
1. INTRODUCTION

The sequence database is a set of data sequences, each of
which is an ordered list of elements [1]. Sequences of stock
prices, money exchange rates, temperature data, product
sales data, and company growth rates are the typical exam-
ples of sequence databases [2, 8]. Similarity search is an
operation that finds sequences or subsequences whose
changing patterns are similar to that of a given query
sequence [1, 2, 8]. Similarity search is of growing impor-
tance in many new applications such as data mining and data
warehousing [6, 17].

There have been many research efforts [1, 7, 8, 10, 17] for
efficient similarity searches in sequence databases using the
Euclidean distance as a similarity measure. However, recent
techniques [13–15, 18] tend to favor the time warping

distance for its higher accuracy and wider applicability at the
expense of high computation cost. Time warping is a trans-
formation that allows any sequence element to replicate
itself as many times as needed without extra costs [18]. For

→
example, two sequences X = 〈20, 21, 21, 20, 20, 23, 23, 23〉

→
and Q = 〈20, 20, 21,20, 23〉 can be identically transformed
into 〈20, 20, 21, 21, 20, 20, 23, 23, 23〉 by time warping. The
time warping distance is defined as the smallest distance
between two sequences transformed by time warping. While
the Euclidean distance can be used only when two sequences
compared are of the same length, the time warping distance
can be applied to any two sequences of arbitrary lengths.
Therefore, the time warping distance fits well with the
databases where sequences are of different lengths.

The time warping distance can be applied to both whole
sequence and subsequence searches. Let us first consider the

vol 22 nos 1-2 january-march 2007 37

Comput Syst Sci & Eng (2007) 1-2: 37-46
© 2007 CRL Publishing Ltd

SBASS: Segment based approach
for subsequence searches in
sequence databases

Sanghyun Park*, S-W Kim† and W W Chu‡

*Department of Computer Science, Yonsei University, Korea. Email sanghyun@cs.yonsei.ac.kr
†Sang-Wook Kim, College of Information and Communications, Hanyang University, Korea. Email: wook@hanyang.ac.kr
‡Wesley W. Chu, Department of Computer Science, University of California, Los Angeles. Email: wwc@cs.ucla.edu

International Journal of

Computer Systems
Science & Engineering

This paper investigates the subsequence searching problem under time warping in sequence databases. Time warping enables to find sequences
with similar changing patterns even when they are of different lengths. Our work is motivated by the observation that subsequence searches slow
down quadratically as the total length of data sequences increases. To resolve this problem, we propose the Segment-Based Approach for Subse-
quence Searching Technique (SBASS), which modifies the similarity measure from time warping to piece-wise time warping and limits the number

→ →
of possible subsequences to be compared with a query sequence. That is, the SBASS divides a data sequence X and a query sequence q into piece-wise

→ → →
segments and compares q with only those subsequences which consist of n consecutive segments of X. Here, n is the number of segments in q. For
efficient retrieval of similar subsequences, we extract feature vectors from all data segments exploiting their monotonically changing properties, and
build a multi-dimensional index. Using this index, queries are processed with four steps: (1) index filtering, (2) feature filtering, (3) successor filtering,
and (4) post-processing. The effectiveness of our approach is verified through experiments on synthetic data sets.

Keywords: Similarity Search, Sequence Database, Time Warping Distance, Segmentation

computation cost for whole sequence searches. Given a data
→ →

sequence X and a query sequence Q, the time warping distance
→ → → →

has the complexity O(|X| |Q|) [3] where |X| and |Q| are the
→ →

lengths of X and Q, respectively. With m data sequences
whose average length is n, whole sequence searches require

→
the computation complexity O(mn|Q|). Thus, the cost increases
linearly both in the total number of data sequences and in the
average length of data sequences.

Let us now consider the computation cost for subsequence
→

searches. Let q be a query sequence submitted for subsequence
→ →

searches. X[i : j] denotes a subsequence of X containing elements
→ →

in positions i through j. X[i : –] denotes a suffix of X starting
→ → →

at ith position. That is, X[i : –] = X[i:|X|]. The time warping
→

distance between a subsequence X[i: j] and a query sequence
→
q can be obtained during the distance computation between
→ →
X[i: –] and q. Therefore, the number of distance computations

→ →
for subsequence searches between X and q is same as the

→ → →
number of suffixes in X. Since X has |X| suffixes whose average

→
length is O(|X|), subsequence searches require the computation

→ →
complexity O(|X|2|q|). Thus the computation complexity is

→
O(mn2|q|) in a database of m sequences with average length
n. As a result, the cost increases linearly in the total number
of data sequences but quadratically in the average length of
data sequences.

The analysis for subsequence searches is supported by our
experimental results in Figures 1 and 2. Figure 1 shows the
elapsed times of scan-based approach for subsequence search-
es with increasing numbers of data sequences and Figure 2
shows those with increasing average lengths of data
sequences. We used random-walk data sequences. We observe
that search times increase quadratically with increasing aver-
age lengths of data sequences while maintaining the linearity
with increasing total numbers of data sequences.

Therefore, subsequence searching performance would
degrade seriously in a typical database environment where a
large number of long sequences are stored. In this paper, we
tackle this problem and propose a novel scheme to resolve it.
The primary goal of this paper is to make the performance of
subsequence matching linear to the average length of data
sequences, thereby improving the scalability significantly,

especially without seriously deforming the original similarity
model based on time warping. To achieve this goal, we
employ the Segment-Based Approach for Subsequence
Searches (SBASS) and propose an efficient indexing tech-
nique for the SBASS.

