
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for

Object Detection

Yukun Zhu Raquel Urtasun Ruslan Salakhutdinov Sanja Fidler

University of Toronto

{yukun,urtasun,rsalakhu,fidler}@cs.toronto.edu

Abstract

In this paper, we propose an approach that exploits ob-

ject segmentation in order to improve the accuracy of object

detection. We frame the problem as inference in a Markov

Random Field, in which each detection hypothesis scores

object appearance as well as contextual information using

Convolutional Neural Networks, and allows the hypothesis

to choose and score a segment out of a large pool of ac-

curate object segmentation proposals. This enables the de-

tector to incorporate additional evidence when it is avail-

able and thus results in more accurate detections. Our ex-

periments show an improvement of 4.1% in mAP over the

R-CNN baseline on PASCAL VOC 2010, and 3.4% over the

current state-of-the-art, demonstrating the power of our ap-

proach.

1. Introduction

In the past two years, Convolutional Neural Networks

(CNNs) have revolutionized computer vision. They have

been applied to a variety of general vision problems, such

as recognition [15, 9], segmentation [11], stereo [18],

flow [24], and even text-from-image generation [13], con-

sistently outperforming past work. This is mainly due to

their high generalization power achieved by learning com-

plex, non-linear dependencies across millions of labelled

examples.

It has recently been shown that increasing the depth of

the network increases the performance by an additional im-

pressive margin on the ImageNet challenge [21, 22]. It re-

mains to be seen whether recognition can be solved by sim-

ply pushing the limits of computation (the size of the net-

works) and increasing the amount of the training data. We

believe that the main challenge in the next few years will be

to design computationally simpler and more efficient mod-

els that can achieve a similar or better performance com-

pared to the very deep networks.

For object detection, a successful approach has been to

Figure 1: Proposed segDeepM model.

generate a large pool of candidate boxes [23] and classify

them using CNNs [9]. The quality of such a detector thus

largely depends on the quality of the object hypotheses. In-

terestingly, however, using much better proposals obtained

via a high-end bottom-up segmentation approach [11] has

resulted only in small improvements in accuracy.

In this paper, we show how to exploit a small number of

accurate object segment proposals in order to significantly

improve object detection performance. We frame the detec-

tion problem as inference in a Markov Random Field as in

Figure 1, in which each detection hypothesis scores object

appearance as well as contextual information using Convo-

lutional Neural Networks. Each hypothesis can choose and

score a segment out of a small pool of accurate object seg-

mentation proposals. This enables our approach to place

more accurate object bounding boxes in parts of the image

where an object segmentation hypothesis [2] exists or where

strong contextual cues are available. We additionally show

that a significant performance boost can be obtained by a se-

quential approach, where the network iterates between ad-

justing its spatial scope (the bounding box) and classifying

its content. This strategy reduces the dependency on the

initial candidate boxes obtained by [23] and enables our ap-

proach to recover from the potentially bad initial localiza-

1

tion.

We show that our model, called segDeepM, outperforms

the baseline R-CNN [9] approach by 3.2% with almost no

extra computational cost. We get a total of 5% improvement

by incorporating contextual information at the cost of dou-

bling the running time of the method. On PASCAL VOC

2010 test, our method achieves 4.1% improvement over R-

CNN and 1.4% over the current state-of-the-art.

2. Related Work

In the past years, a variety of segmentation algorithms

that exploit object detections as a top-down cue have been

explored. The standard approach has been to use detection

features as unary potentials in an MRF [14], or as candidate

bounding boxes for holistic MRFs [26, 16]. In [20], seg-

mentation within the detection boxes has been performed

using a GrabCut method. In [1], object segmentations are

found by aligning the masks obtained from Poselets [1, 17].

There have been a few approaches to use segmentation to

improve object detection. [10] cast votes for the object’s lo-

cation by using a Hough transform with a set of regions. [5]

uses DPM to find a rough object location and refines it

according to color information and occlusion boundaries.

In [11], segmentation is used to mask-out the background

inside the detection, resulting in improved performance.

Segmentation and detection has also been addressed in a

joint formulation in [25] by combining shape information

obtained via DPM parts as well as color and boundary cues.

Our work is inspired by the success of segDPM [8]. By

augmenting the DPM detector [7] with very simple seg-

mentation features that can be computed in constant time,

segDPM improved the detection performance by 8% on the

challenging PASCAL VOC dataset. The approach used

segments computed from the final segmentation output of

CPMC [2] in order to place accurate boxes in parts of the

image where segmentation for the object class of inter-

est was available. This idea was subsequently exploited

in [19] by augmenting the DPM with an additional set of

deformable context “parts” which scored contextual seg-

mentation features around the object. In [4], the segDPM

detector [8] was augmented with part visibility reasoning,

achieving state-of-the-art results for detection of articulated

classes. In [6], the authors extended segDPM to incorporate

segmentation compatibility also at the part level.

