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Abstract

Background: The detection of the glomeruli is a key step in the histopathological evaluation of microscopic images

of the kidneys. However, the task of automatic detection of the glomeruli poses challenges owing to the differences in

their sizes and shapes in renal sections as well as the extensive variations in their intensities due to heterogeneity in

immunohistochemistry staining.

Although the rectangular histogram of oriented gradients (Rectangular HOG) is a widely recognized powerful

descriptor for general object detection, it shows many false positives owing to the aforementioned difficulties in the

context of glomeruli detection.

Results: A new descriptor referred to as Segmental HOG was developed to perform a comprehensive detection of

hundreds of glomeruli in images of whole kidney sections. The new descriptor possesses flexible blocks that can be

adaptively fitted to input images in order to acquire robustness for the detection of the glomeruli. Moreover, the

novel segmentation technique employed herewith generates high-quality segmentation outputs, and the algorithm

is assured to converge to an optimal solution. Consequently, experiments using real-world image data revealed that

Segmental HOG achieved significant improvements in detection performance compared to Rectangular HOG.

Conclusion: The proposed descriptor for glomeruli detection presents promising results, and it is expected to be

useful in pathological evaluation.

Keywords: Microscopy image analysis, Glomerulus detection, Computer vision, Support vector machine, Dynamic

programming, Glomerular injury marker, Desmin immunostaining

Background
The glomeruli in the kidneys act as a filtration barrier that

retains higher molecular weight proteins in blood circu-

lation. In various renal diseases, the glomerular filtration

barrier can be damaged, resulting in protein leakage into

urine, known as proteinuria. Therefore, the pathological

changes in renal glomeruli of animal disease models can
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provide important information in screening compounds

that target such diseases.

Our goal was to perform high-throughput detection of

the glomeruli in highly enlarged microscopy images of

animal disease models, whose sizes run up to the order

of 108 pixels. Although there are existing studies about

the automatic analysis of the glomeruli in microscopic

images of the kidneys [1, 2], the target images in these

studies were obtained from human biopsy samples with

relatively small sizes; therefore, they are not suitable for

our purpose.

Compared to general object detection tasks, there are

two particular obstacles in the case of glomeruli detec-

tion. The first obstacle arises from the non-rigid sizes and
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shapes of the targets in the images. Indeed, the glomeruli

have a fixed size in vivo, although they swell to some

extent in unfavorable situations such as hypertension [3]

and diabetes [4]. In addition, the sizes of the glomeruli

in a whole-kidney-section image could vary depending

on where the cross-section was taken. The shape of the

glomeruli is mostly spherical, making the boundaries cir-

cular. To obtain the boundaries, one might try to fit

an ellipse to each glomerulus. However, this approach

yields large estimation errors because each glomerulus is

deformed to some extent.

The second difficulty arising in the glomerulus detec-

tion task is the high variation in staining intensity. On

histological evaluation, immunohistochemistry is usually

used to demonstrate the distribution and location of pro-

teins in tissue sections. In our target images, sections were

immunostained for desmin, a known glomerular injury

marker. Therefore, some glomeruli are stained and some

are not. As many glomeruli are partly stained, resulting

in heterogeneously stained glomeruli, detection is more

complicated. Furthermore, the stained tissues in the kid-

neys are not only from the glomeruli but also from other

tissues such as the blood vessels.

To check the existence of a glomerulus at each loca-

tion in a whole-kidney-section image, the sliding window

technique is employed [5–8]. Using this procedure, a

frame goes over the input image to check for the target

object at every possible location; then, a descriptor of the

sub-image is extracted.

Rectangular HOG (R-HOG) [9], a widely used and rec-

ognized efficient descriptor for object detection in the

field of computer vision, is a potentially suitable candi-

date descriptor for glomeruli. It has the capacity to capture

information about the magnitude of the gradients in the

image. Therefore, this descriptor is robust to the change

in intensities caused by the heterogeneity of the stained

levels. Glomeruli are known to be composed of tightly

packed cells, resulting in high gradients on images. Thus,

a natural approach would be to use the magnitude of these

gradients as features of the glomeruli. However, although

we have previously attempted to directly exploit this

attribute, we found the detection performance to be poor,

resulting in many false positives and low recall. In addi-

tion to the magnitude of the gradients, their directions

are also important to distinguish the glomeruli from the

other tissues. Using R-HOG descriptors obtained from

both the magnitude and the direction of the gradients,

glomeruli detection performance results in recall val-

ues high enough to be useful for pathological evaluation.

However, it appeared that R-HOG still has a considerable

amount of false positives [10–12].

The high number of false positives in previous studies

[10–12] can be ascribed to the condition that the stan-

dard HOG such as the R-HOG has a rigid block division.

Owing to this rigidity, there are instances when a block

is inside the glomerular area in a case and outside in

another. Thus, extracted features from each block contain

large differences, and robustness for the deformations of

glomeruli is lost. Although there are several other known

local descriptors such as scale-invariant feature transform

(SIFT) image features [13], Haar-like features [8], and local

binary patterns (LBP) [14], these do not possess a solution

to be robust for deformed glomeruli for similar reasons.

In this study, we introduce flexible block division to

the HOG descriptor to improve the detection perfor-

mance and to reduce the number of false positives. A

new feature, which we refer to as the Segmental HOG

(S-HOG) descriptor, has been proposed for glomerulus

detection. The block division of S-HOG is based on the

estimated boundary of the glomerulus that is obtained

via a segmentation algorithm, which has also been devel-

oped in this study. This renders the division of blocks

to be more adaptable than the rigid block division of R-

HOG, and allows feature vectors to clearly differentiate

between the inside and the outside of the glomerulus.

Moreover, because blocks are always within the glomeru-

lar area, gradient information in the same block between

two glomeruli is expected to be more similar. Experiments

revealed that the number of false positives was halved,

keeping almost all true positives when using S-HOG com-

pared to the R-HOG.

Related works

Segmentation is an important step to extract S-HOG

descriptors. Recent studies on segmentation of the

glomeruli are few [1, 2]. Nevertheless, there has been some

research regarding segmentation of specific organs in gen-

eral biomedical images, including region growing [15],

level set method [16], and active contour model [17–19].

Most of these are semi-automatic, require the users’ inter-

vention, possess no guarantee of optimality [17–19], and

are highly dependent on the initial solution provided by

users as input. On the other hand, the segmentation algo-

rithm developed in this study is ensured, theoretically, to

obtain the optimal solution, producing high quality seg-

mentation. In addition to the above-mentioned methods,

more recent attempts include using deep learning [20].

Deep learning typically requires great computational and

time resources, whereas the proposed algorithm can work

even on a standard personal computer or a laptop.

