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Abstract: Photoacoustic imaging is an emerging biomedical imaging technique that combines optical
contrast and ultrasound resolution to create unprecedented light absorption contrast in deep tissue.
Thanks to its fusional imaging advantages, photoacoustic imaging can provide multiple structural
and functional insights into biological tissues such as blood vasculatures and tumors and monitor
the kinetic movements of hemoglobin and lipids. To better visualize and analyze the regions of
interest, segmentation and quantitative analyses were used to extract several biological factors,
such as the intensity level changes, diameter, and tortuosity of the tissues. Over the past 10 years,
classical segmentation methods and advances in deep learning approaches have been utilized in
research investigations. In this review, we provide a comprehensive review of segmentation and
quantitative methods that have been developed to process photoacoustic imaging in preclinical and
clinical experiments. We focus on the parametric reliability of quantitative analysis for semantic and
instance-level segmentation. We also introduce the similarities and alternatives of deep learning
models in qualitative measurements using classical segmentation methods for photoacoustic imaging.

Keywords: photoacoustic; quantitative; segmentation; application; deep learning

1. Introduction

Photoacoustic imaging (PAI) is a hybrid biomedical imaging technology using photoa-
coustic (PA) effect [1]. A non-ionizing pulsed laser is focused on biological tissues, which
absorb the light energy, resulting in transient thermoelastic expansion. Rapid vibrations due
to thermoelastic expansion generate broadband ultrasound waves. Using an ultrasonic trans-
ducer, the ultrasound waves are captured and analyzed with a PAI system to decode biological
information. The advantages of PAI over other conventional optical imaging [2–5] include
the dual contrast mechanism of the ultrasonic and optical imaging and the ability to perform
multi-scale imaging. By optimizing the configuration of light excitation and ultrasound detec-
tion, PAI can delineate relative deep depth while maintaining high spatial resolution [6–14].
PAI reveals anatomical [13,15,16] and structural features, as well as endogenous molecules and
conditions, such as melanoma, hemoglobin, collagen, and lipids, and physiological contrast
features of intrinsic optical absorption [16–22], including blood flow, oxygen saturation, and
metabolic rates. These advantages significantly contribute to successful preclinical and clinical
studies and application [23–27].

PAI systems are divided into two types depending on their system configuration
and performance (i.e., resolution and imaging depth) [1,11,28]: photoacoustic microscopy
(PAM) [8,9,29–32] and photoacoustic tomography (PAT) [6,33–37]. PAM systems, depend-
ing on the laser or the acoustic focused beam configurations, can be used to visualize
1.2 mm-shallow microvasculature with a resolution of about several micrometers (optical-
resolution/OR-PAM [31]), while deeper blood vessel mapping can be facilitated up to
3 mm (acoustic-resolution/AR-PAM [38]). By contrast, PAT does not use focused laser
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or acoustic beam strategy and instead utilizes the universal back-projection algorithm
(UBP) [39] or time-reversal (TR) [40] to make 2D cross-sectional and 3D volumetric data
from multi-element US transducer arrays at a large acceptance angle within the field of
view. By changing the setup of US transducer shapes and capturing design (e.g., planar,
cylindrical, or spherical), several approaches integrating the temporal and spatial PAT data
are available [1,41].

Quantitative photoacoustic imaging (QPAI) [42–45] aims to accurately estimate PA
signals and physiological changes in tissue chromophores by measuring endogenous
molecules (oxy/deoxyhemoglobin, melanin, collagen, lipids) or exogenous contrast agents.
These are critical processes required to optimize the visualization of PAI. One of the first
steps that broadly influence the QPAI accuracy is the segmentation process. Segmentation
in PAI enables the visualization of structure [46,47] (diameter and tortuosity) and location
based on similar attributes (blood vessel mapping [46], oxy/deoxyhemoglobin concentra-
tion [10], balloon catheter tracking [48], and lipid content [49–51]). Basically, mathematical
methods were built to solve classical PAI segmentation, especially PAM [14,23,52] and
PAT systems [33,37,53]. By mathematical theories, classic segmentation approaches were
developed under several categories: the time domain (morphological segmentation meth-
ods), intensity domain (local/global thresholding segmentation methods), and frequency
domain (wavelet segmentation methods). Furthermore, because of the simultaneous rapid
developments of AI computing ability in this field, deep learning models have become the
modern solution in many quantitative studies in PAI [54–56]. Based on classic segmentation
approaches and quantitative analyses, supervised learning methods have been applied in
current learning models, such as SegNet, FCN-8, or U-Net [57], to segment and analyze
quantitative information with the same quality as manual tuning. Further, unsupervised
learning methods can reveal hidden features in the domain, with unique advantages in
resolving current problems and promoting the clinical application of developed methods.
One of the key advantages of deep learning is that it enables low-cost and optimal PA
system performance.