In this paper, we build on R-CNN framework [9] and

transfer the core ideas of segDPM. We use appearance fea-

tures from [15, 9], a rich contextual appearance description

around the object, and a MRF model that is able to exploit

segmentation in a more efficient way than segDPM.

3. Our Approach

The goal of our approach is to efficiently exploit segmen-

tation and contextual cues in order to facilitate object detec-

tion. Following the R-CNN setup, we compute the Selective

Search boxes [23] yielding approximately 2000 object can-

didates per image. For each box we extract the last feature

layer of the CNN network [15], that is fine-tuned on the

PASCAL dataset as proposed in [9]. We obtain object seg-

ment proposals via the CPMC approach [3], although our

approach is independent of this choice. Following [2], we

take the top 150 proposals given by an object-independent

ranker, and train class-specific classifiers for all classes of

interest by the second-order pooling method O2P [2]. We

remove all segments that have less than 1500 pixels. Our

method will make use of these segments along with their

class-specific scores. This is slightly different than segDPM

which takes only 1 or 2 segments carved out from the final

O2P’s pixel-level labeling of the image.

In the remainder of this section we first define our model

and describe its segmentation and contextual features. We

next discuss inference and learning. Finally, we detail a

sequential inference scheme that iterates between correcting

the input bounding boxes and scoring them with our model.

3.1. The segDeepM Model

We define our model as a Markov Random Field with

random variables that reason about detection boxes, ob-

ject segments, and context. Similar to [7, 8], we define

p as a random variable denoting the location and scale

of a candidate bounding box in the image. We also de-

fine h to be a set of random variables, one for each class,

i.e. h = (h1, h2, . . . , hC)
T . Each random variable hc ∈

{0, 1, . . . , H(x)} represents an index into the set of all can-

didate segments. Here C is the total number of object

classes of interest and H(x) is the total number of segments

in image x. The random variable hc allows each candidate

detection box to choose a segment for each class and score

its confidence according to the agreement with the segment.

The idea is to (1) boost the confidence of boxes that are well

aligned with a high scoring object region proposal for the

class of interest, and (2) adjust its score based on the prox-

imity and confidence of region proposals for other classes,

serving as context for the model. This is different from

segDPM that only had a single random variable h which

selected a segment belonging to the detector’s class. It is

also different from [19] in that the model chooses contex-

tual segments, and does not score context in a fixed segmen-

tation window. Note that hc = 0 indicates that no segment

is selected for class c. This means that either no segment

for a class of interest is in the vicinity of the detection hy-

pothesis, or that none of the regions corresponding to the

contextual class c help classification of the current box. We

define the energy of a configuration as follows:

E(p,h;x) = ωT
app · φapp(p;x) + ωT

seg · φseg(p,h;x) (1)

+ ωT
ctx · φctx(p;x),

where φapp(x, p), φseg(p,h;x), and φctx(p;x) are the can-

didate’s appearance, segmentation, and contextual potential

functions (features), respectively. We describe the poten-

tials in detail below.

3.2. Details of Potential Functions

Appearance: To extract the appearance features we fol-

low [9]. The image in each candidate detection’s box is

warped to a fixed size 227 × 227 × 3. We run the im-

age through the CNN [15] trained on the ImageNet dataset

and fine-tuned on PASCAL’s data [9]. As our appearance

feature φapp(p;x) we use the 4096-dimensional feature ex-

tracted from the fc7 layer.

Segmentation: Similar to [8], our segmentation fea-

tures attempt to capture the agreement between the candi-

date’s bounding box and a particular segment. The features

are complementary in nature, and, when combined within

the model, aim at placing the box tightly around each seg-

ment. We emphasize that the weights for each feature will

be learned, thus allowing the model to adjust the importance

of each feature’s contribution to the joint energy.

We use slightly more complex features tailored to ex-

ploit a much larger set of segments than [8]. In particular,

we use a grid feature that aims to capture a loose geometric

arrangement of the segment inside the candidate’s box. We

also incorporate class information, where the model is al-

lowed to choose a different segment for each class, depend-

ing on the contextual information contained in a segment

with respect to the class of the detector.

We use multiple segmentation features, one for each

class, thus our segmentation term decomposes:

ωT
seg · φseg(p,h;x) =

∑

c∈{1,...,C}

∑

type

ωT
type · φtype(p, hc;x).

Specifically, we consider the following features:

SegmentGrid-In: Let S(hc) denote the binary mask of

the segment chosen by hc. For a particular candidate box p,

we crop the segment’s mask via the bounding box of p and

compute the SegmentGrid-in feature on a K × K grid G
placed over the cropped mask. The kth dimension rep-

resents the percentage of segment’s pixels inside the kth

block, relative to the number of all pixels in S(hc).