The SBASS modifies the similarity measure from time
warping to piece-wise time warping and limits the number of
possible subsequences to be compared with a query sequence.

→
That is, the SBASS divides a data sequence X and a query

→ →sequence q into piece-wise segments and compares q with
only those subsequences which consist of n consecutive segments

→ →
of X. Here, n is the number of segments in q. By dividing a
problem into smaller subproblems as such, the SBASS
achieves a considerable performance improvement in subse-
quence matching. Also, the SBASS preserves the properties
of the original similarity model since it basically uses the
time warping distance in its similarity model.

In the matching of similar sequences, it is important to
prevent the occurrence of false dismissals [1]. A false dis-
missal refers to a (sub)sequence that is actually similar to a
query sequence but which is judged dissimilar by the system.
For efficient retrieval of similar subsequences without false
dismissals, we extract feature vectors from all data segments
exploiting their monotonically changing properties, and
build a multi-dimensional index on them. Using this index
structure, queries are processed with four steps: (1) index
filtering that retrieves the set of candidate segments simi-
lar to a segment in a query sequence, (2) feature filter-
ing that further refines candidate segments, (3) successor
filtering that selects candidate subsequences exploiting
the ordering relationship of candidate segments, and (4)
post-processing that retrieves final answers after discard-
ing false alarms [1]. A false alarm refers to a (sub)sequence
that is included in the set of candidate (sub)sequences but
which is not similar to a query sequence.

The rest of this paper is organized as follows. A brief
overview of (sub)sequence searching problems is described
in Section 2. In Section 3, the SBASS and its similarity mea-
sure are defined. The index construction and the query pro-
cessing methods are presented in Section 4 and Section 5,
respectively. The effectiveness of the proposed approach is
verified by the experimental results in Section 6. Finally,

38 computer systems science & engineering

S PARK ET AL

Figure 2 Subsequence searches with increasing average lengths of data
sequences. The total number of data sequences is 200

Figure 1 Subsequence searches with increasing numbers of data sequences.
The average length of data sequences is 200.

Section 7 summarizes the paper and suggests future research
directions.

2. RELATED WORK

Several approaches for fast retrieval of similar sequences
have been recently proposed. In [1], whole sequences are
converted into the frequency domain by the Discrete Fourier
Transform (DFT) and are subsequently mapped into low-
dimensional points by selecting the first few DFT coeffi-
cients. Similar sequences are efficiently retrieved by utilizing
the R*-tree. This technique has been extended to locate simi-
lar subsequences in [8]. However, these approaches are not
applicable to sequences of different lengths since both of
them use the Euclidean distance as a similarity measure.

Some approaches in [4, 15, 18] permit the matching of
sequences with different lengths. [4] employs the modified
version of the edit distance, and considers two sequences sim-
ilar if a majority of elements match. In [18], the time warping
distance is used as a similarity measure with the two-step fil-
tering process: a FastMap [9] index filter followed by a low-
er-bound distance filter. Since the modified editing distance
and the time warping distance are very expensive, both [4]
and [18] just focus on whole sequence searches. [15] presents
a new access method for subsequence searches with the time
warping distance. Using a categorized suffix tree as an index
structure and two lower-bound distance functions as index fil-
ters, [15] retrieves similar subsequences without false dis-
missals. However, its computation complexity is still
quadratic to the average length of data sequences.

Recently, segment-based subsequence searching algo-
rithms have been proposed in [13, 14]. [13] converts a data
sequence into an ordered list of piece-wise linear segments
using the best fitting line and applies the modified time warp-
ing similarity measure sequentially. [14] also suggests the
segment-based subsequence searching technique with the
accumulated time warping distance as a similarity measure.
For efficient query processing, [14] extracts feature vectors
from data sequences and builds a suffix tree from categorized
representation of feature vectors. Though [14] shows fairly
good performance on subsequence searches, the optimal
number of categories is hard to determine and a suffix tree is
apt to become very large when data sequences are very long.

3. SBASS: SEGMENT-BASED APPROACH
FOR SUBSEQUENCE SEARCHES

We introduce the SBASS that modifies the similarity mea-
sure from time warping to piece-wise time warping and
reduces the number of subsequences to be compared with a
query sequence. The SBASS first converts each data
sequence into an ordered list of piece-wise segments. At
query processing time, the SBASS also converts a query
sequence into an ordered list of piece-wise segments. Let n

→be the number of segments in a query sequence q. The SBASS
→ →compares q with only those subsequences x which consist of

→ → →
n consecutive segments of a data sequence X. Let xS and qS

→ →be the segmented representations of x and q, respectively.
→ → →
xS[i] denotes the ith segment of x and qS[i] the ith segment of

→ → →
q. The similarity of x and q is not determined by the time

→ →warping distance between x and q but by the time warping
→ →

distance of each segment pair, xS[i] and qS[i]. If every segment
pair has the time warping distance less than or equal to the
user-specified threshold, the SBASS makes a decision that x

→
and q are similar.

