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Figure 1. Typical input data obtained from a pair of IBM

Winsom images via PMF. The images (a), 256*256 pixels

with 256 grey levels presented for cross-eyed fusion. give

rise to edge assertions (b). The edge detector is a Canny

operator with o 1.0. Correspondence produces the sparse

disparity map (c). Disparities are coded dark to light with
increasing depth.
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given the noise inherent in the disparity map, that the

exact location of a particular discontinuity will not be

covered by the data at all.

In the algorithm discussed below, simple segmentation

operators provide heuristic guidance to a contour descrip

tion process. This reduces the number of approximations

attempted while allowing multiple primitives to be con

sidered and relieving the segmentation operators of the

responsibility of accurate discontinuity localisation.

In the following we describe segmentation and description

techniques and present a recursive

segmentation/description algorithm based upon the above

considerations. Input to this algorithm are ordered strings

of disparity measurements obtained via the Canny edge

detector!", PMF1S and CONNECTI6
•

Abstract

Edge-based binocular correspondence produces a sparse

disparity map, available information being distributed

along space curves which project to matched image edges .

To become useful these contours must be parsed into

describable sections. We present a novel view of the

segmentation/description process and describe an effective

algorithm based on our model.

1. Introduction

The segmentation of arbitrary contours into meaningful

sections is a longstanding problem receiving much atten

tion. The goal of the present work is a description of the

fragmented 3D contours to be found in edge-based binocu

lar disparity data (figure 1). This representation provides a

stepping stone to the construction of a complete wire

frame model of the viewed scene.

Contour segmentation is typically seen as the identification

either of discondnuities'"? or of describable subsec

tions8
-

IO operations which are usually treated as dual. As

we are interested in providing primitive descriptions to

higher processes we tend toward the latter view, though

the algorithm reported here combines both approaches.

Local segmentation operators are used to hypothesise

discontinuities which are only retained if they delimit one

or more describable segments . A contour is considered

describable if the mean-squares residual associated with

the most likely approximating primitive falls below some

threshold. No attempt is made to accurately locate discon

tinuities, nor is a complete description required. In our

view the primary goal of a bottom-up segmentation pro

cess should be to locate only those data sets which may

be reliably described. This conservative approach provides

an alternative to algorithms that obtain a fuller description

at the cost of imposing interpretations which may not be

appropriate .

Present (2D) approximation systems typically assume that

a single primitive, usually a straight line, is sufficient to

describe viewed curves. Most are based on computation

ally expensive split/merge algorithms guided by some

measure of the accuracy of the approximation and ter

minating when an adequate description has been achieved

(cfY). For real scenes it is not clear that a single primi

tive will suffice. Furthermore, the generalisation of these

techniques to multiple primitives is non-trivial and may

involve optimisation theory (e.g. 12).

. Segmentation operators are more flexible; if descriptions

are derived after discontinuity detection a wider set of

primitives may be considered. It has, however, been

argued
l 3

that reliable segmentation cannot be achieved

without reference to the local structure of the data. A

further problem is that a given discontinuity may not give

rise to a unique, identifiable data item. It is quite probable,



2. Segmentation

Two operators are employed, recording curvature (11:) and

its derivative (iC) as functions of arc length. Both 1C and k

estimates are obtained by differentiation of a locally

approximating quadratic. Peaks in these measurements are

assumed to mark discontinuities in orientation and curva

ture respectively, a supposition that is common in the

literature2
-
s,7

•

It has long been appreciated that the performance of a

given differential operator depends heavily upon the rela

tive spatial extent, or scale, of the device and the features

to which it is applied'", This observation has led to recent

explorations of Scale Space I8
.4. Although the construction

of a multiple scale representation is beyond the scope of

the current project, the algorithm presented here does use

smoothing to alleviate quantisation noise before computing

curvature properties. The technique applied is the

diffusion method of Porrill et. al.19
• Only a small amount

of smoothing is necessary; diffusion roughly equivalent to

a gaussian of o 2.5 is usually sufficient. When

significantly larger o are used peaks tend to migrate, mak

ing even approximate localisation difficult. After smooth

ing quadratics are fitted through triples of adjacent points.