In this review, we summarize the current segmentation and quantitative analysis in
PAI. In Section 2.1, we briefly introduce the classical approaches and techniques of segmen-
tation utilized in the quantitative analysis of PAI. Deep learning network architectures are
presented in Section 2.2. Finally, the findings are discussed and summarized in Section 3.

2. Segmentation and Quantification for PAI
2.1. Classic Segmentation and Quantification Approaches

Since the early days of computation system evolution, segmentation and quantification
have made an important contribution to the analysis and measurement of medical image
data, including the biometric index [58,59] and visualization of body parts [60,61]). Based on
conventional medical imaging modalities [60–62], (CT [63,64], X-ray [65,66], MRI [64,67–69],
PET [70–72], and ultrasound [73–75]), segmentation and quantification have been proposed
and challenged frequently in response to improvements in imaging techniques. By validating
the correlation and properties of the image, classic methods were proposed as basic concepts.
Especially in PAI, based on the correlation and properties of digital ultrasound signals, we
reviewed classical segmentation and quantification approaches to solve basic image processing
challenges: thresholding segmentation, morphology segmentation, and wavelet segmentation.
Table 1 lists the classic PAI approaches, and processes developed to date.
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Table 1. Classic segmentation and quantification in PAI.

Type Description Advantages Disadvantages Applications Paper(s)

Thresholding
segmentation

Based on a histogram
of image intensity to

detect bias

(1) Manual/adaptive
flexibility

(2) Simplest process

(1) Manual process
(2) Cut-off weak signal

mixed with noise

Leveling breast cancer
Tissue chromophore

measuring
Micro-vessel mapping

[76–79]

Morphology
segmentation

Based on the
partitioning of image

intensity into
homogeneous

regions or clusters

(1) Boundary region to
separate

background/target
(2) Measurement of shape

(1) Complex algorithms
(expensive

computation systems)

Quantitative
measurement of

oxygenation
Tracking/monitoring of

vasculature
Three-dimensional

mapping

[46,47,80–82]

Wavelet-based
frequency

segmentation

Based on the
frequency domain to

determine the
difference in

absorption coefficient

(1) Consistent with the
characteristics of

wide-band ultrasound
transducers

(2) Measurement of
quantitative coefficient

(1) Complex algorithms
(expensive

computation systems)

Blood vessel
segmentation

Enhanced visualization of
biological cells

[83–85]

2.1.1. Thresholding Segmentation

Thresholding-based segmentation [86] is the basic method and tool available for PAI
segmentation. Using simple differential comparison based on signal amplitude, regions
of interest (ROI) are segmented out of the background by selecting the average threshold
value To f f set. In Equation (1), the values of binary image Ithres are segmented into object
(as Equation (1) or background (as 0) when values of a gray-level image Ival are compared
with the threshold value To f f set.

Ithres(x, y) =
{

1 | Ival(x, y) ≥ To f f set
0 | Ival(x, y) < To f f set

(1)

In general, local threshold segmentation is almost inefficient because of the operator
dependence as well as the single channel used [87]. Therefore, to automate the thresh-
olding process, several global thresholding methods were used as an additional step for
segmentation and quantification. The tumor edge could be segmented by the threshold
segmentation algorithm. Zhang et al. [77] combined it with dynamic programming to
define the breast cancer types based on color differences between the tumor mass (blue
boundary) and the normal skin surface in PAI images (Figure 1a) into 06 classes based on
the foreground threshold (FT) from the biopsy-proven negative category. The boundary
of breast tumors could be used as the ground truth in learning-based segmentation. In
another application, Khodaverdi et al. [78] applied automatic threshold selection (ATS) to
support the adaptive matched filter (AMF), which classified different tissue chromophores
in malignant melanoma (red color) on the ultrasound images (Figure 1b). The target of
ATS was to identify an optimized threshold value based on the difference between the
size of connected components [88] and the size of the largest connected components [89].
After identifying the highest abrupt changes connected with component fitting [90], the
selected threshold was chosen from the estimated highest abrupt change in the number
of pixels and depicted as the red area in Figure 1(bi). Conversely, Raumonen et al. [79]
selected the changes in the relative proportion of voxels with different threshold values
(follow 1/x-function) to select the quantitative threshold ranges (Figure 1(ci)). Using dif-
ferent filtering thresholds, the images with the maximum intensity projections (MAPs)
showed the details of root (Figure 1(cii)) and an increased number of the small branches
(from Figure 1(ciii–cv)). Otsu et al. [91] introduced a method to select a locally maximizing
variance between classes. Sun et al. [82] showed the automatically estimated local offset
value based on the histogram of the full three-dimensional OR-PAM data into multiple
sub-parts for segmentation. Due to the limited intensity of noise interference that can



