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Abstract. We associate with an integer lattice basis a scaled basis that
has orthogonal vectors of nearly equal length. The orthogonal vectors or
the @ R-factorization of a scaled basis can be accurately computed up
to dimension 2'® by Householder reflexions in floating point arithmetic
(fpa) with 53 precision bits.

We develop a highly practical fpa-variant the new segment LLL-
reduction of Koy AND ScHNORR [KS01]. The LLL-steps are guided in
this algorithm by the Gram-Schmidt coefficients of an associated scaled
basis. The new reduction algorithm is much faster than previous codes
for LLIL-reduction and performs well beyond dimension 1000.
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1 Introduction.

Practical algorithmsfor LLL-reduction compute the orthogonal vectors of a basis
in floating point arithmetic (fpa). The corresponding fpa-errors must be small
otherwise the size-reduction included in the orthogonalization gets unstable. Up
to dimension 250 Gram-Schmidt orthogonalization of an LLL-reduced basis can
be done in fpa with some correction steps [SE91]. Householder orthogonalization
has better stability, as was shown in [RS96]. In practice it yields up to dimension
350 a sufficient @ R-factorization of the basis matrix — but this process gets
unstable in dimension 400. [S88] presents a method for correcting the Gram-
Schmidt coefficients using Schulz’s method of matrix inversion. This method is
provably stable but requires O(n + log, M) precision bits, where M bounds the
Euclidean length of the basis vectors. It is useless for fpa with 53 precision bits.

In this paper we associate with an integer lattice basis a scaled basis that has
orthogonal vectors of nearly equal length. The orthogonal vectors or the QR-
factorization of a scaled basis can be accurately computed up to dimension 2'6 by
Householder reflexions in fpa with 53 precision bits. We present an algorithm
HRS that efficiently generates an associated scaled basis. We present a fpa-
variant of LLL-reduction where LLL-steps are guided by the orthogonal vectors
of an associated scaled basis. In particular, size-reduction is done against the



scaled basis. The weaker size-reduction does in practice not degrade the quality
of the reduced basis.

We present a fpa-variant of segment LLL-reduction, a novel concept pro-
posed in [KS01]. The algorithm segment sLLL performs scaled segment LLIL-
reduction, so that all LLL-steps are guided by the orthogonaliation of an asso-
ciated scaled basis. The algorithm segment sLLL is a very efficient reduction
algorithm. Its efficiency comes from local LLL-reduction of two consecutive seg-
ments Bj_1, B; that is done by reducing the local matrix R; in fpa. To make
this local LLL-reduction possible in the limits of fpa it is necessary to bound the
integer transformation matrix of the local LLL-reduction. For this we carefully
prepare the local matrix R; of B;j_1, B; prior to local LLL-reduction.

In practice, segment sLLL is much faster than previous codes for LLL-
reduction. It performs well beyond dimension 1000 and provides lattice bases
that are in practice of similar quality as LLL-reduced bases. For dimension 1000
and basis vectors with 400 bit integer coordinates, the new LLL-reduction takes
only about 10 hours on a 800 MHz PC. It is the first code for LLL-reduction
that performs well beyond dimension 350.

In this paper we focus on practical aspects related to fpa. A rigorous analysis
of segment LLL-reduction in the model of integer arithmetic is in the companion
paper [KS01]. For general background on fpa and Householder transformation
see [LH95].

2 Stability Properties of Householder Orthogonalization.

For an introduction of LLL-reduced lattice bases and of our notation on lattices
we refer to Section 2 of the companion paper [KS01]. For easy reference we recall
Definition 1 and Theorem 1 from [KS01]. We let § €], 1] and a = 1/(6 — ).

Definition 1. An ordered basis by, ..., b, € Z¢ of the lattice L is LLL-reduced
with § €]3,1] if it has properties 1. 2.:

Lo pil <172 for1<i<j<m,
2. Sl < pZpa bl + bigal>  fori=1,...n—1.

Theorem 1. A basis by, ..., b, of lattice L that is LLL-reduced with § satisfies:
Lo ||Bil2 <a™'A2 and ||by)2 < ai=1|bi)|2 fori=1,...n,
2. |[b1]|2 < a™F (det L)% and by > a= "7 (det L)%.

