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ABSTRACT

Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the
Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus
frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the
identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be
duplicated and rearranged to generate the present-day B. napus genome. The conserved regions extended
overlengths as greatas 50 cM in the B. napusgenetic map, equivalent to ~9 Mb of contiguous sequence in the
Arabidopsis genome. There was also evidence for conservation of chromosome landmarks, particularly
centromeric regions, between the two species. The observed segmental structure of the Brassica genome
strongly suggests that the extant Brassica diploid species evolved from a hexaploid ancestor. The
comparative map assists in exploiting the Arabidopsis genomic sequence for marker and candidate gene
identification within the larger, intractable genomes of the Brassica polyploids.

RABIDOPSIS  thaliana (hereafter referred to as
Arabidopsis) is one of almost 3500 species that make
up the monophyletic family of the Brassicaceae (PRICE
et al. 1994). Arabidopsis thus shares recent common
ancestry with a large number of species of significant
economic importance, including a diverse range of
vegetable and oil producing crops, the majority of which
are Brassica species. Arabidopsis is an excellent model
system for the Brassicaceae, with a small and relatively
simple genome, efficient transformation system, diverse
range of genetic and genomic resources, and a completed
genome sequence (ARABIDOPSIS GENOME INITIATIVE
2000).

Over the past 10 years, plant comparative mapping
has taken prominence as a powerful tool, first, for un-
covering the processes and rate of genome evolution
and, second, for allowing the transfer of genetic re-
sources between species. Comparative mapping has
been most extensively applied to the grasses where the
genetic maps of 11 species, including the model mono-
cot rice, have been aligned. These include 11 diverse
species varying dramatically in haploid chromosome
number, genome size, and phenotype (reviewed in
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DEvos and GALE 2000). Perhaps the most striking ob-
servation from the cereal studies was the extensive ge-
nome conservation observed between species that
diverged millions of years ago. Using rice as the basal
genome, <30 conserved blocks were identified, which
could be rearranged and/or duplicated to form each of
the other grass genomes. Comparative mapping studies
among members of the Brassicaceae have been more
ambiguous in their conclusions, leading to ongoing
discussions about the level of genome duplication
prevalent in modern Brassica cultivars and the extent
of the genome rearrangements that have occurred in
the evolution of these cultivars from a common ancestor
(LAGERCRANTZ 1998; LAN et al. 2000; LUKENS et al.
2003).

This study focuses on the genome of the oilseed crop
Brassica napus, which is an amphidiploid species formed
from multiple independent fusion events between an-
cestors of the diploids B. rapa (A genome donor) and B.
oleracea (C genome donor) (U 1935; PALMER et al. 1983;
PARKIN et al. 1995). Polyploidy is a prevalent evolution-
ary mechanism within angiosperms since it has been es-
timated that 30-70% of modern plant species have
evolved through a polyploid ancestor (reviewed in
WENDEL 2000). Polyploidy can occur through either
the duplication of whole-chromosome complements or
the fusion of related chromosome complements, and
stabilization of the newly expanded karyotype must
then take place to ensure normal diploid inheritance.
Diploidization of the novel polyploid can occur through
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chromosomal restructuring or genetic control of ille-
gitimate recombination events or a combination of both
mechanisms. It is widely accepted that the progenitor
diploid genomes of B. napus are ancient polyploids and
that large-scale chromosome rearrangements have oc-
curred since their evolution from a lower-chromosome-
number progenitor (SCHMIDT ef al. 2001). What is more
contentious is whether the diploids evolved through a
hexaploid ancestor or whether they were formed via
segmental duplication of one or two ancestral genomes
(LUKENS et al. 2004). B. napus, a relatively young
amphidiploid, is somewhat of an anomaly since it has
been established that no major chromosomal rear-
rangements have occurred since the fusion of the
progenitor A and C genomes, but homeologous re-
combination events between these two related genomes
are common in newly resynthesized B. napus lines and
have been observed at low levels in established canola
cultivars (PARKIN ef al. 1995; SHARPE et al. 1995; UDALL
et al. 2004). It has yet to be established if B. napus has
evolved or inherited a locus controlling homologous
pairing similar to the Pil locus in hexaploid wheat
(JENCZEWSKI et al. 2003).

Comparative mapping between B. napus and Arabi-
dopsis has thus far targeted small regions of the Arabi-
dopsis genome, generally identifying three colinear
segments in each of the diploid genomes for every
region of Arabidopsis studied, thereby promoting
the idea that the diploid Brassica species may have
evolved through a hexaploid ancestor (OSBORN et al.
1997; CAVELL ef al. 1998; PARKIN et al. 2002). However, at
the same time regions suggesting a more complex
relationship between the two species were also identified
(OsBORN et al. 1997; PARKIN et al. 2002). In the earliest
published global comparison between one of the diploid
Brassicas, B. nigra (black mustard), and Arabidopsis, an
extensive number of rearrangements were invoked to
explain how the two extant diploid genomes evolved
from a common hexaploid ancestor (LAGERCRANTZ
1998). There have been four global comparisons of the
genomes of B. oleracea and Arabidopsis. Although all have
been limited by a low density of common loci, three
identified extensive synteny between the two genomes
but were inconclusive in assessing the level of duplication
of the colinear segments (LaN et al. 2000; BABULA el al.
2003; LUKENS et al. 2003). A more recent comparison
of the B. oleracea and Arabidopsis genomes refuted the
possibility of a hexaploid ancestor, citing evidence of
colinear blocks ranging in copy number from 1 to 7 (L1
et al. 2003).