Let us analyze the computation cost for the SBASS. Let c
be the average number of elements in a segment. The cost
for computing the time warping distance of each segment

→ →pair is O(c2). The number of segments in q is |q|/c. Therefore,
→ → →

the cost for computing the similarity of x and q is O(c2|q|/c)
→ → →

= O(c|q|). Since the number of segments in X is |X|/c, the
→

number of subsequences consisting of |q|/c consecutive segments
→ → →

of X is |X|/c – |q|/c + 1. Thus the cost for subsequence
→ → → → → → →

searches between X and q is (|X|/c – |q|/c + 1) (c|q|) = |q|(|X|
→

– |q| + c). Therefore, the cost becomes linear to the length of
→
X. Now, we present detailed description of the SBASS.

3.1 Segmentation

There can be many different methods to obtain an ordered
list of piece-wise segments from a sequence. To extract use-
ful feature vectors from segments, we take the method that
makes every segment have a monotonically changing pattern.

→A segment α = (α1 ,..., αN) has a monotonically changing
pattern if α1 ≤....≤αN (monotonically increasing pattern) or
α1 ≥...≥αN (monotonically decreasing pattern). For example,

→
a data sequence X = 〈4, 5, 8, 8, 8, 8, 9, 11, 8, 4, 3, 7, 10〉 is

→
segmented to XS = 〈〈4, 5, 8, 8, 8, 8, 9, 11〉, 〈8, 4, 3〉, 〈7, 10〉〉 in
our segmentation scheme.

The process of segmentation begins with an empty segment
→

α. It then tries to append into α each element X[i] of a data
→

sequence X in the increasing order of i. If α becomes non-monotonic
→ →

when X[i] has just been appended to α, X[i] is taken out of α
→

and a new segment begins with X[i] as its first element. This
segmentation process guarantees that an ordered list of piece-
wise segments is determined ‘uniquely’ from any data sequence.

→Given a segment α = 〈α1, ..., αN 〉, we can define the
interpolation line connecting the first and the last elements,
α1 and αN. If there is an element αi that deviates more than
the pre-defined threshold from the interpolation line, we may
divide the segment into sub-segments. This sub-division pro-
cess may proceed recursively until all the elements are with-
in the pre-defined threshold from their interpolation line.
This sub-division helps bound each segment more tightly to
their interpolation line. However, we do not consider the
sub-division in this paper due to the difficulty in determining
the threshold value.

3.2 Noise reduction

Data sequences may contain some noises and the proposed
segmentation scheme is very sensitive to small noises. As a
result, segments may get very short and/or, more critically,
similar sequences may yield totally different segments.
To alleviate the impact of this problem, it would be better
to apply an appropriate noise reduction method as a pre-pro-

39

SEGMENT-BASED APPROACH FOR SUBSEQUENT DATABASE SEARCHES

vol 22 nos 1-2 january-march 2007

cessing step of the segmentation process. The simplest noise
→

reduction method just ignores the element X[i] when its changing
→

ratio from its preceding element X[i – 1] is smaller than the
pre-defined threshold. It is also possible to employ k-moving
average transformation [5, 12] for noise reduction. Given a

→
data sequence X and a moving average coefficient k, each

→ →
element X[i] is transformed into Xk[i] by k-moving average
transformation:

→ → → →
X[i] + X[i+1] +...+ X[i+k-1] ∑i+k-1 X[j]→ j=i

Xk[i] = ––––––––––––––––––––––– = –––––––––
k k

Categorization [15] can also be utilized as an alternative for
noise reduction. Categorization is an operation which divides
the value ranges of elements into a set of non-overlapping
categories. Via categorization, each element is converted to
the symbol of the category to which the element belongs.
Note that two elements whose values are slightly different
from each other may be represented by the same symbol. As
a result, the impact of small noises can be reduced. We
assume that data sequences are delivered to the segmentation
process after being preprocessed through one of the above
noise reduction methods.

3.3 Similarity measure

Given two (sub)sequences, we want to make a decision on
whether they are similar or not. However, it is not easy to
find an appropriate similarity measure because sequences
that are qualitatively identical may be quantitatively differ-
ent. Here, we propose a similarity measure of the SBASS
that is intuitive to users and is easily applicable to sequences
of different lengths.

→ →Definition 1: Given two subsequences x and y that have k
→ →

segments, the distance function D(x, y) is defined as follows:

→ →
→→ Dtw(xS[1],yS[1])

D(x, y) = max ...
→ →Dtw(xS[k],yS[k])

→ →
where Dtw(xS[i], yS[i]) is the time warping distance function

→ → → →
for two segments xS[i] and yS[i]. This implies that if D(x, y) ≤
ε every segment pair is within the time warping distance ε.
The time warping distance function [3, 16] allows each ele-
ment of a segment to match one more neighboring elements
of another segment to minimize the distance between two
segments. Its formal definition [16] is given below.

→ →
Definition 2: Given two segments α and β, the time warping

→ →
distance function Dtw(α,β) is defined as follows:

Dtw (〈〉, 〈〉)=0

→ →
Dtw (α,〈〉) = Dtw (〈〉, β) = ∞

→ →

→→
Dtw (α,β [2:-1])

→ →
Dtw (α,β) = |α1 – β1| + min Dtw (α[2 : –], β)

→ →
Dtw (α[2 : –], β[2 : −])

→where 〈〉 represents the empty segment and α[2, –] is the
→subsegment of α including all the elements of α except for

the first. �

4. INDEXING

The SBASS scheme can be processed using the scan-based
approach. The scan-based approach reads all the data sequences

→ →from a database and computes D(x, q) between a data
→ →subsequence x and a query sequence q. However, for efficient

query processing, we propose an index-based approach,
which uses a multi-dimensional index to discard non-qualify-
ing subsequences rapidly.