Accuracy of Householder reflerions. Consider the @) R-factorization B = QR of
the basis matrix B = [by,...,b,] € Z¥" where Q € R?*? is an orthogonal
matrix and R = [r;j] = [r1,...,r,] € R is an upper triangular matrix,
r; 5 = 0 for i > j. We have p;; = v ;/ri; and |r; ;| = ||Zz|| The vector r; is the
orthogonal transform of b;.



Consider the process of orthogonalization of a basis matrix B = [b1, ..., b,].
In ideal arithmetic we get the @Q R-factorization B = QR by a sequence of House-
holder transformations
01 = B, Cj+1 = QjCj for j = 1,...,71,
where @); € R#*? is an orthogonal matrix — an Householder reflexion —
that produces zeros in positions j + 1 through d of column j of Q;C;. Thus
Cj+1 € R?¥™ is upper triangular in the first j columns. Finally, R = Cp,11, Q =
Qn - Q1.
In actual computation, however, we use floating point operations
Cl = fl(B), Cj+1 = fl(QJCJ) for ] = 1, Lo, n.
We assume the standard fpa-model of WILKINSON, see [LH95, p. 85] for details.
Let 0 < n < 1 be the relative precision — each floating point operation induces
a normalized relative error bounded in magnitude by n. ! In this model, it has

been shown [LH 95, p. 87, formula (15.38)] that
1Ci41 = Q-+~ QuBllr < (6d = 35+ 40)jn||B||r + O(n?), (1)

where ||A||lr = (Z” a?yj )% denotes the FROBENIUS NORM of the matrix A =

[a; j]. Tn the following we neglect the low order term O(n?). Thus, in actual
computation we get R = [F; ;] = C), 41 satisfying for n > 14.

IR — Rl|r < 6dnn||B]|r. (2)

It follows that the approximate Gram-Schmidt coefficients fi; ; = 7; ;/7; ; satisfy
fori<j

figi — pigil < 6dinllbe, ... billr/(Iril(1 —¢)) (3)

provided that |7; ; — 7; ;| < €|r; ;|. Therefore, we get from inequality (2) the

Lemma 1. Inequality (3) holds provided that
6djn b1, ..., billr < elriql. (4)

Instability of Householder @ R-factorization for dimension 400. Tnequalities (1),
(2), (3) are rather sharp. To combine Householder transformation and size-
reduction we need accurate coefficients p; ;. Condition (4) characterizes the sta-
bility of Householder transformation — stability requires that 6dnn||B|lr <
min; |r; ;|. On the other hand, Theorem 2 shows that random LLL-reduced bases
on the average satisfy ||b1]| ~ ].]”_1”3””. For dimension n = 400 and 5 = 273
this yields 6dnn||bi||r ~ 6dm71.1"_1||/l;n” R4 106H/I;n||. Inequality (4) is grossly
violated. Therefore, Householder transformation of LLL-reduced bases is neces-
sarily unstable in dimension 400 for fpa with 53 precision bits.

Theorem 2. Consider a random LLL-reduced basis with random coefficients
Hitl,i ER [—%, %] fori=1,...,n— 1, and let the inequalities 2. of Definition 1
be tight. Then ||b1]| ~ 1.1"‘1||bn|| holds on the average.

! standard double length, wired fpa has 53 precision bits, 5 = 272,



Proof. While (6 — pf+17i)||3i||2 < ||/b\z-.|_1||2 holds for LLL-reduced bases, the con-
verse (5= ¢?)[BP? > [bis1|[? holds provided that S| = g2 + 122y, IR
and |p; 41| < €. The inequality |p;41 ;| < € holds with probability 2¢ for random
Mit1i ER [—%, %] As f_i 2e%de = % and 4/d — % ~ 1.17" holds for § ~ 1 we
see that ||b1]| ~ 1.1”_1||3,j|| holds on the average. |

3 The Scaled Basis Matrix.

Scaling is a well known method for improving the stability of fpa. We associate
with an integer lattice basis by, ..., b, a scaled basis b}, ..., b5 that has orthogonal
vectors of nearly equal length.