The algorithm developed by Kvarnström et al. [21] is

relevant to the proposed segmentation technique. Their

algorithm for cell contour recognition is based on a

dynamic program, where they first estimated the cell cen-

ters and constructed a ray from the center to each m

direction (Fig. 1b), where m = 32. Then, they computed

the boundary likeliness at n points on each ray, where they

set n = 30. Their algorithm finds a smooth contour by
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(a) (b)

Fig. 1 Candidate glomeruli and line segments. Segmental HOG (S-HOG) is based on the boundary of the objects of interest. If the boundary of a

candidate glomerulus (Panel (a)) is to be located, boundary likeliness is computed at every point onm(= 36) line segments placed uniformly in all

m directions (Panel (b)). The boundary likeliness is computed at n points on each line segment. The n locations are depicted with dots in Panel (b)

taking a point on each ray to connect them. To this end,

they posed the following discrete optimization problem:

max

m
∑

i=1

Li(pi), wrt p1, . . . , pm ∈ {1, . . . , n},

subject to |p1 − p2| ≤ ς , . . . , |pm−1 − pm| ≤ ς , |pm − p1| ≤ ς ,

(1)

where Li : {1, . . . , n} → R denotes the boundary likeli-

ness function obtained by the sliding window technique,

and pi ∈ {1, . . . , n} (i = 1, . . . ,m) is a location on the

i-th line segment, where the line segment is discretized

into n points numbered with a natural number. For

instance, when pi = 1, the i-th vertex is at the endpoint of

the i-th line segment closest to the center, and the vertex

can move from this endpoint to the other endpoint with

increasing values of pi. Li(p) is the boundary likeliness at

the p-th location in the i-th line segment. The location pi
on the i-th line segment is more likely to be the boundary

with a larger Li(pi) value.

To obtain an optimal solution, Kvarnström et al. pre-

sented two algorithms. The first algorithm poses n sub-

problems where in each sub-problem, the initial point,

and the endpoint are the same. We shall refer to this

algorithm here as the exhaustive dynamic program (EDP).

Their second algorithm is a heuristic method that is faster

than the first one, but possesses no guarantee for global

optimality. In this study, we developed a new segmenta-

tion algorithm, referred to as divide & conquer dynamic

program (DCDP). Compared to Kvarnström et al’s algo-

rithms [21], the DCDP algorithm has two advantages,

as follows: not only is DCDP much faster than EDP,

an exact optimal solution is always obtained; and the

boundary likeliness function is trained with a machine

learning technique to precisely estimate boundaries of the

glomeruli.

One may consider another approach to the optimiza-

tion problem (1), with a perspective that the problem is

a formulation of finding a maximum a posteriori (MAP)

estimation on a Markov random field (MRF) [22]. MRFs

are a class of probabilistic models formulated on a graph.

In the case of a problem (1), the graph has m nodes

and forms a cycle. It is well known that the MAP esti-

mation is efficient while using the Viterbi algorithm if

the graph of the MRF is without cycles [23]. For graphs

with cycles, many attempts such as LP relaxations [24]

and max-product algorithms [25, 26] have been tried to

compute approximate MAP estimations. Although these

algorithms possess no guarantee to obtain an exact MAP

estimation, they may perform well in practice. In this

study, we empirically show that DCDP is much faster than

these algorithms for glomeruli detection.

Contributions

The contributions of this study are summarized as follows:

• A new descriptor called S-HOG was developed to

perform a comprehensive detection of hundreds of

glomeruli in images of whole kidney sections. The

new descriptor is equipped with flexible blocks that

can be adaptively fitted to input images to acquire

robustness for detection of glomeruli.
• In our experiments, the S-HOG descriptor halved the

number of false positives, a limitation of the existing

state-of-the-art descriptor R-HOG, while keeping

almost all true positives.
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• A new segmentation technique referred to as DCDP

offered high-quality segmentation outputs that were

used for the construction of the blocks in S-HOG.

The worst computational time of the new algorithm is

equal to the fastest existing segmentation algorithm,

and our experimental results reveal that the new

algorithm performs overwhelmingly faster in practice.

Methods
In this study, a new descriptor, S-HOG, has been pro-

posed for the detection of the glomeruli in kidney micro-

scopic images. Segmentation of the glomeruli is needed

to extract the S-HOG descriptor. For rapid detection of

the glomeruli in highly enlarged microscopic images, pre-

screening is performed with R-HOG, which does not

require prior segmentation. The proposed method con-

sists of the following three stages (Fig. 2):

• the pre-screening stage,
• the segmentation stage, and
• the classification stage.

In each stage, a support vector machine (SVM) [27, 28] is

used with a different type of HOG descriptor, resulting in

three SVMs in total. To obtain the S-HOG descriptor, we

performed segmentation of the glomeruli from the sub-

images that passed the pre-screening (Fig. 2).

In what follows, we present the details of each stage,

and then discuss how training datasets for each SVM

are constructed and the materials used in the experi-

ments. Finally, this section concludes with presenting a

new segmentation algorithm, DCDP that is used for deter-

mining the blocks of S-HOG descriptors.

Pre-screening

In the pre-screening stage, candidate glomeruli are

detected from a kidney microscopic image using the slid-

ing window technique. The window size is set to 200×200

in our experiments. R-HOG features, which are 512-

dimensional vectors based on our selected parameter val-

ues, are extracted and judged by SVM, and non-maximal

suppression is then performed to obtain the candidate

glomeruli. This stage is exactly the same as in the method

developed in our previous studies [10, 11]. However, the

subsequent two stages dramatically reduce the false pos-

itives detected by the method. Our experiment outputs,

described in the ‘Results and discussion’ section, confirm

that the non-maximal suppression successfully puts the

center of the window in the glomerulus, which is crucial

in the segmentation step.

Segmentation

Segmentation of the glomeruli is performed on sub-

images that passed the pre-screening. In the segmentation

algorithm, the boundary of a glomerulus is represented

by an m-sided polygon whose m vertices are restricted

to lie on m line segments, respectively. The m line seg-

ments are placed uniformly, as outlined by the dotted lines

in Fig. 1b where m = 36. To determine the location of

the vertex on each line segment, the sliding window tech-

nique is employed again.1 The window sweeps through

the line segment and computes the boundary likeliness at

(a) (b)

Fig. 2 Flow of our method. In this study, a new descriptor, Segmental HOG, was developed to detect glomeruli in highly magnified microscopic

images. SVM is combined with Segmental HOG to classify candidate glomeruli that passed the pre-screening stage. To do this, our detection

algorithm consists of three stages. (a) In the pre-screening stage, candidate glomeruli are searched in the entire microscopic image. (b) In the

segmentation stage, the boundaries of each candidate glomerulus are estimated and Segmental HOG is based on the estimated boundaries. In the

classification stage, feature vectors are extracted based on the estimated segmentations, and SVM is applied to judge whether each candidate

glomeruli is positive or negative
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n locations on the line segments. In Fig. 1b, the boundary

likeliness Li (i = 1, . . . ,m) is computed at every dot-

ted location. How Li is computed is discussed at the end

of this ‘Segmentation’ subsection. We set the length of

the line segment to 63 pixels, where the endpoint clos-

est to the center of the image is 17 pixels away from the

center. The length between adjacent dots along a line seg-

ment is equal to 3 pixels, resulting to n = 22 dots on

each line segment. In total, the boundary likeliness is com-

puted at mn(= 36 × 22 = 792) locations. The values of

the boundary likeliness are depicted by the green dots in

Fig. 3a. Larger marks have higher boundary likeliness. To

determine the vertices of the m-sided polygon, one might

consider naïvely locating the points that achieve the high-

est boundary likeliness on each line segment. However,

this approach often yields an extremely zigzag boundary

(Fig. 3a).

