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ABSTRACT: Probabilistic prediction of the confidence limits on long-time deflec
tions and internal forces of prestressed concrete segmental box-girder bridges is 
developed. The uncertainty of the predictions based on the existing models for 
concrete creep (the prior) is very large, but it can be greatly reduced by Bayesian 
updating on the basis of short-time measurements of the deflections during con
struction or of short-time creep and shrinkage strains of specimens made from the 
same concrete as the bridge. The updated (posterior) probabilities can be obtained 
by latin hypercube sampling, which reduces the problem to a series of deterministic 
creep structural analyses for randomly generated samples of random parameters of 
the creep and shrinkage prediction model. The method does not require lineariza
tion of the problem with regard to the random parameters, and a large number of 
the random parameters can be taken into account. Application to a typical box
girder bridge with age differences between its segments and with a change of struc
tural system from statically indeterminate to determinate is illustrated numerically. 
The results prove that design for extreme, rather than mean, long-time deflections 
and internal forces is feasible. Adoption of such a design approach would improve 
long-term serviceability of box-girder bridges. 

INTRODUCTION 

Prestressed concrete segmental box-girder bridges are structures that are 
particularly sensitive to their long-time deformations. Deflections much in 
excess of their calculated values or severe cracking after a longer service 
period have often been experienced. The consequences, which include costly 
repairs and even closing of a bridge before the end of its design lifetime, 
represent a great economic loss. One important cause of this situation is no 
doubt the fact that, outside the laboratory, creep and shrinkage of concrete 
are highly uncertain random phenomena, influenced by many random pa
rameters. Predicting only mean deflections, which is the current practice, is 
insufficient. The design should be based on predictions of extreme deflec
tions that are exceeded with a certain specified small probability. 

The probabilistic approach necessitates a realistic creep prediction model, 
such as the BP model (Bazant and Panula 1978,1980, 1982). In probabilistic 
analysis, it would make little sense to use simple but unrealistic models that 
have large systematic errors resulting from inadequacy of the mathematical 
model per se, rather than from randomness of influencing parameters. On 
the other hand, the usefulness of a sophisticated creep prediction model, such 
as the BP model, is limited unless its use is combined with a probabilistic 
approach. 

'Prof. ofCiv. Engrg., Dept. ofCiv. Engrg., The Tech. Inst., Northwestern Univ., 
Evanston, IL 60208. 

2Grad. Res. Asst., Dept. of Civ. Engrg., The Tech. Inst., Northwestern Univ., 
Evanston, IL. 

Note. Discussion open until March I, 1990. To extend the closing date one mon~h, 
a written request must be filed with the ASCE Manager of Journals. The manuscnpt 
for this paper was submitted for review and possible publi~ation on June 7, 1988. 
This paper is part of the Journal of Structural Engmeenng, Vol. 115, No. 10, 
October, 1989. ©ASCE, ISSN 0733-9445/89/0010-2528/$1.00 + $.15 per page. 
Paper No. 23976. 

2528 

If creep and shrinkage properties of concrete are predicted solely on the 
basis of the existing models, the uncertainty is very large. For the BP model 
(Bazant and Panula 1978, 1980, 1982), errors that are exceeded with a 5% 
probability (2.5% on the plus side, 2.5% on the minus side) are about 37%, 
while for the simpler but less realistic models of ACI Committee 209/11 
(1971, 1982) and CEB-FIP (1978) they are 75% and 91%, respectively (BaZant 
and Panula 1982; BaZant 1988; Zebich and BaZant 1981). As shown in BaZant 
and Panula (1982), this uncertainty can be greatly reduced if some short
time measurements are made and Bayesian statistical reasoning applied. An 
analytical method to do that for long-time creep compliance of concrete was 
developed in Bazant (1983) and Bazant and Chern (1984). This method, 
however, works only if the creep law is linearized and if there are only few 
random parameters (two or three). None of these simplifications is adequate 
for predicting deflections of an entire box girder. 

General applicability can be achieved by combining Bayesian updating 
with a sampling approach, as formulated in Bazant (1985). This reduces the 
problem to a series of conventional (deterministic) structural creep analyses 
for various samples of random parameters. A novel sampling method, called 
latin hypercube sampling (McKay 1980; McKay et a1. 1979, 1976), has been 
adopted. This sampling method, which was originally applied to direct (non
Bayesian) probabilistic prediction of structural creep effects (Bazant and Liu 
1985), and was later extended to Bayesian extrapolation of shrinkage data 
(Bazant et a1. 1987), is computationally much more efficient than the method 
of point estimates used previously (Madsen and Bazant 1983). 

In the present study, Bazant's (1985) method used for shrinkage in Bazant 
et a1. (1987) will be applied to short-time measurements during construction 
in order to improve the predictions of long-time deflections and internal forces 
in a segmental box girder which undergoes a change of its structural system 
during construction and has a nonuniform age of concrete. This approach 
has the potential of substantially reducing the uncertainty of long-time pre
dictions and making it possible to adjust the vertical alignment of the seg
ments during construction, thereby minimizing deviations from the desired 
vertical profile of the bridge. 

