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Segmentation and Sampling of Moving Object
Trajectories based on Representativeness

Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ramasso, and Yannis Theodoridis

Abstract—Moving Object Databases (MOD), although ubiquitous, still call for methods that will be able to understand, search,

analyze, and browse their spatiotemporal content. In this paper, we propose a method for trajectory segmentation and sampling

based on the representativeness of the (sub-)trajectories in the MOD. In order to find the most representative sub-trajectories, the

following methodology is proposed. First, a novel global voting algorithm is performed, based on local density and trajectory similarity

information. This method is applied for each segment of the trajectory, forming a local trajectory descriptor that represents line segment

representativeness. The sequence of this descriptor over a trajectory gives the voting signal of the trajectory, where high values

correspond to the most representative parts. Then, a novel segmentation algorithm is applied on this signal that automatically estimates

the number of partitions and the partition borders, identifying homogenous partitions concerning their representativeness. Finally, a

sampling method over the resulting segments yields the most representative sub-trajectories in the MOD. Our experimental results in

synthetic and real MOD verify the effectiveness of the proposed scheme, also in comparison with other sampling techniques.

Index Terms—Trajectory Segmentation; Subtrajectory sampling; Data mining; Moving Object Databases

✦

1 INTRODUCTION

NOWADAYS, there is a tremendous increase of Mov-
ing Objects Databases (MOD) [1] due to, on the

one hand, location-acquisition technologies like GPS and
GSM networks and, on the other hand, computer vision
based tracking techniques. This explosion of information
combines an increasing interest in the area of trajectory
data mining and, more generally, knowledge discovery
from movement-aware data [2]. All these technological
achievements require new services, software methods,
and tools for understanding, searching, retrieving, and
browsing spatiotemporal trajectories content.

In this paper, we tackle a problem combining three
different aspects. First of all, we study the problem
of alternative representations of trajectories of moving
objects (other than the usual sequences of 3-D line seg-
ments), according to contextual information that can be
automatically derived by the total trajectory population.
More specifically, we investigate for an effective way
to represent each trajectory by a continuous function
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that implicitly describes the “representativeness” of each
constituent part of it (i.e. a segment) w.r.t. the whole
MOD. Given such an intuitive representation, a second
interesting arising problem is that of its segmentation in
a way that an analyst could gain insight into “representa-
tive” (i.e. interesting, dense, frequent) portions (i.e. sub-
trajectories), but also into “non-representative” parts,
which are also of interest in various application scenarios
(for example, in detecting movement outliers). On top
of the previous issues, and due to the complex nature of
the trajectory data and the vast volumes of MOD, a third
interesting problem arises; that of “trajectory sampling”.
This is a very challenging problem where very limited
work has been carried out so far. An insightful solution
to the problem would be an analyst to be able to super-
vise the sampling procedure, not only regarding the vol-
ume of the sampled dataset, but also the properties of the
dataset that reveal the underlying movement patterns of
the MOD. In this paper, we argue that this problem can
be effectively tackled if interconnected to the previous
two discussed problems. In other words, we propose an
automatic method for sub-trajectory sampling based on
the “representativeness” of the sub-trajectories. In this
approach, an analyst may request the top-k representa-
tive sub-trajectories that best describe the MOD in an
optimised way, where optimization is with respect to
the “representativeness”. Fig. 1 illustrates an example of
a MOD comprised by four trajectories ({T1, ..., T4}) and
the top-2 representative sub-trajectories ({S1, S2}) that
best describe the MOD.

