems
bring the associated overhead inevitably, since in a server
the extra resources are required to be allocated to serve the
extra read requests (read amplification). If the server is in
busy, such read-ahead operations further burden the server
load, thus leads to a resource contention among these requests
(including the original read/write request and the associated
read-head requests). Generally, write operations are more
inclined to incur this kind of performance interference, because
most of them are synchronous and thus need to be persisted
synchronously in the slow disk device. It is not like the read
ones, which have the chance to be finished in advance in the
memory, such as hitting in the page cache or the caching layer
(Seer-MCache) of the front-end in our system.

In summary, based on the above observations and analyses,
we make the following inferences about Seer-MCache:

1) In the case of read-intensive workload, SA, TA and FA
are effective to improve the cache hit rate of front-end,
as well as the read throughput.

2) TA is more suitable for serving the read-after-write
workload, due to focusing on the data just be modified
or created.

3) SA, TA and FA have cost itself on delivering the
corresponding read-ahead process. Specifically, as the
proportion of write query increased, this kind of cost
may interference the performance of write queries in
the back-end.

4) Higher cache hit rate of front-end leads to fewer passive
read-ahead process, because more read user queries are
satisfied directly in the caching layer of front-end, rather
than going to the database system of back-end.

5) Proactive read-ahead process is orthogonal to the passive
read-ahead process during system running and it can
effectively benefit the cache hit rate of front-end.

C. Realistic Workloads

In this subsection, we test Seer-MCache with three realistic
workloads. According to the inferences we made in section

100ms 200ms 400ms 1000ms
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n
Fu

nc
tio

n
(%

)

 Original
 TA+FA
 Proactive

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. CDF plot of query latencies on the TATP workload. ”Original” refers
to the original system, ”TA+FA” means the combination rule of temporal-
associated and foreign-associated while ”Proactive” refers to TA+FA plus the
proactive read-ahead process.

V-B4, we always activate the trigger of proactive read-ahead.
In addition, to provide the boot opportunity of proactive read-
ahead process, we random inject five pause events in the client
side during the testing procedure, lowering the system load.
Each experiment maintains about 1 hour and then we end it
manually.

1) TPC-C: TPCC-MySQL9 is used in client to issue the
TPC-C workload10. We first use tpcc_load command to
create one test database in MySQL sever of the back-end
system, which includes 8 warehouses. Then tpcc_start
simulates 32 concurrent user connections to the InnoDB
engine of MySQL server. This procedure contains 9 tables
and 92% transactions are user write queries. Due to its write-
intensive and the inferences in section V-B4, we only select TA
as the single passive read-ahead rule. The unit of measurement
is tpmC (completed transactions per minute). The results show
that TA improves the original system only about 3%. Benefit
brought by the proactive read-ahead process is also minor,
only achieving 6.7% improvement. We use SA+FA+TA in this
workload for checking the amplified cost of excessive passive
read-ahead rules, the score is 169 (tpmC), incurring about
19.5% performance penalty. This verifies the third inference
which is described in section V-B4.

Figure 5 shows the CDF plot of query latencies with TPC-C
workload. TA increases the ratio of user queries, which have
the lower latency (≤50ms), from 11% to 14%. Meanwhile,
TA+Proactive increases this ratio from 11% to 16%.

2) TATP: TATP (Telecommunication Application Trans-
action Processing)11 workload consists of four tables and
the read-only user query accounts for approximately 40%.
Since three tables have the foreign keys, we apply TA+FA
to the passive read-ahead rule. We set the test duration to
1 hour with 10 terminals. The unit of measurement is the
completed transactions per second. The results show that
TA+FA outperforms the original system about 38% (from 92
to 127), and the proactive read-ahead process further improve

9https://github.com/Percona-Lab/tpcc-mysql
10http://www.tpc.org/tpcc/
11http://tatpbenchmark.sourceforge.net/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 10

50ms 100ms 200ms 500ms 1000ms
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e D

ist
rib

ut
io

n
Fu

nc
tio

n
(%

)
 Original
 FA
 Proactive

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. CDF plot of query latencies on the SmallBank workload. ”Original”
refers to the original system, ”FA” means the foreign-associated rule while
”Proactive” refers to FA plus the proactive read-ahead process.

it from 127 to 148, obtaining 61% improvement versus the
original one.