φseggrid−in(x, p, hc, k) =
1

|S(hc)|

∑

i∈G(p,k)
S(hc, i), (2)

where G(p, k) is the kth block of pixels in grid G, and

S(hc, i) indexes the segment’s mask in pixel i. That is,

S(hc, i) = 1 when pixel i is part of the segment and

S(hc, i) = 0 otherwise. For c matching the detector’s

class, this feature will attempt to place a box slightly bigger

than the segment while at the same time trying to localize it

such that the spatial distribution of pixels within each grid

matches the class’ expected shape. For c other than the de-

tector’s class, this feature will try to place the box such that

it intersects as little as possible with the segments of other

classes. The dimensionality of this feature is K ×K × C.

Segment-Out: This feature follows [8], and computes

the percentage of segment pixels outside the candidate box.

Unlike the SegmentGrid-In, this feature computes a single

value for each segment/bounding box pair.

φseg−out(p, h) =
1

|S(h)|

∑

i 6∈B(p)

S(h, i), (3)

where B(p) is the bounding box corresponding to p. The

aim of this feature is to place boxes that are smaller

compared to the segments, which, in combination with

SegmentGrid-In, achieves a tight fit around the segments.

BackgroundGrid-In: This feature is also computed

with a K×K grid G for each bounding box p. We compute

the percentage of pixels in each grid cell that are not part of

the segment:

φback−in(p, h, k) =
1

M − |S(h)|

∑

i∈G(p,k)
(1− S(h, i)) ,

(4)

with M the area of the largest segment for the image.

Background-Out: This scalar feature measures the %
of segment’s background outside of the candidate’s box:

φback−out(p, h) =
1

M − |S(h)|

∑

i 6∈B(p)

(1− S(h, i)) . (5)

Overlap: Similarly to [8], we use another feature to

measure the alignment of the candidate’s box and the seg-

ment S(h). It is computed as the intersection-over-union

(IOU) between the box or p and a tightly fit bounding box

around the segment S(h).

φoverlap(x, p, h) =
B(p) ∩ B(S(x, h))

B(p) ∪ B(S(x, h))
− λ, (6)

where B(S(x, h)) is tight box around S(x, h), and λ a bias

term which we set to λ = −0.7 in our experiments.

SegmentClass: Since we are dealing with many seg-

ments per image, we add an additional feature to our model.

We train the O2P [2] rankers for each class which uses sev-

eral region-aware features as input into our segmentation

features. Each ranker is trained to predict the IOU over-

lap of the given segment with the ground-truth object’s seg-

ment. The output of all the class-specific rankers defines the

following feature:

φpotential(h, c) =
1

1 + e−s(h,c)
, (7)

where s(h, c) is the score of class c for segment S(h).

SegmentGrid-in, segment-out, backgroundGrid-in, and

background-out can be efficiently computed via integral im-

ages [8]. Note that [8]’s features are a special case of these

features with a grid size K = 1. Overlap and segment fea-

tures can also be quickly computed using matrix operations.

Context: CNNs are typically trained for the task of im-

age classification where in most cases an input image is

much larger than the object. This means that part of their

success may be due to learning complex dependencies be-

tween the objects and their contextual information (e.g. sky

for aeroplane, road for car and bus). However, the appear-

ance features that we use are only computed based on the

candidate’s box, thus hardly capturing useful information

from the scene. We thus add an additional feature that looks

at a bigger scope than the candidate’s box.

In particular, we enlarge each input candidate box by a

fixed percentage ρ along its horizontal and vertical direc-

tion. For big boxes, or those close to the image boundary,

we clip the enlarged region to be fully inside the image. We

keep the object labels for each expanded box the same as

that for the original boxes, even if the expanded box now

encloses objects of other classes. We then warp the image

in each enlarged box to 227×227 and fine-tune the original

ImageNet-trained CNN using these images and labels. We

call the fine-tuned network the expanded CNN. For our con-

textual features φctx(x, p) we extract the fc7 layer features

of the expanded CNN by running the warped image in the

enlarged window through the network.

3.3. Inference

In the inference stage of our model, we score each can-

didate box p as follows:

fw(x, p) = max
h

(

ωT
app · φapp(x, p) + ωT

ctx · φctx(x, p)

+ ωT
seg · φseg(x, p,h)

)

. (8)

Observe that the first two terms in Eq. 8 can be computed

efficiently by matrix multiplication, and the only part that

depends on h is its last term. Although there could be expo-

nential number of candidates for h, we can greedily search

each dimension of h and find the best segment S(hc) w.r.t.

model parameters ωseg for each class c. Since our segmen-

tation features do not depend on the pairwise relationships

in h, this greedy approach is guaranteed to find the global

maximum of ωT
seg · φseg(x, p,h). Finally, we sum the three

terms to obtain the score of each bounding box location p.