LINEAR CREEP ANALYSIS OF SEGMENTAL Box GIRDER 

Concrete is assumed to behave as an aging linearly viscoelastic material 
(Bazant 1982a, 1988). It is characterized by the compliance function J(t, t') 

representing the strain of concrete at time t caused by a unit uniaxial stress 
applied at time t'. J(t, t') is defined, according to the BP model (Bazant and 
Panula 1978, 1980, 1982), as a sum of the asymptotic elastic compliance, 
the basic creep compliance, and the drying creep compliance. The shrinkage 
strain, also defined according to the BP model, is assumed to occur ho
mogeneously throughout the cross section, which is a usual simplification 
in design. The thermal strains are ignored. 

In a typical segmental bridge (Fig. 1), the age of concrete is nonuniform. 
Let time t represent the age of the oldest segment, numbered k = I. The 
compliance function of segment number k is denoted as Jk(t, t'). If the prop
erties of concrete are the same as in the segment number 1, then Jk(t,t') = 

JI(t - Ilb t' - Ilk) = compliance function of segment number I, where Ilk 
is the age difference between the segments k and 1. 
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FIG. 1. Bridge Analyzed in Example (Kishwaukee River Bridge, III.): (a) Longi

tudinal Cross Section; (b) Cantilever (Half-Span) Analyzed; (c) Box Girder Seg

ment; (d) Cross Section Simplified for Analysis; and (e) Elastic Deflection Curve 

and Deflections Measured (Dimensions in Inches, 1 in. = 25.4 mm) 

For numerical computation, time t is subdivided by discrete times tj (i = 

1,2 ... ) in time steps I1t j = tj - t j _ l • Until time tm the box girder consists 
of a statically determinate cantilever, and the stress is then constant if the 
load is constant. We assume that the load due to the own weight of the 
segment number k is applied instantly at time tk at which this segment is 
placed in position and prestressed (or freed from the formwork, if cast in 
situ). Thus, all the stresses vary at t = tk by a sudden jump and subsequently 
remain constant until time tHI when the next segment is placed. This results 
in a staircase history of moment (Fig. 2). At time tm the cantilevers are 
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FIG. 2. History of Minimum Bending Moment at Support and Maximum Bending 

Moment at Midspan Produced by Construction Sequence with Time Steps Con
sidered in Analysis 

joined, and afterwards the stresses gradually redistribute due to statical in
determinacy. This causes, after time tm , the stresses to vary continuously in 
time . 

For our purposes the box-girder bridge (Fig. 1) may be analyzed as a beam 
in which the cross sections remain plane and normal. We neglect the shear 
lag (Kffstek and Bazant 1987), for the sake of simplicity. We ignore the 
effects of nonprestressed steel, and of transverse or vertical prestressing (if 
any). Perfect bond is assumed for the tendons. For the sake of simplicity, 
we assume that the two cantilevers joined at midspan are symmetric, and 
the ages of symmetric segments are the same (Fig. 3). The supports are 
assumed to prevent rotation but permit free horizontal dilatation of the span. 

The cantilevers are made continuous at time tm • Since rotations at the can
tilever ends are impossible after time (m, a redundant bending moment, X, 

gradually builds up at the midspan after time tm • Due to symmetry, however, 
the shear force at midspan is zero, so the structure is only singly redundant 
(Fig. 3). 

The structure is analyzed with a computer program for the layered finite 
element method. Each segment of the box girder (Fig. 1) represents one 
finite element, which is subdivided into layers. The reinforcement represents 
additional elastic layers. The prestressing is implemented by introducing for 
the prestressed bars initial strains for treatment of creep, and the constitutive 
law based on the compliance function is converted to the rate-type form 
corresponding to an aging Maxwell chain model. This is done using the 
subroutine MATPAR described in BaZant (1982b), and in an improved ver
sion by Ha et al. (1984). The numerical integration in time steps is carried 
out according to the exponential algorithm for Maxwell chain (Bazant 1982a, 
1988). 

It may be noted that after the completion of calculations a new creep law 
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FIG. 3. Change of Structural System and Moment Redistribution 

of concrete that is more realistic, simpler to use, and better justified phys
ically was developed (Bazant and Prasannan 1988). Through a certain trans
formation of time, the model can be reduced to a nonaging Kelvin chain, 
which would allow a simpler solution method than that used here. 

Random Parameters for Creep and Shrinkage 
We adopt the same probabilistic approach as in Bazant and Liu (1985) 

and Madsen and Bazant (1983); see also Kfistek and Bazant (1987) for all 
the approximations and simplifications involved. For the deterministic basis, 
the BP model from Bazant and Panula (1978, 1980, 1982) is used. The 
random errors of model are introduced through uncertainty factors 6], 62 , 63 

as follows: 

Esh(t, to) = 91EshookhS(t, to) ........................................... (1) 

J(t,t') = 9{~0 + co(t,n] + 93[Cd(t,t',to) - Cp(t,t',to)] ............... (2) 

in which to = the age at the start of drying; t' = the age when the load is 
applied; coefficients Eshoo, kh, Eo and functions S, Co, Cd and Cp are defined 
in Bazant and Panula (1978); Eo = the asymptotic modulus; CoCt, t') = the 
basic creep compliance (i.e., compliance at constant moisture content); 
Cd(t, t' , to) = an additional compliance due to simultaneous drying; and 
Cit, t' ,to) = a further correction due to drying which is negligible except 
for very thin members after a long period of drying (here we use Cp = 0). 