This study describes a comprehensive comparison of
a Brassica genome with that of Arabidopsis. Sequences
of 359 probes derived from Brassica and Arabidopsis
that detect 1232 genetically mapped loci in B. napus
were used to query the Arabidopsis genome, revealing
550 homologous sequences and their inferred chromo-
somal positions. The data provide strong evidence to

support the hypothesis that the Brassica diploid ge-
nomes evolved through a hexaploid ancestor and sug-
gest conservation of some centromeric regions between
the two species. The postulated ancestor appears to have
been formed from duplication events that occurred
subsequent to the putative global duplication events
that took place between 65 and 90 million years ago
(MYA) during the evolution of Arabidopsis (LyncH and
CoNERY 2000; SIMILLION et al. 2002; RAES et al. 2003).
The resultant genetic and physical comparative map
can be used not only to infer genome rearrangements
during the evolution of the Brassica species but also to
identify regions of the Arabidopsis genome that may
harbor genes of interest and should potentiate the
exploitation of Arabidopsis genomic tools in Brassica
research.

MATERIALS AND METHODS

Genetic linkage analysis: Genetic linkage analysis in B.
napus was carried out as described previously except hybrid-
izations with Arabidopsis clones were washed only at low
stringency (2X SSC, 0.1% SDS) (SHARPE ¢t al. 1995). The B.
napus population consisted of 60 doubled haploid lines de-
rived from crosses between a winter B. napus breeding line
(CPB87/5) and a newly resynthesized B. napusline (SYN1) as
described in PARKIN et al. (1995). The genetic map also
includes loci positioned through previously described map
alignments with a second linkage map of B. napus and one of
B. oleracea (BoHUON et al. 1996; PARKIN and LyDpI1aTE 1997).
Briefly, common parental genotypes allowed corresponding
loci to be identified between the maps through the inheritance
ofidentical restriction fragmentlength polymorphism (RFLP)
alleles. Loci mapped in only one population that cosegregated
with such common loci were positioned at that locus in the
combined map. Loci mapped in only one population posi-
tioned between common loci were placed in the correspond-
ing interval in the combined map on the basis of their relative
position in the map of origin. The RFLP probes consisted of
213 Brassica genomic clones (pN, pO, pR, pW: SHARPE et al.
1995), 61 Brassica cDNA clones (CA, es), 88 Arabidopsis cDNA
clones (I, N, R, Z: StriTO el al. 2000), and 6 cloned Brassica
or Arabidopsis genes (ACYL, CONSTANS, FCA, HS1, oleosin:
pC2, A9 desaturase: pC3). The genetic linkage map was
constructed using Mapmaker v3 with a LOD score of 4.0
(LANDER et al. 1987) and the linkage groups were drawn using
Mapchart (Voorrips 2002). Irregularities in meiotic pairing in
the resynthesized B. napus parental line of the doubled
haploid population used for the initial and the additional
mapping caused a nondisjunction event that prevented the ac-
curate mapping of further loci to linkage group N16 (PARKIN
et al. 1995). A limited map of N16 derived from the alignment
of N16 from B. napus, described in SHARPE et al. (1995) and O6
from B. oleracea, described in BoHUON et al. (1996), has been
used in the present analysis. A similar alignment of N16 and O6
was discussed in RYDER et al. (2001).

Sequence analysis: Brassica genomic or cDNA clones were
sequenced from each end using the BigDye v2 Terminator
cycle sequencing kit according to the instructions of the
manufacturer and subsequently the reactions were run out
on an automated ABI377 DNA Sequencer (Applied Biosys-
tems, Foster City, CA). The Brassica sequences were analyzed
using Sequencher (Gene Codes, Ann Arbor, MI) to trim vector
sequence, identify overlaps, and generate contigs. Brassica and
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Arabidopsis sequences were analyzed for homology to the The
Institute for Genomic Research Arabidopsis pseudochromo-
some genomic sequence version 5.0 (ftp:/ftp.tigr.org/pub/
data/a_thaliana/) using the BLAST programs of the National
Center for Biotechnology Information (http:/www.ncbi.nlm.
nih.gov/) housed on a Linux server. Low-complexity sequen-
ces were filtered in the BLAST analysis, and default values
for cost (mismatch cost, —3.0), reward (match reward, 1.0),
and word size (11 bp) were selected. The default gap
opening penalty (5.0) and the gap extension penalty (2.0)
were also selected. Perl script was used to extract the base-
pair position in the Arabidopsis genomic sequence of each
high-scoring segment pair (HSP), identified with BLASTN,
for each clone where the primary HSP had an Ewalue of
=1F07 (supplemental Table S1 at http:/www.genetics.org/
supplemental/).

RESULTS

Comparative map of B. napus and Arabidopsis: Ge-
netic linkage mapping of RFLPs identified with 183
Brassica and Arabidopsis cDNA clones added another
646 loci to the published aligned map of B. napus (BoHUON
et al. 1996; PARKIN and LypiaTte 1997). The complete
B. napus linkage map is presented in Figure 1 and consists
of 1317 genetic loci distributed over 19 linkage groups
with a combined map length of 1968 cM.