Let us first define the notations used in the following sec-
tions. The maximum and the minimum element values of a

→ → →segment α = 〈α1,..., αN〉 are denoted by min(α) and max(α),
→

respectively. In a monotonically increasing pattern, min(α) =
→ →
α1 and max(α) = αN. In a monotonically decreasing pattern,

→ → →
min(α) = αN and max(α) = α1. Let αi – min(α) be the height

→ →hi of the ith element. Then, α can be rewritten as α = 〈α1,
→ →

min(α) + h2 ,..., min(α) + hN – 1, αN 〉.

4.1 Feature extraction
→Given a segment α = 〈α1,..., αN〉, a 6-tuple feature vector

→
F(α) = (B, L, N, H, Eu, Ed) is extracted exploiting a mono-
tonically changing property.

• B is the first or the beginning element value (=α1).
• L is the last element value (=αN).
• N is the number of elements.
• H is the sum of heights of all elements. That is, H = ∑N

i=1→
hi = ∑N

i=1 (αi – min(α)).
• Eu is the non-negative maximum deviation value from the

→
interpolation line of α.

• Ed is the non-positive minimum deviation value from the
→

interpolation line of α.

→
The interpolation line for a segment α is obtained by con-
necting the first and the last elements, and thus is expressed
as:

αN – αi αN – αiIP(i) = –––––– i + α1 – –––––––
N – 1 N – 1

Since α1 and αN are represented by B and L respectively in
the feature vector, the interpolation line can also be
expressed as:

L – B L – B
IP(i) = –––––– i + B – –––––

N – 1 N – 1

→For the ith element of α, its deviation value is defined as αi – IP(i).
From the deviation values of all elements, the non-negative
maximum one is assigned to Eu and the non-positive mini-
mum one is assigned to Ed.

As an example, let us extract a feature vector from a segment
→
α = 〈4, 5, 8, 8, 8, 8, 9, 11〉. B = 4, L = 11, and N = 8 can be
easily obtained. The computation of H is also straightfor-

→
ward. H = ∑N

i=1 (αi – min(α)) = (4 – 4) + (5 – 4) + (8 – 4) +

40 computer systems science & engineering

S PARK ET AL

⎧
⎨
⎩

⎧
⎪
⎨
⎪
⎩

⎛
⎜
⎝

⎛
⎜
⎝

⎞
⎟
⎠

⎞
⎟
⎠

⎛
⎜
⎝

⎛
⎜
⎝

⎞
⎟
⎠

⎞
⎟
⎠

(8 – 4) + (8 – 4) + (8 – 4) + (9 – 4) + (11 – 4) = 29. Eu and
Ed are calculated from the interpolation line IP(i) = i + 3.
From the set of eight deviation values {4 – IP(1), 5 – IP(2),
8 – IP(3), 8 – IP(4), 8 – IP(5), 8 – IP(6), 9 – IP(7), 11 –
IP(8) g = {0, 0, 2, 1, 0,–1,–1}, Eu is assigned 2 and Ed is

→
assigned –1. Therefore, F(α) = 〈4,11, 8, 29, 2, –1〉.

4.2 Index construction

To filter out segments that are not similar to a segment in a
query sequence, we build an R-tree using the set of feature
vectors extracted from data segments. A R-tree [11] is a
height-balanced spatial index structure that efficiently sup-
ports both range queries and point queries. Each feature vec-
tor occupies a single entry in leaf nodes. For more effective
filtering, we slightly change the structure of the R-tree. The
modified R-tree uses only the first and the last elements (B

→
and L) in a feature vector F(α) = (B, L, N, H, Eu, Ed) as
organizing attributes. The remaining four features are kept
only in leaf nodes for further filtering. Thus, entry structures
for leaf nodes are changed to (MBR, ID, OtherFeatures),
where MBR is a 2-dimensional point (B,L) and ID is the
identifier of a segment indexed, and OtherFeatures stores
the remaining features (N, H, Eu, Ed). Entry structures of
non-leaf nodes are not changed.

To locate the actual data sequence from the database effi-
ciently and to find the ordering relationship of segments eas-
ily, the identifier of a segment is expressed as (sequence#;

→
segment#). If a segment α has the identifier (t, s), its immediately

→
preceding segment prev(α) has the identifier (t, s – 1) and its

→
immediately following segment next(α) has the identifier (t,
s + 1).

5. QUERY PROCESSING

This section presents a query processing algorithm for effi-
cient retrieval of those subsequences that are within a tolerance

→ε from a query sequence q. Remember that the distance of x
→and q is within ε if every segment pair has a time warping

distance less than or equal to ε. Our algorithm consists of
three filters and a post-processing as shown in Figure 3.

→The algorithm first converts a query sequence q into its segmented
→

representation qS. Then, each query segment is sent to the
index filter. Using the first and the last values of segments,
the index filter retrieves the set of candidate segments that
are similar to a passed query segment. The index filters
could run in the serial or parallel fashion depending on envi-
ronments. The feature filter further refines the output of the
index filter exploiting all the features in leaf nodes of the
index. The successor filter assembles the candidate subse-
quences using the ordering relationship of candidate seg-
ments. Final answers are obtained after post-processing

→where actual data sequences x are retrieved from a database
→ →

and our similarity measure D(x, q) is applied to discard false
alarms [1].