Figure 6 shows the CDF plot of query latencies under TATP
workload. TA+FA increase the ratio of small latency (≤100ms)
from 27% to 33% versus the original system. By combining
the proactive read-ahead process, this ratio is improved up
to 41%. On the other hand, the ratio of median latency
(≤200ms) is enlarged from 45% to 61%. The proactive read-
ahead process further improves this ratio up to 70%. Mover
over, the ratio of large latency (≥400ms) is controlled in about
12.5% with Seer-MCache, against the 29% in original system.

3) SmallBank: SmallBank workload issues the write
operations and simple read on the accounts of customers,
consisting of 3 tables and the ratio of read user queries is
about 15%. Because of write-intensive and two tables creating
the foreign keys, we only apply FA to the passive read-ahead
rule. The testing time is set to 1 hour and database is connected
by 5 terminals. The measurement unit is the completed user
queries per second. The results show that FA improves the
original system about 7.8%. By triggering the proactive read-
ahead process, Seer-MCache reaps 16.7% performance benefit.

Figure 7 shows the CDF plot of query latencies under
SmallBank workload. It can be seen that FA has 17% ratio
of user queries with the small latency (≤100ms), versus the
14% in case of original system. An additional triggering of
the proactive read-ahead process can further improve this ratio
up to 20%. For the ratio with the median latency (≤200ms),
the original system, FA and FA plus the proactive read-ahead
process show 21%, 24% and 27% respectively.

Not like the experiments in section V-B, in which the
testing program issues the synthetic user queries without any
intentional intervals, there is a random delay (produced by
Poisson random timer) between each of two consecutive
queries to simulate the think time during the above TPC-C,
TATP and SmallBank tests. It is indicated that these realistic
workloads give the database a short and random time window
to handle with the pending user requests, thus relieving the
response times of user queries. As a result, although TPC-
C and SmallBank are write-intensive, the average response
time of each user query is still improved about 17% (TPC-C),
25.4% (TATP) and 21.9% (SmallBank) respectively.

D. Trace Replay

We collect the trace from table I of section II to verify the
effectiveness of Seer-MCache in our large-scale real-time face
recognition system. The system issues the read-intensive query
to the backing database. Each query from the computation
layer is strictly replayed according to its creation time, query
type and target items in the data layer. Because the database
logical design of our large-scale real-time face recognition
system organizes the personal documents by following their
residential addresses, for example, the people living a com-
munity share the same table in the backing database system,
here we first apply SA into the read-head rules. In addition, a
person’s record contains a group of foreign keys, which refer
to the people (records) have certain relationships with him, so
we also apply FA into our system.

The results show that the cache hit rate of the caching layer
is increased from 27.1% to 42.2% in the case of NORMAL,
from 18.9% to 30.8% in the case of INTENSIVE, obtaining
about 51.3% and 63% improvement respectively. Meanwhile,
the time overhead for running S3 is relieved about 9% under
the NORMAL case, from 873ms to 794ms, and about 63.9%,
from 4,625ms to 1,671ms under the INTENSIVE case. Corre-
spondingly, the hardware utilizations, namely CPUf , Diskb,
Netfb, are varied from 34/47/25 to 38/61/39 in the case of
NORMAL, and varied from 62/99/70 to 81/79/50 in the case of
INTENSIVE. In summary, Seer-MCache improves the issue
effectively which we presented in section II. The utilization
of CPU resource is also improved.

VI. RELATED WORK

From the hierarchy perspective of computer architecture, the
related work about prefetching mechanisms of system caching
can be divided into three layers: (1) application-level; (2)
block-level and (3) hardware-level.