To obtain a smoother boundary, Kvarnström et al. [21]

imposed a constraint that suppresses distant adjacent ver-

tices, and they established the maximization problem (1).

Although our implementation of the boundary likeliness

is different, the formulation of the problem to find an

m-sided polygon is the same as (1), where in our exper-

iments, ς is set to ς = 1. Fig. 3 shows an example of

the solution to the optimization problem. The m-sided

polygon shown in Fig. 3b is the optimal solution to the

Edges marked with         violate the constraints, whereas edges with          satisfy the constraints. 

(a) (b)

Fig. 3 Segmentations of a candidate glomerulus. The sizes of the green dots in Panel (a) and Panel (b) represent the boundary likeliness for the

candidate glomerulus shown in Fig. 2a. The value of pi takes a natural number between 1 and n(= 22) to represent the location on the i-th line

segment. For example, in Panel (a), the fourth point in the 26-th line segment is selected, which is expressed as p26 = 4. A zigzag boundary of the

glomerulus would be obtained if the points that have the largest boundary likeliness are connected naïvely without constraints, as illustrated in

Panel (a). By considering the constraints that |pi − pi+1| ≤ ς(i = 1, . . . , n − 1) and |pm − p1| ≤ ς where ς = 1, a smooth boundary can be

obtained as demonstrated in Panel (b)
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maximization problem in (1). Compared to the solution

without the constraint (Fig. 3a), it is apparent that the esti-

mated boundary is formfitting to the true boundary by

introducing the constraint. The details of the new algo-

rithm for finding the optimal solution to (1) developed in

this study is presented at the end of this section.

Computation of boundary likeliness Li(·) The sliding

window technique is employed in order to determine the

vertices of the m-sided polygon described above. The

window size in this stage is set to 30 × 15 pixels, and

the windows sweep through the line segments (Fig. 1b).

Each time the sliding window moves, a feature descriptor

is computed from the window and is applied with lin-

ear SVM to compute the SVM score, which is what we

refer to as the boundary likeliness Li(·) (Fig. 3). The SVM

scores of m vertices, Li(1), . . . , Li(n), are then obtained

for i = 1, . . . ,m, and integrated in the maximization

problem (1).

The HOG feature is adopted as the descriptor to com-

pute the boundary likeliness. Each window is divided into

three blocks, as shown in Fig. 1b. This division design is

from an observation that some glomeruli are surrounded

with a thick Bowman’s capsule, and that the middle block

is expected to capture this glomerular capsule. The statis-

tics of nine discretely oriented gradients are computed in

each block, producing a 27-dimensional feature vector.

Classification with the S-HOG descriptor

Candidate glomeruli obtained via pre-screening are clas-

sified using the proposed S-HOG descriptor. S-HOG

exploits the glomerulus boundary located in the segmen-

tation stage to generate 24 non-overlapping blocks, as

shown in Fig. 4b.

Various types of glomeruli are observed on kidney

microscopic images; some of them are surrounded by a

thick Bowman’s capsule. To effectively exploit this char-

acteristic, the circle containing a candidate glomerulus is

divided into the following three zones: the inner zone,

middle zone, and outer zone. We divide the circle into

eight disjoint sectors, and take the intersection of each

zone and each sector to get 24 non-overlapping blocks

(Fig. 4b), and gradients are then histogrammed for each

block (Fig. 4d). In our experiments, we employed nine

discretized oriented gradients, and SVMwas applied to S-

HOG feature vectors to discriminate between glomeruli

and other regions.

Construction of training data

A total of three linear SVMs are used, one each for

the pre-screening, segmentation, and classification stage,

respectively. A training dataset is required for each of the

three SVMs. Details on the construction of each training

data set are given below.

(a) Blocks of R-HOG (b) Blocks of S-HOG

(c) Feature Vector of R-HOG

(d) Feature Vector of S-HOG

Fig. 4 Rectangular HOG and Segmental HOG. R-HOG has been used

for object detection in many applications. R-HOG is the concatenation

of statistics in each block in a grid that divides a rectangular region

(a) and (b). On the other hand, the blocks of the proposed descriptor,

S-HOG, are based on the segmentation of the object of interest

(b) and (d)

Training data for the pre-screening stage Each exam-

ple in the training data for pre-screening is a 200 × 200

sub-image. A positive example contains a glomerulus in

the center of the sub-image, while a negative example

does not. To gather these samples, the locations of the

glomeruli within the whole-kidney-section images used

for training are first annotated manually. Small glomeruli

whose diameters are less than 50 pixels were ignored.

Positive examples are the sub-images from 200 × 200
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bounding boxes containing an annotated glomerulus in

the center. Negative examples are 200 × 200 sub-images

picked from random locations on the kidney microscopic

images. From each sample, a 512-dimensional R-HOG

descriptor is extracted.

Training data for the segmentation stage As described

in the ‘Segmentation’ subsection, the boundary likeliness

is computed in every position of them line segment. This

boundary likeliness is the SVM score. The position lying

on the true boundary of a glomerulus is considered a pos-

itive example for the SVM, and the other positions are

negative examples. To construct the training data for seg-

mentation, the positive sub-images in the training dataset

for pre-screening are reused.

Training data for the classification stage Examples

used in the training data for pre-screening are used again

for training in the classification stage, but with a differ-

ent set of features extracted via S-HOG. For each training

data sample, the previously described segmentation algo-

rithm estimates the boundary of the glomerulus. Based on

the estimated boundary, the statistics of oriented gradi-

ents are computed to obtain S-HOG feature vectors. This

procedure is done for both positive and negative exam-

ples, even though negative examples do not contain a

glomerulus.

Materials

The images used in the present study had been generated

in a previous study [10], and only an overview is given in

this subsection.

Twenty male 6-week-old SD and SDT rats were pur-

chased from CLEA, Inc. (Tokyo, Japan) and were housed

with a 12-h light-dark cycle and free access to water and

chow.

At 16 or 24 weeks of age, SD and SDT rats (The

number of rats is five for each group) were euthanized

under ether anesthesia. Their kidneys were removed and

immediately fixed in 10 % neutralized buffered formalin.

The formalin-fixed kidneys were embedded in paraffin.