5.1 Index filter

For a given point (B,L) corresponding to the first and the last
elements of a query segment and a tolerance ε, the index fil-
ter constructs a two-dimensional query rectangle ([B – ε, B
+ ε], [L – ε, L + ε] and finds data points located within a
query rectangle. The set of data points belonging to a query
rectangle represents the set of data segments whose first and
last elements are within [B – ε, B + ε] and [L – ε, L + ε],

41

SEGMENT-BASED APPROACH FOR SUBSEQUENT DATABASE SEARCHES

vol 22 nos 1-2 january-march 2007

Figure 3 Query processing

respectively. Through the following theorem, we claim that
data segments outside a query rectangle always have the time
warping distance larger than from the query segment.

→Theorem 1: Given a segment α whose data point is (B,L)
→

and a segment β whose data point is (B′,L′) if |B –B′| > ε or
→ →

|L – L′| > ε then Dtw(α, β) > ε. �

Proof: Let m = (m1, m2 ,..., mr) be the best element mappings
→ →

from which the time warping distance Dtw(α,β) is computed.
Each mapping mk (k = 1,...,r) represents a pair of elements
(αf(k), βg(k)) where f(k) and g(k) are warping functions whose

→ →
ranges are {1 ,..., |α|} and {1,..., |β|}, respectively. The distance
of the mapping mk is expressed as |mk| = |αf(k) – βg(k)| and the

→ →
time warping distance between α and β is computed as

→ →
Dtw(α, β) = ∑r

k=1 |mk|. By the boundary condition [3] of the
time warping distance function, m1 = (B, B’) and mr = (L, L’).
Because ∑r-1

k=2 |mk| ≥0, if |B– B’| > ε or |L – L’|> ε, then
→ →

Dtw(α, β) > ε. ■■

5.2 Feature filter

The feature filter performs the second-round filtering on the
output of the index filter by estimating the distance of two
segments more accurately using the distance function Dft.
Before describing the distance function used in the feature
filter, let us present the basic notations and concepts.

5.2.1 LBαi and UBαi
→

Given a feature vector F(α) = (B, L, N, H, Eu, Ed), let us
derive the lower-bound and the upper-bound values of αi. It
is apparent that αi lines between IP(i) + Ed and IP(i) + Eu.
The range of αi can be bounded narrower using the obvious

→fact that αi cannot have a value smaller than min(α) or larger
→than max(α). Therefore, αi is between max(ip(i) + Ed,

→ →min(α)) and min(IP(i) + Eu, max(α)). LBαi and UBαi denote
the lower-bound and the upper-bound values of αi. Then,

→LBαi = max(IP(i) + Ed, min(α)) and UBαi = min(IP(i) + Eu,
→max(α)).

_
5.2.2 {v} and {v}
Let {v} be the set of element positions whose upper-bound
values are smaller than v. We want to find the element posi-
tion p ∈ {v} whose upper-bound value is the closest to v.
When a segment has an increasing pattern, p is the largest
one in {v}. When a segment has a decreasing pattern, p is the
smallest one in {v}. The element position p is directly
obtained from a feature vector. (The detailed derivation is
described in Appendix A.)

N – 1 L – Bceil ((––––) (v – Eu – B + ––––) – 1)

p =

L – B N – 1
for an increasing pattern

N – 1 L – Bfloor ((––––) (v – Eu – B + ––––) + 1)
L – B N – 1

for a decreasing pattern

Here, ceil(arg) is the function that returns the smallest integer
value not less than arg and floor(arg) is the function that
returns the largest integer value not greater than arg.

Once the element position p is determined, the number of
elements in {v} is easily obtained. When a segment has a
increasing pattern, UBαi < v for every i from 1 through p.
Thus, |{v}| = p. When a segment has a decreasing pattern,
UBαi < v for every i from p through N. Therefore |{v}| = N – p
+ 1.

Similarly, let {v} be the set of element positions whose
lower-bound values are larger than v. We want to find the

–element position p∈{v} whose lower-bound value is the
closest to v. When a segment has an increasing pattern, q is

–the smallest one in {v}. When a segment has a decreasing
–pattern, q is the largest one in {v}. The element position q is

directly obtained from a feature vector. (The detailed deriva-
tion is described in Appendix A.)

42 computer systems science & engineering

S PARK ET AL

⎧
⎪
⎪
⎨
⎪
⎪
⎩

_
Figure 4 The element position p ∈ {v} whose upper-bound value is the closet to v and the element position q ∈ {V} whose

lower-bound value is the closest to V .

N – 1 L – Bfloor((––––) (v – Ed – B + ––––) + 1)

p =
L – B N – 1

for an increasing pattern
N – 1 L – Bceil((––––) (v – Ed – B + ––––) – 1)
L – B N – 1

for a decreasing pattern

When a segment has a increasing pattern, LBαi > v for
–every i from q through N. Thus, |{v}|= N – q+1. When a seg-

ment has a decreasing pattern, LBαi > v for every i from 1
–through q. Therefore |{v}| = q.

5.2.3 Distance function Dft
The distance function Dft of the feature filter is adapted from
the lower-bound distance function Dlb introduced in [18]. Let
us describe Dlb first. Without loss of generality, we assume

→ →
that max(α) ≥max(β). If it does not hold, we exchange their

→ →
roles. According to the ranges of α and β, there are three
relationships; disjoint, overlap and enclose. The definition of
Dlb is given below.