Photonics 2022, 9, 176 4 of 17

lead to erroneous segmentation, both approaches suppressed the background noise via
a 3D Hessian mask and high-frequency enhancement. The intensity transformation was
used to distinguish between blood vessels and background (intensity-based segmentation).
Another study used Otsu’s segmentation by Cao et al., 2018 [92] to segment micro-blood
vessels from PAM to track the hemodynamic events in ischemic stroke.
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Figure 1. (a) BI-RADS 1–6 levels based on leveling tumor mass by foreground threshold (FT) val-
ues (blue boundary) and breast skin layer: (i) negative (FT ≤ 0.15); (ii) benign (0.15 ≤ FT ≤ 0.2);
(iii) probably benign (0.2 ≤ FT ≤ 0.3); (iv) suspicious (0.3 ≤ FT ≤ 0.65); (v) highly suggestive of
malignancy (0.65 ≤ FT ≤ 0.7); (vi) known biopsy-proven (0.7 ≤ FT ≤ 0.9). Reproduced with per-
mission from Zhang et al. [77] and published by IEEE, 2018. (b) Adaptive matched filter (AMF)
detection based on automatic threshold selection (ATS) in malignant melanoma samples (red color)
using ultrasound images (i), compared with histological details showing the growing of tumors
(ii). Reproduced with permission from Khodaverdi et al. [78]; published by OSA, 2021. (c) By se-
lecting the 1/x-curve function and the very slow decrease in the proportion over the threshold (blue
curve), the threshold filtering level can be selected quantitatively (i). Decreased limit threshold values
(magenta) based on the proportion over the threshold (red); the maximum-intensity projections are
shown from (ii) to (v). Reproduced with permission from Raumonen et al. [79]; published by OSA, 2018.

2.1.2. Morphology Segmentation

Morphology segmentation [93] (or homogeneous region segmentation) was used to
measure the variance of regional homogeneity and the boundary between background
and target (diameter, density, and tortuosity). In the MAP image, the basic method is to
apply the gradient operator to determine the rapidly changing high and low values to
determine the biological targets in PAI based on the closed curve. The local behavior of
the second-order gradient projection based on n-dimension Hessian matrix was used to
describe the boundaries of biological tissues highlighting the background and other tissues
differentially. Mathematically, the eigenvalues of the 2D Hessian matrix represented long-
twist targets (blood vessels) in the MAP image. A feature map was defined in Figure 2(ai)
under the conditions of |λ1| ≤ ε and λ2 < 0 (ε is a small fraction) in Equation (2) [94].

f = max
smin≤s≤smax

{
0, {λ2 > 0} ∨ {|λ1| > ε}

|λ2|
(2)
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Figure 2. (a) Vessel boundary (red) information obtained using the multiscale Hessian-based seg-
mentation algorithm in (i) 2D (λ1, λ2) image and (ii) 3D (λ1, λ2, λ3) volume; (b) the rat’s iris in
(i) the original photoacoustic microangiography, (ii) Hessian segmentation using the 2D MAP image,
(iii) 3D volume results of clinical CT-Hessian segmentation, and (iv) 3D volume results of Hessian
segmentation using PAM-modified algorithm; (c) comparison of (i) the intensity with (ii) the extracted
vessel profile. Reproduced with permission from Zhao et al. [81]; published by J. Biomed. Opt., 2018.