For immunohistochemistry, kidney paraffin sections were

deparaffinized and incubated overnight at 4 °C with anti-

desmin mouse monoclonal antibody (Dako, Glostrup,

Denmark) followed by horseradish peroxidase-conjugated

secondary antibody (anti-mouse immunoglobulin goat

polyclonal antibody; Nichirei, Tokyo, Japan). The sections

were stained brown with 3,3’-diaminobenzidine. Whole

slide images of the sections were obtained with Aperio

Scan Scope XT (Leica Microsystems, Wetzlar, Germany).

All animal experiments were performed in accordance

with the Act on Welfare and Management of Ani-

mals and the institutional guidelines, and approved by

the institutional Committee of Animal Experiments of

New Drug Development Research Center Inc. (Hokkaido,

Japan).

A total of 20 whole-kidney-section images were used in

our experiments. The image sizes were 9, 849 × 10, 944

pixels in average. Each image was from one of four groups:

16-week-old SD rats, 16-week-old SDT rats, 24-week-

old SD rats, and 24-week-old SDT rats. Henceforth, for

simplicity, we will refer to them as 16SD, 16SDT, 24SD,

24SDT, respectively, each group containing five images.

For performance evaluation, wemanually annotated every

glomerulus in the images. We divided the image set into

five subsets: Set A, Set B, Set C, Set D, and Set E. Each

subset consists of a 16SD image, a 16SDT image, a 24SD

image, and a 24SDT image. For assessment of detec-

tion performance, the position of every glomerulus in the

images is annotated, and for evaluation of segmentation

performance, the areas of the glomeruli in Set A and Set B

are located manually using a graphics software.

Divide & conquer dynamic program (DCDP)

Herein, a new algorithm named Divide & Conquer

Dynamic Program (DCDP) for solving the optimization

problem (1) is presented. The new algorithm DCDP also

takes O(n2mς) computational time in worst-case scenar-

ios, although the new algorithm solves the same problem

much faster than EDP, as presented in the ‘Results and

discussion’ section.

Let us denote the objective function by J(p), i.e., J(p) :=
∑m

i=1 Li(pi), and observe that the problem (1) can be

solved in O(nmς) computational time by a dynamic pro-

gram if one of the constraints |pm−p1| ≤ ς is disregarded.

The idea to devise the new algorithm is based on the

following fact: Suppose p⋆
0 is an optimal solution thatmax-

imizes J(·) without the constraint |pm − p1| ≤ ς . Then if

p⋆
0 is a feasible solution for the original problem (1), it is

also an optimal solution.

To express this idea mathematically, let us define

S(I) :=
{

p = (p1, . . . , pm) ∈ N
m
n |

pm ∈ I , |p1 − p2| ≤ ς , . . . , |pm−1 − pm| ≤ ς ,

|pm − p1| ≤ ς
}

.

for I ⊆ Nn, where Nn := {1, . . . , n}. Note that S(Nn) is

the feasible region of the original problem (1). The goal of

DCDP is to find an optimal solution

p⋆ ∈ argmax
p∈S(Nn)

J(p).

Dynamic program (DP) cannot solve this problem

directly owing to the existence of the constraint |pm −

p1| ≤ ς . To use DP, we consider finding the maximizer

of J(p) from a relaxed region SL(Nn), where SL(I) is

defined as
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SL(I) :=
{

p = (p1, . . . , pm) ∈ N
m
n |

pm ∈ I , p1 ∈ I + {−ς , . . . ,+ς}, |p1 − p2| ≤ ς ,

. . . , |pm−1 − pm| ≤ ς
}

,

where the operator + denotes that for any two sets I and

J , I+J := {i+ j | i ∈ I , j ∈ J }. Note that S(I) ⊆ SL(I).

The strategy of DCDP is to first find the solution of the

relaxed problem,

p⋆
0 ∈ argmax

p∈SL(Nn)

J(p)

and then check the feasibility: if p⋆
0 ∈ S(Nn), then p⋆

0 is

the optimal solution of the original problem (1). If p⋆
0 �∈

S(Nn), then the set Nn is divided into I1 and I2 (i.e. I1 ∪

I2 = Nn), and the following two sub-problems are solved:

p⋆
1 ∈ argmax

p∈S(I1)

J(p) and p⋆
2 ∈ argmax

p∈S(I2)

J(p).

Notice that the original feasible region, S(Nn), is the

sum of the two regions, S(I1) and S(I2). Therefore, we

can take either of the two solutions, p⋆
1 and p⋆

2, whichever

has the larger objective value. DCDP employs a divide

and conquer approach that repeatedly applies the above

strategy to sub-problems. The basic approach of DCDP

is summarized in Algorithm 1. Invoking the function

DCDP_Basic(Nn) yields the optimal solution for the orig-

inal problem. Here, the function (I1,I2) := Split(I0)

divides the set I0 into two exclusive non-empty subsets,

I1 and I2.

Algorithm 1 p0 = DCDP_Basic(I0)

Input: I0 ⊆ Nn.

Output: p0 ∈ argmaxp∈S(I0)
J(p).

1: p0 ∈ argmaxp∈SL(I0)
J(p);

2: if p0 ∈ S(I0), then return;

3: (I1,I2) := Split(I0);

4: p1 := DCDP_Basic(I1);

5: p2 := DCDP_Basic(I2);

6: i⋆ ∈ argmaxi∈{1,2} J(pi);

7: p0 := pi⋆ ;

The first step p0 ∈ argmaxp∈SL(I0)
J(p) can be per-

formed in O(nmς) computational time. An instance of

the dynamic program is given in Algorithm 2. Note that

p0 ∈ S(I0) is always ensured if the cardinality of I0 is one,

because the relaxed region is reduced to the unrelaxed

region (i.e. S({h}) = SL({h})). The function DCDP_Basic

is invoked, at most, (2n − 1) times. This implies that the

computational time in worst cases is O(n2mς). As will be

shown in the ‘Results and discussion’ section, we empir-

ically found that the number of invoking the function

recursively is much smaller than (2n − 1).

Algorithm 2 O(nmς) Dynamic program for

maxp⋆∈SL(I) J(p)

Input: I ⊆ Nn.

Output: p ∈ argmaxp∈SL(I) J(p)

1: Initialize all entries in the n × mmatrix Q with −∞.

2: for j ∈ I+[−ς ,+ς ]∩Nn do

3: Q(j, 1) := L1(j);

4: end for

5: for t = 2, . . . ,m do

6: if t < m, then It := Nn else It := I ;

7: for i ∈ It do

8: j⋆ := argmax{Q(j, t−1) | j ∈[ i − ς , i + ς ]∩Nn};

9: Q(i, t) := Lt(i) + Q(j⋆, t − 1); P(i, t) := j⋆;

10: end for

11: end for

12: p⋆
m ∈ argmaxi∈I Q(i,m);

13: t := m − 1;

14: while t ≥ 1 do

15: p⋆
t := P(p⋆

t+1, t + 1); t := t − 1;

16: end while

In the text below, the pruning steps and the resulting

accelerated DCDP algorithm are detailed. Mathematical

proof that the DCDP algorithm is guaranteed to obtain

an optimal solution is also given. This property is favor-

able compared to MAP estimation methods-such as LP

relaxation-that does not always achieve an optimal solu-

tion. For the implementation of Split(I0), we considered

the following three schemes: Half Split, Max Split, and

Adap Split. These splitting schemes are described at the

end of this section.