3.4. Learning

Given a set of images with N candidate boxes {pn} and

their annotations {y(xn, pn)}, together with a collection of

segments for each image {S(xn, hn)} and associated po-

tentials {φ(xn, hn)} with n = 1, .., N , training our model

can be written as follows:

min
ω

‖ω‖2 + C

N
∑

n=1

max (0, 1− y(xn, pn)fw(xn, pn)) ,

(9)

where ω is a vector of all the weights in our model.

The learning problem in (9) is a latent SVM [7] where

we treat the assignment variable h as a latent variable for

each training instance. To optimize Equation (9), we iterate

two steps following [7]:

1. label each positive example: for each (x, p) with

y(x, p) = 1, we compute h
∗ = argmaxh fw(x, p)

with current the model parameters ω;

2. update the weights: we do hard-negative mining over a

set of negative instances until reaching a certain mem-

ory limit. We then use stochastic gradient descent to

optimize the weights ω.

Latent SVM is guaranteed to converge to a local min-

imum only, thus we need to carefully pick a good initial-

ization for positive examples at the first iteration. We use

the overlap feature φoverlap as the indicator and set each

dimension of h
∗ as h

∗ = argmaxh φoverlap(p,h). This

encourages the method to pick segments that best overlaps

with the candidate’s box.

Although our segmentation features are efficient to com-

pute, we need to recompute them for all positive examples

during the first step and for all hard negative examples dur-

ing the second step of training. In our implementation, we

cache a pool of segmentation features φseg(x, p,h) for all

training instances to avoid computing them in every itera-

tion. With the compact segmentation feature, our method

achieves similar running speed with that of R-CNN [9].

3.5. Iterative Bounding Box Prediction

As a typical postprocessing step, object detection ap-

proaches usually perform bounding box prediction on their

final candidate set [7, 9]. This typically results in a few per-

cent improvement in accuracy, since the approach is able to

make an informative re-localization based on complex fea-

tures. Following [9], we also use pool5 layer features in

order to do bounding box prediction.

In this paper we take this idea one step further by doing

bounding box prediction and scoring the model in an itera-

tive fashion. Our motivation is that better localization can

lead to improved predictions. In particular, we first extract

the CNN features and regress to a corrected set of boxes. We

then re-extract the features on the new boxes and score our

model. We only re-extract the features on the boxes which

have changed by more than 20% percent from the original

set. We can then repeat this process, by doing bounding box

prediction again, re-extracting the features, and re-scoring.

seg exp ibr br plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

RCNN 69.9 64.2 48.0 30.2 26.9 63.3 56.0 67.6 26.8 44.7 29.6 61.7 55.7 69.8 56.4 26.6 56.7 35.6 54.4 57.7 50.1

RCNN+CPMC 71.5 65.3 48.6 31.5 27.9 64.3 57.2 67.6 26.7 46.2 33.6 62.8 57.8 70.7 57.9 26.6 54.0 37.8 57.0 57.6 51.1

segDPM+CNN
√

72.8 64.1 50.7 32.1 28.2 64.9 55.9 72.4 27.7 50.6 31.7 65.9 59.3 71.1 57.1 26.5 59.4 38.8 57.1 57.6 52.2

segDeepM
√

73.8 64.0 52.4 32.7 28.2 66.4 56.7 73.1 28.1 51.4 34.0 66.1 59.9 71.0 56.6 29.5 59.5 43.9 61.6 58.0 53.3

segDeepM
√

72.2 65.2 52.4 36.3 29.4 67.3 59.0 71.0 28.9 49.1 30.6 67.6 59.3 72.6 59.1 28.7 60.6 38.6 58.2 60.3 53.3

segDeepM
√

71.4 64.3 50.2 31.8 30.6 66.0 57.5 68.7 25.6 49.7 30.5 64.7 58.3 69.9 60.7 26.9 54.4 35.0 57.1 55.5 51.4

segDeepM
√ √

74.5 64.8 55.3 36.3 31.2 69.0 59.0 73.8 29.7 53.3 33.7 68.8 62.3 73.1 59.3 29.8 63.1 41.3 63.4 60.0 55.1

segDeepM
√ √ √

77.1 67.4 58.2 36.9 37.4 71.3 61.1 74.4 29.3 56.3 34.8 69.8 64.1 72.7 64.1 31.5 60.0 39.7 64.8 58.2 56.4

RCNN
√

72.9 65.8 54.0 34.5 31.2 68.0 59.8 72.3 26.6 51.3 35.0 65.7 59.7 71.7 60.7 28.0 60.6 37.1 60.3 59.9 53.7

segDeepM
√ √

76.9 66.8 57.8 36.2 32.2 71.4 60.0 75.4 27.7 53.8 38.6 68.6 64.4 72.6 61.1 30.4 61.5 43.2 64.1 60.9 56.2

segDeepM
√ √

76.7 68.7 58.0 39.9 34.6 71.1 62.1 75.9 30.3 54.6 36.2 69.6 63.3 74.0 63.5 31.3 62.5 37.9 66.3 61.0 56.9

segDeepM
√ √

77.2 66.6 55.2 34.5 34.6 67.5 60.0 70.4 27.1 53.4 35.9 66.4 63.4 71.9 63.0 32.0 55.7 38.5 62.0 58.0 54.7

segDeepM
√ √ √

77.2 67.6 59.8 40.2 35.7 72.0 62.1 75.7 30.4 58.1 37.2 69.9 64.8 73.9 63.4 32.4 63.9 43.1 68.4 61.6 57.9

segDeepM
√ √ √ √

79.0 70.6 61.9 40.4 39.0 71.6 61.9 74.7 31.3 56.6 39.2 70.4 66.5 73.5 65.6 35.3 60.7 44.3 68.0 58.7 58.5