The eigenvalues of the 3D Hessian matrix representing vessels are indicated in
Figure 2(aii). Feature volume was defined under the conditions of |λ1| ≤ ε � |λ2|
and λ2 ≈ λ3 < 0 (ε is small fraction) in Equation (3) [94].

f = max
s=[smin ,smax ]

 0, {λ2 > 0} ∨ {λ3 > 0} ∨ {|λ1| > ε}∣∣∣∣[1− exp
(
−α
|λ2

2|
|λ2

3|

)][
exp

(
−β
|λ2

1|
|λ2λ3|

)][
1− exp

(
−γ
(
λ2

1 + λ2
2 + λ2

3
))]∣∣∣∣ (3)

where α, β, γ denotes threshold multipliers that control the sensitivity of the suppression
of noisy, plate-like, and blob-like structures. After mapping, the intensity transformation
image g was measured to fit the enhanced feature map (2D) or feature volume (3D), as
shown in Equation (4), with adjustable parameters representing the critical intensity m and
the scaling factor k.

g =
1

1 +
(

m
f

)k (4)

In the last step, the growing region was expressed as pixels, with the maximum inten-
sity value in the enhanced images seeded from regional growth’s center, and the vessels
were segmented to binary areas (Figure 2(ci)). The distance metric (DM) was defined
as the actual path length of a vessel by the linear distance, whereas the inflection count
metric (ICM) was defined as the length of a curve’s inflection points and the DM. The
sum of angles metric (SOAM) was summed along a curve’s path length. All three product
parameters of vessels were measured from the binary images [95,96]. Yang et al. [80]
first introduced multi-parametric quantitative microvascular imaging using a 2D-Hessian
matrix in an OR-PAM system. The two-step marching was used to generate centerlines of
vascular and four types of morphological parameters (diameter, density, tortuosity, and
fractal dimension) on multiple in 3D mouse scanning OR-PAM images. By developing a
3D vascular boundary, Zhao et al. [81] introduced the vascular information quantification
algorithm for application in rat iris (Figure 2(biv)), and compared the 2D vascular boundary
(Figure 3(bii)) with a 3D vascular application in clinical CT (Figure 2(biii)). The 3D vascu-
lar information quantification algorithm fixed the problem and enhanced the diagnostic
capability of the OR-PAM system for vascular-related applications in vivo, but only the
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MAP image is shown (Figure 2c). Sun et al. [82] applied a similar 3D vascular informa-
tion algorithm in a full 3D framework. Compared with the 2D algorithm, the structural
parameters obtained using the 3D vascular boundary algorithm were significantly closer to
reality. Mai et al. [46,47] used a 2D Hessian matrix for the label-free quantitative analysis
of three-dimensional OR-PAM and monitoring carfilzomib solution injection in the MAP
images obtained via in vivo experiments.

2.1.3. Wavelet-Based Frequency Segmentation

Frequency-domain PAI via transformation from time-domain PAI showed different
biological optical absorption coefficients in waveform bandwidths [97]. “Spectral unmix-
ing” [98] refers to the process of decomposing the spectral signature of a mixed A-scan
into a set of separate bands. In PAI, most transducers were the high-bandwidth type
(piezoelectric transducers) [99]. Because the acoustic signal was released at a 360◦ angle,
the transducers received the primary signal from the target accurately, with the second
signal derived from uninterested targets with a similar absorption coefficient and could not
be simply segmented in the time-domain.

Cao et al. [84] separated crystalline cholesterol from cholesteryl ester in an intact artery
to diagnose cardiovascular disease via spectral unmixing with k-mean clustering [100]. The
main procedure highlighted in Figure 3(ai), based on raw data, reveals pre-processing of
the B-scanned image via bandpass filtering and Hilbert transformation for each A-scan. The
Gaussian sliding window is moved gradually to remove the spectral leakage, followed by
conversion to the frequency domain via discrete Fourier transform (DFT). After calibrating
the sensitivity, the frequency domain data matrix was created following the normalization
of the component in the selected bandwidth. The final form of the frequency-domain matrix
was presented with each row representing all the pixels, while each column showed the
tailored spectra for each sliding window. By calibrating the spectral matrix with k-mean
clustering, the composition array was reshaped. Figure 3(aii) shows the traditional UST
with PA intensity images with cholesteryl ester and cholesterol (green) upper background
noise (white). For a more efficient measure, the denoised PA signal (Figure 3(aiii)) was
applied. In Figure 3(av), the white color represents cholesteryl ester and segmentation in
purple color, which denotes cholesterol. The accuracy of this phantom was 98.4%. The
obtained maps of the slope, y-intercept, and mid-band fit distribution are displayed in
Figure 3(av–avii), showing the confirmed difference, as well as spectral distribution using
the K-mean clustering method.