The genetic linkage map was generated from segre-
gating loci detected by 368 DNA clones, 274 of which
were derived from anonymous Brassica genomic or com-
plementary DNA; 5 were Brassica homologs of known
genes and the remaining 89 clones were derived from
Arabidopsis cDNA. Sequence data were obtained for
267 of the anonymous Brassica clones and BLASTN
analysis was used to identify homologous loci within the
Arabidopsis genome for each clone. A fairly low expect
value (Fvalue) was used as the exclusion cutoff (1£07)
(supplemental Table S1 at http:/www.genetics.org/
supplemental/). The low Evalue was adopted to max-
imize the number of markers positioned, since the
majority of the probes were derived from genomic,
potentially intergenic, DNA. A total of 258 of the Brassica
clones displayed homology to 404 regions within the
Arabidopsis genome, with an average sequence identity
of 86% over all aligned HSPs. The majority of these hits
were to genic regions and the most similar Arabidopsis
gene was identified for each clone (supplemental
Table S1 at http:/www.genetics.org/supplemental/). A
less stringent F+value can lead to the identification of a
large number of small nonspecific regions of homology
(LUKENS et al. 2003). Of the 258 clones, 58 identified
regions of similarity with bit scores <82, a value suggested
as a cutoff for identifying orthologous sequences within
the Arabidopsis genome for Brassica markers (LUKENS
et al. 2003). For 11 clones, these lower-scoring hits rep-
resented their only or primary region of homology within
the Arabidopsis genome; the data for these clones were
included in the comparative analysis described below.
The remainder of the low-scoring hits represented

secondary or tertiary regions of homology, which gener-
ally fell within predefined duplicated regions within the
Arabidopsis genome (ARABIDOPSIS GENOME INITIATIVE
2000), and these data did not impact on the comparative
analysis. Ten of the Brassica genomic clones showed no
significant homology to the Arabidopsis genomic se-
quence at an Evalue of 15:07; 1 clone, pR113, mapped to
the Arabidopsis genome over multiple adjacent HSPs,
but with an Fvalue of 1/-06. Subsequent BLASTX ana-
lysis of the remaining 9 clones identified related se-
quence for 2 clones, pR30 and pN87, which showed
significant (1£-44 and 194, respectively) homology to
an annotated retroelement pol polyprotein sequence
(At3g29156). Perhaps not surprisingly, neither of these
clones mapped to colinear regions between the two
genomes (see below).

To position the Arabidopsis clones accurately relative
to the Brassica sequences, all the clones were compared
to the Arabidopsis pseudochromosome sequence using
BLASTN analysis. In total, 550 loci were physically
positioned within the Arabidopsis genome on the basis
of sequence identity (an average of one comparative
marker every 214 kb). These same clones identified
1232 RFLP loci on the genetic linkage map of B. napus
(an average of one comparative marker every 1.6 cM). In
Figure 1 each of the B. napus genetic loci has been color
coded according to the most significant BLASTN hit for
the probe that detected that locus. Forty-two percent of
the RFLP clone probes showed sequence similarity to
more than one region of the Arabidopsis genome. Some
of the mapped homologous loci in B. napus may rep-
resent orthologs of these secondary hits within the
model genome. Brassica loci whose position within a
conserved block in Arabidopsis was dependent upon
such secondary hits are color coded according to the
appropriate duplicate hit and are identified by italics
in Figure 1.

All of the B. napus linkage groups were composed of
loci identified by probes related to sequence from
each of the five Arabidopsis chromosomes (Table 1
and Figure 1). If the Brassica genomes evolved through
simple polyploidy from a lower chromosome ancestor
similar to Arabidopsis, it might be expected that the
comparative loci mapped within the B. napus genome
would be equally represented across the Arabidopsis
genome. However, the number of loci originating from
each Arabidopsis chromosome was not evenly distrib-
uted, with significantly fewer loci than expected de-
tected by probes showing homology to Arabidopsis
chromosomes 2 and 3 and significantly more loci than
expected detected by probes with homology to Arabi-
dopsis chromosome 5 (P < 0.001 for a goodness-of-fit
test) (Table 1). This nonrandom distribution could be
a function of a reduction in chromosome number in
the Arabidopsis lineage and/or a function of gene
loss occurring after genome duplication events within
Arabidopsis.
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Ficure 1.—Geneticlinkage map of B. napus. Linkage groups are arr:

anged according to the regions of primary homologybetween the

A (N1-N10) and C (N11-N19) genomes (PARKIN et al. 2003), with centimorgan distances indicated to the left of each group. Each
geneticlocusis colored according to the presumed Arabidopsis homolog: light blue, chromosome 1; orange, chromosome 2; dark blue,

chromosome 3; green, chromosome 4; and red, chromosome 5. Loci

in italics were found within conserved blocks on the basis of sec-

ondary or tertiary hits within the Arabidopsis genome. Loci duplicated within a B. napuslinkage group are indicated by vertical lines to
the right of the group. Identified genome blocks showing conservation of marker content and marker order between the Arabidopsis
and B. napus genomes are shown to the left of each linkage group. Each block is colored and labeled according to the identified ho-
mologous region in Arabidopsis (see Figure 2). Inversionsidentified in Brassica relative to Arabidopsis are indicated by arrows. Regions
of the B. napus genome that have been tentatively aligned with Arabidopsis centromeric regions are indicated by hatched blocks.