Table 1: Detection results (in % AP) on PASCAL VOC 2010 val for R-CNN and segDeepM detectors.
.

seg exp ibr br plane bike bird boat bottle bus car cat chair cow table dog horse motor personplant sheep sofa train tv mAP

RCNN 74.4 69.0 55.6 34.5 35.2 70.8 63.0 81.4 35.0 57.9 39.3 77.7 70.2 75.8 61.7 29.1 66.9 56.7 63.8 58.7 58.8

segDeepM
√

77.5 67.7 59.0 33.4 35.9 71.3 62.4 82.8 35.6 61.4 42.7 79.1 70.7 76.7 62.3 31.3 67.1 54.0 65.5 60.0 59.8

segDeepM
√

77.4 72.9 62.6 36.8 39.4 71.5 64.9 83.7 37.1 62.0 40.4 81.0 73.1 77.9 65.7 34.7 68.0 59.1 70.0 58.7 61.8

segDeepM
√ √

79.2 69.8 63.6 36.4 39.5 72.9 65.2 83.5 38.4 63.6 43.8 80.8 75.1 78.3 66.2 33.3 68.6 56.0 70.7 60.2 62.2

RCNN
√

78.6 72.1 62.1 40.4 40.0 71.2 65.0 84.2 36.7 59.5 41.8 80.3 74.5 78.0 65.8 33.0 67.3 59.9 68.7 61.3 62.0

segDeepM
√ √

79.0 71.3 63.0 38.9 40.0 72.8 63.4 84.9 36.7 62.1 44.3 80.2 76.0 78.7 66.0 35.8 68.3 57.8 67.5 62.0 62.4

segDeepM
√ √

81.6 74.6 66.6 41.6 44.6 70.7 68.0 84.9 39.7 62.5 44.2 84.1 77.1 79.2 69.9 35.7 67.6 60.9 72.7 61.3 64.4

segDeepM
√ √ √

81.5 73.4 66.6 40.4 44.7 71.3 67.5 85.1 40.9 62.9 46.0 83.5 76.9 80.0 70.0 37.1 68.9 60.4 72.2 61.1 64.5

Table 2: Detection results (in % AP) on PASCAL VOC 2010 val for RCNN and segDeepM using 16 layer OxfordNet CNN.
.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

segDeepM-16 layers 82.3 75.2 67.1 50.7 49.8 71.1 69.5 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

segDeepM-8 layers 75.3 69.7 57.6 44.2 42.1 62.2 64.7 74.8 30.1 55.6 43.1 70.7 66.4 72.6 63.5 31.9 61.9 46.1 64.4 58.1 57.8

BabyLearning 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN (breg)-16 ly. 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

R-CNN-16 layers 76.5 70.4 58.0 40.2 39.6 61.8 63.7 81.0 36.2 64.5 45.7 80.5 71.9 74.3 60.6 31.5 64.7 52.5 64.6 57.2 59.8

Feature Edit 74.8 69.2 55.7 41.9 36.1 64.7 62.3 69.5 31.3 53.3 43.7 69.9 64.0 71.8 60.5 32.7 63.0 44.1 63.6 56.6 56.4

R-CNN (breg) 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2

Table 3: State-of-the-art detection results (in %AP) on PASCAL VOC 2010 test. The 16 layer models adopt OxforNet, the

rest use 8-layer AlexNet.
.

seg exp ibr br plane bike bird boat bottle bus car cat chair cow table dog horse motor personplant sheep sofa train tv mAP

RCNN 68.9 63.5 45.6 29.1 26.7 64.4 55.6 69.5 26.3 50.3 36.1 62.2 55.6 68.7 56.0 27.6 54.8 40.2 54.0 60.5 50.8

segDeepM
√ √ √

75.1 67.6 56.6 37.9 34.6 73.8 60.8 76.1 27.6 55.4 39.1 68.9 63.7 72.4 63.8 33.5 60.8 45.9 65.7 60.9 57.0

RCNN
√

74.0 66.7 50.4 32.9 31.5 68.0 58.4 74.7 26.9 52.9 39.3 67.0 59.2 71.5 59.1 29.9 56.8 44.2 63.1 63.7 54.5

segDeepM
√ √ √ √

77.3 70.2 60.2 39.8 38.3 75.2 62.3 76.1 29.4 55.7 40.8 70.5 66.4 72.4 65.8 35.6 60.9 46.1 66.7 63.5 58.7

Table 4: Detection results (in % AP) on PASCAL VOC 2012 val for RCNN and segDeepM detectors.
.