Using different scale-specific contrast in the frequency domain, Moore et al. [85]
introduced the F-Mode to reconstruct raw RF data in the PAI system to measure the
differentiation between RF lines. In Figure 3(bi), each RF line as frequency domain was
processed by the fast Fourier transform (FFT). The number of bands K in the FFT was
calculated based on the sampling frequency fs and the desired resolution of resultant
frequency domain spectrum ∆ f (Equation (5)).

K = fs/∆ f (5)

The corresponding power spectra were partitioned into Q discrete frequency bands, it
applied the F-Mode to each RF step in the generated map, which may be assumed to be on
the same scale as the MAP image. The actual magnitude of a pixel’s summed power with
respect to all other pixels in the same band defines its intensity in an F-Mode image. Each F-
Mode image presents a separate dynamic range, with a signal-to-noise ratio (SNR) resistant
to substantial fluctuations in transducer sensitivity. Pixels derived from an image carrying
a minimum in each frequency band may be indistinguishable from the background in each
F-Mode image, thus masking the object while significantly increasing the visibility of the
remaining features. However, because of the shifting spectra (Figure 3(ai)), these same
pixels may have the highest overall value in an image. For example, in vivo imaging with
a modular PAM system was used to capture the zebrafish larvae for classification based on
the three main trunk vessels: 5 day-post (fertilization): dorsal aorta (DA), posterior cardinal
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vein (PCV), and intersegmental vessels (ISV). As shown in Figure 3(bii), the MAP revealed
that all the three trunk vessels had similar highest frequency-domain intensity and therefore
could not be segmented according to the threshold value or Hessian filter because they
connected directly with each other (PCV with ISV). By selecting different frequency bands
centered at 12.5 MHz (Figure 3(biii)), 31.5 MHz (Figure 3(biv)), and 97.5 MHz (Figure 3(bv)),
each trunk vessel was shown or removed. Especially in this case, the 97.5 MHz frequency
band delineated the ISV and its connection with PCV.
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Figure 3. (a) Spectral analysis workload of photoacoustic signal; (i) the depth m and the scanning
length n; by cropping Gaussian window L, the frequency domain after calibration was presented
using the tailored spectrum of Gaussian matrix; using a shorter K-means clustering, the composition
map was applied to B-scan; (ii) the PAI (gray) and derived composition spectral map (green); (iii) PAI
based on signal thresholding; (iv) reconstructed composition map, marked by cholesterol (purple)
and cholesteryl ester (white); (from v to vii) spectral maps showing slope, y-intercept, and mid-band
fit. Reproduced with permission from Cao et al. [84]; published by Elsevier, 2017; (b) the overview
of the F-Mode technique; (i) two phantoms were stimulated and divided into discrete frequency
spectra; the reconstruction was segmented in the MAP image stack; (ii) the application of F-mode for
scale-specific live-visualization of zebrafish vessels contains: the dorsal aorta (DA)/intersegmental
vessel (ISV)/posterior cardinal vein (PCV) (iii) only PCV; (iv) removed ISV; (v) small ISV hid-
den under PCV. Reproduced with permission from Moore et al. [85]; published by Nature, 2019;
(c) (i) overview of the differentiate photoacoustic signal sources by proposed method, (ii) sepa-
rated ROIs for methylene blue (MB) and hemoglobin (Hb); (ii) ROIs of MB and Hb using different
approaches. Reproduced with permission from Gonzalez et al. [83]; published by Frontiers, 2021.
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Both methods mentioned above had certain requirements, which rendered them
difficult to use in feasibly responding to most applied systems [84,85]. Because of the
need to label the regions for each desired target, and these labeled regions relied on
a priori information with limited number and location of materials for differentiation.
Gonzalez et al. [83] proposed a novel acoustic-focusing frequency analysis to distinguish
the changing of material photoacoustic responses. The proposed method utilized a classi-
fication framework using a dictionary of sets containing specific photoacoustic-sensitive
materials (in Figure 3(ci)). The sources of intelligent classification were prepared from
the set of frames averaged with coherence masks of the regions of interest. The feature
extraction was described based on the amplitude and frequency, as well as the coefficient
of principal components, to determine the atlas of photoacoustic-sensitive materials. As
shown in Figure 3(cii), the comparison with K-mean clustering by Cao [84] or F-Mode by
J. Moore [85] showed a disadvantage because of the improper detection of signals from
methylene blue (MB) or blood (Hb). The dual-wavelength atlas showed the strongest sensi-
tivity (0.88) with traditional spectral unmixing (0.89), higher than K-mean clustering (0.7)
and F-mode (0.63). Due to the highest specificity and accuracy (0.87–0.88), the classification
framework overcame the K-mean clustering specificity (0.67–0.64) and F-mode (0.67–0.62)
and was higher than traditional spectral unmixing (0.81–0.86).