Application-level rules of read-ahead are often specific to a
kind of applications, in which the rules are built around the
high-level ”semantic” locality. For example, in Seer-MCache
a group of logically-adjacent rows in the table of a typical
RDBMS can be read together into the memory after a user
query targeted on one of them, although their corresponding
underlying physical positions may be scattered to each other.
The concept of ”rows” here depends on the application,
namely RDBMS, irrespective of the host operating system
and hardware. Since this kind of rules are more closer to
applications, the prefetchers can bring more precise data while
shielding the physical limitations. However, the rules may be
different in various upper applications, which indicates one
application-level prefetcher cannot be directly used by another.

Block-level rules usually locate under the file system,
therefore, the object of prefetching is logical block number
(LBN) of the disk. Since a group of adjacent LBNs is not
strictly corresponding to a set of adjacent PBNs (physical
block number), like the application-level methods, this kind
of prefetcher can also shield the underlying hardware. For
example, in 2008 Wu et al. present a read-ahead framework for
the block layer of Linux 2.6 kernel [23]. This work not only
works on the DAS (Direct-attached storage), but also has a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 11

role on the NFS (Network File System). Meanwhile, different
applications, which run on the same operating system, can be
all benefited from the single block-level prefetcher.

Hardware-level rules are directly applied into the physical
device, such as the CPU or memory controller. Due to its low-
level, the object of prefetching usually is memory address,
which refers the data or instructions. For example, in 2017
Bhattacharjee proposes TEMPO [24], a hardware improvement
on the page table path and memory controller, by prefetching
the hot references from memory into the row buffer and the
LLC (last level cache) of CPU. This kind of rules are required
to modify the hardware, but its effectiveness covers all upper
operating systems and applications.

All rules of read-ahead, regardless of its level, bring the
overhead. It not only consumes the CPU cycles and memory
bandwidth, but also pushes the ”wrong” data into the caching
layer with a certain probability. Generally, with the high level,
the rules present high cache hit rate, but trade-off the large
cost. This is often caused by layers of abstraction that software
introduces [25]. Therefore, the application-level prefetching
mechanisms should carefully verify their associated costs,
which is what we do in this paper. Rules in different levels
can be overlapped for each other, but the overhead is also
increased. During all evaluations of this paper, Seer-MCache
is deployed on the modern hardware and mainstream operating
system. All prefetchers of the block-level and hardware-level
are activated by default.

In 2011, Tang proposed FVD [26], an improved virtual
machine (VM) image format for QEMU12. It includes an
adaptive prefetching strategy at the block-level, which uses
resource idle time to copy from NAS (Network-Attached
Storage) to DAS (Direct-Attached Storage) the image data
that have not been read or written by the VM. The proactive
read-ahead process of Seer-MCache shares the core idea with
FVD, but the differences between them are: (1) FVD uses the
read throughput of VM as metric to detect resource contention
while Seer-MCache takes the disk utilization of back-end into
account; (2) FVD uses a complex leaky bucket algorithm to
decide if a resource contention has real occurred but Seer-
MCache just compares the disk utilization directly with a
threshold for simplicity; (3) Seer-MCache has a serial of
passive read-ahead rules while FVD only has the proactive
read-ahead one.

In 2013, Saad et al. proposed a data prefetcher to im-
prove the performance of BoT (Bag of Tasks) and DAG
(computational work-flow) applications [27]. This work very
focuses on the Desktop Grid environment and is application-
level, in which the data are often obtained from the remote
nodes through wide area networking. Due to the collaboration
between worker node and master node (the data source), the
data prefetcher is required to deploy a daemon in each involved
data, finally shows a peer-to-peer networking. Compared with
Seer-MCache, this work is devised for the desktop grid,
without a centralized backing database system. Therefore, it
cannot be migrated directly to our scenario. Moreover, the
associated overhead brought by the prefetcher is also not given.

12https://github.com/qemu/qemu

Jiang et al. in 2013 proposed DiskSeen [19], a block-
level prefetch policy, to improve the sequentiality of disk
accesses and overall prefetching performance. DiskSeen has
a mechanism to correct the mis-prefetching behavior, on the
view of per-workload, to reduce the associated performance
loss. The main difference between DiskSeen and Seer-MCache
is that: Seer-MCache is an application-level read-ahead system
while DiskSeen is a block-level one. Therefore, both of them
can be complementary to each other.

