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Abstract

A novel stereo matching algorithm is proposed that uti-

lizes color segmentation on the reference image and a self-

adapting matching score that maximizes the number of re-

liable correspondences. The scene structure is modeled by

a set of planar surface patches which are estimated using

a new technique that is more robust to outliers. Instead

of assigning a disparity value to each pixel, a disparity

plane is assigned to each segment. The optimal disparity

plane labeling is approximated by applying belief propaga-

tion. Experimental results using the Middlebury stereo test

bed demonstrate the superior performance of the proposed

method.

1. Introduction

Stereo matching continues to be an active research area

as is proven by a large number of recent publications dedi-

cated to this topic [1, 2, 4, 6, 9, 12]. The goal is to determine

disparities that are indicating the difference in locating cor-

responding pixels. The recovery of an accurate disparity

map still remains challenging, mainly due to the following

reasons:

(i) Pixels of half occluded regions do not have correspon-

dences in the other image, leading to incorrect matches if

not taken into account.

(ii) Images are disturbed because of sensor noise. This is

especially problematic in poorly textured regions due to the

low signal-to-noise-ratio (SNR).

(iii) The constant brightness or color constraint is only sat-

isfied under ideal conditions that can only roughly be met

in practice.

A comprehensive overview on stereo matching can be found

in [8]. In general matching algorithms can be classified into

local and global methods. Local approaches are utilizing

the color or intensity values within a finite window to de-

termine the disparity for each pixel. Global approaches are

incorporating explicit smoothness assumptions and are de-

termining all disparities simultaneously by applying energy

minimization techniques such as graph cuts [2, 4, 6, 7], be-

lief propagation [5, 9, 10, 12], dynamic programming, scan-

line optimization or simulated annealing.

Recently, segment-based methods [1, 2, 4, 6, 11] have at-

tracted attention due to their good performance. They are

based on the assumption that the scene structure can be ap-

proximated by a set of non-overlapping planes in the dis-

parity space and that each plane is coincident with at least

one homogeneous color segment in the reference image.

Segment-based methods generally perform four consecu-

tive steps that are illustrated in Figure 1. First, regions of

homogeneous color are located by applying a color seg-

mentation method. Second, a local window-based matching

method is used to determine disparities of reliable points.

Third, a plane fitting technique is applied to obtain dispar-

ity planes that are considered as a label set. Fourth, an op-

timal disparity plane assignment (optimal labeling) is ap-

proximated using greedy [1, 11] or graph cuts [2, 4, 6] opti-

mization. Despite our method shares the same consecutive

steps, there are three main distinguishing features:

First, a self-adapting dissimilarity measure is used to in-

crease the number of reliable correspondences as is ex-

plained is Section 3. Second, a novel outlier insensitive ap-

proach is applied to extract the disparity planes (Section 4).

Third, the labeling problem is solved using belief propaga-

tion (Section 5). These features represent the main contri-

bution of our approach which results in superior matching

quality (demonstrated in Section 6).

2. Color segmentation

The first step in the workflow is to decompose the refer-

ence image into regions of homogeneous color or grayscale.

The algorithm assumes that disparity values vary smoothly

in those regions and that depth discontinuities only occur on



Figure 1. Block diagram of segment-based
stereo matching algorithms augmented with
input data, intermediate and final results of
the proposed method.

region boundaries. Over-segmentation is preferred, since it

helps to meet this assumption in practice. Therefore mean-

shift color segmentation recently successfully applied to im-

age segmentation by Comaniciu and Meer [3] is used. The

mean-shift analysis approach is essentially defined as a gra-

dient ascent search for maxima in a density function defined

over a high dimensional feature space. The feature space

include a combination of the spatial coordinates and all its

associated attributes that are considered during the analysis.

The main advantage of the mean-shift approach is based on

the fact that edge information is incorporated as well.