Pruning

Pruning can accelerate the DCDP algorithm. Consider the

case where the lower boundary is ℓ, such that

max
p∈S(Nn)

J(p) ≥ ℓ,

is known in advance when searching for the solution in

S(I0). If ℓ > maxp∈SL(I0) J(p), then no optimal solution is

in S(I0) because

max
p∈S(Nn)

J(p) ≥ ℓ > max
p∈SL(I0)

J(p) ≥ max
p∈S(I0)

J(p).

Based on this fact, the pruning step is added to obtain

Algorithm 3, and we have the following lemma:

Lemma 1. For any subset I0 ⊆ Nn and ∀ℓ ∈ R∪ {−∞},

when the algorithm runs with (p0, J0, ℓ0) = DCDP(I0, ℓ),

the returned tuple (p0, J0, ℓ0) satisfies one of the following:

• Case G: Ifmaxp∈S(I0) J(p) ≥ ℓ, then

p0 ∈ argmax
p∈S(I0)

J(p), and J0 = ℓ0 = J(p0) ≥ ℓ.

• Case L: Ifmaxp∈S(I0) J(p) < ℓ, then J0 < ℓ0 = ℓ.
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Algorithm 3 (p0, J0, ℓ0) = DCDP(I0, ℓ). Modification of

DCDP_Basic by adding pruning steps

Input: I0 ⊆ Nn.

1: pL ∈ argmaxp∈SL(I0)
J(p);

2: if ℓ > J(pL) then

3: {Rule A}

4: J0 := −∞; ℓ0 := ℓ;

5: return;

6: end if

7: if pL ∈ S(I0) then

8: {Rule B}

9: p0 := pL; J0 := J(pL); ℓ0 := max(ℓ, J0));

10: return;

11: end if

12: {Rule C}

13: (I1,I2) := Split(I0);

14: (p1, J1, ℓ1) := DCDP(I1, ℓ);

15: (p2, J2, ℓ2) := DCDP(I2, ℓ1);

16: i⋆ ∈ argmaxi∈{1,2} Ji;

17: p0 := pi⋆ ; J0 := J(pi⋆);

18: ℓ0 := max(ℓ2, J0);

Proof of Lemma 1

We shall use the following notation: For any I ⊆ Nn,

J(I) := max
p∈S(I)

J(p), and JL(I) := max
p∈SL(I)

J(p).

The following relationships will be used in this proof:

J(pL)
(eqA)
= JL(I0)

(ineqA)
≥ J(I0)

(eqB)
= max(J(I1), J(I2)),

where the labels (eqA), (ineqA), and (eqB) are used to

distinguish these equalities and the inequality in later

descriptions of this proof. The inequality follows from the

fact that S(I0) ⊆ SL(I0), while the second equality eqB

follows from S(I0) = S(I1) ∪ S(I2).

We will prove the lemma by induction. For the case

where card(I0) = 1, observe that SL(I0) = S(I0),

implying that

pL ∈ argmax
p∈S(I0)

J(p) and J(I0) = JL(I0) = J0.

If J(I0) = J(pL) < ℓ, then by Rule A in the algorithm,

J0 = −∞ and J0 < ℓ0 = ℓ. On the other hand, if J(pL) ≥ ℓ,

then as pL ∈ argmaxp∈S(I0)
J(p), we have pL ∈ S(I0).

Thus, by Rule B, we have p0 = pL and J0 = ℓ0 ≥ ℓ.

Therefore, the lemma is true for card(I0) = 1.

Let us now assume that the lemma holds for any I0 ⊆

Nn, such that card(I0) < k, to show that the lemma is

also established for any I0, such that card(I0) = k. Now

suppose that I0 ⊆ Nn and card(I0) = k. The following is

an exhaustive list of all possible cases:

(1) ℓ > JL(I0),

(2) JL(I0) ≥ ℓ and pL ∈ S(I0),

(3) JL(I0) ≥ J(I0) = J(I1) = J(I2) ≥ ℓ and pL �∈ S(I0),

(4) JL(I0) ≥ J(I0) = J(I1) ≥ ℓ > J(I2) and pL �∈ S(I0),

(5) JL(I0) ≥ J(I0) = J(I1) > J(I2) ≥ ℓ and pL �∈ S(I0),

(6) JL(I0) ≥ J(I0) = J(I2) > J(I1) ≥ ℓ and pL �∈ S(I0),

(7) JL(I0) ≥ J(I0) = J(I2) ≥ ℓ > J(I1) and pL �∈ S(I0),

(8) JL(I0) ≥ ℓ > J(I0) and pL �∈ S(I0).

We shall show that for each of the seven cases above,

either Case G or Case L is true.

(1) As ℓ > JL(I0)
(eqA)
= J(pL)

(ineqA)
≥ J(I0), then by Rule

A, we have J0 = −∞ and J0 < ℓ0 = ℓ. Thus, Case L

is satisfied.

(2) If JL(I0) ≥ ℓ, then J(pL) ≥ ℓ. Moreover, pL ∈ S(I0)

implies pL ∈ argmaxp∈S(I0)
J(p) and J(pL) = J(I0).

Then by Rule B, J0 = J(pL) = J(I0) = ℓ0 and

p0 = pL ∈ argmaxp∈S(I0)
J(p). Therefore, Case G

holds.

(3) Given J(pL)
(eqA)
= JL(I0) ≥ ℓ and pL �∈ S(I0), Rule C

is applied. Observe that (p1, J1, ℓ1) satisfies Case G

because J(I1) = maxp∈S(I1) J(p) ≥ ℓ. Thus, J1 =

ℓ1 = J(I1) ≥ ℓ. Similarly, (p2, J2, ℓ2) also satisfies

Case G, and we have J2 = ℓ2 = J(I2)
(eqB)
= J(I1) =

J(I0). Therefore, the returned value p0 of

DCDP(I0, ℓ) is equal to p1 or p2, both of which are

in argmaxp∈S(I0)
J(p). Furthermore, we obtain

ℓ0 = J0 = J1 = J2 = J(I0) ≥ ℓ. Hence, we have

Case G.

(4) As with Case (3), (p1, J1, ℓ1) satisfies Case G, and we

have p1 ∈ argmaxp∈S(I1)
J(p) and J1 = ℓ1 =

J(I1) ≥ ℓ. Hence, it follows thatmaxp∈S(I2) J(p2) =

J(I2) < ℓ ≤ ℓ1, and Case L holds for (p2, J2, ℓ2) with

J2 < ℓ2 = ℓ1. Therefore, output p0 = p1 is in

argmaxp∈S(I0)
J(p) because S(I1) ⊂ S(I0), and

J0 = J1 = ℓ2 = ℓ0 ≥ ℓ. This gives us Case G.