Peaks (and troughs) in lC and k are detected by threshold

ing absolute values. When examining k it is important not

to tag the side lobes of zero-crossings associated with

peaks in curvature. For this reason supra-threshold k esti

mates are only marked if no significant peaks in lC are

found within a given neighbourhood. Asada and Brady"
give the following expression for the arc length between

the side lobes of a zero crossing caused by an angular

discontinuity 8 between contour segments with curvatures

lClo 11:2 where o is the standard deviation of an initial gaus

sian smoothing function:

- ~ [r, J2 .it.]tdcor..r: 4> LlCI- lC2 + ~

For a pure comer in which

this simplifies to

dpur.=2(j

Assuming all angular discontinuities to be pure and the

peak to lie approximately mid-way between the side lobes,

we impose the condition that no significant curvature peak

may lie within c units of arc length of a marked peak in

curvature difference. A curvature peak is considered

significant if its absolute value is greater than the thres

hold that would be applied if such features were being

sought. The use of diffusion means that our o, the

diffusion scale, is only an approximation to the gaussian

parameter. It appears, however, to be a sufficiently close

approximation for current purposes.

Note that lC and K: are measured in world, as opposed to

disparity, coordinates. The transformation from disparity

to world scales the depth component with respect to the

other dimensions. Hence if curvature properties were

estimated in disparity space the depth component would

be compressed, playing a reduced role in segmentation.

Segmenting 10 real coordinates allows depth information
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to contribute fully to all measurements. The increased

error brought about by the disparity->world scaling does

not appear to affect the segmentation process unduly,

though the computation of mean squares residuals is

greatly complicated. As quantisation error in disparity is

isotropic in all three directions, the approximation tech

niques described below are applied to disparity values-",

3. Description

In the current scheme, extrema in 1C and k serve to suggest

likely areas of discontinuity; before any final decision can

be made a geometrical description of the surrounding con

tour is required. An input string may be classified as a

straight line, circular arc, planar or undescribable space

curve. Mathematical details of the techniques involved are

presented elsewhere/", here we discuss the algorithm by

which they are applied.

Given a set of points, orthogonal regression20-22 supplies

mean-squares residuals and metrical descriptions of the

best fit plane, straight line and point. The residuals, related

by the expression r e s p o i n i > r e s / j ~ r e S p l f J M ' are examined in

decreasing order of magnitude, the first to fall below

threshold" being taken as representative of the true

description. Should all the residuals be above threshold, a

default space curve tag is assigned. Short strings often

match each primitive with a high degree of accuracy, in

which case curves are assumed to be locally straight.

After regression, plane curves are passed to a three point

circle fitting routine. If the circle residual is below thres

hold it is accepted, otherwise the plane descriptor becomes

the primary representation. Although the choice of points

may affect the residual, constraints imposed by CON

NECT
I6

force input strings to be at least Lipschitz con

tinuous'", It is therefore unlikely that any significant

discontinuities will be due to noise, making point selection

less critical. As a further safeguard points are chosen from

diffused data. This could introduce error if the data were

heavily diffused, though it seems unlikely given the lim

ited smoothing used here. As the extension of regression

techniques to circle fitt ing is computationally expensive'P,

the reduced cost of a three point fit easily outweighs its

potential disadvantages.

Difficulties arise when describing curves containing hor

izontal segments. In such cases the binocular correspon

dence problem is effectively insoluble and any disparity

values obtained must be considered unreliable. To avoid

erroneous data, residual components arising from horizon

tal sections are computed in the image plane/", Geometri

cal descriptions, however, are always computed in 3-0,

using non-horizontal data. Horizontal disparity elements

are detected by thresholding the orientation of matched

edge assertions. Although this method cannot solve the

problem in its entirety, it does represent a first attempt to

improve initial disparity measurements on the basis of

later processing. If an input string is entirely horizontal its

disparity values are used and the resulting segment(s)
labelled.