In 2015, Zhu et al. proposed several practical prefetch-
ing techniques in the memory controller for improving the
performance of in-memory key-value store [28]. The main
difference between this work and Seer-MCache is: Zhu’s work
focuses on the hardware-level while Seer-MCache works in the
application-level. It indicates that the object of prefetching in
[28] is CPU instruction. Instead, Seer-MCache only targets on
the high-level semantic object in the database, such as one
row in a data table. Moreover, Zhu’s work only verifies its
effectiveness in a simulated environment, but Seer-MCache
has experienced a test procedure under the realistic workloads.

In 2017, Li et al proposed a layered caching architec-
ture [29] to improve the performance of real time big data
management. This work belongs to the boundary between
hardware-level and block-level. At the block-level, it applies
a K-means clustering algorithm to support the prefetching
mechanism. At the hardware-level, it uses a small portion of
the DRAM and the NAND-Flash memory space to support its
layered caching architecture. Not like Seer-MCache, this work
requires the hardware to provide the hybrid storage, allowing
its prefetching procedure to be run efficiently. In contrast, Seer-
MCache can run on all modern hardware, presenting better
generality.

Almost of all works on the IoT prefetcher are improving
the read performance of the upper IoT devices. However,
several works are proposed to improve the write one. A typical
example is Triple-L [30], an improved data infrastructure for
IoT devices writing. It leverages the local storage to cache
the updated replicas, thus avoiding the ordinary network path
between clients and servers. However, Triple-L only improves
the write direction of IoT queries. In contrast, Seer-MCache
presented in this paper is a good complement for Triple-L,
since it mainly improves the read performance of IoT queries.

VII. CONCLUSION

In the era of big data, IoT devices perceive massive data
from the complex physical world and then often push them to
the data infrastructure of cyberspace, to meet the processing
requirements of a specific scenario. During this procedure,
the database usually incurs excessive load due to the massive
user queries from IoT devices. As a result, the querying
performance of IoT applications may be hurt, such as the large-
scale real-time face recognition system we referred in section
II. To improve this problem, we propose Seer-MCache for
the ordinary memory object caching system, devising a smart
read-ahead (prefetch) function to enhance the cache hit rate
of IoT queries at the caching (computation) layer. In such
a way, a portion of IoT queries can be served outside the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 12

data infrastructure, thus relieving the system load of back-end.
The read-ahead function includes several rules, which are built
from the principle of locality. They are highly customizable.
Therefore, Seer-MCache can apply them into the real system
as any combinations according to the characteristics of IoT
applications and the load of data infrastructure. We implement
Seer-MCache in the Redis and MySQL systems. Extensive
experiments are conducted to verify the advantages of Seer-
MCache. We find that Seer-MCache is effective to improve
the performance of IoT applications while brings the mild and
controllable cost.

ACKNOWLEDGMENT

We would like to thank Mr.Yijie Zhong for his won-
derful work to improve this paper. This work was funded
by the National Natural Science Foundation of China un-
der grant number 61502180 and 61772211, by the Natural
Science Foundation of Guangdong Province, China under
grant number 2017A030303074 and 2016A030313441, by the
Pearl River S&T Nova Program of Guangzhou under grant
number 201710010189, by JSPS KAKENHI Grant Number
JP16K00117, JP15K15976, and KDDI Foundation. Mianxiong
Dong is the corresponding author.

REFERENCES

[1] K. Ueta, X. Xue, Y. Nakamoto, and S. Murakami, “A Distributed
Graph Database for the Data Management of IoT Systems,” in 2016
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Dec 2016, pp. 299–304.

[2] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-
Oriented Data Storage Framework in Cloud Computing Platform,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1443–1451,
May 2014.

