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Segmentation and Classification of Hyperspectral
Images Using Minimum Spanning Forest Grown

From Automatically Selected Markers
Yuliya Tarabalka, Student Member, IEEE, Jocelyn Chanussot, Senior Member, IEEE, and

Jón Atli Benediktsson, Fellow, IEEE

Abstract—A new method for segmentation and classification of
hyperspectral images is proposed. The method is based on the
construction of a minimum spanning forest (MSF) from region
markers. Markers are defined automatically from classification
results. For this purpose, pixelwise classification is performed, and
the most reliable classified pixels are chosen as markers. Each
classification-derived marker is associated with a class label. Each
tree in the MSF grown from a marker forms a region in the
segmentation map. By assigning a class of each marker to all the
pixels within the region grown from this marker, a spectral-spatial
classification map is obtained. Furthermore, the classification map
is refined using the results of a pixelwise classification and a ma-
jority voting within the spatially connected regions. Experimental
results are presented for three hyperspectral airborne images.
The use of different dissimilarity measures for the construction
of the MSF is investigated. The proposed scheme improves classi-
fication accuracies, when compared to previously proposed clas-
sification techniques, and provides accurate segmentation and
classification maps.

Index Terms—Classification, hyperspectral images, marker se-
lection, minimum spanning forest (MSF), segmentation.

I. INTRODUCTION

IMAGE CLASSIFICATION, which can be defined as iden-

tification of objects in a scene captured by a vision system,

is one of the important tasks of a robotic system. On the one

side, the procedure of accurate object identification is known

to be more difficult for computers than for people [1]. On the

other side, recently developed image acquisition systems (for

instance, radar, lidar, and hyperspectral imaging technologies)

capture more data from the image scene than a human vision
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Fig. 1. Structure of a hyperspectral image.

system. Therefore, efficient processing systems must be devel-

oped in order to use these data for accurate image classification.

Hyperspectral imagery records a detailed spectrum of light

arriving at each pixel [2]. Hyperspectral sensors measure the

energy of the received light in tens or hundreds of narrow spec-

tral bands (data channels) in each spatial position of the image

(Fig. 1 shows the structure of a hyperspectral image). This rich

information per pixel increases the capability to distinguish ma-

terials and objects and thus opens new perspectives for image

classification. However, a large number of spectral channels,

usually coupled with limited availability of reference data,1

present challenges to image analysis. While pixelwise classi-

fication techniques process each pixel independently without

considering the information about spatial structures [3]–[5],

further improvement of classification results can be achieved

by considering spatial dependences between pixels, i.e., by

performing spectral-spatial classification [6]–[11].

Segmentation is an exhaustive partitioning of the input image

into homogeneous regions [12]. Segmentation techniques are a

powerful tool to define spatial dependences. In previous works,

we have performed unsupervised segmentation of hyperspectral

images in order to define spatial structures [9], [13], [14].

Watershed, partitional clustering, and hierarchical segmentation

techniques have been used for this purpose. Segmentation

and pixelwise classification were performed independently, and

then, the results were combined using a majority voting rule.

Thus, every region from a segmentation map was considered

as an adaptive homogeneous neighborhood for all the pixels

within this region. The described technique led to a signification

improvement of classification accuracies and provided more

1By reference data, we mean manually labeled pixels which are used for
training classifiers followed by assessment of classification accuracies.

1083-4419/$26.00 © 2009 IEEE
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homogeneous (less noisy) classification maps when compared

to classification techniques using local neighborhoods in order

to include spatial information into a classifier.

However, unsupervised image segmentation is a challenging

task. Segmentation aims at dividing an image into homo-

geneous regions, but the measure of homogeneity is image

dependent [12]. Depending on this measure, the process can

result in undersegmentation (several regions are detected as

one) or oversegmentation (one region is detected as several

ones) of the image. In previous works [13], [14], we preferred

oversegmentation to undersegmentation in order not to miss

objects in the classification map. In this work, we aim to reduce

oversegmentation and thus further improve segmentation and

classification results. This can be achieved by using markers

or region seeds [12], [15]. In previous studies, a marker (an

internal marker) was defined as a connected component belong-

ing to the image and associated with an object of interest [12],

[15]–[17]. In our study, we define a marker as a set of image

pixels (not necessarily connected; it can be composed of several

spatially disjoint subsets of adjacent pixels) which is associated

with one object in the image scene.

The problem of automatic marker selection has previously

been discussed in the literature, mostly for gray-scale and

color images. Markers are often defined by searching flat zones

(i.e., connected components of pixels of constant gray-level

value), zones of homogeneous texture, or image extrema [15].

Gómez et al. [18] applied histogram analysis to obtain a set

of representative pixel values, and the markers were gener-

ated with all the image pixels with representative gray values.