4. An Algorithm

The segmentation/description scheme presented here

admits many possible algorithms. We concern ourselves
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a

Figure 2. Recursive segmentation/description. b) data aris

ing from the line highlighted in a). c) 1( and "Ii: values

before diffusion. d) smoothed 1(, "Ii: plots (0 = 25). Seg

mentation points are marked by vertical lines tagged with

recursion depths.

recursion. Under the current scheme it is common for

several peaks to be marked, speeding segmentation and

reducing the number of approximations required. As thres

holds are set just below maximum the danger of marking

noise is small. On successive recursions operator maxima,

and therefore the thresholds applied, become smaller. GDF

is, therefore, (trivially) guaranteed to terminate.

Note that a simple threshold is applied; no suppression of

non-maximal estimates is assumed. As a result, most

peaks/troughs generate a pair of segmentation points, one

either side of the local extremum. An interesting feature

of this technique is the way in which the distance between

segmentation point and local extremum increases with the

spatial extent of the discontinuity. Hence GDF tends to

locate fine scale discontinuities with a greater degree of

accuracy. This has the secondary effect that strings having

rapidly changing properties are rarely passed to the

descriptive processes.

with a single example, known as GDF (Geometrical

Descriptive Filter). Processing begins with a call to the

description algorithm, thereafter focusing attention on

strings not immediately represented by a single straight or

circular segment. Planar and undescribed space curves are

passed to a recursive segmentation algorithm which may

be summarised thus:-

(1) "Ii: estimates arising from non-horizontal data are

thresholded at 90% of their maximum value, supra

threshold data being tagged as possible segmentation

points. Should the string be entirely horizontal all of

the data is used.

(2) Tags are removed from any points which fail the

side-lobe test

(3) If no "Ii: tags remain or all substrings are below the

required length, extrema in 1( are sought. A thres

hold is again set at 90% of the maximum (non

horizontal) value and (non-horizontal) supra

threshold points tagged.

(4) If all hypothesised substrings fall below the length

threshold horizontal data is removed by segmenting

at the ends of horizontal sections.

(5) If no acceptably long segments result the description

reverts to the previous plane or space curve

representation, otherwise long substrings are passed

to the descriptive processes. Any classified as space

or plane curves are further subdivided by recursive

application of the segmentation procedure.

GDF seeks the longest acceptable primitives while seg

menting at the largest 1( and/or "Ii: values. Peaks in "Ii: are

sought first. If all hypothesised segmentation points are

rejected 1( values are examined. Should 1( fail to provide

an acceptable segmentation horizontal data is removed by

placing segmentation points at the ends of horizontal sec

tions. If this also fails the representation reverts to the pre

vious space or planar curve description. Note that the

length threshold measures the number of data points avail

able, rather than the absolute length of the curve: reliable

classification of short strings is problematic. Hypothesised

segments of above threshold length are then passed to the

description algorithm. After classification, any remaining

plane or space curves are recursively segmented. In this

way strings are subdivided until either a satisfactory

representation is obtained or the segments remaining fall

below a length threshold. On termination, a GDB

(Geometrical Descriptive Base) format;2S file is produced.

In peak detection the choice of threshold is critical, being

subject to a trade-off. If thresholds are set too high,

extrema will be missed and the data only partially seg

mented, typically leading to extra plane and/or space

curve descriptions. Underestimating may, on the other

hand, lead to oversegmentation, breaking long strings into

arbitrarily small segments. Both effects reduce the infor

mation content of the final representation, though the

former is more serious. Later processes should be able to

recover from fragmented data, though the computational

cost incurred may be considerable. GDF sets thresholds

dynamically at 90% of the maximum absolute value of the
appropriate operator. An alternative strategy8.11 would be