Identification of conserved blocks between Arabi-
dopsis and B. napus: For each B. napuslinkage group it
was possible to identify blocks of conserved synteny be-
tween B. napus and Arabidopsis, which represent chro-
mosomal segments that have been maintained since the
divergence of Arabidopsis and Brassica from a common
ancestor (Figures 1 and 2).

A conserved block is defined as a region that contains
several closely linked homologous loci in both the
Arabidopsis and Brassica genomes. Each block has a
minimum of four mapped loci with at least one shared
locus every 5 cM in B. napusand at least one shared locus
every 1 Mbin Arabidopsis. Using these criteria, each con-
served block contained on average 7.8 shared loci and
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had an average length of 14.8 cM in B. napusand 4.8 Mb (Figure 3). The distribution was skewed, with 35% of

in Arabidopsis. Together, the blocks covered almost the intervals tested giving a ratio of 1 cM of the B. napus
90% of the mapped length of the B. napus genome. The genetic map to =100,000 bp of Arabidopsis sequence,
average physical distance covered in the Arabidopsis with a median ratio of 1 cM to 160,767 bp.

genome per 1 cM of genetic distance in the B. napus On the basis of the conserved blocks, 21 segments
genome was calculated for every pair of compara- were identified within the Arabidopsis genome, which

tive markers identified within the conserved blocks could be duplicated and rearranged to form the
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skeleton of the B. napus genome (Figures 1 and 2). Al-
though coverage of the two genomes is extensive, there
are areas where marker density is limited, specifically the
regions spanning the Arabidopsis centromeres (Figure
2). The low-copy-number sequences utilized in the Bras-
sica mapping would be expected to have lower levels of
similarity to centromeres, since the centromeres tend to

be located within gene-poor transposable-element-rich
regions (ARABIDOPSIS GENOME INITIATIVE 2000).
Comparative genome organization: The organization
of the B. napus genome in comparison to the Arabi-
dopsis genome as depicted in Figures 1 and 2 has been
summarized for each of the linkage groups. Due to
the close homology between the A (N1-N10) and C
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(N11-N19) genomes of B. napus, the primary homeo-
logs in B. napus (described in PARKIN et al. 2003) are
indicated in the comparison.

N1/N11:These two B. napuslinkage groups are homo-
logous along their entire length. The top half of each
linkage group shows significant homology to the long
arm of Arabidopsis chromosome 4 (block C4B) with one
inversion, previously noted in CAVELL ef al. (1998), dis-
rupting the colinearity between the two genomes. The
inversion appears to be specific to N1/N11 and is not
present in the homologous regions of linkage groups

N3/N17 and N8/N18 where copies of block C4B were
found. The lower half of N1/N11 is homologous to the
top arm of Arabidopsis chromosome 3 (block C3A).
This block is also strongly conserved in N5/N15 and
N3/N13. In each case, the distal end of the Arabidopsis
chromosome corresponds with the terminal end of
the linkage groups. At the breakpoint between the two
large stretches of colinearity, there are three markers
that span the centromere on Arabidopsis C3 and
additional markers that do not identify a conserved
region. One gross chromosomal rearrangement would
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be sufficient to generate N1/N11 from the blocks de-
fined in Figure 2.

N2/NI12: These two linkage groups are homologous
along their mapped length. PARKIN et al. (2002) pre-
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viously described the relationship between N2/N12 and
Arabidopsis C5, where the upper region of N2/NI12 is
homologous to the top 8 Mb of Arabidopsis C5 (block
CbA) and an inversion on Arabidopsis C5 has moved
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Arabidopsis C4. Two more small conserved regions were
identified on N2/N12, C3B, and C5F. One inversion on
Arabidopsis Cb and three insertion/deletion/ transloca-
tion events represent the least number of rearrange-
ments, which could generate the present organization of

N2/NI12.
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TABLE 1

Number of loci originating from each Arabidopsis chromosome, on the basis of sequence homology, for each
B. napus linkage group

Linkage

group Cl C2 C3 C4 G5 ND Total
N1 4 5 14 29 2 6 60
N11 3 6 13 27 7 7 63
N2 14 3 3 4 34 9 67
N12 12 4 4 7 41 2 70
N3 9 19 17 24 36 2 107
N13 19 16 25 17 42 11 130
N4 6 14 6 7 7 2 42
N14 13 33 10 6 13 6 81
N5 13 13 16 1 5 5 53
N15 36 3 16 2 7 4 68
N6 29 4 3 5 21 1 63
N17 17 11 9 23 18 4 82
N7 32 9 7 3 3 1 55
N16 17 0 3 0 3 1 24
N8 20 1 1 17 4 3 46
N18 31 7 12 7 8 7 72
N9 27 10 9 12 17 1 76
N19 10 4 5 8 57 7 91
N10 14 2 3 2 40 6 67
Total (%) 326 (26) 164 (13) 176 (18) 201 (16) 365 (30) 85 1317
Expected* 313 209 240 187 281

ND, not determined.

“ Expected number of loci to originate from each Arabidopsis chromosome on the basis of random distribution
of'loci across five chromosomes with the following approximate sizes: C1, 30 Mb; C2, 20 Mb (not including the
NOR region); C3, 23 Mb; C4, 18 Mb (not including the NOR region); and C5, 27 Mb.

