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Figure 1: This paper introduces segment-phrase table as a bi-modal resource of correspondences between textual phrases and

visual segments. We show that this table facilitates richer semantic understanding and reasoning that are of great potential for

both vision and Natural Language Processing (NLP). It allows linguistic constraints to be incorporated into semantic image

segmentation (left), and visual cues to improve entailment and paraphrasing (right).

Abstract

We introduce Segment-Phrase Table (SPT), a large col-

lection of bijective associations between textual phrases

and their corresponding segmentations. Leveraging recent

progress in object recognition and natural language se-

mantics, we show how we can successfully build a high-

quality segment-phrase table using minimal human super-

vision. More importantly, we demonstrate the unique value

unleashed by this rich bimodal resource, for both vision as

well as natural language understanding. First, we show that

fine-grained textual labels facilitate contextual reasoning

that helps in satisfying semantic constraints across image

segments. This feature enables us to achieve state-of-the-art

segmentation results on benchmark datasets. Next, we show

that the association of high-quality segmentations to textual

phrases aids in richer semantic understanding and reason-

ing of these textual phrases. Leveraging this feature, we

motivate the problem of visual entailment and visual para-

phrasing, and demonstrate its utility on a large dataset.

1. Introduction

Vision and language are among the primary modalities

through which we humans acquire knowledge. A success-

ful AI system would therefore need to leverage both these

modalities together to arrive at a coherent and consistent un-

derstanding of the world. Although great progress has been

made in well-constrained settings at the category level (e.g.,

objects, attributes, actions), several challenges (including

scalability, modeling power, etc.,) have prevented us from

bridging the gaps at higher levels. In recent years, impres-

sive results have been demonstrated in aligning these two

modalities at a much higher level [11, 40, 26], specifically,

images to sentences, where an important enabling factor is

the availability of large-scale image databases [8, 29], com-

bined with deep learning methods [24, 17].

The key ingredient in aligning vision and language in-

volves reasoning about inter-modal correspondences [12,

20, 21]. In this work, we target phrase-level associations, a

relatively unexplored direction compared to category-level

and sentence-level associations. The goal is to achieve the



specificity of category-level analysis while also maintaining

the expressiveness of the high-level descriptions. A critical

challenge is lack of large datasets with precise and exhaus-

tive phrase-level alignments, as they are far more expensive

to gather than sentence-level [29] or categorical labels [8].

Addressing this challenge, we present an approach, in-

volving minimal human supervision, to build a high-quality

Segment-Phrase Table (SPT), i.e., a large collection of bi-

jective associations between phrases (e.g., ‘horse grazing’)

and their corresponding segmentations. Segments facilitate

richer and more precise understanding of a visual phrase,

e.g., the subtle difference between a ‘grazing horse’ and

a ‘standing horse’ can be better captured via segmentation

(fig. 1). At the same time, textual phrases are commonly

used semantic units in various state-of-the-art NLP systems

(e.g. machine translation, paraphrasing). In this paper,

we show that the large scale bi-modal associations between

segments and phrases in SPT is of great value on important

vision (e.g., semantic segmentation) and NLP (e.g., entail-

ment, paraphrasing) tasks.

Segment-Phrase Table (SPT). We present a scalable so-

lution for obtaining an image-to-text translation dictionary

between segments and textual phrases. We pursue an unsu-

pervised approach, analogous to how phrase-level transla-

tion tables are obtained in NLP without direct supervision

on the internal semantic alignments.

The core problem in building a segment-phrase table in-

volves obtaining a segmentation mask (or model) for any

given textual phrase. Conventionally, segmentation has

been posed as a supervised learning problem where the

training process requires images with detailed pixel-level

annotations (indicating the extent of the foregrounds). Due

to the high cost of pixel-level labeling, supervised segmen-

tation is difficult to scale, especially for the rich space of

textual phrases.

We therefore introduce a method that leverages recent

successes in webly-supervised object localization [9, 38, 5]

and co-segmentation [19, 22] for learning segmentation

models directly from web images, using minimal human

supervision. The core insight behind our approach is to

cluster, localize, and segment instances by reasoning about

the commonalities (in both semantic as well as appearance

space) within a group of images retrieved for a given phrase.

While our approach can be construed as akin to Object Dis-

covery, we are faced with an additional challenge that the

images being considered in our setting are a large collection

of noisy (high intra-class variance) web images (i.e., with-

out even image-level curation). To address this challenge,

we employ a novel latent learning procedure that lever-

ages cross-image consistencies within appearance-aligned

instance clusters, thereby being robust to noise. To evaluate

the quality of the segment-phrase table we test it on object

discovery datasets (Section. 2).