→ →
Definition 3: Given two segments α = 〈α1,..., αN〉 and β = 〈β
1 ,..., β N〉, the distance function Dlb is defined as follows
[18]:

→ →
max(∑N

i=1(αi – max(β)),∑N’
j=1 (min(α) – (βj))

for disjoint
→ →

→
→

→
→Dlb(α, β) = ∑αi>max(β)(αi – max(β))+∑βj<min(α)(min(a) – β

j
)

for overlap
→

→
→

→
∑αi>max(β)(αi

– max(β))+∑αi<min(β)(min(β) − αi
)

for enclose

Dlb consistently underestimates the time warping distance
Dtw for preventing the occurrence of false dismissals. Since

→ →
Dlb(α, β) reads all elements in α and β for the distance

→ → → →
computation, Dlb(α, β) has the complexity O(|α| + |β|). We
now define a distance function Dft of the feature filter. What
we want to do is to rephrase Dlb in terms of feature vectors,

→ →
F(α) = (B, L, N, H, Eu, Ed) and F(β) = (B, L, N, H, Eu, Ed).

→ →
Let us consider the case that α and β are disjoint.

→ → → →
Dlb(α, β) = max(∑N

i=1(αi – max(β)),∑N ′

j=1(min(α) – (βj))
→ →

= max(∑N
i=1(hi + min(α) – max(β)),

→ →
∑N ′

j=1(min(α) – h′j – min(β)))
→ →

= max(H + N(min(α) – max(β)), – H′ + N′
→ →

(min(α) – min(β)))
→ →= Dft(F(α), F(β))

→ →
The next case is that α and β overlap. Since we cannot obtain

→ →
αi and βj from F(α) and F(β), we use their lower-bound and

˘upper-bound values instead. Let A be the set of element positions
→ →

in α whose lower-bound values are larger than max(β) and q
˘∈ A be the element position whose lower-bound value is the

→ ˘closest to max(β). Likewise, let B be the set of element positions
→ →in β whose upper-bound values are smaller than min(α) and

˘p ∈ B be the element position whose upper-bound is the closest
→ →to min(α). We are now ready to derive Dft for the case that α

→
and β overlap.

→ →
→

→
→

→
Dlb(α,β) = ∑αi>max(β)(αi – max(β)) + ∑βj<min(α)(min(α) – βj)

→
˘

→
≥∑i∈Ă(LBαi – max(β)) + ∑j∈B(min(α) – UBβj)

→
˘

→
≥∑i∈Ă(LBαq – max(β)) + ∑j∈B(min(α) – UBβp)

43

SEGMENT-BASED APPROACH FOR SUBSEQUENT DATABASE SEARCHES

vol 22 nos 1-2 january-march 2007

Figure 5 Query processing times for the SBASS with increasing numbers
of data sequences. The average length of data sequences is 500

Figure 6 Query processing times for the SBASS with increasing lengths of
data sequences. The total number of data sequences is 500.

Figure 7 Query processing times of our method and sequential scan with
increasing tolerance values

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎧
⎪
⎪
⎨
⎪
⎪
⎩

→ →
= |Ă| (LBαq

– max(β)) + |B|(min(α) – UBβp)
→ →

= Dft(F(α),F(β))

→ →
The final case is that α encloses β. Let Ă be the set of ele-

→ment positions in α whose lower-bound values are larger
→

than max(β) and q ∈ Ă be the element position whose lower-
→ ˘bound value is the closest to max(β). Likewise, let B be the

→set of element positions in α whose upper-bound values are
→ ˘smaller than min(β) and p ∈ B be the element position whose

→
upper-bound is the closest to min(β). We are now ready to

→ →
derive Dft for the case that α encloses β.

→ →
→

→
→

→
Dlb(α,β) = ∑αi>max(β)(αi – max(β)) + ∑αi<min(β)(min(β) – αi)

→
˘

→
≥∑i∈Ă(LBαi

– max(β)) + ∑i∈B(min(β) – UBαi)
→

˘
→

≥∑i∈Ă(LBαq – max(β)) + ∑i∈B(min(β) – UBαp
)

→ ˘ →
= |Ă|(LBαq

– max(β)) + |B|(min(β) – UBαp
)

→ →
= Dft(F(α),F(β))

To guarantee no false dismissal, Dft should consistently
underestimate the time warping distance Dtw. Theorem 2
shows that Dft is a lower-bound function of Dtw.

→ → → → → →
Theorem 2: Given α, β, F(α), and F(β), if Dft(F(α), F(β)) >

→ →
ε, then Dtw(α, β) > ε �

→ →
Proof: The theorem can be proved by showing that Dtw(α, β)

→ → → →
≥Dft(F(α), F(β)) for any segment pair α and β. By the definition

→ → → →
of Dft(F(α), F(β)), Dft(F(α), F(β)) is a lower-bound distance

→ → → →
function of Dlb(α, β). Yi et al. [18] proved that Dlb(α, β) is a

→ →
lower-bound distance function of Dtw(α, β). As a result,

→ →
Dft(F(α), F(β)) is also a lower-bound distance function of

→ → → → → →
Dlb(α, β). Therefore, Dtw(α, β) ≥Dft(F(α), F(β)) for any segment

→ →
pair α and β. �

5.3 Successor filter

The successor filter stitches candidate segments returned
from feature filters to construct the set of candidate subse-
quences exploiting the ordering relationship of candidate
segments.