N3(N17)/N13: The homology of N3/N13 to C5 is
described above, below which N3/N13 share homology
with Arabidopsis C2 (block C2BC). Block C2BC on
N3/N13 was defined by a lower density of comparative
markers, which were further rearranged by an inversion,
compared to the duplicated copies of C2BC found on
N4/N14 and Nb5. The lower end of C2BC on N3/N13,
which borders the centromere on C2, lies adjacent to a
conserved block originating from the centromeric re-
gion of Arabidopsis C4 (block C4A). Below C4A, N3/
N13 share homology with block C3A as described above.
At the junction of C3A, which lies proximal to the
centromere on C3, N3 is no longer homologous to N13
but instead shares homology with linkage group N17
and Arabidopsis C4 as described above. The remainder
of linkage group N13 has no clear region of homeology
in the B. napus A genome. However, in relation to
Arabidopsis, this region of N13 shares homology with
the blocks flanking the centromere of C3 (C3B-C3C),
block C1B, and block C4B. In the area that would be
homologous to the centromeric region of C3, there
are eight markers with homology to different Ara-
bidopsis chromosomes, three of which flank the cen-
tromere on C2. At least three gross chromosomal
rearrangements and two inversions are necessary to
generate N3 from the identified conserved blocks;

assuming that C3ABC has been essentially conserved,
one additional translocation/insertion would be neces-
sary to generate N13.

N4/N14/N5: The majority of N4 and N14 (65 and
75% of the mapped length, respectively) and the upper
half of N5 share homology with Arabidopsis C2. The
organization of NI4 suggests that of an isocentric
chromosome with the upper and lower arms sharing
numerous common markers mapped in inverse orien-
tation with respect to each other. The top of N4 and the
homeologous central section of N14 show small blocks
of colinearity with Arabidopsis C3, C4, and C5; N14 has
one additional block from Cl. Three gross chromo-
somal rearrangements are sufficient to describe the
organization of N4 and one additional inversion and
two translocation/insertions would describe N14.

N5/N15/N6: The lower half of N5 and N15 as de-
scribed above (for N1/N11) are colinear with the long
arm of Arabidopsis C3. At the center of N5/N15, the
markers originate from Arabidopsis C1, with compara-
tive markers flanking the centromere on Cl. This
central region on N15 is part of a larger block, which
is colinear with the upper arm of Arabidopsis C1 and the
homeologous region of B. napus N6. One and two large
chromosomal rearrangements would generate the pre-
sent organization of N15 and N5, respectively.
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FIGURE 2.—A representation of
the Arabidopsis genome based on
the primary location of each se-
quenced B. napus RFLP marker
on the Arabidopsis pseudochro-
mosomes (megabase distances
are indicated to the right of the
chromosomes). Duplicate marker
locations are indicated in paren-
theses. Blocks of markers found
to be genetically linked in B. napus
are indicated by shading and capi-
tal letters (A-F). In the majority of
cases, C4B is conserved as a com-
plete block, but in two instances,
on N4 and N14, a small section of
the block was observed and is rep-
resented by C4B'.
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N6/N17: The lower half of N6 shows homology to
sections of Arabidopsis C5 and C3. The region from
block C5B to the bottom of N6 is homeologous but
inverted with respect to N17. Two markers on N6/N17
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FIGURE 2.— Continued.
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F1cure 3.—Distribution of the physical distance in Arabidop-
sis compared to the genetic distance in B. napus for each pair of
linked comparative markers found with the conserved blocks.

(CA129 and es1732) identify sequences on the short
arm of Arabidopsis C2. There were insufficient marker
data from this region to identify a conserved block;
however, fine mapping of a dwarf gene in B. rapa has
subsequently aligned this region of N6 with the short
arm of Arabidopsis C2 (MuaNGPrROM and OSBORN
2004). It is to be expected that for regions such as
these, which flank the Arabidopsis centromeres where
there is a dearth of comparative markers, further
conserved blocks will be identified. The comparison of
N6/N17 to Arabidopsis is complex relative to other B.
napus linkage groups and at least five and six chromo-
somal rearrangements need to be invoked to generate
N6 and N17, respectively.

N7(N16)/N17: The top of N7/N17 is homologous to
the short arm of Arabidopsis C2, including comparative
markers that flank the centromere on C2. Homeology
between N7 and N17 breaks down after block C1B,
where the lower half of N7 is homologous with N16 and
Arabidopsis C1. Due to the constraints of the mapping
population (see MATERIALS AND METHODS), there are
limited markers mapped to N16, making the number of
rearrangements difficult to interpret. The data suggest
that at least three translocations/deletions/insertions
of conserved blocks have taken place to give N7, and at
least one chromosomal rearrangement gave rise to N16.

N8/N18/N9: The whole of N8 appears to be homeol-
ogous with N18 and is syntenous with Arabidopsis C1C,
C4B, and C1AB; however, block C1AB is inverted on N18
with respect to N8. The remainder of N18 is homeolo-
gous to the lower portion of N9 and is syntenous with
Arabidopsis C3D, C2B, a fraction of C1B, and CIA. The
latter block forms part of an internal duplication on
N18. One insertion of block C4B into the centromeric
region lying between C1AB and C1C and two inversions
(in C4B) could describe N8. The same insertion of C4B
found on N8, duplication of ClA, and translocation/
insertion of C3D would generate N18.