Jalba et al. [16] used connected operators filtering on the

gradient image in order to select markers for a gray-scale

diatom image. Noyel et al. [17], [19] performed classification

of the hyperspectral image (using different techniques, such as

Clara [20] and linear discriminant analysis) and then filtered

the classification maps class by class, using morphological

operators, in order to select large spatial regions as markers.

Furthermore, the authors proposed to use random balls (con-

nected sets of pixels of randomly selected sizes) extracted from

these large regions as markers. In the discussed studies [16],

[17], [19], the objective was to segment specific structures

(blood cells, diatoms, glue occlusions, and cancerous growth).

In our study, the objective is to mark (select a marker for)

each significant spatial object in the image. Here, by significant,

we mean an object of at least one-pixel size that belongs to

one of the classes of interest. As remote sensing images contain

small and complex structures, automatic selection of markers is

an especially challenging task.

In this paper, a new scheme for marker-based segmenta-

tion and classification of hyperspectral images is proposed.

In particular, we propose to perform a probabilistic pixelwise

classification first in order to choose the most reliable classified

pixels as markers of spatial regions [21]. Furthermore, image

pixels are grouped into a minimum spanning forest (MSF)

[22], where each tree is rooted on a classification-derived

marker. The decision to connect the pixel, which is not yet

in the forest, to one of the trees in the forest is based on its

similarity to one of the adjacent pixels already belonging to

the forest. By assigning a class of the marker to all the pixels

within the region grown from the considered marker, a spectral-

spatial classification map is obtained. Furthermore, the classi-

fication map is refined using the results of a pixelwise classi-

fication and a majority voting within the spatially connected

regions [14].

The construction of an MSF belongs to graph-based ap-

proaches for image segmentation [22]–[25]. They introduce the

Gestalt principles of perceptual grouping to the field of com-

puter vision. The image is associated with a graph, the vertices

of which correspond to the image entities (pixels or regions)

and the edges correspond to relations between these entities. A

weight associated with each edge indicates the (dis)similarity

between two entities (pixels or regions). Morris et al. [23] have

proposed to perform a graph-based image segmentation into R
regions by constructing a shortest spanning tree on the image

graph and then removing the R − 1 edges with the highest

weight. Furthermore, several graph-cut-based algorithms have

been developed for image segmentation [24], [25]. However,

these methods perform unsupervised segmentation by splitting

at each iteration one region into two subregions. This approach

is fundamentally different from the work described in this

paper. Several recent publications describe the use of an MSF

rooted on markers for image segmentation [22], [26], [27].

However, the authors of these works do not investigate the

problem of automatic marker selection. Their segmentation is

based on markers provided by the user.

The proposed procedure of defining markers for each spatial

object from probabilistic classification results and of build-

ing a spectral-spatial classification map for hyperspectral

images by constructing an MSF rooted on classification-

derived markers is a major contribution of this paper. Please

note that, while, in previous studies, markers were used as

seeds for image segmentation, in this paper, we introduce a

new concept of the automatic marker-based spectral-spatial

classification.

1) Markers are derived from probabilistic pixelwise classifi-

cation results.

2) Each marker can be composed of several spatially disjoint

subsets of adjacent pixels, and each marker has a class

label.

3) By performing a region growing from the classification-

derived markers, a spectral-spatial classification map is

obtained.

Although the classification scheme proposed in this paper has

been designed for hyperspectral data, the method is general and

can successfully be applied for other types of data as well. Ex-

perimental results are demonstrated on hyperspectral airborne

images recorded by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) over Northwestern Indiana’s Indiana

Pine site and over the region surrounding the volcano Hekla

in Iceland, and the image acquired by the Reflective Optics

System Imaging Spectrometer (ROSIS) over the University of

Pavia in Italy.

The outline of this paper is as follows. In the next section,

a classification scheme based on an MSF rooted on markers

is presented. Experimental results are discussed in Section III.

Finally, conclusions are drawn in Section IV.
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II. SEGMENTATION AND CLASSIFICATION SCHEME

The flowchart of the proposed segmentation and classifica-

tion method is shown in Fig. 2. On the input, a B-band hyper-

spectral image is given, which can be considered as a set of n
pixel vectors X = {xj ∈ R

B , j = 1, 2, . . . , n}. Classification

consists in assigning each pixel to one of the K classes of

interest. In the following, each step of the proposed procedure

is described.

A. Pixelwise Classification

The first step consists in performing a probabilistic pixelwise

classification of the hyperspectral image. We propose to use a

support vector machine (SVM) classifier [28] for this purpose.

Other classifiers could be used. However, SVMs are extremely

well suited to classify hyperspectral data [5], [29], [30]. We

refer the reader to [5] and [28] for details on SVMs. The outputs

of this step are the following:

1) classification map, containing class labels for each pixel;

2) probability map, containing probability estimates for

each pixel to belong to the assigned class.

Two techniques for computing probability estimates for mul-

ticlass classification by pairwise coupling are described in [31].