→ →
In this process, we stitch two candidate segments α and β

→ →
into a subsequence α · β when they satisfy the following

→ → →
conditions: (1) β = next(α), and (2) β belongs to the result of
the (i + 1)th feature filter and α belongs to the result of the ith

feature filter. This stitching process starts with the output of
the first feature filter and ends with the output of the last fea-
ture filter. Those candidate segments that fail to form candi-
date subsequences are filtered out in this successor filter.

Finally, the post-processing step (1) receives candidate sub
–sequences x from the successor filter, (2) accesses data

–sequences containing x from a database, and (3) applies the
–similarity measure D(x, q) to discard remaining false alarms.

6. PERFORMANCE EVALUATION

The purpose of this performance evaluation through experi-
ments is two folded: (1) to show that our SBASS successful-
ly performs subsequence searches linearly both to total
number of data sequences and to average length of data
sequences, and (2) to compare the performance of our
approach with that of the sequential scan.

6.1 Performance of the SBASS

In Section 3, we claimed that the SBASS has the linear com-
putation cost both to the total number of data sequences and
to the average length of data sequences. To verify this claim,
we implemented the SBASS and measured its performance
with random-walk data sequences. The expression for gener-
ating data sequences is:

→
X[0] = rand([10, 100])
→ →
X[i] = X[i – 1] + rand([–10, 10])

We first increased the number of data sequences from 1,000
to 5,000 while fixing the average length of data sequences at
500. Next, we increased the average length of data sequences
from 1,000 to 5,000 while keeping the total number of data
sequences 500. Query sequences were generated using the
same way as data sequences. The average length of query
sequences was one-tenth of data sequences and a tolerance ε
was determined to get 10–2% answer-ratio. As shown in
Figures 5 and 6, the query processing times for the SBASS
increased almost linearly both with increasing numbers of
data sequences and with increasing lengths of data
sequences.

To evaluate the relative merits of different filters proposed
in this paper, we measured the filtering ratios of the index fil-
ter alone, the combination of the first two filters (i.e., index
filter + feature filter), and the combination of all filters (i.e.,
index filter + feature filter + successor filter). Note that a dis-
tance tolerance ε was determined to get 10–2% answer-ratio.
The experimental results revealed that their filtering ratios are
62.2%, 88.9% and 97.2%, respectively, on an average.

6.2 Performance comparison

To evaluate the performance of the proposed approach,
we compared its query processing time with that of the

44 computer systems science & engineering

S PARK ET AL

Table 1 Query processing times of our method and sequential scan with in
creasing tolerance values

sequential scan using a data set from UC Irvine KDD
Archive (http://kdd.ics.uci.edu). The data set, called a
“Pseudo Periodic Synthetic Time Series”, is specifically
designed for testing indexing schemes in time series
databases. The data sequences are generated by the fol-
lowing function:

→ 7
1 →

X = ∑–– sin(2π(22+i + rand(2i))t)
i=3 2i

→
where 0 ≤t ≤1. We generated 100 data sequences whose
lengths were all 10,000. Query sequences with average
length 1,000 were generated using the same function. Table
1 and Figure 7 show the experimental results. Our approach
consistently outperformed the sequential scan and achieved
up to 4.98 speed-up.

7. CONCLUSION

Even though the time warping distance is one of good simi-
larity measures for data sequences, it requires high computa-
tion cost. Especially, the performance of subsequence
searches degrades seriously when data sequences are very
long because the search cost increases quadratically to the
length of data sequences.

To alleviate this problem, we proposed the segment-
based approach for sub-sequence searches (SBASS) that
compares only those subsequences starting and ending at
segment boundaries with a query sequence. For fast
retrieval of similar subsequences without false dismissals,
we also suggested a novel indexing technique equipped
with the index filter, feature filter, and successor filter.
Experimental results showed the effectiveness of our pro-
posed approach.

The contributions of our work are: (1) proposing the
SBASS and its similarity measure, (2) extracting feature
vectors that precisely characterize segments, (3) deriving
constant-time lower-bound distance functions exploiting
monotonically changing patterns of segments, and (4) sug-
gesting three filtering schemes tha accelerate the query pro-
cessing.

There still remain several research issues on our
indexing technique. Even though our lower-bound dis-
tance functions have the constant computation complexity,
they need to be tighter or closer to the actual distance
functions to icrease the filtering rates. The query process-
ing algorithm can also be improved by rearranging the
query segments according to the criteria of selectivity.
That is, the query segment with the highest selectivity is
applied to the index filter first and the query segment that
has the second selectivity is applied next, and so on. This
procedure stops when the number of candidates becomes
smaller than the pre-defined threshold. By adding element
counter in each index node entry, selectivity of query seg-
ments can be easily determined by inspecting several top
nodes of the index.

ACKNOWLEDGEMENT

This research was supported in part by the MIC (Ministry of

Information and Communication), Korea, under the ITRC
(Information Technology Research Center) support program
(Grant: IITA-2005-C1090-0502-0009) supervised by the
IITA (Institute of Information Technology Assessment).

REFERENCES

1 R. Agrawal, C. Faloutsos and A. Swami Effcient Similarity
Search in Sequence Databases, Proc. FODO, pp. 69–84, 1993.

2 R. Agrawal, K. Lin, H. S. Sawhney and K. Shim Fast Simi-
larity Search in the Presence of Noise, Scaling, and Translation
in Time-Series Databases, Proc. VLDB, pp. 490–501, 1995.