to segment at the maximum. This, however, would restrict

the system to marking a single discontinuity on each



The approximation algorithm, where possible, extrapolates

descriptions of non-horizontal edges into unreliable, hor

izontal data. If this is to be effective, horizontal strings

must only contribute segmentation points as a last resort;

the descriptive processes should first be given every

chance to correct erroneous data. Threshold selection and

application is, therefore, normally limited to non

horizontal depth estimates. Some strings are, however,

entirely horizontal, in which case unreliable measurements

must be used. Horizontal data introduces problems the

techniques employed here can only begin to solve. The

removal of horizontal segments when both differential

operators fail to produce an acceptable segmentation is an

explicit recognition of this limitation.

Figure 2 illustrates the application of GDF to the data of

figure 1. The plots shown in fig. 2b display 3D position

estimates, y and z coordinates as functions of x, arising

from the line highlighted in figure 2a. Raw 1C and ,(

values, obtained before diffusion and plotted as functions

of arc length, are presented in figure 2c. Diffusion (0"=2.5)

produces the smoothed plots shown in figure 2d. Note that

three clearly distinguishable peaks have emerged. Dashed

vertical lines represent segmentation points found by GDF,

each tagged with an integer specifying the depth of recur

sion at which the discontinuity was identified. Threshold

values, and the strings to which they were applied, are

marked by horizontal dotted lines. The final representation

in this case comprised three straight segments.

a
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Figure 3: IBM Winsom generated test data. a) stereo

images of a unit icosahedron viewed at 6 interocular dis
tances. b) GDB representation. Circles are represented by
broadlines, straight segments by fine.
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Although the differential operators are said to hypothesise

segmentation points, no hypotheses are ever fully rejected.

All intermediate representations are recorded, building for

each string a tree comprising non-terminal planar and/or

space curve nodes and leaves representing straight or cir

cular arcs. Note, however, that no attempt is made to pro

duce a fuller description by combining segments. As

Blake and Mayhew26 point out, unrestricted computation

of geometrical information is expensive and may lead to

representations that are redundant given the task at hand.

Even so, it is still sensible to exploit information obtained

as a side effect of the normal description procedure.

S. Examples and Evaluation

The most important evaluation criterion for any 3D vision

system is the extent to which it allows subsequent tasks to

be performed. In the present case this clearly depends

upon the geometrical accuracy of the contour descriptions

supplied. As prior processing stages exert considerable

influence on the final representation, any examination of

GDF output incorporates some evaluation of the lower

level components of the system.

Figures 3 and 4 show test data used to examine the accu

racy of the GDB representation. To avoid camera calibra

tion error, IBM Winsom generated images were employed.

In these and all subsequent examples a Canny'" edge

operator (o = 1.0), PMF15
, CONNECT16 and GDF

(diffusion scale 2.5) were applied to the original 256*256

pixel, 256 grey level images. Figure 3 shows the images

and GDB description arising from a unit icosahedron

viewed at 6 interocular distances (approximately human

reading distance). In figure 4 the icosahedron is intersected

with a sphere, generating circular faces of known size,

position and orientation.

Comparison of line equations derived from the Winsom

model with straight line descriptors contained in GDF out

put shows a mean absolute error of 0.58 degrees in the

internal angles of the icosahedron . The mean absolute

error in line orientation is 0.24 degrees. Note that PMF

was unable to match the horizontal edge at the bottom of

the figure, this is an extreme example. Correspondence is

usually achieved, though the resulting disparity data is

always unreliable. Positional error was estimated by

measuring the perpendicular distance from the mid-point

of the GDB description to the true line, the mean error

being 6.24 pixels. Winsom measures distances in image

units, although no conversion to external units is possible,

this is clearly a small error.

A similar examination of circle descriptions (figure 4b)

shows a mean absolute error in circle radii and centre

position of 0.71 and 1.20 pixels respectively. Each circle

is associated with a plane descriptor. The mean absolute

error in the internal angles of these planes is 2.05 degrees,

while the mean absolute error in plane orientation is 2.49

degrees. Most circles give rise to some horizontal edges.