As demonstrated in our experiments, the segment-phrase

table facilitates bi-modal and rich semantic understanding

and reasoning that are of great potential value for both

vision and NLP tasks. More specifically, we show that

the segment-phrase table allows (a) linguistic constraints to

help image segmentation (Section. 3); (b) visual cues to im-

prove entailment and paraphrasing (Section. 4).

Linguistic Constraints Help Semantic Segmentation.

Contextual knowledge has been shown to be valuable in

improving the output label consistency in image segmen-

tation [4]. For example, a ‘horse’ segment is less likely

to co-occur with a ‘microwave’ segment. However, al-

most all previous approaches have limited their analysis to

a small number of coarse (basic-level) categories and their

small contextual relations. In this paper, we show how

large scale rich segment-phrase associations in SPT allow

us to take contextual reasoning to the next level (web-scale)

and obtain state-of-the-art large-scale unsupervised image

segmentation results by enforcing label consistencies (Sec-

tion. 3).

Visual Reasoning Helps Entailment and Paraphrasing.

The ability to read between the lines, and infer what is not

directly stated has been a long standing challenge in many

practical NLP tasks. Textual entailment, as studied in the

NLP community, aims to address this challenge. More for-

mally, given a pair of textual descriptions X and Y , X

entails Y (i.e., X � Y ) if a human who reads X would

most likely infer Y to be true. For example, ‘horse grazing’

entails ‘horse standing’. Bidirectional textual entailment,

known as paraphrasing in NLP, implies semantic equiva-

lence. For example, bird flying is a paraphrase of bird glid-

ing. Both these tasks are important constituents in a wide

range of NLP applications, including question answering,

summarization, and machine translation [1].

Previous approaches to textual entailment and paraphras-

ing have explored a variety of syntactic and semantic cues,

but most were confined to textual information. However,

reasoning about the phrases in the visual domain offers

crucial information not easily accessible in the text alone

[41]. For example, to determine whether the phrase ‘graz-

ing horse’ entails ‘standing horse’, the visual similarity be-

tween them conveys valuable cues (figure. 1). In fact, much

of trivial common sense knowledge is rarely stated explic-

itly in text [30], and it is the segment-based visual analysis

that can help filling in such missing information. Indeed,

several recent approaches have explored how semantic rep-

resentation of natural language can be enhanced when mul-

timodal evidences are combined [39, 27, 41]. Our work

contributes to this newly emerging line of research by pre-

senting a segment-phrase table that draws mid-level corre-

spondences between images and text, and shows its benefit

for visual entailment and paraphrasing (Section. 4).

In summary, our key contributions are: (i) we moti-

vate segment-phrase table as a convenient inter-modal cor-

respondence representation and present a simple approach

that involves minimal human supervision for building it.

(ii) We demonstrate its use for the task of semantic seg-
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Figure 2: Examples of segments and their corresponding phrases

from the SPT. Notice the rich variety of phrases including parts

(‘dog nose’), actions (‘grazing cow’, ‘galloping horse’), etc.

mentation, achieving state of the art results on benchmark

datasets. (iii) We introduce the problem of visual entail-

ment and paraphrasing, and show the utility of the segment-

phrase table towards improving entailment and paraphras-

ing performance.

2. Building the Segment-Phrase Table

The key concern in building a Segment-Phrase Table

(SPT) is scalability. Given that the expected size of the table

would be potentially huge, it would be preferable to have an

approach that requires no manual intervention and is com-

putationally non-intensive, yet producing high-quality seg-

mentation models. In the following, we present our method

to generate the segment-phrase table. Figure 2 shows exam-

ples of instances in SPT.

Given an input textual phrase (e.g., ‘horse grazing’),

the primary goal here is to obtain a segmentation model

(mask) for that phrase. Given the recent popularity of

segmentation-via-detection methods [14], we adopt a sim-

ilar strategy in this work. Towards this end, we start with

the webly-supervised approach of [9], which focused on the

task of detection, and extend it for the task of segmentation.

In [9], images retrieved from Internet are used to ob-

tain well-performing object detection models for any given

query phrase, while involving no manual intervention.