We propose to use one of these methods, which is implemented

in the LIBSVM library [32]. The objective is to estimate, for

each pixel x, the probabilities to belong to each class of interest

p = {pk = p (y = k|x), k = 1, . . . , K} . (1)

For this purpose, first, pairwise class probabilities rij ≈
p(y = i|y = i or j,x) are estimated using an improved imple-

mentation [33] of [34]

rij ≈
1

1 + eAf̂+B
(2)

where A and B are estimated by minimizing the negative log-

likelihood function using known training data and decision

values f̂ . Furthermore, the probabilities in (1) are computed by

solving the following optimization problem:

min
p

K
∑

i=1

∑

j:j �=i

(rjipi − rijpj)
2

subject to

K
∑

i=1

pi = 1, pi ≥ 0 ∀i. (3)

This problem has a unique solution and can be solved by a

simple linear system, as described in [31]. Finally, a probability

map is constructed by assigning to each pixel the maximum

probability estimate max(pk), k = 1, . . . , K.

B. Selection of the Most Reliable Classified Pixels

The aim of this step is to choose the most reliable classified

pixels in order to define suitable markers. We propose to use

probability estimates obtained as a result of the pixelwise

classification for this purpose in order to keep the most reliable

classified pixels as markers. A simple way of marker selection

consists in thresholding the probability map. In other words, if

the probability of the considered pixel belonging to the assigned

class k is higher than a given threshold, this pixel is selected to

join the markers. In the resulting map of markers, each marker

pixel is associated with the class defined by the pixelwise

classifier. The marker pixels form connected components in the

map of markers so that each connected component represents

one marker. The main advantage of this technique of marker

selection is its simplicity. However, this method has the fol-

lowing disadvantage: Each marker leads to one region in the

segmentation map. Therefore, we need as many markers as the

desired number of regions. However, if classes ki and kj are

spectrally similar, pixels belonging to one of those classes have

a quasi-equal probability to belong to each of them. From here,

these classified pixels are not reliable. Therefore, we risk to lose

the regions corresponding to either class ki or kj in the final

segmentation map. This leads to undersegmentation, which is

highly undesired.

To mitigate this problem, we propose the following method

of marker selection [see the flowchart in Fig. 3(a)].

1) Perform a connected-component labeling of the pixel-

wise classification map. For this purpose, a classical

connected-component algorithm using the union-find

data structure can be used [35].

2) Analyze each connected region as follows.

• If a region is large enough, it should contain a

marker, which is determined as P% of the pixels

within the connected component with the highest

probability estimates.

• If a region is small, it should lead to a marker only

if it is very reliable; a potential marker is formed

by pixels with probability estimates higher than a

defined threshold.

The proposed procedure is deducted from the following

analysis: Based on the results of our previous studies [9], [13],

[14], it is common that almost no undersegmentation is present

in a pixelwise classification map. Therefore, each connected

spatial region from the classification map is analyzed if it

corresponds most probably to the spatial structure or if it is

rather a classification noise [see the illustrative example in

Fig. 3(b)]. If the size of the component is large enough to

consider it as a relevant region, the most reliable pixels within

this region are selected as its marker. If a component contains

only a few pixels, it is investigated if these pixels were classified

to a particular class with a high probability. If this is the case,

the considered connected component represents a small spatial

structure. Thus, a marker associated with this region should

be defined. Otherwise, the component is the consequence of

classification noise, and we tend to eliminate it. Therefore, no

marker within this component is selected. When performing

labeling of connected components for a pixelwise classification

map, we propose to use an eight-neighborhood connectivity.

For the proposed marker selection procedure, the following

parameters must be chosen.

1) A parameter M defining if a region is considered as being

large or small. We propose to use a number of pixels in
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Fig. 2. Flowchart of the proposed segmentation and classification scheme.

Fig. 3. (a) Flowchart of the proposed marker selection procedure. (b) Illustrative example of the marker selection.

the region (i.e., an area of the region) as a criterion of

the region size. The threshold of the number of pixels

defining if the region is large depends on the resolution

of the image and typical sizes of the objects of interest.

For instance, if the image of the volcano is considered

(experimental results on the volcano image are illustrated

in Section III), where the goal is to classify lavas of

different eruption periods, it is known that the lava of dif-

ferent formations consists of large homogeneous regions.

Therefore, it can be assumed that the regions representing

structures (lavas) in the image scene have a size of at least

10 km2. Thus, for an airborne 20-m-resolution image, the

threshold of M = 20 pixels for dividing the regions in the

groups of large/small ones can be chosen.

2) A parameter P , defining the percentage of pixels within

the large region to be used as markers, depends on the

previous parameter. Since a marker for the large region

must be composed at least of one pixel, the following

condition must be fulfilled: P ≥ 100%/M .