(5) In a similar logic as in Case (4), Case G is true for

(p1, J1, ℓ1), p1 ∈ argmaxp∈S(I1)
J(p), and J1 = ℓ1 =

J(I1) ≥ ℓ. Given that J(I2) < J(I1), then J(I2) < ℓ1;

hence, Case L also holds for (p2, J2, ℓ2) in this

sub-case. Therefore, the same conclusion from Case

(4) follows.

(6) As pL �∈ S(I0), Rule C is implemented. Note that

maxp∈S(I1) J(p) = J(I1) ≥ ℓ, (p1, J1, ℓ1) follows Case

G, and we have J1 = ℓ1 = J(I1) ≥ ℓ. This implies

that J(I2) > J(I1) = ℓ1. Therefore, Case G also

holds for (p2, J2, ℓ2), and we obtain J2 = ℓ2 = J(I2)>

J(I1) = J1. Thus, DCDP(I0, ℓ) outputs p0 = p2
∈ argmaxp∈S(I0)

J(p) and J0 = J2 = ℓ2 = ℓ0 > ℓ.

Hence, Case G holds.

(7) Similar to the previous cases, we apply Rule C. Given

ℓ > J(I1) = maxp∈S(I1) J(p), by Case L, J1 < ℓ1 = ℓ.

and so it follows that J(I2) ≥ ℓ1 = ℓ. Therefore,

(p2, J2, ℓ2) satisfies Case G, with J2 = ℓ2 = J(I2) > ℓ.

Hence, the returned values of DCDP(I0, ℓ) are



Kato et al. BMC Bioinformatics  (2015) 16:316 Page 10 of 16

p0 = p2 ∈ argmaxp∈S(I0)
J(p) and J0 = J2 = ℓ2 =

ℓ0 > ℓ, and Case G is satisfied.

(8) Likewise, we implement Rule C for this case. Observe

that becausemax(J(I1), J(I2))
(eqB)
= J(I0) < ℓ, then

both (p1, J1, ℓ1) and (p2, J2, ℓ2) satisfy Case L. Thus,

we have J1 < ℓ1 = ℓ and J2 < ℓ1 = ℓ2. Therefore,

DCDP(I0, ℓ) outputs J0 = max(J1, J2) < ℓ2 = ℓ0 =

ℓ1 = ℓ, which corresponds to Case L.

Finally, from Lemma 1, we can derive the following

theorem, an important theoretical result of this study:

Theorem 1. The optimal solution of the problem (1) is

obtained by invoking (p⋆, J⋆, ℓ⋆) = DCDP(Nn,−∞).

Splitting schemes

For the implementation of Split(I0), we considered three

schemes: Half Split,Max Split, and Adap Split.

Half split In this scheme, the subset of indices I0 is sim-

ply divided into the first half and the second half. The

resulting I1 and I2 are sets of consecutive integers. For

instance, this scheme divides I0 = {7, 8, 9, 10, 11, 12} into

I1 = {7, 8, 9} and I2 = {10, 11, 12}. To increase the lower-

bound ℓ defined earlier, a heuristic process swaps I1 with

I2 if

max
h∈I1

Lm(h) < max
h∈I2

Lm(h)

is employed.

Max split Similar to Half Split, I1 and I2 generated

by Max Split are sets of consecutive integers, although

the splitting points are different. The splitting point

of Half Split is the center of the interval I0, whereas

the splitting point of Max Split is given by h⋆(I0) :=

argmaxh∈I0 Lm(h). For example, if h⋆(I0) = 8 for I0 =

{7, 8, 9, 10, 11, 12}, this scheme outputs I1 = {7, 8} and

I2 = {9, 10, 11, 12}. In general, the resulting divisions are

given by

I1 := {h ∈ I0 | h ≤ h⋆(I0)} , and I2 := {h ∈ I0 | h > h⋆(I0)} .

If card(I2) = 0, the entry h⋆(I0) is moved from I1 to I2. A

heuristic process swaps I1 with I2 if card(I1) > card(I2)

is applied.

Adap split Unlike the previous two schemes, Adap Split

determines the splitting point adaptively using the current

solution pL,0 := argmaxp∈SL(I0)
J(p). Let us denote the

first entry and the last entry in the vector pL,0 as p01 and

p0m, respectively. Using Adap Split, the mean of p01 and p0m
is set as the splitting point. For instance, if p01 = 9, p0m = 12

and I0 = {7, 8, 9, 10, 11, 12}, then this scheme divides I0

into I1 = {7, 8, 9, 10} and I2 = {11, 12}. In general, the

resulting divisions are given by

I1 :=

{

h ∈ I0 | h ≤
p01 + p0m

2

}

, and

I2 :=

{

h ∈ I0 | h >
p01 + p0m

2

}

.

The smallest entry in I2 is moved to I1 if card(I1) = 0,

and the largest entry in I1 is moved to I2 if card(I2) = 0.

A swapping heuristic process similar to that used in Max

Split is then applied.

Why Adap split is better Adap Split is expected to be

the smartest heuristic process among the three splitting

schemes. To support this claim, we illustrate the process of

DCDP on a small toy problem with (n,m, ς) = (8, 12, 1),

as shown in Fig. 5. The original problem and the relaxed

problem are depicted in Fig. 5a and b, respectively. When

running DCDP(N8,−∞), where I0 = N8, it was observed

that pL,0 := argmaxp∈SL(I0)
J(p) �∈ S(I0). Thereby the

set I0 is divided into I1 and I2 to produce two new

branches DCDP(I1,−∞) and DCDP(I2, ℓ1)where ℓ1 will

be computed via DCDP(I1,−∞).

If Adap Split is employed, the two subsets are I1 =

{7, 8} and I2 = {1, 2, 3, 4, 5, 6}. In DCDP(I1,−∞), pL,1 :=

argmaxp∈SL(I1)
J(p) is in S(I1) (as shown in Fig. 5c),

implying that pL,1 is the maximizer of J(p) over S(I1) and

no more branching occurs. The value of ℓ1 is computed

and we obtain ℓ1 = J(pL,1) = 10.1. Next, DCDP(I2, ℓ1)

is invoked and pL,2 := argmaxp∈SL(I2)
J(p) = 9.5 is

obtained (Fig. 5d). However, J(pL,2) = 9.5 < 10.1 =

ℓ1, which implies that the optimal solution is not in

S(I2). Hence, pL,1 is the optimal solution of the original

problem.

On the other hand, if Half Split is applied, the set I0 =

N8 is divided into I1 = {5, 6, 7, 8} and I2 = {1, 2, 3, 4}

(Fig. 5e and f). In DCDP(I1,−∞), the obtained solution of

the relaxed problem is pL,1 := argmaxp∈SL(I1)
J(p) = pL,0,

which is, again, not in S(I1), leading to further branching

along this sub-problem (Fig. 5e). In fact, in our experi-

ments discussed in the ‘Results and discussion’ section, it

was observed that bothHalf Split andMax Split frequently

encounter cases where pL,1 = pL,0 or pL,2 = pL,0. When-

ever pL,1 = pL,0, additional new branches for the divisions

of I1 are produced because pL,1 = pL,0 �∈ S(I0), leading

to pL,1 �∈ S(I1) ⊂ S(I0). Similarly, new branches for the

divisions of I2 are also generated when pL,2 = pL,0.