Their method trains a mixture of m components DPM [13]

M = (M1, . . . ,Mm) in the weakly-supervised setting,

where Mc denotes the detection model for the cth compo-

nent. Weakly-supervised localization is more manageable

in their setting as the intra-class variance (within the down-

loaded images) per query is constrained. For example, im-

ages of ‘running horse’ are more constrained than images of

‘horse’ as the latter would have images of not only ‘running

horse’, but also ‘jumping horse’, ‘grazing horse’, ‘fighting

horse’, etc. This benefit leads to mixture components Mc

that are tightly clustered in the appearance space. For exam-

ple, component M1 of ‘running horse’ ends up having all

‘running horse’ frontal views, component M2 would have

‘running horse’ left views, etc.

Given a component Mc and the training images Ic along

with their localized bounding boxes Bc, the next step is

to learn a segmentation model θfgc , θbgc for that component,

where θfg indicates the foreground parameters and θbg in-

dicates the background parameters. Since each component

Mc has low intra-class variance, we formulate our learn-

ing procedure as an iterative graph-based model that be-

gins with the coarse bounding box-based correspondences

across the instances, and refines them to yield fine segment-

based correspondences. The key insight here is to leverage

the cross-image consistencies within appearance-aligned

instance clusters.

Each image is modeled as a weighted graph G =
{V,E}, where V = {1, 2, . . . , n} is the set of nodes de-

noting super-pixels [31], and E is the set of edges connect-

ing pairs of adjacent super-pixels. For each node i ∈ V ,

a random variable xi is assigned a binary value {0, 1},

building a Markov Random Field (MRF) representation.

An energy function is defined over all possible labellings

x = (x1, . . . , xn) ∈ 2n [3] as

E(x) =
∑

i∈V

ui(xi) +
∑

(i,j)∈E

vij(xi, xj). (1)

The unary potential ui measures the agreement between the

labels x and the image, while the pairwise potential vij
measures the extent to which x is piecewise smooth. The

segmentation is obtained by minimizing the energy func-

tion using graph-cuts [3].

Latent Learning. To learn the model parameters, we need

the pixel-level labeling of our training instances. How-

ever our training images Ic are only accompanied with the

bounding boxes Bc. To address the lack of supervision, the

parameter learning task is formulated as a latent optimiza-

tion problem where the pixel labels are treated as latent

variables. We use an iterative expectation-maximization

(EM) based method. Given the latent labeling of the pix-

els, the MRF parameters can be obtained using any super-

vised learning method. We use a simple Gaussian mixture

model (GMM) trained on SIFT features (extracted within

each superpixel) for modeling the unary parameters µ,Σ,

and set the unary potential to the GMM probability i.e.,

ui(xi) = 1√
(2π)k|Σ|

exp(− 1
2 (fi − µ)TΣ(fi − µ)) (fi de-

notes the SIFT feature representation of xi). The pairwise

potential is defined based on the generalized boundary (Gb)

detection probability [28] between two neighbouring super-

pixels xi, xj i.e., vij = exp(−λPGb(xi, xj)) (λ = 0.05).

In the E-step, given the model parameters, the labels for the

pixels are inferred by running Graph-cut [3].

Initialization. To initialize our latent learning method, we

apply Grabcut [36] on each training instance. Grabcut helps

in obtaining a rough, noisy foreground-background labeling

of pixels. We found this to be a reasonable initialization in

our experiments. Grabcut in turn needs weak/interactive an-

notation for initialization. We use the HOG template model

associated with the component to guide the Grabcut initial-

ization. Given the HOG template model Mc, we compute

the regions of high energy within the root filter, where en-



ergy is defined as the norm of the positive weights. All

superpixels within this high energy regions are initialized

to foreground and the rest as background. We found this

initialization to produce good results in our experiments.

3. Semantic Segmentation using Linguistic
Constraints

There is a consensus that semantic context plays an im-

portant role of reducing ambiguity in objects visual appear-

ance. When segmenting an object or a scene, the category

labels must be assigned with respect to all the other cate-

gories in the image. Based on this insight, several methods

have been proposed to incorporate contextual relations be-

tween objects labels [35, 10, 16, 4]. However, to our knowl-

edge, there does not exist an unsupervised approach in liter-

ature that incorporates large-scale semantic contextual con-

straints explicitly at the phrase-level for enforcing output

label consistency. The lack of annotations coupled with the

noise in the Web images presents a herculean challenge to

reason about large-scale contextual relationships in the un-

supervised setting. In this work, we show that it is possible

to incorporate such contextual constraints by leveraging our

segment-phrase table.