Recently, in the literature there have been proposed
several works that try to either efficiently analyze tra-
jectory data or mine movement-aware patterns. In the
domain of trajectory segmentation related works deal
with the problem locally, by partitioning trajectories in
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Fig. 1: (a) A MOD of four trajectories. (b) The two most
representative sub-trajectories.

a way as to achieve better database organization [3] or
extract more intuitive local patterns for clustering [4] and
classification purposes [5]. In [6], a global distance-based
approach was proposed for the segmentation of object
trajectories that attempts to simplify the trajectories by
using minimum bounding rectangles (MBRs) in a way
that the original pairwise distances between trajectories
are minimized, as such facilitating clustering and clas-
sification tasks. Furthermore, there are approaches that
attempt to extract global patterns by clustering trajecto-
ries [7]–[9] based on different types of distance functions,
while others try to take advantage of the partial (local)
grouping of the trajectories [4], [10], [11]. There are
also hybrid approaches that succeed global clustering
by using local criteria and focusing in symbolic rep-
resentations of the trajectories [12]. In the domain of
sampling, although there are nice solutions for point
data [13], [14], to the best of our knowledge, trajectory-
oriented solutions include explorative, user-supervised,
clustering-based sampling techniques [15], [16] as well as
approaches that operate on approximate trajectories [17],
with all of those solutions trying to select trajectories
as wholes without being able to identify representative
sub-trajectories, a problem completely different, which is
exactly the challenge accepted by the current work.

Most of the above mentioned approaches propose
different similarity metrics which they are used either for
introducing indexing structures for efficient trajectory re-
trieval [7], or for clustering purposes [8], [9]. Some tech-
niques simplify the given trajectories, focus on spatial
criteria and ignore the temporal dimension [4], [5]. Other
proposals either cannot capture the complex nature of
the trajectories that follow arbitrary motion patterns [4],
or focus on the discovery of very specific definitions
of movement patterns [10], [11], [18]. Explorative, user-
supervised approaches [15], [16] do not provide deter-
ministic solutions as they base on clustering techniques,
which in their turn rely on the selection of the cluster-
ing algorithm, its parameters and the intrinsic distance
function used. On the contrary, in this paper, we do not
simplify the MOD by any time-consuming preprocessing
steps, we take into account the temporal information,
while we do not make any assumption regarding the
type of pattern, that is the actual final outcome. Given
this no − prerequisites setting, we argue that all of the
above approaches, as well as those which are dealing

with vast volumes of trajectory datasets would benefit
if they would be applied in a representative subset
(consisting of the representative sub-trajectories) that
best describes the whole dataset. In other words, we seek
for a methodology to sample those sub-trajectories from
a MOD that preserve as much as possible the properties
and the mobility patterns hidden in the original MOD.
Consider, for example, the domain of visual analytics
on movement data [19] in which it is meaningless to
visualize datasets larger than a certain small size, due
to the distinguishing properties of the human eye. How
would one select a subset so that this would cover the
whole space-time and, as such, get the gist of the whole
dataset is the challenge set in this paper.

The contributions and merits of our work are summa-
rized below:

1) We propose an index-based global voting method
that allows us to represent the representativeness
of a trajectory in a MOD as a smooth continuous
descriptor.

2) We introduce an algorithm for the automatic seg-
mentation of trajectories into “homogenous” sub-
trajectories according to their “representativeness”
in the MOD.

3) We define the problem of sub-trajectory sampling
in a MOD as an optimization problem and we
propose a novel solution to tackle the problem.

4) Finally, we conduct a comprehensive set of exper-
iments over synthetic and real trajectory datasets,
in order to thoroughly evaluate our approach.

The rest of the paper is organized as follows: Section
2 presents previous work in related domains, while Sec-
tion 3 sets the scene by presenting the various aspects of
the problem and also describing the base of our further
developments. Section 4 presents the proposed three-
step methodology, i.e. our trajectory voting scheme, the
trajectory segmentation technique, and the sub-trajectory
sampling method. The experimental results are given
in Section 5. Finally, conclusions and discussion are
provided in Section 6.

2 RELATED WORK

In this section, we review existing works in the domains
related with the current work. In our setting, representa-
tive (sub)-trajectories are a new type of mobility pattern,
as such, our discussion includes trajectory pattern min-
ing, segmentation and sampling in MOD.