In addition to uncertainty factors 6" 62 and 63 , we consider that, in the 
BP model, the environmental relative humidity h, concrete strength f:, water
cement ratio w/c, gravel-cement ratio g/c, and cement content c are also 
random. Thus, we have altogether eight random material parameters 6; (i = 

1,2, ... ,8): 6" 62 , 63 , 64 = h, 65 , 66 = w/c, 67 = g/c, and 68 = c. 

Because the strength is correlated to the water-cement ratio according to 
the approximate relation f: = [1/(w/c) - 0.5] x 3,300 psi, the random 
parameter for strength has been introduced as the uncertainty factor 65 of 
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TABLE 1. Example of Set of 16 Random Samples of Eight Random Parameters 
for Latin Hypercube Sampling 

Run 8, 82 83 8. 85 86 87 8s 
(1 ) (2) (3) (4) (5) (6) (7) (8) (9) 

1 13 11 5 10 13 8 16 6 
2 8 I3 4 2 11 4 6 8 
3 2 9 6 3 2 12 13 2 
4 5 2 I3 16 IO 1 4 1 
5 11 5 15 9 7 IO I 5 
6 3 4 8 6 4 2 15 7 
7 7 8 9 II 12 11 IO 13 
8 1 IO 11 12 16 5 7 15 
9 IO 14 14 4 15 7 3 4 

IO 4 3 16 13 3 13 2 12 
II 16 16 IO 8 9 3 9 II 
12 6 12 12 7 I 16 14 9 
13 15 7 7 14 14 15 8 14 
14 14 I 3 I 5 14 12 16 
15 12 6 2 15 8 6 5 3 
16 9 15 I 5 6 9 II JO 

this relation; i.e., f: = 65 [1/(w/c) - 0.5] x 3,300 psi. The expectations 
and the coefficients of variation of the random parameters are listed in Table 
1; their values were justified in Madsen and Bazant (1983). The remaining 
parameters of the BP model are considered, for the present calculation, as 
deterministic: initial relative humidity h = 1, temperature T = 23° C, shape 
factor k, = 1, sand-cement ratio s / c = 1. 75, age at the start of drying of 
each segment to = 3 days, and effective thickness of the walls of the box 
girder D = 12 in. 

The calculation was applied, as an example, to the Kishwaukee River 
Bridge in Illinois, for which the concrete mix per cubic yard was: 658 lb of 
cement, 289 lb of water, 1,864 lb of gravel, 1,150 lb of sand, and 4.5% of 
air. The slump was 3 ± 1 in. The wall thickness D is variable within the 
cross section and along the box girder. Although the effect of this variation 
is quite important for the differences in the creep properties, it must be left 
for a separate, more-extensive investigation dealing with the effect of mois
ture diffusion through the walls of the girder. In practice, often the values 
of the initial prestressing forces at anchors as well as the friction losses along 
the tendon are not controlled very accurately. All the values Fk(tk) should 
then also be considered as additional random variables 6

9
, 6

10
, 6

1
" •••• 

It should .also be kept in mind that parameters 6" ... , 68 actually represent 
a random field over the box girder. Here we assume that the value of each 
of them is uniform over the entire girder, which is a simplification. Fur
ther:nore, the environmental humidity is in reality a random process in time 
(Bazant and Wang 1983), as well as a random field along the surface. 

BAYESIAN STATISTICAL PREDICTION BY SAMPLING 

. In the initial w?rk on Bayesian statistical extrapolation of measured short
tIme creep comphance (Madsen and Bazant 1983), an analytical solution was 
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rendered possible by a simplification and transformation which made the 
response a linear function of only two random parameters. Such a simpli
fication is insufficient for predicting the response of a structure; the depen
dence on random parameters in nonlinear and more than just two random 
material parameters are needed. Bazant (1985) showed that, for nonlinear
izable problems, Bayesian statistical predictions can in general be obtained 
by a certain modification of the latin hypercube sampling (McKay 1980; 
McKay et aI. 1976, 1979). BaZant et aI. (1987) applied this method to shrinkage 
extrapolation. We will apply this method to a bridge. 

Let Y; (i = 1,2, ... ,/) at times t; be the long-time effects of creep or 
shrinkage that we want to predict, and let Xm (m = 1,2, ... ,M) at times t:n 

be the short-time effects of creep or shrinkage that have been measured and 
which we want to use for improving the predictions. Y; may be either the 
long-time creep or shrinkage strains, or the long-time structural effects, such 
as the maximum deflection of the box girder, the maximum bending moment 
or the span shortening at, say 5, 10, 20, and 40 years. Xm may be, for 
example, the strains of a control cylinder or the box girder deflections at, 
say, 5 days, 7 days, 28 days, and 5 months. 