Recall that each segmentation model θfg, θbg in our

segment-phrase table is associated with a textual phrase.

For any given object category (e.g., ‘horse’), we consider

all the segmentation models belonging to its related phrases

p ∈ V = {v1, . . . , vN}.1

To segment a test image, we first run the detection mod-

els M per phrase p (denoted as Mp) and localize all its pos-

sible variations. In order to ensure high recall, we perform

non-maxima suppression on the detections of each phrase

independently, and pick all top detections above a thresh-

old. For each detection window, we use its corresponding

segmentation model from SPT to segment it. This segmen-

tation step involves running the Graphcut inference step [3]

using the model parameters (θfg, θbg) in SPT. The output

is a binary foreground-background mask for that detection

window. We multiply this foreground mask by its corre-

sponding detection score S(Mp
c ) (produced by the detec-

tor Mp) to obtain a weight for that mask. This process is

repeated for each detection. For a given test image, this

step results in a pool of weighted foreground masks each of

which associated with a textual phrase.

Given this pool of foreground masks, for example, ‘horse

fighting’, ‘horse rearing’, ‘horse jumping’, ‘horse lying’,

and ‘horse cap’, etc., the labels corresponding to ‘fighting’,

‘rearing’ and ‘jumping’ are in context (as fighting horses

typically jump and rear) and therefore should reinforce each

other, while ‘horse lying’ and ‘horse cap’ are out of context

(probably due to some ambiguities in their visual appear-

ance) and therefore should be suppressed. To determine

1The phrases related to a category are obtained using the query expan-

sion procedure of [9].

such congruence of labels, we use distributed vector rep-

resentations that capture syntactic and semantic word rela-

tionships.

Enforcing Linguistic Constraints. Distributed represen-

tations of words in a vector space is popular in the NLP

community to help learning algorithms achieve better per-

formance at language analysis tasks that involve analyzing

the similarity between words [33]. The word representa-

tions are valuable as they encode linguistic regularities and

patterns that can be represented as linear translations.

In our work, we use these vector representations to com-

pute similarity between two fine-grained semantic compos-

ite labels. Given a composite label, such as ‘horse jumping’,

we use the approach of [32] to obtain its vector representa-

tion: V (‘horse jumping’) = V (‘horse’) ⊕ V (‘jumping’).
The ⊕ operator yields a vector originating at ‘horse’ and

pointing towards ‘jumping’. This aims at approximating

what ‘jumping’ does to ‘horse’. To estimate the similar-

ity between any two composite labels p, q, we compute the

cosine distance between their corresponding composite vec-

tor representations i.e., ψ(p, q) = cosine(V (p), V (q)). In

our implementation, we use word2vec embeddings and rep-

resent labels using a 300 dimensional representation com-

puted using the pre-trained vectors of [33].

To enforce label consistency using this linguistic prior,

we construct a fully-connected graph using the pool of fore-

ground masks, where the nodes are individual foreground

segments, and the edges are phrase similarities ψ. We per-

form a single round of message passing over this graph to

obtain the new scores for each of the masks. The new scores

are computed as: S(Mp
c ) =

∑
q S(M

q
c )× ψ(p, q).

Given these re-scored foreground masks, we use sum-

pooling to merge the multiple masks and estimate a single

resultant weighted mask for the image. We apply Graph-

cut using this weighted mask as the unary potential and the

same pairwise potential as used in Section 2. The output of

this Graphcut is the final semantic pixel labeling of the test

image (See Figure. 3 for examples of unsupervised segmen-

tation of ImageNet).

4. Visual Semantic Relations

The availability of rich bijective associations in our

segment-phrase table representation opens the door for sev-

eral new capabilities in natural language understanding and

reasoning. In this work, we have analyzed its utility for

three challenging NLP problems: entailment, paraphrasing,

and relative semantic similarity.

4.1. Visual Entailment

If we come across a fact that a horse is eating, then based

on our common knowledge, we infer that the horse must be

standing. Reasoning about such knowledge is the primay

focus of the entailment task. More specifically, X entails

Y , i.e., if X is true, then Y is most likely (based on com-

monsense) also true. Positive entailments are denoted as



�, while non-entailments are denoted as 2 (for e.g., ‘horse

lying’ 2 ‘horse standing’). Entailment continues to be an

open-research challenge in the NLP community, where its

scope has been largely limited to textual domain [1]. In the

following, we show that our SPT provides unique capabili-

ties for inferring entailment in short (visual) phrases.