Our experiments show that this procedure converges to a set

of stable boxes after two iterations.

4. Experimental Evaluation

We evaluate our method on the main object detection

benchmark PASCAL VOC. We provide a details ablative

study of different potentials and choices in our model in

Subsec. 4.1. In Subsec. 4.2 we test our method on PAS-

CAL’s held-out test set and compare it to the current state-

of-the-art methods.

4.1. A Detailed Analysis of Our Model on Val

We first evaluate our detection performance on V al set

of the PASCAL VOC 2010 detection dataset. We train all

methods on the train subset and evaluate the detection per-

formance using the standard PASCAL criterion. We provide

a detailed performance analysis of each proposed potential

function, which we denote with seg (segmentation) and ex-

panded network exp (the contextual network) in Table 1.

We also compare our iterative bounding box regression ap-

proach, referred to as ibr, to the standard bounding box re-

gression, referred to as br, [9].

R-CNN [9] serves as our main baseline. To better jus-

tify our model, we provide an additional baseline, where

we simply augment the set of Selective Search boxes used

originally by the R-CNN with the CPMC proposal set. We

call this approach RCNN+CPMC in the Table (second row).

To contrast our model with segDPM, which originally uses

segmentation features in a DPM-style formulation, we sim-

plify our model to use their exact features. Instead of HOG,

however, we use CNNs for a fair comparison. We also use

their approach to generate segments, by finding connected

recall
0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: aeroplane, subset: val

RCNN, AP=69.9
RCNN(br), AP=72.9
segDeepM, AP=77.1
segDeepM(br), AP=79.0

(a) PR curve for plane

recall
0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: bicycle, subset: val

RCNN, AP=64.2
RCNN(br), AP=65.8
segDeepM, AP=67.4
segDeepM(br), AP=70.6

(b) PR curve for bicycle

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: bird, subset: val

RCNN, AP=48.0
RCNN(br), AP=54.0
segDeepM, AP=58.1
segDeepM(br), AP=61.9

(c) PR curve for bird

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: boat, subset: val

RCNN, AP=30.2
RCNN(br), AP=34.5
segDeepM, AP=36.9
segDeepM(br), AP=40.3

(d) PR curve for boat

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: bottle, subset: val

RCNN, AP=26.9
RCNN(br), AP=31.2
segDeepM, AP=37.4
segDeepM(br), AP=39.0

(e) PR curve for bottle

recall
0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: bus, subset: val

RCNN, AP=63.3
RCNN(br), AP=68.0
segDeepM, AP=71.3
segDeepM(br), AP=71.6

(f) PR curve for bus

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: car, subset: val

RCNN, AP=56.0
RCNN(br), AP=59.8
segDeepM, AP=61.1
segDeepM(br), AP=61.9

(g) PR curve for car

recall
0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: cat, subset: val

RCNN, AP=67.6
RCNN(br), AP=72.3
segDeepM, AP=74.4
segDeepM(br), AP=74.7

(h) PR curve for cat

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: chair, subset: val

RCNN, AP=26.8
RCNN(br), AP=26.6
segDeepM, AP=29.2
segDeepM(br), AP=31.3

(i) PR curve for chair

recall
0 0.2 0.4 0.6 0.8

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1 class: cow, subset: val

RCNN, AP=44.7
RCNN(br), AP=51.3
segDeepM, AP=56.3
segDeepM(br), AP=56.5

(j) PR curve for cow

Figure 2: PR curves on PASCAL VOC 2010 train/val split for 10 classes. All plots are in Suppl. material.

R
C

N
N

se
g

D
ee

p
M

Figure 3: Error analysis in style of [12] of our detector compared to RCNN.

components in the final output of CPMC-O2P segmenta-

tion [8]. This approach is referred to as segDPM+CNN

(third row in Table 1).

Observe that using a small set of additional segments

brings a 1% improvement for RCNN+CPMC over the R-

CNN baseline. Using a segDPM+CNN approach yields

a more significant improvement of 2.1%. With our seg-

mentation features we get an additional 1.1% increase over

segDPM+CNN, thus justifying our feature set. Interest-

ingly, this 3% boost over R-CNN is achieved by our sim-

ple segmentation features which require only 223 additional

parameters. The Table also shows a steady improvement of

each additional added potential/step, with the highest con-

tribution achieved by the expanded contextual network.