3. Local matching in pixel domain

In the proposed method the scene structure is modeled
by a set of planar disparity planes. A disparity plane
is specified by the three parameters c1, c2, c3 that deter-
mine a disparity d for each reference image pixel (x,y):
d=c1x + c2y + c3

Due to the huge number of possible disparity planes the
number is reduced by extracting a set of disparity planes
that is sufficient to represent the scene structure. This is
done by applying local matching in the pixel domain fol-
lowed by a disparity plane estimation step.
Local matching requires to define a matching score and an
aggregation window [8]. The most common dissimilarity
measures are squared intensity differences (SD) and ab-
solute intensity differences (AD) that are strictly assuming
the constant color constraint. Other matching scores such as
gradient-based and non-parametric measures are more ro-
bust to changes in camera gain and bias or non-lambertian

surfaces at the cost of a low discriminating power. In our
approach we are using a self-adapting dissimilarity measure
that combines sum of absolute intensity differences (SAD)
and a gradient based measure that are defined as follows:

CSAD(x, y, d) =
❳

(i,j)∈N(x,y)

I1(i, j) − I2(i + d, j)

and

CGRAD(x, y, d) =
❳

(i,j)∈Nx(x,y)

|∇xI1(i, j)−∇xI2(i + d, j)|+

❳

(i,j)∈Ny(x,y)

|∇yI1(i, j) −∇yI2(i + d, j)|,

where N(x, y) is a 3 × 3 surrounding window at position

(x, y), Nx(x, y) a surrounding window without the right-

most column, Ny(x, y) a surrounding window without the

lowest row, ∇x the forward gradient to the right and ∇y the

forward gradient to the bottom. Color images are taken into

account by summing up the dissimilarity measures for all

channels.

An optimal weighting ω between CSAD and CGRAD is de-

termined by maximizing the number of reliable correspon-

dences that are filtered out by applying a cross-checking test

(comparing left-to-right and right-to-left disparity maps) in

conjunction with a winner-take-all optimization (choosing

the disparity with the lowest matching cost). The resulting

dissimilarity measure is given by:

C(x, y, d) = (1−ω)∗CSAD(x, y, d)+ω∗CGRAD(x, y, d)

Furthermore we are utilizing the reliable correspondences to

predict the SNR that is used to normalize our dissimilarity

measure. Because of the normalization a fixed truncation

threshold can be set right above the noise level to obtain a

robust matching score.

4. Disparity plane estimation

The reliable correspondences are used to derive a set

of disparity planes that are adequate to represent the scene

structure. This is achieved by applying a novel robust plane

fitting method and a consecutive refinement step.

Robust plane fitting Despite only reliable disparities of

each segment are used to derive a corresponding disparity

plane, the estimated plane may be disturbed due to remain-

ing outliers. A straightforward way to determine the dispar-

ity plane parameters is to solve a least square system. As is

generally known least square solutions are very sensitive to

outliers and that linear or median solutions are much more

robust.

Our method determines a robust solution by applying a

decomposition method to solve each parameter separately.

First, the horizontal slant is estimated using a set of all com-

binations of reliable disparities that are lying in the same



horizontal line within the segment. The derivations δd/δx
are inserted to a list and a robust estimation of the horizontal

slant is determined by sorting the list and applying convo-

lution with a Gaussian kernel.

Second, the vertical slant is estimated in a similar manner

by considering all combinations lying on the same vertical

line.

Third, the determined slant is used to obtain a robust es-

timate of the disparity value in the center of the segment.

Therefore corresponding center disparities for each reliable

point, that are calculated by considering the estimated slant,

are inserted to a list and a robust estimate is obtained as

explained before.

Disparity plane refinement The purpose of this step is to

increase the accuracy of the disparity plane set by repeating

the plane fitting for grouped regions that are dedicated to the

same disparity plane. Similar as in [6] the following steps

are processed:

First, a matching cost is calculated for each segment-to-

plane assignment. It is computed by summing up the match-

ing cost for each pixel inside the segment S:

CSEG(S, P ) =
∑

(x,y)∈S

C(x, y, d),

where P is a disparity plane that defines disparity d.

Second, the disparity plane with the minimum matching

cost is assigned to each segment. Third, segments that are

assigned to the disparity plane are grouped. Finally the

plane estimation is repeated for all grouped segments.