Definition 2. Let by, ..., b, be a basis of an integer lattice L. We call b3, ..., b €

L an associated scaled basis with scaling factors 2°1,...,2°* —ey,...,e, E N —
if b5, ..., b7 form a size-reduced basis of a sublattice of L satisfying
131 < 2% [1ba]| = [[b5]] < 2[[p3]|  for i=1,...,n. ()

We show in Theorem 3 that a given scaled basis yields accurate Gram-Schmidt
coefficients by Householder reflexions in fpa. In Section 4 we show how to pro-
duce an associated scaled basis efficiently in fpa. In Sections 5 and 7 we use an
associated scaled basis to guide LLL-reduction and segment LLL-reduction.

We can easily transform a basis b1,...,b, into an associated scaled basis
b3, ..., b using exact arithmetic — first scale then size-reduce:

1. scaling. e; := |log,(max; ||/I;J||/||b1||)J, 5= 20 by,
fori =2, ..,ndo ¢ :=max(0, [log, ||3]|/|[b:]|]), b} := 2°b;

(ijgzs‘)J $ 2
[CH |

2. size-reduction. for j=2,...,n fori=j—1,...,1do b} :=b; -

New Notation. For the remaining of the paper we let the column vector r, of the
R-matrix be related to the scaled vector b} rather than to the original vector b,,.

The size of scaled Gram-Schmidt coefficients. The coefficients yi}, ; of an arbitrary,

unscaled vector b, = b, + 25;11 pf,7j/l;§ are uniformly bounded:
s (5)
Corollary 1. |/¢flj| G < ol 2 g, H:‘;”
! - 1

ez = 1esll

In contrast, LLL-reduced bases b1, ..., b,_1 satisfy b, = Z;zl /ij/b\j with |Hu,j|2 <

(8%
154

to be very large due to the factor a’~1. A small relative error of Hy—1 confuses
the size-reduction of b,.

af=1. The coefficient Hy—1 that enters first into size-reduction of b, tends

> Let [r] = [r — 1] be the nearest integer to the real number r.



Corollary 2. The basis b, ..., b}, satisfies ||bj|| < /7 +3[[bi]| forj=1,...,n,

s AS j—1 s AS
Proof.|[B311* = 151> + 3252y (u5,4) 21103112
<IB3I1P + (7 — 1) /4 maxic; (][B5 1)
(5) ) ) ~
< AR5+ G = DB = (5 + 3)b311° o
Next we study for a given scaled basis the accuracy of the approximate

coefficients fi} ;, computed in fpa by Householder reflexions.

Theorem 3. The appromimate i} ; of by, ... by, satisfy |7 ; — pj ;[ <e/(1—¢)
for e = 6dj’n.

Proof. By scaling and size-reduction we have for j # 2: 3
, —~ ~ , —~ (5) ~
-1 o
53117 < 5 32520 IIBFIP 03117 < 252 maxig B3 |1° < g ming; 5317,

Hence 1B ., Bllr = (S, IB112)? < vFmasic 821 < 5 5], and thus
161, B5lle/lIBEl <5 fordi=1,...,5. (6)
Hence, Inequality (4) holds for &€ = 6dj?n. By Lemma 1 Inequality (3) holds for

(3) (6)
that e and thus |5~ ;| < 6din |[b5, .., bil|r/(Irsil(1—¢)) < 6di*n/(1—c) =
e/(L—e). O

Stability up to dimension 2'6. Consider Theorem 3 in the case j < n =d = 26
and 7 = 2753, Then we have ¢ < 6n%y < 0.19 and £/(1 — ¢) < 0.24. Therefore,
Householder reflexions yield up to dimension 2'¢ sufficiently accurate Gram-
Schmidt coeflicients for the basis b3,..., 55 .

4 Orthogonalization via Scaling and Size-Reduction.

Suppose we are given bj, ..., b5_;, b, and we want to produce a scaled vector b.
At that point the pj , of b7, ..., bj_; are given with high accuracy. We iteratively
transform b, into b;, using better and better approximations of the uj ;. The

procedure HRS (Householder, Reduction, Scaling) iterates the following steps

1. the first v — 1 Householder transformations b, — Q,_1---Q1b,,
2. size-reduction of b, against bf,... b5 _4,

3. scaling of b, to b%.