3) The last parameter S, which is a threshold of probability

estimates defining potential markers for a small region,

depends on the probability of the presence of small

structures in the image (which also depends on the image

resolution and the classes of interest) and the importance

of the potential small structures (i.e., what is the cost of

losing the small structures in the classification map). For

instance, if we are interested in determining regions of

different lava formations in the volcano image, the small

objects in the image may have no importance for us, and a

high value of S can be chosen. However, if the classifica-

tion aims at determining regions of sick/damaged plants

in the field, it may be important not to lose any small

region of the damaged species. In this case, the threshold

S must be relaxed.
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In Section III-D, the dependence of the classification accu-

racies from the chosen parameters for the marker selection is

investigated experimentally. As a conclusion, each connected

set of pixels with the same class in the classification map

provides either one or zero marker. One should stress that a

marker is not necessarily a connected set of pixels: It can

spatially be split into several subsets [see Fig. 3(b)].

C. Construction of an MSF

The previous two steps result in a map of markers defining

regions of interest in the image. The next step consists in the

grouping of all the image pixels into an MSF [22], where each

tree is rooted on a classification-derived marker.

For this purpose, each pixel is considered as a vertex v ∈ V
of an undirected graph G = (V,E,W ), where V and E are the

sets of vertices and edges, respectively, and W is a mapping

of the set of edges E into R
+. Each edge ei,j ∈ E of this

graph connects a couple of vertices i and j corresponding to

the neighboring pixels (in the following, we simply call vertices

as pixels). Furthermore, a weight wi,j is assigned to each edge

ei,j , which indicates the degree of dissimilarity between two

pixels connected by this edge. Different dissimilarity measures

can be used for computing weights of edges, such as vector

norms, Spectral Angle Mapper (SAM), and spectral informa-

tion divergence (SID) [36].

The L1 vector norm between two pixel vectors xi =
(xi1, . . . , xiB)T and xj = (xj1, . . . , xjB)T is given as

L1(xi,xj) =

B
∑

b=1

|xib − xjb|. (4)

The SAM distance between xi and xj determines the spectral

similarity between two vectors by computing the angle between

them. It is defined as

SAM(xi,xj) = arccos

⎛

⎜

⎜

⎜

⎝

B
∑

b=1

xibxjb

[

B
∑

b=1

x2
ib

]1/2 [

B
∑

b=1

x2
jb

]1/2

⎞

⎟

⎟

⎟

⎠

. (5)

The SID measure [37] computes the discrepancy of proba-

bilistic behaviors between the spectral signatures of two pixels.

It is defined as

SID(xi,xj)=
B

∑

b=1

{

qb(xi) log

[

qb(xi)

qb(xj)

]

+qb(xj) log

[

qb(xj)

qb(xi)

]}

(6)

where

qb(xi) =
xib

∑B
l=1

xil

. (7)

Furthermore, more complex dissimilarity measures for im-

age segmentation have been proposed in [11] and [38].

Given a connected graph G = (V,E), a spanning tree T =
(V,ET ) of G is a connected graph without cycles such that

ET ⊂ E. A spanning forest F = (V,EF ) of G is a noncon-

nected graph without cycles such that EF ⊂ E.

Given a graph G = (V,E,W ), the minimum spanning tree

is defined as a spanning tree T ∗ = (V,ET∗) of G such that the

sum of the edge weights of T ∗ is minimal

T ∗ ∈ arg min
T∈ST

⎧

⎨

⎩

∑

ei,j∈ET

wi,j

⎫

⎬

⎭

(8)

where ST is a set of all spanning trees of G.

Given a graph G = (V,E,W ), the MSF rooted on a set of

m distinct vertices {t1, . . . , tm} consists in finding a spanning

forest F ∗ = (V,EF∗) of G, such that each distinct tree of F ∗ is

grown from one root ti, and the sum of the edge weights of F ∗

is minimal [22]

F ∗ ∈ arg min
F∈SF

⎧

⎨

⎩

∑

ei,j∈EF

wi,j

⎫

⎬

⎭

(9)

where SF is a set of all spanning forests of G rooted on

{t1, . . . , tm}.

In order to obtain the MSF rooted on markers, m additional

vertices ti, i = 1, . . . , m, are introduced. Each extra vertex

ti is connected by the edge with a null weight to the pixels

representing a marker i. Furthermore, an additional root vertex

r is added and is connected by the null-weight edges to the

vertices ti. The minimum spanning tree of the constructed

graph induces an MSF in G, where each tree is grown on a

vertex ti; the MSF is obtained after removing the vertex r. An

example of the construction of the MSF rooted on markers is

shown in Fig. 4. Prim’s algorithm can be used for building the

MSF (see Algorithm 1) [39]. The efficient implementation of

the algorithm using a binary min heap (for the implementation

of a min-priority queue) is possible [40]; the resulting time

complexity of the algorithm is O(|E| log |V |).