Let T (X) and T (Y ) be the set of worlds in whichX and

Y are true respectively. From the set-theoretic perspective,

X � Y iff. T (X) ⊂ T (Y ). We approximate T (X) and

T (Y ) by the set of images in whichX and Y appear. IfX �

Y , this means that for all segments for whichX can be used

as a textual description, it must also be that Y can be used

as a description. However X does not need to be applicable

for all segments within Y . Intuitively, this means Y can

be applied in a more visually divergent context than X . To

capture this intuition of directional visual compatibility, we

define the visual entailment score as:

entail(X � Y ) := Sim→
R2I(X,Y )− Sim→

R2I(Y,X), (2)

where Sim→
R2I refers to (directed) visual similarity measure

between two phrases. To compute Sim→
R2I(X,Y ), we use

the top K (K=10) segmentation masks corresponding to the

phrases X,Y in our SPT, and estimate the (average) simi-

larity between these masks using the asymmetric region-to-

image similarity measure introduced in [23].

Enforcing transitivity constraints via global reasoning.

While it is possible to reason about an entailment relation

X � Y independently using the above approach, the avail-

ability of large pool of (related) phrases in our SPT facil-

itates richer global reasoning that can help satisfy higher-

order transitivity constraints. For example, the knowledge

of ‘horse rearing’ � ‘horse jumping’, and ‘horse fighting’ �

‘horse rearing’, should influence when determining ‘horse

fighting’ � ‘horse jumping’. To enforce such transitivity

constraints, we perform a global inference over an entail-

ment graph G. Each node of the graph represents an input

phrase and an edge e ∈ E between two nodes represents

their entailment relationship. For every two nodes x, y ∈ V ,

we compute entailxy (as in eq (2)) as the edge weight be-

tween them. Enforcing transitivity in the graph implies that

if there exists edges e(x, y) and e(y, z) in the graph, then

the edge e(x, z) should also exist. In other words, when-

ever the relations x � y, and y � z hold, we have x � z.

We formulate this problem as an integer linear program-

ming, where a linear function is maximized under linear

constraints, with the goal of finding existence (or non-

existence) of entailment relations. To find the best en-

tailment graph that has the maximum sum over the edge

scores [2], we need to find the weights Wxy that determine

whether edge e(x, y) exists in the final entailment graph or

not i.e.,

max
∑

x 6=y

entailxyWxy − λ|W | s.t. Wxy ∈ {0, 1},

∀x, y, z ∈ V,Wxy +Wyz −Wxz ≤ 1 (3)

where Wxy +Wyz −Wxz ≤ 1 ensures that the transitivity

constraint is satisfied.

4.2. Visual Paraphrasing

Paraphrasing is a related NLP task where the goal is to

recognize phrases with semantic equivalence. For example,

the knowledge of a ‘horse jumping’ is (semantically) same

as that of a ‘horse leaping’. The paraphrasing task is often

considered as a special case of entailment, where bidirec-

tional entailment relationship holds. Based on this observa-

tion, we extend our proposed visual entailment approach to

also address the problem of visual paraphrasing.

In defining the notion of semantic equivalence, textual

paraphrasing approaches adopt a relaxed notion as it is of

greater practical value to detect paraphrases that are lexi-

cally divergent rather than those with trivial differences in

wordings. Following this relaxed notion, we define a pair

of phrases to be paraphrases if the absolute difference of the

entailment scores (entailxy and entailyx) is within a thresh-

old.

By leveraging the visual knowledge available in our SPT,

we show that it is possible to find interesting paraphrases

that have not been previously detected in the existing NLP

resources (see Figure 5 in Section 5.3).

4.3. Relative Semantic Similarity

Quantifying semantic similarity is one of the basic tasks

in NLP. Although there exist many approaches and re-

sources for measuring word-level analysis, relatively little

exists for phrase-level. However to determine whether ‘cat

standing up’ (in Fig. 1) is visually more similar to ‘bear

standing up’ than to ‘deer standing up’, word-level lexical

similarities alone would not be sufficient. Our SPT pro-

vides a natural means to compute such semantic distances

visually directly at the phrase-level. In our experiments, we

use the entailment score measure entailxy as the semantic

similarity between the phrases x, y.

5. Experiments and Results

We evaluate the quality of the segment-phrase table and

its application in semantic segmentation, where language

helps vision, and visual entailment and paraphrasing, where

vision helps language.