Our full approach, in the setting without any post-

processing, outperforms the strong baseline detector [9] by

6.3%, a significant improvement. After post-processing,

the improvement is slightly lower, achieving a 4.8% per-

formance gain. We note that we improve over the baseline

in 19 out of 20 object classes. The PR curves for the first

10 classes are shown in Figure 2 and the qualitative results

are shown in Figure 6. A detailed error analysis as proposed

of segments(η)
0 1 2 3 5 10 15 20

m
e

a
n

A
P

(%
)

50

50.5

51

51.5

52

52.5

53

53.5

K=1
K=3
K=10

% of expansion(ρ)
0.00 0.10 0.20 0.33 0.50 0.67 1.00 1.43 Inf

m
e

a
n

A
P

(%
)

50

50.5

51

51.5

52

52.5

53

53.5

Figure 4: mAP for segDeepM w.r.t.(left) # of segments per

image (η). η = 0 indicates no segments are used. (right)

box expansion ratio ρ. ρ = 0 disables context and ρ = ∞
indicates full image context. Only contextual features used

in this experiment. Both plots for PASCAL VOC 2010 val.

in [12] of R-CNN and our detector is shown in Figure 3.

Performance vs. grid size and # of segments. We evalu-

ate the influence of different grid sizes and different number

of CPMC segments per image. For each CPMC segment we

compute the best O2P ranking score across all classes, and

choose the top η segments according to these scores. Fig-

ure 4, left panel, shows that the highest performance gain

is due to the few best scoring segments. The differences

are minor across different values of K and η. Interestingly,

the model performs worse with more segments and a coarse

grid, as additional low-quality segments add noise and make

L-SVM training more difficult. When using a finer grid,

the performance peaks when more segments are use, and

achieves an overall improvement over a single-cell grid.

Performance w.r.t. expansion ratio. We evaluate the in-

fluence of the box expansion ratio ρ used in our contextual

model. The results for varying values of ρ are illustrated in

Figure 4, right panel. Note that even a small expansion ratio

(10% in each direction) can boost the detection performance

by a significant 1.5%, and the performance reaches its peak

at ρ = 0.5. This indicates that richer contextual informa-

tion leads to a better object recognition. Notice also that the

detection performance decreases beyond ρ = 0.5. This is

most likely due to the fact that most contextual boxes ob-

tained this way will cover most or even the full image, and

thus the positive and negative training instances in the same

image will share the identical contextual features. This con-

fuses our classifier and results in a performance loss. If we

take the full image as context, the gain is less than 1%.

Iterative bounding box prediction. We next study the

effect of iterative bounding box prediction. We report a

1.4% gain over the original R-CNN by starting with our

set of re-localized boxes (one iteration). Note that re-

localization in the first iteration only affects 52% of boxes

(only 52% of boxes change more than 20% from the orig-

inal set, thus feature re-computation only affects half of

the boxes). This performance gain persists when combined

with our full model. If we apply another bounding box

prediction as a post-processing step, this approach still ob-

tains a 0.6% improvement over R-CNN with bounding box

prediction. In this iteration, re-localization affects 42% of

boxes. We have noticed that the performance saturates after

two iterations. The second iteration improves mAP by only

a small margin (about 0.1%). The interesting side result is

that, the mean Average Best Overlap (mABO) measure used

by bottom-up proposal generation techniques [23] to bench-

mark their proposals, remains exactly the same (85.6%)

with or without our bounding box prediction, but has a sig-

nificant impact on the detection performance. This may in-

dicate that mABO is not the best or at least not the only

indicator of a good bottom-up grouping technique.

Missing annotations. An interesting issue arises when

analyzing the top false-positives of our segDeepM. We

have noticed that a non-neglible number of false-positives

are due to missing annotations in PASCAL’s ground-truth.

Some examples are shown in Figure 5. These missed an-

notations are mostly due to small objects (Figure 5a, 5c),

chairchair
diningtablechairchair

car: 165/47245.

(a) 3rd FP for

“car”

diningtable

person personperson
car

bottle

car: 266/47245.

(b) 10th FP

“car”

bicycle

car: 312/47245.

(c) 16th FP

“car”

personpersonperson

persondog

person: 86/32061.

(d) 3rd FP “per-

son”

Figure 5: Missing annotations detected by segDeepM.

The red solid rectangle indicates segDeepM detection and

dashed rectangle represents GT. We show all GT labels, in-

cluded those marked as ’difficult’.

ambiguous definition of an “object” (Figure 5b), and label-

ers’ mistakes (Figure 5d). While missing annotations were

not an issue a few years ago when performance was at 30%,

it is becoming a problem now, indicating that perhaps a re-

annotation is needed.

4.2. Comparison with StateofTheArt on Test

We evaluate our approach on the PASCAL VOC 2010

test subset in Table 3. For this experiment we trained our

segDeepM model, as well as its potentials (the CPMC class

regressor) on the PASCAL VOC trainval subset using the

best parameters tuned on the train/val split. We only sub-

mitted one result to the evaluation server, thus no tuning

on the test set was involved. Table 3 shows results of our

full segDeepM (including all post-processing steps). We

achieve a 4.1% improvement over R-CNN with a 7-layer

network, and a 1.4% over the best reported method using a

7-layer network. Notice that the best results on the current

leader board are achieved by the recently released 16-layer

network [21]. This network has 160 million parameters,

compared to 60 million parameters used in our network.