Algorithm 1 Prim’s Algorithm

Require: Connected graph G = (V,E,W )
Ensure: Tree T ∗ = (V ∗, E∗,W ∗)
V ∗ = {v}, v is an arbitrary vertex from V
whileV ∗ �= V do

Choose edge ei,j ∈ E with minimal weight such that i ∈
V ∗ and j /∈ V ∗

V ∗ = V ∗ ∪ {j}
E∗ = E∗ ∪ {ei,j}

end while

Each tree in the MSF forms a region in the segmentation

map (by mapping the resulting graph onto an image). Finally, a

spectral-spatial classification map is obtained by assigning the

class of each marker to all the pixels grown from this marker.

Thus, the proposed procedure of the construction of an

MSF from region markers is a region growing method, which

consists of the following steps: First, seed regions are chosen

to belong to the segmentation and classification maps. Then, at

each iteration, a new pixel i is added to the segmentation and

classification maps so that the dissimilarity criterion between
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Fig. 4. Example of the construction of an MSF rooted on markers. (a) Original image graph G, where colored vertices represent markers 1 and 2; nonmarker
pixels are denoted by “0.” (b) Addition of extra vertices t1, t2, and r to the graph. (c) Minimum spanning tree of the graph presented in (b); after removing the
vertex r, an MSF is obtained, where each tree grown from the vertex ti forms a region in the segmentation map.

this pixel and one of the pixels j already belonging to the

segmentation/classification map is minimal. When including

the new pixel to the classification map, a class of the pixel j
is assigned to the pixel i.

D. Majority Voting Within Connected Components

Although the most reliable classified pixels are selected as

markers, it may happen that a marker is classified to the wrong

class. In this case, all the pixels within the region grown from

this marker risk to be wrongly classified. In order to make

the proposed classification scheme more robust, we propose

to postprocess the classification map by applying a simple

majority voting technique which has shown good performances

for spectral-spatial classification [13], [14], [41]. For this pur-

pose, connected-component labeling is applied on the obtained

spectral-spatial classification map (using a four-neighborhood

connectivity). Furthermore, for every connected component

(region), all the pixels are assigned to the most frequent

class when analyzing a pixelwise classification map within

this region.

Note that an eight-neighborhood connectivity was used for

the construction of an MSF, whereas a four-neighborhood con-

nectivity was used for the majority voting. The use of the eight-

neighborhood connectivity in the first case allows obtaining

a more accurate (refined) segmentation map, without rough

borders. Since an MSF is built from the set of markers, the

number of regions does not depend on the chosen connectivity.

When performing the last majority voting step, the use of

the four-neighborhood connectivity results in a larger or the

same number of connected components as the use of the eight-

neighborhood connectivity. Therefore, the possible underseg-

mentation can be corrected in this step. One region from a

segmentation map can be split into two connected regions when

using the four-neighborhood connectivity. Furthermore, these

two regions can be assigned to two different classes by the

majority voting procedure.

III. EXPERIMENTAL RESULTS

Three different data sets were used for the experiments, with

different contexts (agricultural, volcano, and urban areas) and

acquired by different sensors (AVIRIS and ROSIS airborne

imaging spectrometers). These data sets and the corresponding

results are presented in the next three sections.

A. Classification of the Indiana Image

The Indiana image is of a vegetation area that was recorded

by the AVIRIS sensor over the Indian Pine test site in North-

western Indiana. The image has spatial dimensions of 145 by

145 pixels and a spatial resolution of 20 m/pixel. Twenty water

absorption bands have been removed [42], and a 200-band

image was used for the experiments. Sixteen classes of interest

are considered, which are detailed in Table I, with a number

of samples for each class in the reference data. A three-band

false color image and the reference data are shown in Fig. 5.

We have chosen randomly 50 samples for each class from the

reference data as training samples, except for classes alfalfa,

grass/pasture-mowed, and oats. These classes contain a small

number of samples in the reference data. Therefore, only 15

samples for each of these classes were chosen randomly to be

used as training samples. The remaining samples comprised the

test set.

A pixelwise classification on the 200-band Indiana image

was performed, using the multiclass one versus one SVM

classifier with the Gaussian radial basis function (RBF) kernel.

The optimal parameters C and γ were chosen by fivefold cross

validation: C = 128 and γ = 2−6. Global and class-specific

accuracies are presented in Table I. Fig. 5 shows the obtained

classification and probability maps.

Furthermore, a map of markers was created. For this pur-

pose, labeling of connected components on the pixelwise clas-

sification map was performed, using the eight-neighborhood

connectivity. For each connected component, the following are

observed.

1) If it contained more than M = 20 pixels, P = 5% of

its pixels with the highest probability estimates were

selected as a marker for this component.

2) Otherwise, if a connected component contained pixels

with the corresponding probability estimates not lower

than the threshold S, these pixels were used as a marker.

In order to define a threshold S, the probability estimates

for the whole image were sorted, and S was chosen equal

to the lowest probability within the highest T = 2% of all

probability estimates. The parameters for marker selection were

chosen based on the following analysis: It is known that the

image consists of the fields of different types of crops, i.e.,

large homogeneous regions. In the reference data, the class

oats is represented by the smallest field of a size of 20 pixels.