5.1. SPT Quality Evaluation

We evaluate the quality of our segment-phrase table on

standard segmentation datasets. Our results show that the

SPT (i.e., even without enforcing the linguistic constraints)

performs on par with other state-of-the-art methods.

Joint Object Discovery and Segmentation. In [37], the

problem of automatically discovering and segmenting out

the common regions across a pool of images for an object

category was studied. We analysed the performance of the

segment-phrase table on this task.



Full set Subset (100 samples per category)

Train/Test Car Horse Plane Car Horse Plane

Method same data (P) (J) (P) (J) (P) (J) (P) (J) (P) (J) (P) (J)

[18] yes – – – – – – 58.7 37.15 63.84 30.16 49.25 15.36

[19] yes – – – – – – 59.2 35.15 64.22 29.53 47.48 11.72

[22] yes – – – – – – 68.85 0.04 75.12 6.43 80.2 7.9

[37] yes 83.4, 63.4 83.7 53.9 86.1 55.6 85.38 64.42 82.81 51.65 88.04 55.81

[6] yes 87.1 64.7 89 57.6 90.2 60.0 87.65 64.86 86.16 33.39 90.25 40.33

[9] baseline no 85.7 69.1 78.7 44.2 72.2 31.3 85.41 70.04 77.39 41.58 71.59 31.22

SPT (ours) no 88.2 69.9 91.2 59.0 91.0 57.1 88.27 70.14 89.01 54.12 88.85 56.19

Table 1: Segmentation results on Bing dataset [37]. Our approach outperforms the previous methods on both the precision and Jaccard

measures. Row 6 demonstrates the result obtained by turning off the latent learning procedure in our approach i.e., learning the model

parameters directly from the grabcut initialization over the detections of [9]. Latent learning indeed contributes towards considerable

improvement in performance.

Method Supervision aero boat car cat cow dog horse sheep tv mean

baseline [9] no 73.8 77.5 72.9 72 78.2 75.6 76.2 77.5 76.3 75.5

Precision SegProg [25] yes 87.2 85.3 82.8 82.3 85.5 83.9 81.7 81.8 80.2 83.4

SPT (ours) no 75.4 78.5 84.2 78.3 83.8 83.3 78.5 82.6 80.2 80.5

baseline [9] no 32.7 31.9 48.6 33 45.5 38.4 22.2 43.7 48.9 38.3

Jaccard SegProg [25] yes 59.5 48.6 66.9 61.9 61.8 61.3 49.1 55.9 61 58.5

SPT (ours) no 43.5 44.7 71.5 50.1 58.7 58.8 46.4 55.9 59.9 54.4

Table 2: Segmentation Results on ImageNet Auto-annotation: We compare our method with the method of [25] and a baseline based

on [9]. while [25] uses Pascal segmentation masks, ImageNet bounding boxes, and WordNet taxonomy, our model needs no explicit

supervision. Nonetheless, it obtains comparable results.

SegProg	   Our	  

SegProg	   Our	  

SegProg	   Our	  

Figure 3: Results obtained on the ImageNet auto-annotation task.

The approach of [25] uses Pascal segmentation masks, ImageNet

bounding boxes, and WordNet taxonomy, while our approach uses

no explicit supervision.

Table 1 compares the results of our approach with other

competing baselines on this dataset [37]. Quantitative eval-

uation is performed against manual foreground-background

segmentations that are considered as ‘ground truth’. We

use similar performance metrics: precision P (ratio of cor-

rectly labeled foreground and background pixels), and Jac-

card similarity J (intersection divided by the union of the

segmentation result with the ground truth segmentation).

Our approach outperforms previous methods on both the

metrics. This strong result brings to light an interesting

trade-off: using large datasets with zero human supervision

vs. smaller datasets with some human supervision. Previ-

ous works have studied the latter setting, where the num-

ber of images considered were small but had some cura-

tion. For example, [18, 19] uses MSRC & iCoseg, [22] uses

FlickrMFC. Using the segment-phrase table, our approach

exposes the former setting i.e. using a larger pool of web

images but with zero curation. The amount of human super-

vision used in making these datasets (MSRC, iCoseg, etc.)

is an important aspect when scalability is of concern.

In comparison to the method of [37], the segment-phrase

table not only obtains better results, but is also computation-

ally attractive. [37] requires a measure of visual saliency

and is thereby slow due to the estimation of dense corre-

spondences (using SIFT flow). As a result, it considers a

medium-scale imageset (4000 images) per category. How-

ever, in our approach as the segment-phrase table represen-

tation facilitates meaningful organization of the data (both

in the semantic as well as appearance space), the intra-class

variance is highly constrained. This feature simplifies the

cosegmentation task and therefore allows the use of simple

models to achieve good results.