Our approach, with only a few additional parameters, scores

rather high relative to the much larger network. Our result

is “only” 2% lower than the very deep state-of-the-art.

We also run our method using a recently released 16-

layer OxfordNet [21]. The results on train/val and

trainval/test are shown in Table 2 and Table 3 respec-

tively. On the test set, our segDeepM achieves 67.2% mean

AP and outperforms others in 20 out of 20 object classes.

Performance on PASCAL VOC 2012. We also test our

full segDeepM model on PASCAL VOC 2012. We use

the parameters tuned on the PASCAL VOC 2010 train/val

split. The result are reported and compared to the current

state-of-the-art in Table 4.

5. Conclusion

We proposed a MRF model that scores appearance as

well as context for each detection, and allows each can-

person

person

person

dog

dog

dog

aeroplane

aeroplane
aeroplane

car

car

motorbike

person

car

car

person

car
carmotorbike

person

horse

person
person

horse
person

person

horse person

person

bird

(a) GroundTruth

bird

(b) RCNN detection

bird

(c) segDeepM detection (d) best segments selected

Figure 6: Qualitative results. We show the top scoring detections for each ground-truth class. For our method, we also show

the segment chosen by our model.

didate box to select a segment and score the agreement

between them. We additionally proposed a sequential lo-

calization scheme, where we iterate between scoring our

model and re-positioning the box (changing the spatial

scope of the input to the model). We demonstrated that our

approach achieves a significant boost over the RCNN base-

line, 4.1% on PASCAL VOC 2010 test in the 7-layer set-

ting and 4.3% in the 16-layer setting. The final result places

segDeepM at the top of the current PASCAL’s leaderboard.

Acknowledgments. This research was supported in part

by Toyota. The GPUs used in this research were generously

donated by NVIDIA Corporation.

References

[1] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting peo-

ple using mutually consistent poselet activations. In ECCV,

2010. 2

[2] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. In ECCV,

pages 430–443. Springer, 2012. 1, 2, 3

[3] J. Carreira and C. Sminchisescu. Constrained parametric

min-cuts for automatic object segmentation. In CVPR, pages

3241–3248. IEEE, 2010. 2

[4] X. Chen, R. Mottaghi, X. Liu, N.-G. Cho, S. Fidler, R. Ur-

tasun, and A. Yuille. Detect what you can: Detecting and

representing objects using holistic models and body parts. In

CVPR, 2014. 2

[5] Q. Dai and D. Hoiem. Learning to localize detected objects.

In CVPR, 2012. 2

[6] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified

object detection and semantic segmentation. In ECCV, pages

299–314. Springer, 2014. 2

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 32(9):1627–1645, 2010. 2, 4

[8] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up

segmentation for top-down detection. In CVPR, 2013. 2, 3,

4, 6

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. arXiv preprint arXiv:1311.2524, 2013. 1, 2,

3, 4, 5, 6

[10] C. Gu, J. Lim, P. Arbelaez, and J. Malik. Recognition using

regions. In CVPR, 2009. 2

[11] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous detection and segmentation. In ECCV, 2014. 1, 2

[12] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error

in object detectors. In ECCV, 2014. 6

[13] R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neu-

ral language models. In ICML, 2014. 1

[14] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. In NIPS, 2011.

2

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 1, 2, 3

[16] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr.

What, where and how many? combining object detectors and

crfs. In ECCV, 2010. 2

[17] M. Maire, S. X. Yu, and P. Perona. Object detection and

segmentation from joint embedding of parts and pixels. In

ICCV, 2011. 2

[18] R. Memisevic and C. Conrad. Stereopsis via deep learning.

In NIPS, 2011. 1

[19] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-

dler, R. Urtasun, and A. Yuille. The role of context for ob-

ject detection and semantic segmentation in the wild. CVPR,

2014. 2

[20] O. Parkhi, A. Vedaldi, C. V. Jawahar, and A. Zisserman. The

truth about cats and dogs. In ICCV, 2011. 2

[21] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In

arXiv:1409.1556, 2014. 1, 7

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D.Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. arXiv preprint

arXiv:1409.4842, 2014. 1

[23] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W.

Smeulders. Segmentation as selective search for object

recognition. In ICCV, pages 1879–1886. IEEE, 2011. 1,

2, 7

[24] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.

DeepFlow: Large displacement optical flow with deep

matching. In ICCV, 2013. 1

[25] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered

object models for image segmentation. PAMI, 2011. 2

[26] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as

a whole: Joint object detection, scene classification and se-

mantic segmentation. In CVPR, 2012. 2