Steps 1. 2. must be iterated as the size of b, is by Inequality (2) crucial for the
accuracy of Householder transformation. As the scaling increases the size of b,
we scale in stages, repeating 1. 2. after each stage of scaling. Let

# In the following we neglect the exception j = 2.



Q; =1q— 2vjv;-—||vj||_2, where Iy € Z%*? is the identity matrix and v; € R?
is the Householder vector associated with @);. Note that z — @z reflects = at
the hyperplane that is orthogonal to v;: Qjv; = —v;, Qju=wu for u L v;.
HRS is given for input the Houscholder vectors vi,...,v,_1 € R?, the first
v — 1 columns ¥y, ...,F,_1 of the matrix C, = Q,_1 ---Q1C; and the computed
scaling exponents €1, ..., €,_1. The operations on b7, ..., b]_, are in exact integer
arithmetic, the other operations are in fpa. Taking fpa-errors into account we
relaxe size-reduction of b}, to the relaxed condition [y} ;| < 0.52.

Supressing backward rescaling. Upon entry of HRS(v), the scaled vectors
b3, ..., b} _4 are given while b2, ..., b2 are unknown. At this stage the scaling factors
281, ..., 28v=1 correspond to the subbasis b1, ..., b, _1. If ||/b\l,|| > ||/b\§|| we would need
to rescale bf by increasing é; := €; + € and b := 2°b$ for € := L10g2(||/b\l,||/||/b\{|| )]
and i =1,...,v— 1. We suppress this backward rescaling. It is sufficient to store
¢ and to do all subsequent size-reductions against 2° b} rather than against b,
i.e., we replace subsequent reduction steps b := b — {(%’E’%))be by the steps

b:=0b— 2*7%&5. For simplicity, the program HRS(v) does not include

the steps required in case that ||/I;V|| > ||3‘{||

HRS(v) (Houscholder transformation, Reduction and Scaling of b,)
INPUT bi, .. "bli—l S Zd, ry,..,Ty_1, V1,...,0,_1 € Qd, €1,..,6,_1EZL
OUTPUT b (size-reduced against b3,...,05_1), v, Ty, €y
1. e, :=0,b) :=b,
2. 1, = Qu—l e 'Ql : bi
3. size-reduce b}, against b3, ... b7

for i=v—1,...,1 do

L= | T

if|f5,] > 051 then b = b) — [ji5;]b}, T, =T, — [ji},;]%

v

4. if 3 pg ] > 210 then go to 2.

5. 7:= (e, 7, )%, @ = min([logs(|[b3]/7)],30)

6. if ¢ > 0 then ¢, :=¢, +¢, b5 :=2° go to 2.

T. 5, =Qu 1 -Qib}, o := sig(7,,), T:=( Zfzu FZZVU )%
v, = (0,...,0, Ty + 0T, Fugip, ..., Fd7l,)T
Ty o= (Fiu, . Tymi,—07,0,...,0)7 end

How HRS works. According to (5) the input vectors b3, ..., b5 _; satisfy |rq ;| <
rii] < 2|riq| for i =1,..,v—1. Let 6dv’n < % so that Theorem 3 holds for
£ = . Then, by (2) and (6) we have that |F; ; —r; ;| < 6dj?n|r; ;| fori=1,...,j.

Reducing long ||b,||. By (2) the relative error of #; ., /||b,|| in step 2. is at most
6dvn. The subsequent size-reduction reduces the large #; , — in the equation



[[b.]? = Zle rz-zyl, — to less than |7; ;| in absolute value. Steps 2. 3. 4. decrease

the (Z;:ll 7’“2-27U)%fpart until the inequality (22’;11 7:1'271/)% < |63, ..., b5 _4||F holds.

Upon entry of step 3. the coefficients p;, ; are uniformly bounded as [y}, ;| <
2- HZ—%’H, see Corollary 1. Size-reduction of Step 3. can temporarily increase the
coefficients |y;, ;| up to a factor (3/2)¥=7=1 in worst case. This could possibly
make the size-reduction of step 3. unstable in worst case. No such instability has

been reported in practice, see Figure 1.