[3] T. Yu, X. Wang, and A. Shami, “Recursive Principal Component
Analysis-Based Data Outlier Detection and Sensor Data Aggregation
in IoT Systems,” IEEE Internet of Things Journal, vol. 4, no. 6, pp.
2207–2216, Dec 2017.

[4] T. Kumrai, K. Ota, M. Dong, J. Kishigami, and D. K. Sung, “Multiob-
jective Optimization in Cloud Brokering Systems for Connected Internet
of Things,” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 404–413,
April 2017.

[5] S. Rautmare and D. M. Bhalerao, “MySQL and NoSQL database
comparison for IoT application,” in 2016 IEEE International Conference
on Advances in Computer Applications (ICACA), Oct 2016, pp. 235–
238.

[6] Z. Liu, C. Zhang, M. Dong, B. Gu, Y. Ji, and Y. Tanaka, “Markov-
Decision-Process-Assisted Consumer Scheduling in a Networked Smart
Grid,” IEEE Access, vol. 5, pp. 2448–2458, 2017.

[7] M. K. Aguilera, J. B. Leners, and M. Walfish, “Yesquel: Scalable SQL
Storage for Web Applications,” in Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP 2015). New York, NY, USA:
ACM, 2015, pp. 245–262.

[8] Y. Nakamura, H. Suwa, Y. Arakawa, H. Yamaguchi, and K. Yasumoto,
“Middleware for Proximity Distributed Real-Time Processing of IoT
Data Flows,” in 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS 2016), June 2016, pp. 771–772.

[9] E. Zamanian, C. Binnig, T. Harris, and T. Kraska, “The End of a Myth:
Distributed Transactions Can Scale,” Proc. VLDB Endow., vol. 10, no. 6,
pp. 685–696, Feb. 2017.

[10] R. Ramakrishnan, B. Sridharan, J. R. Douceur, P. Kasturi,
B. Krishnamachari-Sampath, K. Krishnamoorthy, P. Li, M. Manu,
S. Michaylov, R. Ramos, N. Sharman, Z. Xu, Y. Barakat, C. Douglas,
R. Draves, S. S. Naidu, S. Shastry, A. Sikaria, S. Sun, and R. Venkatesan,
“Azure Data Lake Store: A Hyperscale Distributed File Service for
Big Data Analytics,” in Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD 2017). New York,
NY, USA: ACM, 2017, pp. 51–63.

[11] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis, “A Survey and
Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data,” Proc. VLDB Endow., vol. 10, no. 13, pp. 2049–2060,
Sep. 2017.

[12] Y. Cheng, A. Gupta, and A. R. Butt, “An In-memory Object Caching
Framework with Adaptive Load Balancing,” in Proceedings of the Tenth
European Conference on Computer Systems (Eurosys 2015). New York,
NY, USA: ACM, 2015, pp. 4:1–4:16.

[13] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquı́n, and D. Kossmann,
“Fast Scans on Key-value Stores,” Proc. VLDB Endow., vol. 10, no. 11,
pp. 1526–1537, Aug. 2017.

[14] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-Direct: High-Performance In-Memory Key-Value Store
with Programmable NIC,” in Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP 2017). New York, NY, USA:
ACM, 2017, pp. 137–152.

[15] W. C. Chen, Y. H. Chen, C. L. Wu, and L. C. Fu, “An Efficient Data
Storage Method of NoSQL Database for HEM Mobile Applications in
IoT,” in 2014 IEEE International Conference on Internet of Things
(iThings), and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom), Sept
2014, pp. 336–339.

[16] A. Mahgoub, P. Wood, S. Ganesh, S. Mitra, W. Gerlach, T. Harrison,
F. Meyer, A. Grama, S. Bagchi, and S. Chaterji, “Rafiki: A Middleware
for Parameter Tuning of NoSQL Datastores for Dynamic Metagenomics
Workloads,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference (Middleware 2017). New York, NY, USA: ACM, 2017, pp.
28–40.

[17] J. Lee, H. Kim, and R. Vuduc, “When Prefetching Works, When It
Doesn&Rsquo;T, and Why,” ACM Trans. Archit. Code Optim., vol. 9,
no. 1, pp. 2:1–2:29, Mar. 2012.