The values of Y; and Xm that may be predicted on the basis of the available 
information (i.e., without taking the measurements Xm into account) will be 
denoted as Y; and X~. The values of Y; may be predicted as certain known 
functionsy; of the random parameters, i.e., Y; = y;(6), where 6 = (e l,e2, •. • ,eN ) 

= vector of random parameters. These functions need not be defined by an 
explicit formula; they are normally defined by a computer algorithm (pro
gram), which is the case for the present bridge. Predictions can be also ob
tained for the short-time effects, and their predicted values, which generally 
differ from the measured values X~, may again be regarded as functions of 
6; X~ = xm(6). Functions y;(6) and xm(6) are nonlinear. They are defined by 
the finite element program for box-girder deflections or bending moments. 

Statistical analysis of numerous test data from the literature yielded cer
tain, albeit limited, information on the statistical properties of the random 
parameters eJ, ... , eN (Bazant and Panula 1978, 1980, 1982; Madsen and 
Bazant 1983; Tsubaki et al. 1986; Bazant and Zebich 1983). This may be 
regarded as the prior statistical information, characterized by the prior prob
ability density distributions !~(en) with means ij~ and standard deviations s~ 
(n = 1,2, ... ,N). With this knowledge it is possible to predict the statistical 
distributions!!' of X~ = xm(6) and compare them to the available short-time 
measurements Xm of known distributions I!, The objective is to use this 
comparison to improve, or update, the statistical information on the random 
parameters en" This improved statistical information may be characterized by 
updated, or posterior, distributions !~(en)' from which the updated, or pos
terior, distributions frey;') of the long-time effects Y; may be obtained ac
cording to functions y;(6), The double primes are used to distinguish the 
posterior characteristics from the prior characteristics, which are labeled by 
single primes, 

As shown in general by Bazant (1985) and applied to shrinkage by Bazant 
et al. (1987), the method of latin hypercube sampling can be effectively 
extended to problems of the present type. In this sampling method, the known 
distribution !;'(en ) of each input parameter en is partitioned into K intervals 
ae(k) (strata) of equal probability 11K (k = 1, ... ,K). The subdivision may 
be obtained according to the cumulative probability distribution, as illus-
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trated ,in Fig. 4. The number of random parameter samples in latin hypercube 
sampling must be chosen to be the same as the number of computer runs to 
be made, and from each interval the random parameter value must be sam
pled exactly once; i.e., it must be used in one and only one computer run. 
The sampled value ne.ed not be taken randomly from the interval, but may 
be taken at the centroid of the interval (Fig. 4). 

The random selection O! the intervals ae(k) to be sampled for a particular 
computer run ~an be carned out as follows. With each random parameter 
one ma,y associate a sequence of integers representing a random permutation 
of th~ Illteger~ 1, 2, ... , K. For 16 intervals (K = 16), such random per
mutat~ons .are Illustrated in the columns of Table I. A different random per
mutatlO~ IS used for each column (each en). Thus, each interval number 
appears III each column of Table 1 once and only once. The individual latin 
hypercube samples. are then represented by the rows in Table I. According 
to the creep or shnnkage prediction model, one can then calculate for each 
such sample ~~k) (n = I, ... , N) the effects X~k) that correspond to the mea
s~~k~d short-time e!fects Xm , and _also the corresponding long-time effects 
Y! ' The ,m~an p!,or prediction. X~ for the measured effects X

m
, the mean 

pn~r ~redlctlOn y; of the long-time effects, and the corresponding standard 
deViatIOns then are 

1 K 

X' = - 2: X,(k) 

m K k=l m, 

, [1 K ] 1/2 
s! = - 2: (X~k) - X~)2 

K k~1 

(m = 1,2, . .. ,M) ............................................... (3a) 

, [1 K ] 1/2 
S~ = - 2: (y~k) _ y~)2 

K k~1 

1 K 

Y' = - 2: y,(k) 

m K k~1 m, 

(m = 1,2, ... ,M) ... , ...... , . , . , .... , .. , . , . ..................... (3b) 
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FIG. 5. Typical Cumulative Histograms of Deflection of 17th Segment at 45 yr 

for Various Sets of 16 Samples with 16 Intervals (In Normal Probability Scale) (1 

in. = 25.4 mm) 

Typical cumulative histograms of the prior distributions of Xm or Yi , as ob
tained by latin hypercube sampling, are shown in Figs. 5-6. For further plots 
of such histograms, see Bazant and Liu (1985), where all the predictions are 
non-Bayesian. 