5. Disparity plane assignment

In the final step an optimal solution for the segment-to-

disparity plane assignment is searched. Therefore the stereo

matching is formulated as an energy minimization problem

for the labeling f that assigns each segment s ∈ R a corre-

sponding plane f(s) ∈ D. The energy for a labeling f is

given by:

E(f) = Edata(f) + Esmooth(f),

where

Edata(f) =
∑

s∈R

CSEG(s, f(s))

and

Esmooth(f) =
∑

(∀(si,sj)∈SN | f(si) 6=f(sj))

λdisc(si, sj).

SN represents a set of all adjacent segments and

λdisc(si, sj) is a discontinuity penalty that incorporates the

common border lengths and the mean color similarity as

proposed in [2].

An optimal labeling with minimum energy is approximated

using Loopy Belief Propagation [5] where the message

passing takes place between adjacent segments.

6. Experimental results

The proposed method was evaluated using the Middle-

bury test bed (http://cat.middlebury.edu/stereo/) provided

by the authors of [8]. Qualitative results are shown in Figure

2. Quantitative results of the ten best performing methods

are given in Table 1, where the percentage of pixels with

an absolute disparity error greater than one pixel are shown

for different regions: non-occluded (nonoccl.), whole image

(all) and pixels near discontinuities (on disc.). Our method

processed all four stereo pairs with a fixed parameter set and

was ranked at the first place. The calculation on a 2.21GHz

Athlon 64 computer takes between 14 and 25 sec, whereas

the mean-shift segmentation is the most time consuming

step.

7. Conclusions

A new segment-based stereo matcher has been intro-

duced. The conjunction of color segmentation, a self-

adapting matching score, a robust plane fitting technique as

well as BP-optimization yields excellent results as demon-

strated on the Middlebury stereo evaluation test bed.
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Algorithm Avg. Tsukuba Venus Teddy Cones

Rank nonoccl. all on disc. nonoccl. all on disc. nonoccl. all on disc. nonoccl. all on disc.

Proposed Method 1.7 1.113 1.372 5.793 0.101 0.211 1.441 4.222 7.062 11.82 2.481 7.921 7.321

Double-BP [12] 2.3 0.881 1.291 4.761 0.142 0.605 2.003 3.551 8.713 9.701 2.903 9.244 7.802

Segm+visib [1] 5.1 1.306 1.573 6.928 0.798 1.066 6.769 5.003 6.541 12.33 3.725 8.623 10.26

SymBP+occ [9] 5.1 0.972 1.755 5.092 0.163 0.332 2.194 6.476 10.74 17.07 4.7911 10.78 10.97

C-SemiGlob 6.2 2.6116 3.2911 9.8914 0.255 0.573 3.245 5.144 11.85 13.04 2.772 8.352 8.203

RegionTreeDP 7.0 1.399 1.644 6.856 0.224 0.573 1.932 7.429 11.96 16.86 6.3114 11.912 11.89

AdaptWeight 7.3 1.388 1.856 6.907 0.716 1.197 6.137 7.8810 13.39 18.611 3.977 9.796 8.264

SemiGlob 9.3 3.2617 3.9614 12.819 1.009 1.578 11.314 6.025 12.27 16.35 3.064 9.755 8.905

RealtimeBP 10.4 1.4910 3.4013 7.8710 0.777 1.9011 9.0013 8.7213 13.28 17.28 4.619 11.610 12.413

Layered 11.4 1.5711 1.877 8.2811 1.3411 1.859 6.8510 8.6412 14.310 18.510 6.5916 14.715 14.415

GC+occ 11.5 1.194 2.019 6.244 1.6414 2.1913 6.758 11.216 17.416 19.814 5.3613 12.413 13.014

MultiCamGC 12.0 1.275 1.998 6.485 2.7919 3.1317 3.606 17.017 17.617 22.016 4.8912 11.811 12.111

Table 1. Middlebury stereo evaluation on different algorithms, ordered according to their overall
performance. The subscript numbers indicate the rank of each method in each column.

reference images ground truths our results ’bad pixel’ maps

Figure 2. Results using the Middlebury datasets: Tsukuba, Venus, Teddy and Cones. Pixels with a
disparity error greater than one pixel are displayed in the ’bad pixel’ maps, where missmatches in
non-occluded areas are indicated in black, in occluded areas in gray color.
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