[18] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Mitigating Prefetcher-Caused Pollution
Using Informed Caching Policies for Prefetched Blocks,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 51:1–51:22, Jan. 2015.

[19] S. Jiang, X. Ding, Y. Xu, and K. Davis, “A Prefetching Scheme
Exploiting Both Data Layout and Access History on Disk,” Trans.
Storage, vol. 9, no. 3, pp. 10:1–10:23, Aug. 2013.

[20] J. Calic and E. Izuierdo, “Efficient Key-Frame Extraction and Video
Analysis,” in Proceedings. International Conference on Information
Technology: Coding and Computing, April 2002, pp. 28–33.

[21] C. Li, N. Preguiça, and R. Rodrigues, “Fine-grained Consistency for
Geo-Replicated Systems,” in 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18). Boston, MA: USENIX Association, 2018, pp.
359–372.

[22] I. Elghandour, A. Aboulnaga, D. C. Zilio, and C. Zuzarte, “Recommend-
ing XML Physical Designs for XML Databases,” The VLDB Journal,
vol. 22, no. 4, pp. 447–470, Aug. 2013.

[23] W. Fengguang, X. Hongsheng, and X. Chenfeng, “On the Design of a
New Linux Readahead Framework,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 5, pp. 75–84, Jul. 2008.

[24] A. Bhattacharjee, “Translation-Triggered Prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2017).
New York, NY, USA: ACM, 2017, pp. 63–76.

[25] D. Le, H. Huang, and H. Wang, “Understanding Performance Im-
plications of Nested File Systems in a Virtualized Environment,” in
Proceedings of the 10th USENIX Conference on File and Storage
Technologies (FAST 2012). Berkeley, CA, USA: USENIX Association,
2012.

[26] C. Tang, “FVD: A High-Performance Virtual Machine Image Format
for Cloud,” in Proceedings of the 2011 USENIX conference on USENIX
Annual Technical Conference (USENIX ATC 2011). Berkeley, CA,
USA: USENIX Association, 2011.

[27] W. Saad, H. Abbes, C. Crin, and M. Jemni, “A Data Prefetching Model
for Desktop Grids and the Condor Use Case,” in 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications, July 2013, pp. 1065–1072.

[28] P. Zhu, G. Sun, P. Wang, and M. Chen, “Improving Memory Access
Performance of In-Memory Key-Value Store Using Data Prefetching
Techniques,” in Advanced Parallel Processing Technologies, Cham,
2015, pp. 1–17.

[29] X.-S. Li, S.-K. Yoon, J.-G. Kim, and S.-D. Kim, “A Self-learning Pattern
Adaptive Prefetching Method for Big Data Applications,” Sustainable
Computing: Informatics and Systems, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2018 13

[30] D. Li, M. Dong, Y. Tang, L. T. Yang, K. Ota, and G. Zhao, “Triple-L:
Improving CPS Disk I/O Performance in a Virtualized NAS Environ-
ment,” IEEE Systems Journal, vol. 11, no. 1, pp. 152–162, March 2017.

Dingding Li received his Ph.D on Computer Sci-
ence from the Huazhong University of Science and
Technology at Wuhan, China. He is now a lecture
of Computer Science at South China Normal Uni-
versity (SCNU). His research is focused around I/O
virtualization and cloud computing.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an Asso-
ciate Professor in the Department of Information and
Electronic Engineering at the Muroran Institute of
Technology, Japan. He was a JSPS Research Fellow
with School of Computer Science and Engineering,
The University of Aizu, Japan and was a visiting
scholar with BBCR group at University of Water-
loo, Canada supported by JSPS Excellent Young
Researcher Overseas Visit Program from April 2010