ImageNet Auto-annotation. In [25], the problem of au-

tomatically populating the ImageNet dataset with pixel-

wise segmentations was studied. A unique feature of our

segment-phrase table representation is that generic models

can be learned (in an offline setting) and be used to perform

segmentation across multiple datasets. This feature circum-

vents the limitation of previous methods [37, 6] that operate

in the transductive setting (where the test and training sets



Bing (Full) Bing (Subset) ImageNet

Method (P) (J) (P) (J) (P) (J)

SPT 90.1 62.0 88.7 60.2 80.5 54.4

SPT+L 89.7 65.9 89.3 63.3 82.5 55.7

Table 3: Enforcing linguistic constraints helps semantic segmen-

tation. This table displays the results with (bottom row) and with-

out (top row) enforcing linguistic constraints. The mean perfor-

mance (Precision and Jaccard) across all the categories on the joint

object discovery and segmentation task in Bing (Full) and Bing

(Subset) as well as the ImageNet auto-annotation task is reported.

are identical). Given this benefit, we analyze the perfor-

mance of our models on the auto-annotation task as well.

We follow the experimental set up of [25]2 and use a

similar procedure as detailed earlier for segmenting the im-

ages. Table 2 compares our results with [25]. Our method

obtains similar levels of precision with a small drop in Jac-

card. Note that our method does not require any form

of manual supervision, while [25] uses a (i) seed set of

segmentation masks (VOC2012), (ii) a taxonomy structure

(WordNet), and (iii) a held-out set of labeled images (with

bounding boxes) to train their model parameters. Figure 3

shows some qualitative examples of comparisons between

our method and [25].

Qualitative Results. Using our approach, we have pro-

duced a segment-phrase table containing over 50,000 en-

tries. Figure 2 shows some examples, covering a variety

of phrases including parts (‘dog nose’), attributes (‘briddle

horse’), actions (‘grazing cow’), etc. We believe this table

has the largest number of phrasal segmentation models re-

ported in the literature.

5.2. SPT for Semantic Segmentation

In Table 3, we analyze the effect of enforcing linguistic

constraints on the above tasks. Introducing linguistic con-

straints results in a significant gain in performance. This

result shows the value of using semantic constraints to im-

prove segmentation accuracy (by way of enforcing output

label consistency). Our work demonstrates the possibility

of enforcing such semantic constraints in an unsupervised

manner by leveraging the availability of phrasal labels in

our segment-phrase table.

5.3. SPT for Visual Semantic Relations

We evaluate applications of SPT to three main language

tasks: entailment, paraphrasing, and also relative similar-

ities. For each of these tasks we have a detection-based

baseline to show the importance of segments in the SPT,

and a language-based baseline to show the gain in using rich

visual information encoded by SPT. For qualitative results,

please refer to Figure 5.

2The ground-truth masks and the foreground masks produced by the

segmentation propagation method of [25] are both available on their

project website, enabling us to compare our results.

Horse fighting! Horse rearing!

Bird flying! Bird gliding!

Relative Similarity!

:	   >	  
Chimpanzee sitting!Bear sitting!

:	  

Deer sitting!Bear sitting!

Visual Paraphrasing!

Visual Entailment!

:	  

Dog jumping!Cat jumping! Person jumping!Cat jumping!

:	  >	  

=	  |	  =	  
=	  |	  =	  

Dog catching! Dog fetching!

=	  |	  =	  
=	  |	  =	  /	  

=	  |	  =	  
=	  |	  =	  /	  

Bird singing! Bird standing!

=	  |	  =	  
=	  |	  =	  

Figure 5: Qualitative examples for visual entailments, paraphras-

ing and relative similarities inferred by our method.

Dataset and Metrics: Building upon the relation phrases

of [38], we collected a dataset of 5,710 semantic relations

that include entailment (270 true relations), and paraphras-

ing (25 true relations). We also collected a dataset of 354

relative similarity statements that contains 253 valid rela-

tive similarity statements. We report number of correctly

labeled semantic relations versus the declaration rate as our

evaluation metric.