NY/N19/N10: N10 and NI19 share a region that is
syntenous with Arabidopsis C5 as described above (for
N2/N12). The end of C5E, which coincides with the
break in homology between N10 and N19, separates
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TABLE 2

Description of each conserved block found in Arabidopsis

No. of comparative Length of
markers in conserved
Conserved No. of times Arabidopsis No. of comparative Total cM coverage block (Mb)
block* replicated (nonsyntenous)” loci in B. napus’ in B. napus in Arabidopsis”
CIA 7 31 (1) 88 192.1 6.68
CIiB 7 22 (2) 54 64.7 5.32
cic 7 14 (1) 28 38.1 4.12
C1D 4 10 (1) 18 24.1 2.49
CI1E 4 23 (2) 42 106.6 6.07
C2A 5 12 (2) 19 42.1 8.71°
C2B 6 11 (1) 24 34.15 3.42
c2C 6 31 (3) 65 186 6.35
C3A 6 31 (1) 88 244.6 9.27
C3B/ 5-8 7 13 24.75 1.66
c3¢/ 1-4 6 8 4.35 3.07
C3D 6 18 (1) 34 36.85 4.7
C4A 6 11 31 25.65 7.09°
C4B' 6 8 18 5.85 1.45
C4B 6 35 (2) 106 244.85 8.96
C5A 6 44 (3) 142 245.7 7.55
C5B 6 7 25 55 1.98
ChC 4 7 (2) 11 27.55 3.54
C5D 6 16 (1) 26 45.05 2.42
C5E 6 18 (3) 52 45.35 4.32
C5HF 5 6 (1) 14 13.15 1.99
Total (%) 115-121 368 (27) 906 1706.55 (86.7%) 101.16 (85.3%)

“Conserved blocks are indicated in Figures 1 and 2. Those blocks that are present in at least three copies in
each of the diploid Brassica genomes are indicated by italics.

’Number of comparative loci originating from the conserved block in Arabidopsis, which are mapped in a
conserved region within the A and/or C genomes of B. napus. Loci within the conserved block that have not
been mapped to a colinear position in B. napus are indicated in parentheses.

“Total number of mapped loci within B. napus that originate from the conserved block and are found in a

colinear position.

“Physical length of the designated conserved block in Arabidopsis as shown in Figure 2. The complete block

may not be represented in each of the duplicate copies.

‘Blocks that include centromeric regions in Arabidopsis.
/Limited marker data in the region flanking the centromere on Arabidopsis chromosome 3 make it difficult
to accurately identify these regions within the B. napus genome.

a region of apparent conservation between the two
species from one thatis fragmented. The tops of N9 and
NI19 share loci from comparative markers, which are
assigned to anumber of blocks, running from the top of
N9/N19 in the order C4A-CHB-C5F-C1D-CHD-C4A.
There is no clear region of homology in the B. napus C
genome for the top of N10, which is syntenous with
Arabidopsis C1. N9 has the most complex segmental
pattern of all the linkage groups, necessitating at least
nine chromosomal rearrangements to generate the
mapped group. One inversion on C5 (as described for
N2/N12) and one translocation would explain N10, and
one inversion and six other rearrangements would
explain N19.

At least 74 translocations, fusions, deletions, or
inversions of the 21 conserved segments found within
the Arabidopsis genome are necessary to generate the
present-day B. napus genome. However, 28 of these re-

arrangements are common to both the A and C ge-
nomes of B. napus, suggesting that they occurred prior
to their divergence from a common ancestor. As de-
scribed above, a number of the breakpoints between
conserved segments correspond to previously defined
translocation end points, which separate the A and C
genomes of B. napus (PARKIN et al. 2003) . In anumber of
instances, the junctions of conserved blocks coincide
with telomeric or centromeric regions of Arabidopsis,
suggesting that centric fission and fusion have played a
role in the chromosomal restructuring.

Duplication within the Brassica genome: Counting
the number of times that a single Arabidopsis region is
found within the B. napus genome provides an estimate
of the level of genome duplication within Brassica
compared to the model genome. Each conserved
chromosomal segment was represented between four
and seven times within the B. napus genome (Table 2).
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FiGure 4.—Alignment of segment of B. napuslinkage group N19 with both Arabidopsis chromosome 1 and chromosome 5, high-
lighting the difficulty in identifying the most related Arabidopsis region where there are ancient duplications in the model genome.

However, the organization of the different duplicated
copies of each block varied with respect to each other,
either by the presence of additional rearrangements
(see description for N1/N11 above) or by the number of
comparative markers [see description for N3(N17)/
N13 above]. In Arabidopsis, 81% of the comparative loci
positioned on the genome mapped to conserved
regions present in at least six copies within the B. napus
genome (Table 2). Eighty-six percent of the mapped
length of the B. napus genome, which was arranged in
conserved blocks, was found in at least six copies (Table
2). These results corroborate previous suggestions
based on more limited data that the Brassica diploid
genomes have evolved through a hexaploid ancestor.
However, the presence of seven copies of some Arabi-
dopsis regions within the B. napus genome suggests that
further segmental duplication events may have oc-
curred subsequent to any polyploidy event(s).
Consequences of duplication within the Arabidopsis
genome: The majority of the conserved Arabidopsis
blocks, including those known to be part of duplicated
regions within Arabidopsis, are each found between five
and seven times within the B. napus genome. Effectively,
this means that the duplicated regions of the Arabidop-
sis genome are found between 10 and 14 times within
the B. napus genome; similarly, recent physical mapping
carried out in B. napus identified 12 regions within the
B. napus genome homologous to a small duplicated
region of the Arabidopsis genome (RANA et al. 2004).
These data suggest that the large segmental genomic
duplications found within Arabidopsis occurred in the
common ancestor of the two lineages prior to the
formation of a Brassica hexaploid ancestor. These data
are also consistent with the fact that the last round of
genome duplication is believed to have occurred in
Arabidopsis between 65 and 90 million years ago
(Ly~ncH and CoNERY 2000; StmMILLION et al. 2002; RAES
et al. 2003) whereas the separation of the Arabidopsis

and Brassica lineages is dated somewhere between 12
and 24 million years ago (Koch et al. 2000).