Horizontal sections in the data of figure 4 are marked in

figure 5a. Figure 5c shows the position estimates attributed

to the arc highlighted in figure 5b. Note the flattened

depth plot in the horizontal region, despite this distortion

the circle description is recovered satisfactorily. In this

case the error in plane orientation is 1.72 degrees, the cir

cle radius and centre having errors of 1.38 and 2.01 pixels



·respectively. It will be noted that full circles apparent in
the original images (figure 4a) are represented in GDF

output by pairs of semi-circles. This is a result of missing

data in the edge detection phase. Although image noise is

limited by the use of Winsom, such problems may still

occur.

It is clear from the above that useful 3D descriptions can

be derived, via GDF, from edge based disparity data. An

important question, however, concerns the stability of the

GDB representation over changes in viewpoint Although

noise in edge detection and the number and position of

horizontal edges are obviously view-dependent, some

measure of stability is to be expected. Figure 6 shows

natural image pairs and GDB representations of two views

(separated by a rotation of approximately 180 degrees) of

a wire, seen from approximately four interocular distances.

Under this geometry 250 pixels is approximately equal to

1 cm. Note that the location of segmentation points and

the geometry of the final representation are similar. The

most noticeable error arises in the radii of the small circu

lar arcs close to the free end of the wire. A considerable

amount of data is required if circles are to be recovered

accurately, examination of the longer arc parallel to the

short segment of figure 6d shows a reduced error. As a

further test, GDF output has been successfully exploited in

the model matching work of Pollard et. al27
• A more

detailed experimental evaluation of GDF may be found in
Pridrnore/",
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6. Conclusion

GDF has been implemented and appears both effective

and robust. Several features should be stressed:

Segmentation operators provide heuristic con

trol to contour description processes.

Descriptions obtained from non-horizontal

data are, where possible, extrapolated into

horizontal regions.

No attempt is made to label the exact posi

tions of discontinuities. Rather we report the

end points and geometrical properties of the

largest acceptable approximating segments.

GDF makes no strong assumptions about

viewed curves, preferring instead to capture

only those sections which may be closely

approximated by a set of simple primitives.

The construction of a complete wire frame from GDF out

put is currently being investigated.

7. Discussion Note

The use of thresholding is often justifiably criticised in the

image processing literature on the grounds that it reduces

generality: thresholds for edge detection for example often

need to be tuned to particular world domains and/or imag

ing conditions.

a

b
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Figure 4: IBM Winsom generated test data. a) stereo

images of a unit icosahedron intersected with a sphere. b)

GDB representation. Circles are represented by broad

lines, straight segments by fine.

Figure 5. The effect of horizontal edges. a) disparity map

obtained via PMF from the object of figure 4. Horizontal

segments are drawn in black, other data in white. Position

plots, y and z as functions of z, associated with the circu

lar arc marked in black in (b) are presented in (c). Note

the distorted z values arising from horizontal data.



This criticism is not applicable to our use of thresholds

during curve fitting because those thresholds are to do

with how any given set of edge locations can best be

described geometrically. This is a different issue from how

those edge tokens are obtained in the first place. Different

edge operators will of course yield different edge tokens,

and hence they would lead our system to produce different

geometric descriptions. But that is not in itself a valid cri

ticism of the use of thresholds within the processes we

propose for obtaining geometric descriptions. We think it

may be necessary to emphasise this point in view of the

comments made by a referee. The residual values we

threshold during orthogonal regression can be interpreted

as measuring the standard deviation of error in edge loca

tion given a particular geometric fit (if errors in edge loca

tions are assumed to be distributed normally which seems

reasonable). Hence our use of thresholding is approxi

mately equivalent to applying a t test of goodness of fit

The current threshold of 0.5 pixels amounts to the require

ment that any accepted geometric description is unlikely

to deviate from the data at any point by more that about

one pixel.
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