2.2. Deep Learning Segmentation Approaches
2.2.1. Overview of Deep Learning Segmentation Networks

Among the various benchmarks for image analysis, deep learning rapidly outper-
formed standard technologies, improving medical imaging analysis [101,102]. AlexNet
was the first convolution neural network (CNN) winning against a support vector machine
(SVM) at the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC [103]).
Since then, it has been developed into modified and diverse architectures [104] for applica-
tion in most of the current medical imaging solutions [57,105–108]. Deep learning was also
utilized in PAI as an innovative and economical solution. Table 2 lists the deep learning
applications used in PAI.

Table 2. Deep learning projects facilitating PAI segmentation and quantification.

Type Description Advantages Disadvantages Application Paper(s)

Supervised
learning

Based on label
observation in the
training prediction

model

(1) Classification and
regression

(2) Simplest learning process

(1) Manual process
(2) Limited by current

knowledge

• Analysis of oxy-deoxy
hemoglobin levels in blood

• Classification of breast cancer
[56,77,109,110]

Unsupervised
learning

Desired decisions
without specific or

explicit sample
instruction

(1) Clustering/anomaly
detection without instruction.
(2) Quantitative measurement

with hidden features

(1) Poor accuracy
• Blood vessel concentration
• Blood vessel segmentation [111–113]

2.2.2. Supervised Learning Segmentation

The first important application of supervised deep learning is in labeling dataset.
The well-organized dataset may be used to identify and determine targets in the learning
process, which is desirable in reducing the training time or diversifying the learning model
by shortening or enriching the meaning of the data set using image processing techniques.
In PAT, the 2D MAP image processing tasks were used after the forward back-projection
(FBP) to reconstruct biological images based on physical information (diameter, size, and
angle) and labeling. Zhang et al. [77] and Ma et al. [109] used deep learning techniques to
classify and segment breast cancer using two different methods: SVM and U-Net. With
the helping of SVM, Jiayao successfully classified the reconstructed photoacoustic breast
cancer images into six classes that were used in threshold segmentation (Figure 1a). To
improve the segmentation process, Ma used the U-Net method to extract fibro-glandular
tissues of breast, skin, and fat. The tumor, which was not classified or detected using the
same features as notation targets, would be detected as an anomaly.
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Chlis et al. [110] introduced the sparse-U-Net (S-UNET) for automatic vascular seg-
mentation in multispectral optoacoustic tomography (MSOT [114]) to resolve oxygen
consistence levels in the flowing blood. As shown in Figure 4(ai), the recorded MSOT
stacks were transformed from stacks of 28 wavelengths to a probability map (wavelength
combination) that corresponded to a ground-truth binary mask at wavelengths 810 nm
(THb) and 850 nm (HbO2), based on consensus between two clinical experts. The L1
regularization [115] was used with an additional term λ|β| (λ = 0.01 was a scalar hyperpa-
rameter and beta was the first 1 × 1 convolutional layer) to eliminate unnecessary features
of noise and background, while ensuring the target blood signals were measured. Using
non-negative weights, a few relevant wavelengths were assigned to positive weights, while
the rest were set to zero and executed in the model. The rest of the segmentation process
was the original biomedical U-Net [116]. By selecting the dataset of 164 raw MSOT images,
the S-UNET successfully showed the human vasculature segmentation from MSOT images.
As shown in Figure 4(aii), using different vascular diameters ranging from the size of the
cephalic vein to the radial artery compared with the 850 nm channel of the MSOT image
(input image) and ground truth mask (blue in the true mask), the predicted results (red
in predicted mask) showed a similar overlap (difference) and Dice coefficient up to 0.86
(higher than original U-Net with 0.75).