5.3.1 Visual Entailment

Detection-based Entailment Baseline. To provide an

apple-to-apple comparison between webly supervised seg-

mentation and bounding boxes for visual text entailment,

we also define entailment score based on detected bound-

ing boxes. We use almost the same scheme as shown in

Section 4 to compute entailxy except that here the bounding

boxes obtained from DPM detections (instead of segments

from SPT) are used to compute the similarity between two

images. Figure 4 reports results for this baseline (‘Detec-

tion’) as well as a version that this baseline is augmented by

the ILP formulation 3 (‘Detection+ILP’).

Language-based Entailment Baseline. There is little prior

work for inferring textual entailment for short phrases. We

therefore propose a new method for text-based entailment

that is analogous to the vision-based entailment method de-

scribed above. We obtain the textual semantic represen-

tation of phrases X and Y by element-wise addition of

word2vec embeddings[33] of the words in each phrase.3

We compute contextual similarity as the cosine distance be-

tween the phrase embeddings.

3Element-wise multiplication is another common choice. In our exper-

iments particular choice of vector composition did not yield much differ-

ence. We only report results based on element-wise addition for brevity.
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Figure 4: Visual Semantic Relation Results. Our SPT-based approach obtains better results compared to baseline methods. In case of the

entailment task, global reasoning further helps in improving the performance.

We assign X � Y to be true only when their contextual

similarities are bigger than a threshold. Although contex-

tual similarity differs from the notion of entailment, many

previous studies found that contextual similarities to be one

of the useful features for recognizing entailment [1]. Since

most pairs are not in the entailment relations, it is possi-

ble to build a competitive baseline by predicting entailment

only when there is a strong contextual support. To deter-

mine the directionality of entailment, we compare the size

of the corresponding possible worlds. We approximate this

by comparing probability scores obtained based on MSR

Language Model [15].

We also considered the use of word-level entailment re-

sources such as WordNet [34] and VerbOcean [7], but we

found that both resources contain very sparse entailment re-

lations to produce any competitive baseline for our visual

phrase entailment task. In addition, word-level entailment

does not readily propagates to phrase-level entailment. For

example, while ‘horse eating’ would entail ‘horse standing’,

‘cat eating’ does not entail ‘cat standing’. We report results

both for this baseline (‘Language’) and augmented by the

ILP formulation (‘Language+ILP’) in Figure 4.

Visual Entailment Results. Figure 4 shows comparison of

our method with the baselines. Visual information encoded

by SPT greatly improves the entailment results compared to

a competitive language baseline. It is also interesting to note

that the SPT-based entailment outperforms the detection-

based baseline confirming our intuition that segments are

necessary for subtle visual reasoning. The best performance

is achieved when the global inference is applied over the en-

tailment graph for enforcing transitive closure.

5.3.2 Visual Paraphrasing

Baselines. We use the language-based and detection base-

lines as explained in Section 5.3.1. The language-based

baseline only computes contextual similarities (cosine sim-

ilarity between phrase embeddings) and does not use the

language model frequencies. The detection baseline is sim-

ilar to our method where the paraphrasing score is computed

based on the bounding boxes rather than segments.

Visual Paraphrasing Results. Figure 4 shows comparison

of our method in visual paraphrasing with the baselines.

Our SPT-based paraphrasing significantly outperforms the

language-based baseline.

5.3.3 Relative Visual Similarity

Baselines. We use language-based and detection baselines

similar to the two previous task. For every baseline, we

compute the similarity between two phrases and report the

one with higher similarity.

Relative Visual Similarity Results. Figure 4 shows com-

parison of our method in relative visual similarity with the

baselines. Our SPT-based approach outperforms the com-

petitive baselines. It is interesting to see in Figure 5 that

SPT enables rich and subtle visual reasoning that results in

inferences such the way ‘bears’ sit is more similar to that of

‘chimpanzees’ compared to ‘deers’ sitting.

6. Conclusion

In this work, we have introduced the segment-phrase

table as a large collection of bijective associations be-

tween textual phrases and their corresponding segmenta-

tions. Such a representation achieves the specificity of

category-level analysis while maintaining the expressive-

ness of the high-level descriptions. We have demonstrated

the great value offered by this resource for both vision as

well as natural language understanding tasks. By achiev-

ing impressive results on the segmentation task, we have

shown that the segment-phrase table allows leveraging lin-

guistic constraints for semantic reasoning. The association

of high-quality segmentations to textual phrases also aids

richer textual understanding and reasoning. We have shown

its benefit on the tasks of entailment, paraphrasing and rel-

ative similarity. Our approach enables interesting research

directions and opens the door for several applications.
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