Therefore, the classification procedure must be able to
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TABLE I
INFORMATION CLASSES, NUMBER OF LABELED SAMPLES (NO. OF SAMP.), AND CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE

INDIANA IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES;
“MV” MEANS INCLUDING A MAJORITY VOTING STEP

Fig. 5. Indiana image. (a) Three-band color composite (837, 636, and 537 nm). (b) Reference data:

. (c) Pixelwise classification map. (d) Probability map (probability estimates for each pixel to belong to the assigned class). (e) Scale of colors to represent
the probability estimates in a probability map, from 0% probability at the bottom to 100% probability at the top. (f) Classification map obtained by the proposed
scheme, using the SAM dissimilarity measure and including a majority voting step.

recognize the 20-pixel regions. We select M = 20. The param-

eter P is computed as P = 100%/M = 5%. This means that,

for a region of 20 pixels, a one-pixel marker is selected. The

last parameter T is chosen to be low since we know that the

image does not contain small spatial structures. The correctness

and robustness of this theoretical deduction of parameters are

proved in Section III-D.

From 2250 connected components in the classification map,

107 markers were selected. Of the marker pixels presented in

the reference data, 95% are correctly classified. In the next

step, the image pixels were grouped into the MSF, built from

the selected markers. We have investigated the use of different

dissimilarity measures: the L1 vector norm,2 the SAM, and

the SID measures [36]. When the class of each marker was

assigned to all the pixels of the corresponding tree, the spectral-

spatial classification maps were obtained. Finally, the obtained

classification maps were combined with the pixelwise classifi-

2We have also considered the L2 vector norm as a dissimilarity measure
for the construction of the MSF. The corresponding classification accuracies
are not given in this paper because of space limitations. These accuracies are
mostly nonsignificantly lower than the ones obtained when using the L1 norm.

cation map, using the majority voting technique, as described

in Section II-D.

Table I summarizes the accuracies of the pixelwise SVM

and the proposed classification method (before and after the

majority voting step). In order to compare performances of

the proposed technique with the previously proposed methods,

we have included results of a classification using majority

vote within the adaptive neighborhoods defined by watershed

segmentation (WH + MV ) [13], as well as classification re-

sults obtained by performing watershed segmentation3 from

the same set of markers (M -WH) [21]; these are recently

proposed advanced techniques for spectral-spatial classification

of hyperspectral images.

First of all, almost no oversegmentation is present in the

obtained segmentation map (since one marker led to one region,

a segmentation map contains 107 regions). As can be seen

from Table I, both the global and most of the class-specific

3In [21], watershed segmentation is computed using the classical paradigm
of the morphological image segmentation [19]: A gradient of the image is
computed; then, a minima imposition technique is applied, followed by the
watershed algorithm based on flooding simulations.
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accuracies are improved by the proposed method. The majority

voting step additionally improves most of the accuracies (ex-

cept for the class soybeans-no till). The best global accuracies

are achieved by the proposed method when using the SAM

dissimilarity measure and including a majority voting step [the

corresponding classification map is shown in Fig. 5(f)]. In

this case, the overall accuracy is improved by 13.6 percentage

points and the average accuracy by 8.3 percentage points when

compared to the pixelwise classification. However, the use of

other dissimilarity measures also leads to high accuracies; the

highest accuracies for 7 of the 16 classes are achieved when

using each of the proposed measures.

Furthermore, McNemar’s test was performed in order to

evaluate the statistical significance of differences in classifica-

tion accuracies between the most accurate classification map

(SAM + MV ) and other classification maps [43]. According

to the results of the test, the SAM + MV classification ac-

curacies are significantly different (here and in the following,

we use 1% level of significance when reporting results of

McNemar’s test) from the accuracies of any other classification

method applied for the Indiana image. The improvement of the

accuracies after the majority voting step is also significant when

using any of the applied dissimilarity measures.

B. Classification of the Hekla Image

The Hekla image was acquired by the AVIRIS sensor over

the region surrounding the central volcano Hekla in Iceland

[44]. The AVIRIS sensor operates in the wavelength range from

0.4 to 2.4 µm and utilizes four spectrometers collecting 224 data

channels. During the data collection, spectrometer 4 was not

working properly. The 64 data channels recorded by this

spectrometer were deleted from the data, along with the first

channels for the other three spectrometers (those channels were

blank). Therefore, the 157 remaining data channels were used

for the experiments. The considered image has spatial dimen-

sions of 560 by 600 pixels. Twelve land cover classes of interest

are considered, which are detailed in Table II, with a number of

labeled samples for each class. Fig. 6 shows a three-band false

color image and the reference data. Fifty samples for each class

were randomly chosen from the reference data as training sam-

ples, and the rest of the samples were used as the test set.

A multiclass one versus one SVM classification on the orig-

inal image was performed using the Gaussian RBF kernel. The

parameters C = 100 and γ = 0.1 were determined by fivefold

cross validation. Table II gives the classification accuracies, and

the classification map is shown in Fig. 6(c).