Ly et al. [56] improved B-scan segmentation in a dual-fast scanning photoacoustic mi-
croscopy system in vivo. The CNNs were used in B-scan segmentation for profiling shallow
depth vessels in 3D volumetric data. The sliding window architecture (Figure 4(bi)) showed
the transformation from a high-resolution B-scan to 256 × 256 patches. The deep learning
models (U-Net/SegNet-5/FCN-8) were used to predict patches and recover the full B-scan
original size. Each prediction (skin/vessels) was multiplied with each B-scan to determine
the segmentation of skin and vessels (Figure 4(bii)). Using 4800 B-scan pre-treatments,
patches were extracted from each B-scan and added to the U-Net/SegNet-5/FCN-8 to
compare the performance. The U-Net showed the best performance with 99.53% accuracy
and 75.29% BF-score (Boundary F1 contour matching score). The visualization in 3D volu-
metric of the human palm (Figure 4(ci)) and foot (Figure 4(cii)) showed good performance
segmentation (Figure 4(ciii)—human palm/Figure 4(civ)—foot) in real-time scanning using
the trained slide-U-Net algorithm (Figure 4c). Based on the coronal plane (Figure 4(cv,cvii))
and sagittal plane (Figure 4(cvi,cviii)), the vessels of the human palm showed the possibility
of enhancing and visualizing a map of the skin surface and underlying vasculature.

2.2.3. Unsupervised Learning Segmentation

Until now, the performance and effectiveness of supervised and unsupervised seg-
mentation methods were compared via surveys. Multiple quantification of endogenous
chromophores (hemoglobin, melanin, and lipids) in supervised learning segmentation
requires the classification of the labeling process to identify the correct label based on the
known patterns (background). To identify unknown rules, unsupervised learning methods
involved clustering or groups based on training samples. Yuan et al. [111] extracted the
vessel images from the OR-PAM system and compared traditional K-mean segmentation
methods with deep learning models as a fully convolution neural network (FCN) and
U-Net. As described in Figure 5(ai), the FCN model configured the size of the convolutional
kernel to 3 × 3 with a stride of 2, as expected, to preserve the most useful features of the
vessel in PAM images. In the deconvolution process, a final operation with a stride of 8 was
performed to eliminate unnecessary features (short line, noisy signal, . . . ) and maintain the
regression information (long boundaries, clear edge, . . . ). In the same experiment, U-Net
was used in a robust and wide application field as FCN. Based on subtle differences, the
U-Net combined the low-level features of the decoding portion to avoid feature loss caused
by the pooling layers in the network when the size of the convolutional and deconvolu-
tional kernel was maintained at 3 × 3 with a stride of 2. However, both FCN and U-Net
show characteristic limitations of models regardless of different hyperparameter tunning
and an increasing number of iterations or training set size. By combining FCN and U-Net,
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Hy-Net was created to optimize the results of the two models by avoiding the uniqueness
of the output. The need for additional GPU memory in Hy-Net (77.56 MB) than in FCN
(19.07 MB) and-U-Net (58.44 MB) increased the number of parameters, whereas Hy-Net
showed a better performance than FCN and U-Net ranging from 0.09% to 20.05%, using
all four methods used to determine accuracy (Dice coefficient, intersection over union,
sensitivity, and accuracy). As shown in Figure 5(aii), the MAP sample was manually seg-
mented (Figure 5(aiii)) without following the uniform standard. The segmentation based
on FCN, U-Net, and HyNet was binary (white) compared with under-segmented (red) and
over-segmented (blue) results. The under-segmented HyNet was the best solution.
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Figure 4. (a) (i) The S-UNET workflow identified illumination wavelengths; (ii) the results of
segmented human vasculature based on an MSOT image in a sample 850 nm channel (input image).
Compared with the ground truth in blue areas (true mask), the S-UNET showed the predicted
segmentation masks in red areas (predict mask), and the absolute difference between them showed
almost a complete overlap (Difference). Reproduced with permission from Chlis et al. [110]; published
by Elsevier, 2021; (b) (i) The block diagram of processing used to transform high-resolution input
image into a probability map. (ii) Formation principles of skin S and blood vessel V segmentation in a
3D volumetric image; (c) segmentation mapping of human skin and vascular system in (i, iii) human
palm, (ii, iv) foot, and 3D PA volumetric image inside with marked ROIs (green). (v) Coronal plane
of the (iii) human palm, (vii) sagittal plane of the (iii) human palm, (vi) coronal plane of the (iv) foot,
(viii) sagittal plane of the (iv) foot. Reproduced with permission from Ly et al. [56]; published by
Elsevier, 2021.
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Another optoacoustic imaging was used to evaluate oxygenation by MSOT with a
laser at wavelengths less than 1000 nm [42,117]. Blood oxygenation sO2 was defined as the
ratio of HbO2 by total hemoglobin concentration Hb = HbO2 + HbR (HbR : deoxygenated
hemoglobin) based on image coordinates (x, y) determined using Equation (6).