Scaling up small ||b,||. Let ||b,|| < ||b7,...,b5_4||F and |r, | < 75||b,||. By
(2) and (6) we have after step 2. that |F,, — 7, .| < 6dvy|[b], ..., 0] _4||r <
6dv2n||b3||. This yields a scaling factor & for step 6. so that 2¢ > (6dv?n)~! > 1.
Therefore, steps 2. to 6. increase |7, |, ||b || until |71 1] < |7y 0| & |[b)]] < 2|71 1]

Corollary 3. HRS(v) produces a scaled vector b}, satisfying |p? ;| < 0.52 for
t=1,...,v—1 provided that size-reduction of Step 3. remains stable.

Speeding up HRS. To speed up HRS replace the rounded values [z} ;| in step
3. by single precision integers consisting of the leading bits of [z} ;|. This way
HRS becomes very fast.

The number of arithmetic steps. A matrix-vector multiplication b, — Q1b, =
b 21/11/;—45,_,
v PRI _ _
glect the additions/subtractions. Thus, we get T, := @Q,_1---Q1b, using 2vd
multiplications/divisions. Size-reduction of step 3. requires vd multiplications in
exact arithmetic. In total, one round of steps 2. 3. 4. requires 2rvd multiplica-
tions/divisions in fpa and vd exact multiplications of long integers.

requires 2d multiplications and one division — as usual we ne-

The number of rounds. In practice each round of steps 2. 3. 4. either decreases
(Z;.':_ll r?yu)% by the factor 6dv?n or increases ||,l;f,|| by the scaling factor 2% >
(6dv?n)~! > 1 or does a combination of both, see the explanations for HRS. In
practice HRS(v) requires log2(||bl,||/||,l;,,||)/| log, (6dv?n)| rounds.

Practical Performance of HRS. Consider a random public-key basis of the
GGH-cryptosystem [GGHI7] of dimension 400. Figure 1 shows how HRS(400)
decreases the coefficients |p400 ;| of the last basis vector bsgg. Using 53 bit fpa
each of five rounds decreases |00 ;| by a factor about 10° & 23°. After each
round all coefficients |pa00,;] are of nearly equal size because the preceding or-
thogonal vectors have been scaled to nearly equal length ||/b\§|| After each of the
first 4 rounds however, |uf,7j| increases by about a factor 10 as j decreases from
400 to 1. This is due to the temporary increase of |u;, ;| by a factor (3/2)v—i-1
in worst case. Figure 1 shows that this temporary increase has little effect in
practice.

Using 106 bit fpa — instead of 53 bit fpa — the five rounds of HRS(400)
reduce to two rounds, and the running time of HR.S reduces accordingly. Soft-
ware implemented fpa with 106 precision bits makes the reduction clearly faster
than the standard fpa with 53 precision bits.
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Fig. 1. Displayed are the values |u400,;| upon termination of each of five rounds. The
|N4007]| are measured after step 2 of the next round — after new orthogonalization.

5 Scaled LLL-Reduction.

We introduce scaled LLIL-reduced lattice bases, and we present an algorithm
scaled LLL for scaled LLL-reduction. This algorithm is a useful prelude to the
more complicated scaled segment LLL-reduction of Section 7.

Definition 3. We call a lattice basis by, ..., b, € Z% scaled LLL-reduced if it
has properties 1. 2.:

1. There is an associated scaled basis b3, ..., b} so that by, ..., b, is size-reduced
against b5, ... b5 i.e., <|T§;T|2) <052 for 1<i<j<n,
3

2. ¢ ||bz||2 < oz||bi.|_1||2 fori=1,...,n—1.

We call a basis with property 1. scaled-reduced. Importantly, the inequalities
of Theorem 1 still hold for scaled LLL-reduced lattice bases. The weaker size-
reduction does not affect these inequalities. Scaled LLIL-reduced bases are in
practice as good as LLT-reduced bases.

Next we present an algorithm scaled LLL that transforms a lattice basis
into a scaled LLL-reduced basis of the same lattice. Scaled LLL guides the LLL-
steps on the original basis by the orthogonalization of an associated scaled basis.
So we keep and update two versions of the basis. LLL-transformations operate
on the original basis. Size-reduction is done against the scaled basis. This form
of LLL-reduction is quite stable as HR.S yields an accurate () R-factorization of
the scaled basis.