3 D. J. Berndt and J. Clifford Finding Patterns in Time Series:
A Dynamic Programming Approach, Advances in Knowledge
Discovery and Data Mining, AAAI/MIT, pp. 229–248, 1996.

˘4 T. Bozkaya, N. Yazdani and M. Özsoyoglu Matching and
Indexing Sequences of Different Lengths, Proc. ACM CIKM,
pp. 128–135, 1997.

5 C. Chatfield The Analysis of Time-Series: An Introduction, 3rd
Edition, Chapman and Hall , 1984.

6. M. S. Chen, J. Han and P. S. Yu Data Mining: An Overview
from Database Perspective, IEEE TKDE, Vol. 8, No. 6, pp.
866–883, 1996.

7 K. W. Chu and M. H. Wong Fast Time-Series Searching with
Scaling and Shifting, Proc. ACM PODS, pp. 237–248, 1999.

8 C. Faloutsos, M. Ranganathan and Y. Manolopoulos Fast
Subsequence Matching in Time-Series Databases, Proc. ACM
SIGMOD, pp. 419-429, 1994.

9 C. Faloutsos and K. Lin FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and
Multimedia Datasets, Proc. ACM SIGMOD, pp. 163–174, 1995.

10 D. Q. Goldin and P. C. Kanellakis On Similarity Queries for
Time-Serie Data: Constraint Specification and Implementation,
Proc. Constrain Programming, pp. 137–153, 1995.

11 A. Guttman R-trees: A Dynamic Index Structure for Spatial
Searching, Proc. ACM SIGMOD, pp. 47–57, 1984.

12 M. Kendall Time-Siries, 2nd Edition, Charles Griffin and
Company, 1979.

13 E. J. Keogh and M. J. Pazzani Scaling up Dynamic Time
Warping to Massive Datasets, Proc. Principles and Practice of
Knowledge Discovery in Databases, 1999.

14 S. Park, D. Lee and W. W. Chu Fast Retrieval of Similar Sub-
sequences in Long Sequence Databases, Proc. 3rd IEEE
Knowledge and Data Engineering Exchange Workshop
(KDEX), pp. 60–67, 1999.

15 S. Park, W. W. Chu, J. Yoon and C. Hsu Efficient Searches
for Similar Subsequences of Different Lengths in Sequence
Databases, Proc. IEEE ICDE, pp. 23–32, 2000.

16 L. Rabiner and B.-H. Juang Fundamentals of Speech Recog-
nition, Prentice Hall , 1993.

17 D. Raei and A. Mendelzon Similarity-Based Queries for
Time-Series Data, Proc. ACM SIGMOD, pp. 13–24, 1997.

18 B.-K. Yi, H. V. Jagadish and C. Faloutsos Efficient Retrieval
of Similar Time Sequences Under Time Warping, Proc. IEEE
ICDE, pp. 201–208, 1998.

APPENDIX: ELEMENT POSITIONS P AND Q

→ →Given α, F(α) = (B, L, N, H, Eu, Ed), and a value v between
→ →min(α) and max(α), the derivation of expressions for the ele-

ment position p ∈ {v} whose upper-bound value is the clos-
–est to v and the element position q ∈ {v} whose lower-bound

value is the closest to v is given below. Here {v} is the set of
element positions whose upper-bound values are smaller

45

SEGMENT-BASED APPROACH FOR SUBSEQUENT DATABASE SEARCHES

vol 22 nos 1-2 january-march 2007

–than v, and {v} be the set of element positions whose lower-
bound values are larger than v.

Case 1: expression for the element position p
→Since UBαp

is min(IP(p) + Eu; max(α)), either IP(p) + Eu < v
→or max(α) < v should hold to satisfy UBαp

< v. However,
→ →max(α) < v cannot hold because v is between min(α) and
→max(α). Therefore,

IP(p) + Eu < v

Because

L – B L – B
IP(p) = (–––––)p + (B– –––––)

N – 1 N– 1

L – B L – B
(–––––) p + (B – –––––) + Eu < v

N – 1 N – 1

→When α has a increasing pattern (B < L),
N – 1 L – B

p < (–––––) (v – Eu – B + –––––)
L – B N – 1

To make UBαp
< v and UBαp+1

≥v, p should have the maxi-
mum satisfying the inequality. Thus,

N – 1 L – B
p = ceil((––––––)(v – Eu – B + –––––) – 1).

L – B N – 1

→Likewise, when α has a decreasing pattern (B > L), p should
have the minimum satisfying

N – 1 L – Bp > (–––––)(v – Eu – B + –––––) + 1)
L – B N – 1

Thus,

N – 1 L – Bp = floor((–––––)(v – Eu – B + –––––) + 1)
L – B N – 1

Case 2: expression for the element position q
By applying the same logic used in case 1 to LBαq

, the fol-
→lowing inequality is obtained when α has an increasing pat-

tern.

N – 1 L – Bq > (––––––) (v – Ed – B + –––––)
L – B N – 1

To make LBαq
> v and LBαq–1

≤v, q should have the mini-
mum satisfing the inequality. Thus,

N – 1 L – B
q = floor((––––––) (v – Ed – B + –––––) + 1)

L – B N – 1

Likewise, if the segment has a decreasing pattern, then q
should have the maximum satisfying

N – 1 L – B q < (––––––) (v – Ed – B + –––––). Thus,
L – B N – 1

N – 1 L – B q = ceil((––––––) (v – Ed – B + –––––) – 1).
L – B N – 1

L WANG ET AL

46 computer systems science & engineering