Since one calculated value y~k) is obtained for each random sample O(k) = 

(fW), ... , at»; i.e., y~k) = Yi(O(k», the posterior probability of y~k) is the same 
as the posterior probability of a~k); i.e., p"(y~k» = p"(a~k». While the prior 
probabilities of all latin hypercube samples a~k) and of the corresponding 
X~) and y)k) are equal, the posterior ones are not. The posterior probability 
is a conditional probability, the condition being that the values XI, ... , XM 

have been observed; i.e., P"(X~» = p"(y~k» = P"(O(k» = p(o(k)IX) where X 
= (XloXz, ... ,XM ) = vector of the measured creep or shrinkage effects on 
which the updating is based. According to Bayes theorem (Ang and Tang 
1975; Benjamin and Cornell 1970) 

P"(X~» = p"(y~k» = p"(O(k» = p(o(k)IX) = cIL(Xlo(k»p'(O(k» ............ (4) 
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dere L(xla(k» = L(Xj,X2"" ,xMla(k» is called the likelihood function; it 
represents the relative joint conditional probability of observing the measured 
values X" X 2 , ••• , XM under the condition that the parameter vector coincides 
with the kth sample O(k) = (e~k), ... , e;;». The prior probability of each sample 
is p'(e(k» = p'(X~k» = p'(y;(k» = constant, and c, is determined from the 
normalizing condition ~kPII(y~k» = 1. 

The most difficult task is the determination of the likelihood function, 
representing the relative joint probability of observing the measured values 
X" ... , XM • Although the latin hypercube sampling has been extended to 
problems in which the random parameters for creep are correlated (Bazant 
and Xi 1988), the analysis becomes considerably more complicated. We will 
assume for the sake of simplicity that the values X" X 2 , ••• , XM are statis
tically independent; i.e., uncorrelated. The longer the time interval, the weaker 
the correlation of creep or shrinkage values at the beginning and the end of 
the interval, and so the assumption of statistical independence should be 
more realistic if the measurements used for updating are spaced sparsely in 
time. 

According to our assumption of statistical independence 

M 

L(Xlo(k» = L(X, ,X2 , ••• ,xMlo(k') = Il 1;'(Xmlo(k» ...................... (5) 

m=1 

Substituting now this into Eq. 4, and noting that p'(e(k» = constant, we 
obtain the result 

M 

Pk = Il 1;'(Xmlo(k) ...................... (6) 
m=l 

in which Co is a constant. This constant may be determined from the nor
malizing condition Co = (~kPk)-'; /;'(XmIO(k» represents the density distri
bution of the conditional probability to obtain any value Xm under the con
dition that the random parameter values are e\k), ... , e;;). Note that this prob
ability density is not the prior probability of Xm and cannot be taken the 
same as 1~'(X~k» for the prior, which characterizes the statistical scatter of 
the properties of all kinds of concretes in general. Rather, /;'(XmIO(k» should 
be interpreted simply as a characteristic of the statistical scatter of the prop
erties of one particular concrete. Generally, the standard deviation s! of 
/!(XmIO(k» will be smaller than that of the prior, /;"(X~k». The fact that the 
probability described by I;' is conditional to O(k) means that it refers to one 
particular concrete, for which the uncertainty of e~) is much reduced. 

The foregoing relations hold in general for any probability distributions. 
To obtain the prior probability density distribution /!'(X~k», one may use 
many samples O(k) to generate many values X~k) (k = 1, .. . ,K), then con
struct from these values the density histogram and fit to it a suitably chosen 
formula. To obtain the posterior probability density distributions /!"(X~) 
and/r(y;'), one needs to construct the weighted density histograms of values 
PkX'~k) and Pky,;(k) calculated for all samples O(k) and then again fit to these 
histograms a suitably chosen formula. The posterior (updated) means and 
standard deviations of the predictions of X~ and Y7 are obtained as 

s~' = [co ~ Pk(X~k) - X~)2 J '/2 ................ (7a) X" = c '" P X,(k) 
m OL.Jkm, 

k 
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(7b) 

where Co = (~kPk)-" If we assume all the distributions to be normal (Gaus
sian), which seems sufficient for practice, then the probability densities of 
the prior and of the likelihood are 

1 [1 (X'(k) - X,)2] 
I;"(X;") = x',;;:c exp -- m x' m •• , , , • , , •.•.••••••••••••• (8a) 

Sm v 21T 2 Sm 

I;'(xmlo(k» = x, 1;;;- exp [_~ (Xm _xX~k»)2] ...................... (8b) 
SmV21T 2 Sm 

where X~k) denotes the value calculated from the kth parameter sample, O(k). 
According to Eq. 6 

Pk = exp [-f ~ (Xm _xX~k»)2] '" .......... '" .................. (9) 
m~' 2 Sm 

in which we dropped the multiplicative constant, since only the relative val
ues of Pk matter. In terms of X~, s~', y;" sr given by Eqs. 7a-b, the pos
terior normal probability density distributions are 

1 
[ 

1 (X _,,)2J X" m - Xm 
1m (Xm ) = X",;;;- exp -- X" •.••••••.•.•.•••.•.•••••• (lOa) 

SmV21T 2 Sm 

1 [ 1 (Y -,,)2
J 

y" i - Y i 

I, (YJ = Y",;;;- exp -- -y-.. - ..... " ..... , ............... (lOb) 
Si v 21T 2 Si 

Typical cumulative histograms of the posterior response distribution, as 
obtained by the present sampling method, are shown in Figs. 5-6 in the 
normal probability scale. While the horizontal widths of all the steps of prior 
distribution in each of these histograms are the same, the step widths are 
unequal, since the weights of the samples are not the same. If the posterior 
probability distribution is normal, the histogram should be a straight line. 
Thus, the deviations from a straight regression line indicate how good the 
assumption of a normal probability distribution is. Figs. 5-6 confirm that 
this assumption is acceptable. 