The procedure HRS’. Local LLL-reduction of two basis vectors b,_1, b, is guided
by the orthogonal vector of a modified scaled vector b2 — with a scaling factor



2%v that coincides with the scaling factor 2= of b, _;. We get the modified b2
by the following variant HRS’ of HRS: Set in Step 1. €, := é,_1 and skip Step
6.. Moreover, we let HRS’ perform in Step 3. the same size-reduction steps
by =b, —[py,_1]b, 1, b :=b, —[p; ,_1]b,—1 on b against b}_; and on b,
against b,_1. As a consequence we have

Lemma 2. The reduction coefficients of b, against b,_1 and of b5 against
b, _y coincide in HRS’(v), and thus py -1 = p;, ,_1. The output vector b, of
HRS’(v) is size-reduced against b,_1. The coefficients r; ; forv —1 < i,j <
v associated with b,_1,b, are proportional to the coefficients associated with

5 _1, b5 with proportionality factor 28,

Scaled LLL (Algorithm for scaled LLL-reduction.)
INPUT  by,... by € Z4, 6
OUTPUT by,...,b, scaled LLL-reduced basis
1. v:i=1
2. while v<n do
3 if v=1 then HRS(l), v:=2
4. HRS’(v)
5 i 0m_ 1 >, T,
then swap b,_1,b,, vi=v-1
else HRS(v), v:=v+1 end

Scaling does not affect LLL-exchanges. By Lemma 2, the output vector b, of
HRS’(v) is size-reduced against b,_1, i.e., [, 1| < 0.52. Moreover, the de-
cision about swapping b,_1,b, in Step 5. is the same as for the original LLIL-
algorithm — except for fpa-errors.

fpa-errors do not affect the LLL-exchanges. We see from ||b3||* = Zle riu and
(2) that the relative error of #,_q ,/||b}|| & 7—1,/|Fv | and |7, |/]|b)]] is at
most 6dvn. On the other hand, |7,_; ,_1| > ||b7]| holds by scaling. Therefore,
the decision about swapping b,_1,b, in Step 5. is correct for 6dvn < 1.

6 Segment LLL-Reduction.

We summarize the concept of segment LLL-reduced bases of the companion pa-
per, for full coverage see [KSO01].

Segments and local coordinates. Let the basis by,...,b, € Z¢ have di-
mension n = k- m and the @ R-factorization [by,...,b,] = QR. We partition
the basis-matrix B into m segments By = [brg_1)41,...,bgi] for I = 1,...m.
Local reduction of two consecutive segments uses the coefficients of the sub-
matrix Rp = [Friqikitjl-k<ij<k € R2*2k of R € R¥™, corresponding to
two consecutive segments B;_1, B;. We want to do most of the LLL-exchanges



and the corresponding size-reduction in local coordinates of some R;. Extra
global transformations are required after local LLL-reduction. In order to min-
imize these global costs we introduce k-segment reduced bases. We let D(l) =

||/b\k(l—1)+1||2 . ||$M||2 denote the local Gramian determinant of segment B;. We
have that Dg; = D(1) - - - D(1).

Definition 4. We call a basis by, ..., b, € Z% n = km, k-segment LLL-reduced
with § E]%, 1] if it is size-reduced and satisfies for o« = 1/(6 — %) :

Lo S |fball® < sy dllBill + [[Biga||* for i#0 mod k,

2. D(l) < (/DU +1) for I=1,...;m—1,

3. 68 |[brtl|? < @lfbriga]l? for I=1,... . m—1.

Theorem 4. [KS01] Let by, ..., b, be a basis that is k-segment LLL-reduced with
d. Then we have fori=1,...,n:
STl < @ TIAF and 6K |Jby 7 < o bl

where Ay < --- < A, are the successive minima of the lattice.