Since the divergence of these two species one would
expect the independent loss of redundant duplicate
genes from both species. Several such losses from the
Arabidopsis genome were observed. For example, on
NI and N11, the upper parts of the linkage groups are
colinear with the long arm of Arabidopsis chromosome
4 (Figure 1). Nonetheless, a number of Brassica loci
were identified by probes (IC06, CA87, pN52, pN67)
originating from Arabidopsis chromosome 2. Although
these probes were found in regions identified as being
duplicated between chromosomes 2 and 4 of Arabidop-
sis  (http://www.tigr.org/tdb/e2kl/ath1/Arabidopsis_
genome_duplication.shtml), they showed no homology
to the Arabidopsis chromosome 4 sequence. Thus,
Brassica has maintained duplicate copies of these se-
quences within the region equivalent to chromosome 4,
whereas Arabidopsis has lost them.

In some instances the duplications evident within the
Arabidopsis genome have made it difficult to identify
the most similar region shared between the two species.
For example, loci on B. napus linkage group N19 show
strong homology to both chromosome 5 block C and
the duplicated region on Arabidopsis chromosome 1
block D (Figure 4).

Conservation of chromosome landmarks between
the two species: The position of each Brassica centro-
mere has yet to be accurately determined relative to
the genetic linkage maps. However, RFLP mapping of
artifactual telocentric chromosomes in Brassica aneu-
ploids placed the centromere of linkage group N12
between markers pW177E3 and pO5b, the centromere
of group N13 between pWl18la and pN96b, and the
centromere of group N14 between markers pN151b
and pW130a (KeLLy 1996). Additionally, integration
of the cytogenetic and genetic linkage maps of B.
oleracea positioned the centromere of linkage group
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O1 (equivalent to N11) between markers pN152E1 and
pO168E1 (HOowELL et al. 2002).

In the proposed centromeric region of N12, four
coincident markers were mapped with homology to
Arabidopsis sequences that span the centromere on
chromosome 4, suggesting conservation of chromo-
some position between the species. It is possible that
with sufficient marker data the Arabidopsis centromeric
positions could be used to predict functional and
ancestral centromeric regions in Brassica chromo-
somes. The latter would arise since a hexaploid derived
from a lower chromosome progenitor, which likely had
between 5 and 8 chromosomes, originally would have
had between 15 and 24 functional centromeres, which
were then reduced to 10 and 9 in the Brassica A and C
genomes, respectively. As in the case of N12, there were
a number of instances where the density of markers
across the Arabidopsis centromere was insufficient to
identify a conserved block in B. napus. However, the loci
identified by these same markers were tightly linked in
B. napus, and in the case of N11, N12, and N13 there was
further cytological evidence suggesting the centromere
location. Each of these putative centromeric regions is
indicated in Figure 1. As evidenced by numerous small
segments of colinearity flanking these provisional cen-
tromeric regions on N11, N12, and N14, it appears that
the neighboring regions are prone to rearrangements
and evolve rapidly compared to more distal regions.

The karyotype of B. oleracea indicates that linkage
group O7 (equivalent to N17) is an acrocentric chromo-
some and has a strongly hybridizing 45S locus at the ter-
minus of the short arm (HoweLL et al. 2002). This region
of N17 shows homology to the short arm of Arabidopsis
chromosome 2 and coincidently one of the two nucleolar
organizer regions (NORs) of Arabidopsis also maps to
the terminus of the short arm of chromosome 2 (FRANZ
et al. 1998).

DISCUSSION

In this study, by allowing minor disruptions in con-
served regions it was possible to identify 21 conserved
blocks within Arabidopsis, which could be replicated
and rearranged to cover almost 90% of the mapped
length of B. napus. A minimum number of 74 gross re-
arrangements, with 38 in the A genome and 36 in the C
genome, can be estimated to have separated the two
lineages since their divergence 14-24 MYA (KocH et al.
2000). This lies between two previously published
figures derived from Brassica/Arabidopsis comparative
mapping: 19 chromosomal rearrangements separating
B. oleracea from Arabidopsis (LAN et al. 2000) and 90
separating B. nigra from Arabidopsis (LAGERCRANTZ
1998). Detecting rearrangements is influenced by a
number of variables including the number and type of
available comparative markers, the level of polymor-
phism within a mapping population, and the method of