EXAMPLE OF TYPICAL BOX-GIRDER BRIDGE 

As an example, we predict the long-time response of the Kishwaukee River 
Bridge in Illinois, introducing some simplifications. This is a segmental pre
stressed concrete box girder whose cross section and longitudinal section are 
shown in Fig. 1. The main data are summarized in Tables 2 and 3. The 
inner spans of the box girder have 19 segments per cantilever (i.e., per half
span). The segments are placed symmetrically on both sides of the span. 
The cantilevers are joined at midspan at time tm = 115 days. The top tendons 
anchored in each segment are stressed at the moment of placement of that 
segment, while the continuity tendons are all stressed at the time of joining. 
The elastic modulus of the tendon is Es = 27 X 106 psi (186.2 GPa). The 
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TABLE 2. Mean Values and Standard Deviations of Random Parameters Rep

resenting Prior Statistical Information on Creep and Shrinkage 

Random parameter Meaning Mean value Standard deviation 

(1 ) (2) (3) (4) 

6, - 1 0.14 
62 - 1 0.22 
63 - 1 0.13 
64 h 0.65 0.05 
6, - 1 0.1 

66 w/c 0.44 0.044 

67 g/c 2.83 0.283 
68 c, kg/m3 390 39 

girder carries its own weight plus 85 Ib/in. (14.89 kN/m) of additional dead 
load, which is assumed to be applied at the time t, when the bridge is opened 
to traffic (t, = 287 days). A small portion of the design live load, equal to 
10 Ib/in. (1.75 kN/m), is assumed to be applied permanently, contributing 
to creep. 

For calculations, the cross section is subdivided into 18 layers [Fig. l(d)). 

The prestressing steel is treated as separate layers. The time steps for nu
merical integration are increased in a geometric progression with 5 steps per 
decade in log-scale. However, the first time step after placing each segment, 
after joining the cantilevers, and after applying the additional dead load, is 
always taken as 0.1 day. 

TABLE 3. Data on Box Girder Analyzed (Kishwaukee River Bridge) 

Age (in days) at Number of Numbers of 

Segment number time of placement top tendons bottom tendons 

(1 ) (2) (3) (4) 

1 100 100 2 

2 101 95 2 

3 103 84 2 
4 103 76 2 

5 104 69 2 

6 104 60 2 
7 104 52 2 
8 105 44 8 

9 105 38 12 
10 105 31 18 
11 106 26 22 
12 106 22 26 
13 106 19 30 
14 106 17 34 
15 107 15 36 
16 107 13 36 
17 110 11 36 
18 110 9 38 
19 115 7 40 
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For the sake of simplification, the deflections were calculated only for a 
single cantilever representing one-half of the inner span of the bridge. There
fore, the rotation of the cantilever at its support had to be estimated. This 
was done from deflections ill and il2 measured on the site at certain points 
of the end span and of interior span, as shown in Fig. l(e). Based on elastic 
calculation of the deflection curve, the ratio r = (ill - il2)el/Llfj has been 
calculated; Ll = distance between the points of deflection ill and il2 [Fig. 
1 (e)). The rotations at support in presence of creep were then estimated for 
various times as fj = (il2 - ill)/Llr, where ill and il2 are the deflections 
actually measured on the bridge. These rotation values were then considered 
as the support condition for creep analysis of the cantilever. 

The statistical predictions have been calculated for sets of 8, 16, and 32 
random samples of parameters fjt (representing the number of computer runs). 
The results for Bayesian predictions with 8 and 16 samples in the set differed 
considerably, but the results with 16 and 32 were relatively close to each 
other (see Figs. 5-8). It was concluded that at least 16 random samples 
should be used in each set, which means that 16 deterministic creep analyses 
of the structure were run for each set. 

To assess the reliability of the resulting statistics, the calculations were 
run for several different randomly generated sets of 16 or 32 parameter sam
ples, and were then mutually compared. Figs. 5 and 6 show the cumulative 
distributions of the predicted deflection. The prior predictions are shown by 
the data points, all of which have equal weights. Due to unequal weights of 
the posterior predictions, the posterior predictions cannot be graphically shown 
as data points. Rather, the posterior cumulative distributions are shown in 
the form of cumulative histograms of a staircase shape (Figs. 5-6). The 
lengths of the horizontal steps on the staircase represent the weights of the 
predicted posterior values, and are therefore unequal, while for the prior 
prediction all the horizontal steps of the histogram would be equal (in the 
actual percentage scale, not in the normal probability scale used in figures). 