Algorithm for segment LLL-reduction. The algorithm segment LLL transforms
a given basis into a k-segment reduced basis using exact integer arithmetic. It
iterates local LLL-reduction of two segments [Bi—1, Bi] = [bgi—k+1, ..., britk] via

the procedure loc-LLL(1). Given the orthogonalization of a k-segment reduced
basis b1, ..., bgi—i the procedure loc-LLL(I) computes the orthogonalization and
size-reduction of the segments Bj_1, B;. In particular it provides the submatrix
R; € R?6%2k of R € R*¥*™ corresponding to the segments B;_1, B;. Thereafter
it performs a local LLL-reduction of R; and stores the LLL-transformation in
the matrix H € Z?**?F_ Finally, it transforms [B;_1, B;] into the locally reduced
segments [B;_1, B;]H and size-reduces [B;_1, B;] globally.

Segment LLL
INPUT  by,...,b, €Z% k,m,n=km, &
OUTPUT by,...,b, k-segment LLL-reduced basis

1. =1
2. while [<m—-1 do
loc-LLL(!)
if l#£1 and
(D(L=1) > (a/d)" D) ox 6" |[beq_p)]* > allbeu—1)41]* )
then [ .=1—1 elsel =1+1. end

Theorem 5. [KS01] For k = ©(m) = O(y/n) segment LLL performs
O(ndlog, 5 M) arithmetic steps using integers of bit length O(log, M ).

10



7 Scaled Segment LLL-Reduction.

We combine the methods of Sections 4 and 6 to a stable algorithm for seg-
ment LLL-reduction. Size-reduction is done against an associated scaled basis.
Segment LLL-reduction is guided by the orthogonal vectors of the scaled basis.

Definition 5. We call a basis by, ..., b, € Z k-segment sLLL-reduced, if it is
k-segment LLL-reduced except that by, ..., b, is size-reduced in a weaker sense —
it 1s size-reduced against an associated basis b5, ..., b}, with the properties 1. 2.:

1.  The first orthogonal vectors Eiz_k“ of segments are nearly equally long:

1631 < 2% [bgi—k 1]l = bRi—g g ll < 20B3] for I=1, ..., m. (6)
2. There 1s a uniform scaling factor 2°% for segment B, so that the coefficients
Phizk4i ki—k+j, for 1 < 4,5 < k of the R-matriz corresponding to by, ..., b, and
those corresponding to b3, ..., b} are proportional with proportionality factor 2%t .

The inequalities for k-segment LLL-reduced bases in Theorem 4 also hold
for k-segment sLLL-reduced bases. The weaker size-reduction is not important.
In practice k-segment sLLL-reduced bases are nearly as good as LLL-reduced
bases.

We sketch a procedure loc-sLLL(!) — for local scaled LLL-reduction —
which replaces loc-LLL(!) within segment LLL. The algorithm segment sLLL
iterates local scaled LLL-reduction of two consecutive segments [B;_1, B;] =
(bri—kt1, - brie]-

The procedure loc-sLLL(!). Its inputs are a lattice basis, uniform scaling factors
2%+ satisfying bzl_j =2%¢byy_;for j=0,...,k—1,¢£=1,..1—1. The House-
holder vectors w1, ..., vg—1) of b1,...,bg—1) and the matrix R € RA4xk(=1) for
(b3, ..., b;(l_l)] are also given. Local LLL-reduction of B;_1, B; is done in fpa via
the local matrix R; € R2¢x2k,

The procedure loc-sLLL({)

e computes a uniform scaling factor 28% for the two segments [Bi_1, Bj]

e computes the local matrix R; of 2°¥[B;_1, B;] via HRS’

e performs a local LLL-reduction on [B;_1, B;] using R;
7,2k X2k

stores the transformation in the matrix H €

e Upon termination it transforms [B;_1, B;] into [Bi—1, Bi]H in exact arithmetic.