In the next step, a map of markers was created, with the same

parameters as for the Indiana image. Furthermore, segmenta-

tion and classification of the image were performed by con-

structing an MSF based on the selected markers. The obtained

classification maps were further combined with the pixelwise

classification map using the majority voting technique.

Table II gives the accuracies of the proposed classification

method. As can be seen, both the global and most of the

class-specific accuracies are improved when compared to the

pixelwise classification. The majority voting step additionally

improves the accuracies. As for the Indiana image, the best

global accuracies are achieved when performing the proposed

classification with the SAM dissimilarity measure and the

majority voting step. Fig. 6(d) shows the corresponding clas-

sification map, which is much less noisy than a pixelwise

classification map. In this case, the overall accuracy is improved

by 10.4 percentage points and the average accuracy by 9.0 per-

centage points when compared to the pixelwise classification.

According to the results of McNemar’s test, all the obtained

classification maps are significantly different.

C. Classification of the University of Pavia Image

The proposed scheme was also tested on the University of

Pavia image of an urban area, acquired by the ROSIS-03 optical

sensor. The image is 610 by 340 pixels, with a spatial resolution

of 1.3 m/pixel and 103 spectral channels. The reference data

contain nine classes of interest. More information about the

image, with the number of test and training samples for each

class, can be found in [14].

Segmentation and classification of the University of Pavia

image were performed using the proposed scheme. The pa-

rameters for an SVM classification were chosen by fivefold

cross validation: C = 128 and γ = 0.125. Marker selection was

performed with the same parameters as for the two previous

data sets. Table III summarizes the classification accuracies

for a pixelwise and spectral-spatial classification. In order to

compare the performances of the proposed method with the

previously proposed techniques, we have included in the table

the accuracies of the classification of the University of Pavia

image using an SVM, principal components, and extended mor-

phological profiles; results are taken from [45]. This method

has been recently proposed by Benediktsson et al. [46] and is

considered as one of the most advanced methods for spectral-

spatial classification of a multiband datum. Furthermore, the re-

sults of the spectral-spatial classification using majority voting

within adaptive neighborhoods defined by spatial-based seg-

mentation techniques are included. The following segmentation

techniques are used for this purpose (leading to the best classifi-

cation results among all the spatial-based methods): watershed

segmentation (WH + MV ) [13] and recursive hierarchical

segmentation (RHSEG), with the possibility of merging only

adjacent regions (RHSEG0 + MV ) [9].

As can be seen from Table III, both the global and most

of the class-specific accuracies are improved by the proposed

method. The majority voting step additionally improves most of

the accuracies. The best global accuracies are achieved by the

proposed method when using the L1 vector norm for measuring

dissimilarity between pixels. The corresponding classification

map is significantly more accurate than any other obtained clas-

sification map, according to the results of McNemar’s test. In

this case, the overall accuracy is improved by 10.1 percentage

points and the average accuracy by 6.5 percentage points when

compared to the pixelwise classification. Those accuracies are

higher than the ones obtained by the previously proposed

techniques given for comparison. The use of the other two

measures also led to the high classification accuracies for most

of the classes. For instance, the use of the SAM measure led to

the best accuracy of classification for the class asphalt when
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TABLE II
INFORMATION CLASSES, NUMBER OF LABELED SAMPLES (NO. OF SAMP.), AND CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE HEKLA

IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES;
“MV” MEANS INCLUDING A MAJORITY VOTING STEP

Fig. 6. Hekla image. (a) Three-band color composite (1125, 636, and 567 nm). (b) Reference data:

, and snow (white). (c) Pixelwise classification map. (d) Classification map obtained by the proposed scheme, using the SAM dissimilarity
measure and including a majority voting step.

TABLE III
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE UNIVERSITY OF PAVIA IMAGE: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA),

KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES; “MV” MEANS INCLUDING A MAJORITY VOTING STEP

compared to all the previous results found in the literature.

However, the global accuracies are not as high as when using

the L1 vector norm mainly because of the low accuracy for

the class shadows. The SAM distance is actually designed

with the purpose that the poorly illuminated and more brightly

illuminated pixels from the same class would be mapped to the

same spectral angle despite the difference in illumination. It

can be an explanation of the fact why the SAM distance led to

the assimilation of the shadowed regions with the neighboring

structures.

D. Assessment of the Robustness of the Parameter Settings

In Section II-B, the procedure of the choice of parameters for

the marker selection procedure was explained. In this section,

the dependence of the classification accuracies from the chosen

parameters is investigated experimentally for the Indiana and

the Hekla images.