The cumulative distributions of the deflection at the center of the 17th 
segment at time t = 45 years obtained for three different sets with 16 samples 
are plotted in Fig. 5, and then with 32 samples in Fig. 6. Figs. 5(a-c) and 
6(a-c) show the histograms separately for each set of 16 samples, and Figs. 
5(d) and 6(d) combine these histograms in one plot. Fig. 6(e) combines all 
the histograms with 16 and 32 samples. These figures show that the posterior 
predictions obtained are sufficiently close to each other for practical pur
poses. For 16 samples in each set, the differences among the results for 
various sets are 2.3% of the mean and 4.9% of the standard deviation for 
the prior distribution, and 1. 3% of the mean and 17.7% of the standard 
deviation for the posterior distribution. For 32 samples, these differences are 
3.4% and 21.4% for the prior distribution and 4.3% and 23.4% for the pos
terior distribution. According to these calculations, 16 random samples seem 
to suffice for practical purposes, although 32 random samples might be pref
erable. To improve the results, the final estimate of mean Y" and standard 
deviation sY" are obtained as Y" = 2.vY"(v)/Ns and sY" = [2.vsr::/Ns

) 1/2, where 
v = I, ... , Ns labels the different sets of 16 or 32 samples. 

The calculations described have been run for various times. This provided 
the prior and posterior predictions of response histories shown in Fig. 7 for 
the deflection of segment number 17 and the axial shortening displacement 
at the midspan after the opening of the bridge to traffic. The prior predictions 
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of long-time deflections and of shortening at the midspan are shown in Fig. 
7 by their means and the bands of mean ± two standard deviations, plotted 
as the dashed lines. These lines define a band of prior probability 95% (this 
means the prior probability of a value above the band is 2.5% and below 
the band also 2.5%). The short-time data used for updating the prediction 
are shown in Fig. 7 as the data points. The updated, or posterior, predictions 
are again shown by their means and the bands of mean ± two standard 
deviations, defining the 95% probability band, plotted as the solid lines. Fig. 
8 shows the corresponding results for the axial shortening of the cantilever. 
As might be expected, the width of the posterior probability band widens 
into the future, indicating an increase of prediction uncertainty with time. 

The short-time deflections measured on the bridge are shown as the data 
points in Fig. 7. The measured deflections show very high scatter. Some of 
the measurements (the solid points) fall within the expected range, while 
others (the empty points) are far out of this range. Moreover, these out-of
range points exhibit an unacceptable trend, since they violate the condition 
that creep can only increase. No doubt there were some further influences, 
such as temperature fluctuations and moisture content changes, that caused 
such behavior. Unfortunately, it is not possible to take such further influ
ences into account, not only because of scope limitations of this study but 
also because measurements of the thermal and moisture conditions of the 
bridge are lacking. Therefore, the out-of-range measurements corresponding 
to the empty data points in Figs. 7 have been ignored in calculations; i.e., 
the Bayesian updating has been made only on the basis of the solid points. 

The aforementioned problems show that a method to separate thermal and 
moisture effects from the measured short-time deflection data would have to 
be developed in order to achieve fully realistic results of updating that is 
based on measured short-time deflections of the bridge. 

The bridge used as an example was selected because of the availability of 
documentation (Shiu et al. 1983), even though this bridge does not represent 
the case where the Bayesian updating of vertical alignment on the basis of 
deflection measurements is of the greatest value. This bridge was erected 
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very fast, each half-span within about 15 days. Consequently, the measure
ments during erection give relatively little information on creep, and have a 
lesser importance for long-time deflection than measurements on a bridge 
erected slower, as is the case for some other methods of construction. 

Segmental box-girder bridges should be designed not for the mean re
sponse, as is the practice now, but for extreme response, such as the 95% 
confidence limits (represented by the mean ± two standard deviations). The 
present method makes it possible not only to make statistical predictions on 
the basis of the prior statistical information for all concretes from the lit
erature, but also to update the predictions on the basis of deflection mea
surements made during construction. Based on such prediction, one should 
adjust during construction the vertical alignment of the remaining segments. 
However, to apply this method in practice, the effects of daily and seasonal 
fluctuations of environmental humidity and temperature must be eliminated 
from the short-time data used for updating, as already emphasized. This 
problem deserves further study. 

As an alternative use of the present statistical approach, the prior predic
tions can also be updated on the basis of short-time laboratory measurements 
of concrete specimens of the particular concrete to be used in the structure. 
In that case, of course, the problem of separating the effect of random en
vironmental fluctuations does not arise. This type of updating is certainly 
not as relevant as the measurements taken on the bridge during construction, 
but still is no doubt better than no updating at all, and its practical application 
is feasible right now. 

It should also be recognized that our stress-strain relation in Eq. I is a 
simplified one. More realistically, the local values of pore humidity and 
temperature, which need to be solved from the diffusion equation, affect the 
creep rate. Nonuniformity of shrinkage and creep leads to residual stresses 
and cracking or tensile strain-softening. At present, it is not yet clear how 
important these effects are for the statistical predictions. 