sO2(x, y) =
HbO2(x,y)

HbO2(x, y) + HbR(x, y)
× (%) (6)
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The oxygen concentration was measured in HbO2 and HbR or Hb, and traditional
methods (linear unmixing [118]) or supervised learning method (S-UNET [110]) were
used, which required at least 02 wavelengths (linear unmixing) or predicted before S-
UNET to solve the quantitative problem. Gröhl et al. [112] introduced the learned spectral
decoloring (LSD) process in MSOT using an unsupervised learning method. The training
dataset was generated via three simulations under different scenarios (generic tissue
without skin specificity, geometry of oxygenation flow, and mimicking all features of
human forearm structures). After training ground-truth with the fully connected feed-
forward neural network models to explain domain-specific differences (Figure 5(bi)), the
architectures were used as a baseline study using a single-pixel approach without CNNs.
As shown in Figure 5(bii), the effect of learned spectral decoloring human forearms showed
disjunct vessels using the phantom trained model. Based on the B-scan image at 800 nm
wavelength, the model showed disjunct blood oxygenation levels of the arterial vessel
structure compared with the results showing that linear unmixing (up to 68%) was a
lower sO2 estimate than LSD (up to 91%). Luke et al. [113] estimated blood oxygenation
via spectroscopic photoacoustic (sPA) imaging using O-Net to segment the vessels from
surrounding background tissues in less than 50 ms with a 5.1% median error after training
with a three-dimensional Monte Carlo simulation dataset on breast tissue.

3. Discussion

Compared with traditional modalities such as CT, MRI, PET, and US, PAI is a non-
invasive biomedical imaging technique, albeit with limited application in the clinical
imaging field. Current quantitative and segmentation techniques involving PAI are improv-
ing its practical application in modern healthcare system [119–121]. All methods of classical
segmentation were referenced and validated for experimental and practical use in PAI.
Typically, using morphological segmentation methods, the microvascular structure was
mapped and visualized via the microscale and multi-layer blood mapping of surface. The
wavelet-based frequency segmentation methods were used to segment the tumor cells or
oxygenated, and deoxygenated blood levels based on molar excitation coefficients. The sim-
plest segmentation method using thresholding cleaned the PAI image in the preprocessing
step to define the severity of breast cancer based on BI-RADS category to prepare for deep
learning methods. Each mathematical method is only used to measure each factor, such as
the intensity level changes (wavelet-based frequency, thresholding), diameter (thresholding,
morphological), and tortuosity (thresholding, morphological), of the tissues. To measure
all factors with an uncomplicated process, deep learning is the needed solution (Hy-Net,
O-Net, etc.).

The deep learning technique used in the last five years can be used to overcome the
system limitations and will continue to be researched as proposed to improve the quantitative
segmentation of PAI. As an alternative to classical segmentation and quantitative methods,
deep learning was utilized based on the features and properties of tumors or vessels in
PAI. The knowledge could be used in supervised or unsupervised learning. Along with
development, deep learning also enables the publication and extension of knowledge using
open sources [54]. Many competitions or challenges each year often require solutions and
cross-checking between participants to strive for the best results as the meaning of “learning”.

4. Conclusions

QPAI is important to accurately obtain quantitative estimates of concentration and
physiologically interesting chromophores. Based on segmentation, PAI systems provide
easy access for visualization of human body structure and functionality. Classical PAI
segmentation algorithms are readily available in modern systems. Due to rapid advances,
deep learning’s ideals have become the fastest tools that can be used to exploit all best
advantages for clinical application. One of the key advantages of deep learning is the
extremely fast responding time with minimized hardware configuration, which is hoped to
enable real-time processing of the PAI system. Given the current clinical application and
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standardization of PAI, the scale of clinical data will be increased but still limited by legal
and human rights issues [122]. Therefore, the classical segmentation approaches will still
be developed, as well as be applied in the PAI system. Further studies investigating the
potential role of deep learning strategies in PAI are needed before clinical application can
be envisaged.
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