to August 2011. Dr. Dong was selected as a Foreigner Research Fellow
(a total of 3 recipients all over Japan) by NEC C&C Foundation in 2011.
His research interests include Wireless Networks, Cloud Computing, and
Cyber-physical Systems. He has received best paper awards from IEEE
HPCC 2008, IEEE ICESS 2008, ICA3PP 2014, GPC 2015, IEEE DASC
2015, IEEE VTC 2016-Fall, FCST 2017 and 2017 IET Communications
Premium Award. Dr. Dong serves as an Editor for IEEE Transactions on Green
Communications and Networking (TGCN), IEEE Communications Surveys
and Tutorials, IEEE Network, IEEE Wireless Communications Letters, IEEE
Cloud Computing, IEEE Access, as well as a leading guest editor for ACM
Transactions on Multimedia Computing, Communications and Applications
(TOMM), IEEE Transactions on Emerging Topics in Computing (TETC),
IEEE Transactions on Computational Social Systems (TCSS). He has been
serving as the Vice Chair of IEEE Communications Society Asia/Pacific
Region Meetings and Conference Committee, Leading Symposium Chair of
IEEE ICC 2019, Student Travel Grants Chair of IEEE GLOBECOM 2019,
and Symposium Chair of IEEE GLOBECOM 2016, 2017. He is the recipient
of IEEE TCSC Early Career Award 2016, IEEE SCSTC Outstanding Young
Researcher Award 2017 and The 12th IEEE ComSoc Asia-Pacific Young
Researcher Award 2017.

Yanting Yuan is an undergraduate at South China
Normal University. Her research interests include
machine learning and database.

Jiaxin Chen is an undergraduate at South China
Normal University. Her research interests include
computer architecture and operating system.

Kaoru Ota was born in Aizu-Wakamatsu, Japan.
She received M.S. degree in Computer Science from
Oklahoma State University, USA in 2008, B.S. and
Ph.D. degrees in Computer Science and Engineering
from The University of Aizu, Japan in 2006, 2012,
respectively. She is currently an Assistant Professor
with Department of Information and Electronic En-
gineering, Muroran Institute of Technology, Japan.
From March 2010 to March 2011, she was a visiting
scholar at University of Waterloo, Canada. Also she
was a Japan Society of the Promotion of Science

(JSPS) research fellow with Kato-Nishiyama Lab at Graduate School of
Information Sciences at Tohoku University, Japan from April 2012 to April
2013. Her research interests include Wireless Networks, Cloud Computing,
and Cyber-physical Systems. Dr. Ota has received best paper awards from
ICA3PP 2014, GPC 2015, IEEE DASC 2015, IEEE VTC 2016-Fall, FCST
2017 and IET Communications 2017. She is an editor of IEEE Transactions
on Vehicular Technology (TVT), IEEE Communications Letters, Peer-to-
Peer Networking and Applications (Springer), Ad Hoc & Sensor Wireless
Networks, International Journal of Embedded Systems (Inderscience) and
Smart Technologies for Emergency Response & Disaster Management (IGI
Global), as well as a guest editor of ACM Transactions on Multimedia Com-
puting, Communications and Applications (leading), IEEE Communications
Magazine, IEEE Network, etc. Also she was a guest editor of IEEE Wireless
Communications (2015), IEICE Transactions on Information and Systems
(2014), and Ad Hoc & Sensor Wireless Networks (Old City Publishing)
(2014). She was a research scientist with A3 Foresight Program (2011-2016)
funded by Japan Society for the Promotion of Sciences (JSPS), NSFC of
China, and NRF of Korea. She is the recipient of IEEE TCSC Early Career
Award 2017.

Yong Tang got his BS and MSc degrees from
Wuhan University in 1985 and 1990, respectively,
and PhD degree from University of Science and
Technology of China in 2001, all in computer sci-
ence. Dr. Tang is now a Professor and Dean of
School of Computer Science, South China Normal
University (SCNU). He serves also as the Director of
Services Computing Engineering Research Center of
Guangdong Province. He was vice Dean of School
of Information of Science and Technology, Sun Yat-
sen University, before joined SCNU in 2009. His

current interests include temporal database, cooperative computing, cloud
computing and social network services. He has published more than 200
papers in various journals, conferences and books.