Finally, it should be kept in mind that the Bayesian approach itself is not 
perfect from the probabilistic viewpoint. The results depend only on the dis
tributions of the prior and of the data but not on the number of prior data 
and the number of measurements used for the updating. Obviously, if the 
prior data consist of 10,000 points and the update consists of only 6 points, 
the prediction should be closer to the prior than if the update consists of 
1,000 points, the prior data being same. But the Bayesian approach cannot 
distinguish between these two cases. In this respect, there is room for further 
fundamental improvement of the probability method. 

ALTERNATIVE METHOD FOR SHARP OR REMOTE LIKELIHOOD 

Our calculation procedure breaks down if the likelihood distribution is 
much sharper than the prior distribution or is too remote from the prior. In 
these situations, the response values for various parameter samples very sel
dom fall within the range of the observed data (the update), and an extremely 
large number of samples would be required to obtain a sufficient number (at 
least 8) of response values within the range of the data. In such a case, all 
coefficients Pk are almost zero, and the results are meaningless. 

An alternative procedure, also proposed by Bazant (1985), can cope with 
such situations, provided that the tails of the distributions can be assumed 
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to be gaussian (normal). Paying, at first, no attention to the prior informa
tion, we need to extrapolate the given data Xm to obtain predictions Y i for 
long times. This can be accomplished, e.g., by the Levenberg-Marquardt 
nonlinear optimization algorithm, for which a standard subroutine is avail
able. Disregarding the prior information, this subroutine is used to calculate 
the optimum random parameter values en = ii~, which minimize the sum of 
squares of the deviations of the response predictions ~ from the observed 
data Xm at times tm • This subroutine not only estimates the optimum values 
of random parameters en, but it also estimates (on the basis of tangential 
linearizations) their standard deviations s~. Then, assuming en to have normal 
distributions with means ii~ and standard deviations s~, one can generate latin 
hypercube samples erik) of the random parameters en on the basis of the up
dating data alone (i.e., without any regard to the prior). For each of these 
samples one can calculate the long-time responses Y7(k) (i = 1,2, ... ,/). Then, 
considering ~ll the generated values Y7(k) for each time t;, one can calculate 
their mean Y;' and standard deviation si". 

The extrapolated statistical information yr and s;' may be regarded as a 
set of update data for the long time t; and confronted in the Bayesian sense 
with the predictions Y; from the prior. For this purpose one needs to generate 
the prior latin hypercube samples e'~k) of random parameters en, and calculate 
the corresponding responses Y'jk) for all the samples. From these, one can 
then obtain the mean Y; and the standard deviation st of the prior prediction, 
for each time t;, as described before. 

Assuming normal distributions for both the extrapolated measured data 
and the predictions from the prior, we now have an elementary Bayesian 
problem, consisting of a combination of a normal prior with a normal like
lihood (representing the extrapolated measurements). As is well known (Box 
and Tiao 1973:74), the posterior distribution is then also normal and its mean 
and standard deviation are given by 

(SY")-2yo + (SY')-2 y' 
y~' = I I f I 

, (STY2 + (si')-2 ' 
(si')-2 = (S;")-2 + (si')-2, ..... , ......... (11) 

The measured short-time data Xm are usually quite limited and do not suf
fice to obtain full statistical information on all the para!11eters en" Thus, if 
one attempts to determine from Xm the optimum values e~ of all the param
eters en, the problem is ill-conditioned, because very different values of en 
yield nearly equally good fits of Xm , although the corresponding predictions 
Y, might be very different. In such a case, the number of random parameters 
en for which the optimum values ii~ are sought must be reduced, and for the 
remaining en one must use the mean values of the prior. For rather limited 
update data Xm , one would optimize from Xm only two parameters, e1 and 
e2 (and assume e3 = e2). For more extensive update data Xm , one can op
timize e1, e2 , and e3 • 

Keep in mind, too, that if the distribution of the data is extremely sharp, 
or if it is too remote from the prior, then Bayesian updating is of dubious 
value. A simple extrapolation of the given short-time data without any regard 
to the prior makes more sense. 

CONCLUSIONS 

1. Predictions of confidence limits for long-time deflections and internal forces 
can be improved by Bayesian analysis based on short-time measurements. 
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2. The Bayesian analysis can in general be carried out by latin hypercube 

sampling of random parameters in the creep prediction model. No linearization 

with regard to the random parameters is necessary, and all the known random 

parameters of the creep prediction model, such as the BP model, can be con

sidered. 

3. The sampling approach reduces the probabilistic problem to a series of 

deterministic structural creep analyses for various samples of random material 

parameters. Differences in age between the bridge segments, as well as a change 

in the structural system from statically determinate to indeterminate, can be taken 

into account. 

4. An example of Bayesian statistical predictions for one particular recently 

constructed bridge demonstrates feasibility of the proposed new method. 
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