In brief, the Adap Split performs better because pL,1 =

pL,0 or pL,2 = pL,0 is less likely to happen in this scheme,

thus resulting in less branches.
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(c) (d)

(a) (b)

(e) (f)

Fig. 5 Relaxed problems in DCDP. Here, a segmentation problem (1) with (n,m, ς) = (8, 12, 1) is considered. We use anm-sided polygon to model

the boundary of a glomerulus. The vertices are restricted to be on any of the n points lying on them rays from the center of the glomerulus. The

boundary likeliness is computed on each of the n points, and the configuration that maximizes the sum of the boundary likeliness is found, as

described in (1). In Panel (a), the sizes of the green circles indicate the quantities of boundary likeliness. As in (1), the feasible configurations of the

polygon are restricted to be in S(I0), where I0 = Nn . Overlapping all feasible configurations yields the gray edges in Panel (a). The optimal

polygon is drawn with red edges. DCDP relaxes the feasible region S(I0) to get SL(I0). In Panel (b), the relaxed feasible region SL(I0) is depicted.

The blue polygon is the optimal configuration for the relaxed problem pL,0 = argmaxp∈SL(I0)
J(p). The proposed algorithm DCDP divides the

problem into many sub-problems. The relaxed versions of the four sub-problems with SL({7, 8}), SL({1, 2, . . . , 6}), SL({5, 6, 7, 8}), and SL({1, 2, 3, 4})

are illustrated in Panels (c), (d), (e), and (f). The blue polygons in (c), (d), (e), and (f) are the optimal solutions of the four relaxed problems,

respectively. See the main text for details

Results and discussion
In this section, the detection performance is demon-

strated by showing the experimental comparisons

between S-HOG and R-HOG [10, 11].

As described in the previous section, our method

has three stages: pre-screening, segmentation, and

classification. Each stage uses its own SVM trained with a

hyper-parameter C. In the classification stage, a threshold
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θ is used to classify an example; if the SVM score is over

the threshold θ , the example is predicted as positive, oth-

erwise, negative. For the pre-screening and classification

stages, Set A was used for training SVM, and Set B was

used for determining the optimal combination of (C, θ).

Sets C, D, and E were used for performance evaluation.

SVM for the segmentation stage provides us with the

boundary likelihood function. The regularization param-

eter C for the SVM is determined via the holdout method

within Set A. Seventy percent of the glomeruli in Set A are

randomly selected for training, and the rest are used for

validation. The resulting parameter values were (C, θ) =

(10, 2) for pre-screening, C = 10 for segmentation, and

(C, θ) = (10,−1.5) for classification.

Detection performance

Figure 6 illustrates examples of detected glomeruli. In the

two images, the candidate glomeruli that passed through

pre-screening are depicted with rings that represent the

boundaries estimated in the segmentation stage. The

numbers printed above the rings are the scores produced

by SVM in the classification stage. Candidate glomeruli

with SVM scores below θ = −1.5 are excluded from

the final detection results. The excluded candidates are

depicted with blue rings, and the remaining glomeruli

with red rings. It can be observed that non-glomerulus

areas are excluded effectively and that true glomeruli are

estimated correctly.

For quantitative assessment of detection performance,

true positives, false positives, and false negatives have to

be defined. True positive glomeruli (TPG) are identified

as correctly detected glomeruli, false positive glomeruli

(FPG) are wrongly detected glomeruli, and false negative

glomeruli (FNG) are the ones that could not be detected.

From the definitions of TPG, FPG, and FNG, we can

compute for the three widely used performance mea-

sures: F-measure, precision, and recall. Precision is the

ratio of TPG to the detected glomeruli (i.e. TPG/(TPG +

FPG)), recall is the ratio of TPG to the true glomeruli

(i.e. TPG/(TPG + FNG)), and F-measure is the harmonic

mean of the Precision and Recall.

Figure 7 shows the plots of the F-measure, Precision,

and Recall for each testing image. S-HOG achieved an

average of 0.866, 0.874, and 0.897 for F-measure, Preci-

sion, and Recall, respectively, whereas R-HOG obtained

0.838, 0.777, and 0.911, respectively. While applying

detection methods to pathological evaluation, Precision is

more important than Recall [11], and in this study, S-HOG

achieved considerably higher Precision with a small sacri-

fice in Recall. A two-sample t-test was performed to assess

the statistical differences. While no statistical difference

of Recall can be detected (P-value = 3.47 · 10−1), the dif-

ferences among F-measure and Precision are significant

(P-values = 1.34 · 10−3 and 3.75 · 10−5, respectively).

Segmentation performance

Herein, we discuss the performance of the segmenta-

tion algorithm. While the main purpose of the proposed

method is detection, the proposed DCDP algorithm

used for obtaining estimated segmentations may also be

applied in some way in studies needing subsequent patho-

logical evaluation [11]. To quantify the accuracy of the

estimated areas within the predicted boundaries, 993

annotated glomeruli in Set B were used. True positive area

(TPA), false positive area (FPA), and false negative area

(FNA) were defined as follows: TPA is the intersection

of the true area and estimated area; FPA is the relative

complement of the true area in the estimated area; and

Fig. 6 Examples of detected glomeruli. The estimated boundaries of the glomeruli are depicted with red rings. The areas surrounded with blue rings

are passed through the pre-screening stage, but removed in the classification stage. The numbers are the SVM scores resulting from the classification

stage. The areas with SVM scores more than θ = −1.5 are classified as a glomerulus. It can be observed that false positives such as vessels detected

in the pre-screening stage were successfully removed in the classification stage
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Fig. 7 Detection performances. The proposed descriptor, S-HOG, achieves evident improvement in F-measures compared to the existing descriptor,

R-HOG. With small loss of true positives, S-HOG halves false positives of R-HOG. (See subsection on ‘Detection performance’ for details)

FNA is the relative complement of the estimated area

in the true area. For each glomerulus and its estimated

area, F-measure, Precision, and Recall can be obtained

by counting the pixels in the TPA, FPA, and FNA. The

histograms of the F-measure, Precision, and Recall are

plotted in Fig. 8, where the frequency is normalized so

that the integral is one. Among the glomeruli, 90.1 %

are estimated to have F-measures more than 0.8, ensur-

ing reliable assessment of the medicinal effect for drug

development.