First, the choice of the parameter P is analyzed. For this pur-

pose, the other two parameters were fixed as M = 20 and T =
2. Classification using the proposed scheme was performed,

with the parameter P varying from 5 to 100. The L1 vector
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Fig. 7. Assessment of the robustness of the parameter settings. (a)–(f) Overall and (g)–(l) average classification accuracies as functions of parameters for the
marker selection procedure [(a), (d), (g), (j)] P (M = 20, T = 2), [(b), (e), (h), (k)] T (M = 20, P = 20), and [(c), (f), (i), (l)] M (P = 20, T = 5), for the
[(a)–(c), (g)–(i)] Indiana and [(d)–(f), (j)–(l)] Hekla images.

norm and the SAM dissimilarity measures were used. Fig. 7

shows the obtained overall [Fig. 7(a) and (d)] and average

[Fig. 7(g) and (j)] classification accuracies for both data sets. As

can be seen from the figures, for any value of P , the accuracies

are significantly improved when compared to the pixelwise

classification. When the value of P is low (a few marker pixels
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are chosen), the construction of the MSF from the markers gives

less accurate classification maps than when it is high. However,

the postprocessing majority voting step improves the accuracies

significantly. Thus, the complete classification procedure gives

the best performances for a low value of P . Then, with the

increase of P , the classification accuracies converge to a con-

stant value, for both dissimilarity measures, and the majority

step does not additionally increase the accuracies. Results are

coherent for both images. As a conclusion, this parameter

has no significant influence on the classification accuracies.

When a few marker pixels are chosen (for low values of P ),

the construction of an MSF using the SAM distance gives

better segmentation results (provides more accurate regions)

than a pixelwise classification. Therefore, after the additional

processing of the corresponding classification maps by majority

voting, the best classification results are achieved.

The choice of the parameter T is investigated, by fixing

parameters M = 20 and P = 2, varying T from 2 to 100, and

performing classification for both data sets. The overall and

average classification accuracies are shown in Fig. 7 (second

column). As can be seen, the results are coherent for both

dissimilarity measures and both data sets. The highest clas-

sification accuracies are achieved for the low values of T .

These results are coherent with the theoretical analysis given

in the previous sections. Since the Indiana and the Hekla

images contain large spatial structures (of crop fields and lava

formations, respectively), markers for small regions must be

selected only in the case if the probability of their correct

classification is very high. Therefore, with the increase of

T , the probability of selecting a marker for a misclassified

region increases, and the classification accuracies decrease. The

majority voting step becomes more important for higher values

of T , and for the Hekla image, the accuracies for the complete

proposed procedure (including the majority voting step) remain

almost unchanged, independently of the parameter T .

Furthermore, the choice of the parameter M is investigated,

with the other parameters being fixed (P = 20 and T = 5).

Fig. 7 (third column) shows the overall and average accuracies

of classification when varying the parameter M from 10 to

100. For the Hekla image, the accuracies are slightly lower

for M = 10, when compared to other values of this parameter,

for which the accuracies remain almost unchanged. This is

due to the fact that the image contains mostly large regions

of lava fields. Therefore, for any value of M higher than 20,

the classification procedure shows a good performance. For

the Indiana image, with the increase of the parameter M up

to 50, the overall accuracy slightly increases. However, the

average accuracy reaches its maximum for M = 20 and then

significantly decreases. These results confirm the theoretical

analysis: The smallest crop field in the image scene has a size

of 20 pixels. When a high value of M for identifying significant

regions is chosen, small crop fields risk to be assimilated with

the neighboring structures. If this happens, majority voting

cannot reconstitute these regions, and they disappear from the

final classification map.

In conclusion, the experimental analysis of the parame-

ter choice for the marker selection procedure has confirmed

that, by using some a priori information for the image, pa-

rameters leading to good classification performances can be

deducted.

IV. CONCLUSION

A large number of spectral channels in a hyperspectral im-

age increase the potential of discriminating physical materials

and structures in a scene. However, it presents challenges to

image analysis because of the huge volume of data that the

hyperspectral image usually consists of. Although pixelwise

classification techniques have given high classification accura-

cies when dealing with hyperspectral data, the incorporation of

the spatial information into the classifier is needed for further

improvement of the classification accuracies.

In this paper, a new spectral-spatial classification scheme

for hyperspectral images has been proposed. The method is

based on the construction of an MSF, rooted on the markers

selected by using pixelwise classification results. Experimental

results, presented on the three data sets, have shown that the

proposed method improves the classification accuracies, when

compared to previously proposed classification schemes, and

provides accurate segmentation and classification maps.

Different distances have been investigated for measuring the

dissimilarity between pixels when constructing an MSF. It is

shown that, in most of the cases, the SAM distance gives the

best performances. However, this distance does not discrimi-

nate some particular classes from urban areas, such as shadows,

and assimilate the pixels belonging to these classes with the

neighboring structures.

In conclusion, the proposed classification methodology suc-

ceeded in taking advantage of the spatial and the spectral

information simultaneously. The method performs well for

images representing different scenes: those containing large

spatial structures with spectrally confusing classes and those

containing small and complex structures. Furthermore, its effi-

cient implementation is possible.
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