determining colinearity between species. For LAN et al.
(2000) the lower figure was probably due to a low
density of comparative markers and for LAGERCRANTZ
et al. (1998) the much higher figure was due in part to
the approach used to identify syntenous regions, with
no allowance made for minor disruptions of colinearity,
and was exacerbated by the inclusion of markers
thought to be single copy in Arabidopsis but now known
to be multi-copy. Comparing estimates of the level of
rearrangements in lineages is problematic because of
the inherent difficulties in comparing data sets and due
to variation in the estimated divergence times. With that
proviso, considering the data presented here, the level
of rearrangement observed in the Brassiceae tribe, as
represented by the A and C genomes of B. napus, is
relatively high when compared with related species from
the Brassicaceae family. Recently, the genetic maps of
Capsella rubella (Lepideae tribe) and Arabidopsis lyrata
(Sisymbrieae tribe) have been compared to the sequence
map of A. thaliana (Bo1vIN et al. 2004; KUITTINEN et al.
2004). On the basis of the comparison to the A. thaliana
genome, analysis of the two maps indicates equivalent
linkage group organization, with the eight chromo-
somes of C. rubella, A-H, aligning with the A. lyrata
chromosomes, ALLI-ALS, respectively. This demonstrates
that both species evolved from a common ancestor. A.
lyrataand C. rubella are estimated to have diverged from
Arabidopsis 5 and 10 MYA, respectively (BO1vIN et al.
2004; KUITTINEN et al. 2004). A limited number of major
chromosomal rearrangements, ~6-13, separate these
two species from A. thaliana. In addition, no major rear-
rangements have separated A. lyrata from C. rubella.
Although it is not possible to align all the conserved
blocks identified in this study with the C. rubella and A.
lyrata genomes, the junctions of a number of the rear-
rangements identified between these two species and A.
thalianacorrespond to the ends of conserved blocks identi-
fied in this study. However, none of the chromosomal rear-
rangements that separate A. lyrata and C. rubella from A.
thaliana appear to be common to the Brassiceae lineage.

The fact that the majority of the identified conserved
segments are found in at least six copies in B. napus and
that 81% of the comparative loci, which define the
conserved blocks in Arabidopsis, are mapped to these
triplicated regions, is consistent with a proposed hexa-
ploid ancestor for the diploid Brassica progenitor. How-
ever, it could still be argued that the observed pattern of
duplicated segments is the result of several smaller
independent segmental duplications following a single
whole-genome duplication event, a mode of evolution
that would require a significant number of independent
duplication events. Polyploidy has been a prevalent
mechanism of evolution within the angiosperms and it
has been estimated that 30-70% of species have un-
dergone at least one round of chromosome doubling
during their evolutionary development (reviewed in
WEeNDEL 2000). There is also well-documented evidence
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for extensive chromosomal rearrangements in newly
resynthesized Brassica polyploids (PARKIN et al. 1995;
SONG et al. 1995). Thus genome triplication followed by
a small number of insertions/deletions/ translocations
would provide the simplest explanation for the present
structure of the Brassica diploid genome.

In this study, the overall picture is one of conservation
of gene content and gene order between the genomes of
Arabidopsis and B. napus. The average length of the
conserved blocks identified between the two species was
14.8 cM in B. napusand 4.8 Mb in Arabidopsis. However,
for at least seven B. napus linkage groups, half their
mapped length was equivalent to one conserved region
of the Arabidopsis genome. Undoubtedly, the Brassica
genomes have undergone restructuring during their
evolution from a common ancestor of Arabidopsis,
but this has not prevented the maintenance of large
stretches of similarity, in some cases equivalent to 9 Mb
of contiguous Arabidopsis genomic sequence. In a
number of instances, the comparative mapping pro-
visionally suggests correspondence of centromere posi-
tions between the two species. The large conserved
regions found across the different genomes, punctuated
by numerous smaller blocks of similarity, suggest that
there are preferential regions for chromosome break-
age and subsequent rearrangements.

The publication of the genome sequence of Arabi-
dopsis has opened up many avenues of research with the
expectation that these endeavors would have applica-
tions in the study of the more complex genomes of crop
plants (AraBIDOPSIS GENOME INITIATIVE 2000). The
complete sequence allowed the resolution of the exact
physical positions for ~30,000 genes, 50% of which have
no known function and any of which could hold the key
to understanding a number of important agronomic
traits. The comparative map suggests that the model
genome of Arabidopsis can be widely exploited to infer
the genetic basis of traits in its economically valuable
Brassica crop relatives. In the identified conserved
regions, the Arabidopsis genomic sequence should be
an excellent resource for identifying useful markers,
targeting the genic regions, since they show on average
86% sequence identity. Accurately mapping the genes
controlling target phenotypes in large segregating
Brassica populations should allow candidate genes to
be inferred from the Arabidopsis sequence. However,
due to the duplicated nature of the Brassica genomes
it will be difficult to predict whether any particular
Arabidopsis gene will have been maintained in all the
duplicate copies. Comparative genomic sequencing in
other plant species suggest that there almost certainly
will have been numerous rearrangements at the level of
microsynteny (BENNETZEN and RAMAKRISHNA 2002).
Limited physical mapping in B. oleracea identified only
one potential inversion and one gene in a nonsyntenic
position; however, there was obvious interspersed gene
loss from the different triplicated regions (O’NEILL and

BancrorT 2000). In addition, recent physical mapping
in the B. napus genome uncovered a similarly small
number of disruptions in the microsynteny but evidence
of changes in gene content between the homologous
Brassica segments compared to the homologous Arabi-
dopsis regions (RaNa et al. 2004). Genomic sequence
data of such regions from Brassica species will allow the
extent to which the duplicate copies have been con-
served to be determined, provide insights into the
mechanism underlying the rearrangements differenti-
ating the different copies, and allow an estimate of the
relative age of the different duplication events.
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