The computational time of the new segmentation algo-

rithm, DCDP, is compared with that of EDP. The two

algorithms solve the same optimization problem, and both

algorithms always find the same optimal solution. DCDP

and EDP are implemented in C++ language, and the

runtimes are measured on a Linux machine with Intel(R)

Core(TM) i7 CPU and 8-GB memory. First, the num-

ber of times when the O(nmς) DP routine was invoked,

which we denote by ndp, is counted using the annotated

glomeruli in Set B. Figure 9a shows the box-plot of ndp for

all methods. While the value of ndp for EDP is always n,

the values for DCDP depend on the input images and the

splitting schemes, Half Split, Max Split, and Adap Split.

For 46.32 % of glomeruli, the optimal solutions are found

within the first DP routine (i.e. ndp = 1). The medians of

the ndp’s when using Half Split, Max Split, and Adap Split

are 5, 3, and 3, respectively. In other words, the medians of

the depth of the branching tree for each scheme are 3, 2,

Fig. 8 Segmentation performances. The number of glomeruli are tallied to make a histogram with the F-measure, Precision, and Recall of the pixels

on the basis of comparison of true segmentation with estimated segmentation on the x-axes. (See ‘Segmentation performance’ subsection for

details)
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(a) (b)

(c) (d)

Fig. 9 Runtime comparisons. In Panel (a), ndp of DCDP with three splitting schemes and EDP is shown, where ndp is the number of invoking the

O(mnς) DP routine. The number of iterates of MPLP and MPLP+ is plotted in Panel (b), where the time complexity for one iterate in MPLP and

MPLP+ is O(mnς), which is equal to one DP routine. The computational time of each algorithm is plotted in Panels (c) and (d)

and 2, respectively, and the respective 75th percentiles of

ndp’s are 11, 7, and 5. For Adap Split, there is no case where

ndp is larger than n, whereas the number of glomeruli

with ndp > n are 4 (0.40 %) and 16 (1.61 %) for Half

Split and Max Split, respectively. This implies that Adap

Split is the best heuristic process among the three splitting

schemes.

As considered in ‘Methods’ section, Adap Split produces

the same solution pL in the branches less frequently when

compared to the other schemes. In Half Split and Max

Split, the frequency (# of glomeruli) of cases where the

solution pL in the top branch appears again in the second

branches is 414 and 314, respectively. These numbers are

much larger than the frequency obtained by Adap Split,

which is only 97. This explains why Adap Split is faster.

The actual runtime of each method is depicted in Fig. 9c,

where the medians of the computation times are 0.0866,

0.0570, 0.0560, and 0.418 msec, and the 75th percentiles

of the computational times are 0.171, 0.117, 0.0856, and

0.426 msec for Half Split, Max Split, Adap Split, and

EDP, respectively. As these values are proportional to

the ndp’s, the ratios among the runtimes are almost the

same as the ratios among the ndp’s. These results con-

clude that the proposed algorithm DCDP achieves an

exact optimal solution much more efficiently than the

existing algorithm EDP while solving the same prob-

lem, and that the Adap Scheme is the fastest splitting

scheme.

The polygon model employed in this study can be refor-

mulated as an MRF where neighboring vertices have an

interaction. This perspective allows us to solve problems

(1) by means of algorithms for finding a MAP estima-

tion of MRF models. For comparison with DCDP, we

examined the MPLP method [26], which is a state-of-

the-art algorithm for MAP estimation of MRF. MPLP

is a block coordinate-descent algorithm for minimizing

the dual objective of LP relaxation. For our segmentation

problem (1), the dual objective is given by

�(λ) :=

m
∑

i=1

max
pi∈Nm

(Li(pi) + λ(pi, i, i) + λ(pi, i − 1, i))

−

m
∑

i=1

min
(pi ,pi+1)∈N2

m :|pi−pi+1|≤ς
(λ(pi, i, i) + λ(pi+1, i, i + 1)),
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where λ :=
{

λ(pi, i, i) ∈ R | pi ∈ Nn, i ∈ Nm

}

∪
{

λ(pi+1,

i, i + 1) ∈ R | pi ∈ Nn, i ∈ Nm

}

is a set of dual variables,

and we used pm+1 as the alias of p1 for simplicity of nota-

tion. Both λ(p1, 0, 1) and λ(pm+1,m,m + 1) are aliases for

λ(p1,m, 1). Each variable block in the block coordinate

descent is an edge. Hence, our segmentation problem (1)

has m variable blocks, and the update rule for i-th edge is

given by

λ(pi, i, i) := −
1

2
(Li(pi) + λ(pi, i − 1, i))

+
1

2
max

pi+1∈[pi−ς ,pi+ς]
(Li+1(pi+1) + λ(pi+1, i, i + 1)) ,

and

λ(pi+1, i, i + 1) := −
1

2
(Li+1(pi+1) + λ(pi+1, i + 1, i + 1))

+
1

2
max

pi∈[pi+1−ς ,pi+1+ς]
(Li(pi) + λ(pi, i, i)) .

The time complexity of one iterate is O(nmς), which

is equal to that of Algorithm 2, a dynamic program for

solving each sub-problem used in DCDP. Typically, larger

variable blocks reach the convergence faster in the block

coordinate-descent algorithm. It can be seen easily from

the update rule of i-th edge that the dual variables of

(m/2) odd-numbered edges are updated simultaneously

and those of (m/2) even-numbered edges are updated

simultaneously. Then, the number of blocks is reduced to

two. This algorithm is referred to as MPLP+. We actually

implemented both MPLP and MPLP+ in C++ language

and applied it to each of the 993 glomeruli images. MPLP

and MPLP+ successfully obtained the optimal solutions

for all the images, although MPLP and MPLP+ are not

guaranteed theoretically to achieve the optimal solution.

The number of iterates and the computational times are

depicted in Fig. 9b and d, respectively. Although MPLP+

has larger variable blocks than MPLP, it did not signifi-

cantly improve convergence. Furthermore, it turned out

that both methods are too slow to be compared with

DCDP.

Conclusions
In this study, a new descriptor, Segmental HOG, was

proposed for specific glomeruli detection in microscopy

images. The descriptor was based on the boundary of

the glomeruli to acquire robustness for variations in

intensities, sizes, and shapes. A new segmentation algo-

rithm, DCDP, was developed to locate the boundary

of possible glomeruli. Empirical results show significant

improvement compared to the state-of-the-art descriptor,

Rectangular HOG, for the task of glomerulus detection in

microscopy images.Moreover, experimental results reveal

that DCDP is much faster than the existing segmentation

algorithm EDP.

Several possible uses of the proposed method can be

considered. For instance, an appropriate size of the slid-

ing window should be chosen if the proposed method

is applied to microscopic images with different resolu-

tions. In addition, while the boundary likeliness function

is the same for any direction in the segmentation algo-

rithm, different boundary likeliness functions can be used

for detecting other organs depending on the orientation.

For the block division of the S-HOG descriptor, 24 blocks

were used in this study, as depicted in Fig. 4c, but a dif-

ferent number of blocks with a different division can be

used for other applications. Future studies include explor-

ing such extensions in other applications of Segmental

HOG.

Endnote
1Sliding windows are used in both pre-screening and

segmentation.
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