Restartingloc-sLLL(l). Whenever ||H ||, surpasses the threshold 2'® the proce-
dure loc-sLLL({) is restarted with the transformed segments [B;_1, Bi]H. This
is necessary as the norm ||H|| directly translates into additional fpa-errors.
As the number of restarts is crucial for the running time we carefully prepare
R; as to prevent an early restart. We show below how to predict the size of the
matrix H € Z?**2F occuring in the subsequent local LLIL-reduction of B;_1, B;.
We slash R; so that ||H||e < 215 holds on the average. The threshold 215 is for
wired 53-bit fpa, for 106-bit fpa we increase the threshold accordingly.
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Computing the matriz Ry and 2°*', First compute via HRS the uniform scaling
factor 2°¥' and the first vector rgi—g41 of Bi_1 so that ||b5|] < 2°%||bgi_k41]| =
||/()\Zl_k+1|| < 2||b5||. With the same scaling factor 2°*' compute rp via HRS’ for
h==%Fk —k+2,..,kl+ k. For local LLL-reduction we have to size-reduce by
against bxi—g41,...0p—1. We generalize Step 3. of HRS’ accordingly: perform
the same size-reduction steps b3 = b — [ﬂi7jjb§, by = by, — {ﬂfl’jjbj on b}
against b5 and on b, against b; for j = kl —k +1,...h — 1. This implies that
the local matrix R; of segments B;_1, B; corresponding to b1, ..., b, and the R;
corresponding to b3, ..., b% are proportional with the factor 2.

The heuristic for slashing R;. We let rﬁ-d = Tki—k+i ki-k+; denote the coefficients
of the local matrix R;. Large values |rl171/r§-7j| have a double negative effect on the
stability of loc-sLLL(!). By Lemma 1 the orthogonalization of b; gets inaccurate.
Moreover, ||H||s will be large due to Lemma 2 [KS01]. A detailed argument
shows that ||H||e is expected to be less than 2'% if max; |rl171/ré~7j| < 215, This
suggests to slash R; so that max; |rl171/ré-yj| < 215,

Slashing the matriz R;. Slash all values |r§-7j| — satisfying |r1171/r§-7j| <2715 —

to T‘lj,j = |7“l171|2_15. Moreover, set riw- :=0for h=4j,..,2k and h < i< 2k.

l l B

™11 -1 1,5 "k

) {
0 rjong-1 Tie1 Ti-1k
R =
0 0 |rfq|271 0

I 1915
L O - 0 0 r1 10277

We locally LLL-reduce the slashed matrix R;, and afterwards we transform
[Bi_1, B into [Bi_1, B]JH. If either |[H||oo > 2'° or if the slashing did effec-
tively change R; we restart the local reduction with the transformed segments
[Bi—1, Bi]H. Note that a restart of loc-sLLL(!) also adjusts the uniform scaling
factor 2%%. This method of correction works very well for segment size k& < 100.

Segment sLLL
INPUT  by,...,b, €Z% k,m,n=4km, §
OUTPUT by,...,b, k-segment and scaled reduced basis
1. =1
2. while I<m—-1 do
loc-sLLL(!)
if l£41 and
(D(I=1) > (a/8)*" D(I) or 8% [[bul® > al[bur||* )
then [ :=1—-1 elsel =1+ 1. end
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8 Performance of Segment sLLL.

Consider a sample of [GGH]-bases of dimension n = v - 100 for v = 1, ..., 8. The
vectors of the input basis consist of integers with n/2 bits. The algorithm uses
106 bit fpa and d = 0.99 respectively § =0.999. All tests have been performed
on 350 MHz PC’s, the code of segment sLLL uses the [NTL] computer algebra
library. We present the segment size and the average bit length of the reduced
basis vectors in Figure 2.

Lattice 6 = 0.99 6 = 0.999
dimension | segment size | 1" | segment size | [
100 25 7.9 25 5.2
200 40 13.8 40 9.4
300 45 23.0 45 14.7
400 50 30.5 50 17.7
500 50 34.3 56 22.6
600 60 38.8 60 27.9
700 60 40.9 65 34.3
800 70 46.6 70 37.0

Fig. 2. segment sLLL reduced bases. " = average bit length of the output integers.

The running time increases considerably as J approaches 1. The size of the
reduced basis decreases accordingly. Figure 3 shows the time of segment sLLL
for [GGH]-bases.

25 T T T T T T
delta=0.99 ——
delta=0.999 —<—
20
15

time [hrs]

1: -

100 200 300 400 500 600 700 800
lattice dimension

Fig. 3. Running time of Segment sLLL using § = 0.99 resp. § = 0.999.
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