A MOD consists of spatiotemporal trajectories of
moving objects (e.g. humans, vehicles, animals, etc.).
In the general case, trajectories are represented as 3-D
sequences where each recording encodes the 2-D (two
dimensional) geographic location and the 1-D temporal
information of mobile objects. During the last decade
several approaches have been proposed in the literature
so as to enable well-known mining algorithms to operate
on trajectories. One such approach is the use of different
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types of distance functions as the mean to group trajec-
tories into clusters. Some approaches are inspired by the
time series analysis domain [20], [7], while other exploit
on a set of distance operators based on primitive (space
and time) as well as derived parameters of trajectories
(speed and direction) [9]. An interesting approach also
used in our approach is proposed in [21] for the efficient
processing of most-similar trajectory (MST) queries. A
similar distance function is used in [8], where Nanni and
Pedreschi adapt the well-known density-based OPTICS
[22] clustering algorithm, tailored to work with point
data, to a new algorithm for trajectory data, named T-
OPTICS (and its varriant TF-OPTICS, which focuses on
the discovery of the temporal intervals that lead to best
clustering results). The previously mentioned temporal
intervals are given by the user, so TF-OPTICS essentially
re-executes T-OPTICS on segments of trajectories, ob-
tained by properly clipping the original ones. In com-
parison with our approach, we automatically segment
trajectories to portions based on global criteria (i.e. the
representativeness of the trajectory in the MOD). Fur-
thermore, TF-OPTICS mainly clusters whole trajectories
and is not tailored to identify patterns of sub-trajectories
in an un-supervised way.

Recently, Pelekis et al. [12] proposed another ap-
proach, called CenTR-I-FCM, taking into advantage of
local patterns in time dimension as the base to identify
global clusters of whole approximate/symbolic trajecto-
ries. In comparison with the current work, this approach
also utilizes a global but static and predefined temporal
segmentation of trajectories. In addition, in this work
trajectories are symbolically represented as intuitionistic
fuzzy vectors and not as sequences of 3-D line segments.
This approach also aims at clustering trajectories as a
whole with special care for handling uncertainty.

Authors in [4] proposed TRACLUS, a partition-and-
group framework for clustering 2-D trajectories which
enables the discovery of common sub-trajectories, based
on a trajectory partitioning algorithm that uses the
minimum description length principle. The core of the
framework uses a variant of the DBSCAN algorithm
that operates on the partitioned directed line segments.
Finally, the notion of the representative trajectory of a
cluster is defined. The fundamental differences of TR-
ACLUS with our approach is that, a) the temporal
information is not considered in [4], b) the segmentation
is performed per trajectory and it does not use global
criteria, c) the identified clusters of segments conform
to straight movement patterns and cannot identify com-
plex (e.g. snake-like) patterns, which are usual in real
world applications, and d) the proposed algorithm for
identifying the representative trajectory is defined per
cluster and it is a synthetic trajectory computed by an
averaging technique. Instead, we automatically select the
top-k most representative sub-trajectories from the given
dataset.

Other related works include techniques for flock pat-
terns [10], moving clusters [11] and convoys [18]. Although

these approaches provide lucid definitions of the mined
patterns, they are rather rigorous and sensitive to param-
eters, while they are not in the context of automatic tra-
jectory segmentation according to the representativeness
of the trajectories, as well as sub-trajectory sampling.

In [23], hot motion paths (frequently traveled trails of
numerous moving objects) are detected in a distributed
system under the assumption that the moving objects
can communicate with a central unit (coordinator). The
goal of this work is in the same context with only one
of the aims of our research (i.e. the one concerning
trajectory representativeness). However, this approach
focuses on the online processing and maintenance of
hot motion paths by imposing a sliding time window of
size W , which excludes from consideration any locations
received more than W time units ago.

In [6], distance-based criteria have been proposed for
the segmentation of trajectories. The distance between
two trajectories is defined using their MBR representa-
tion. The segmentation problem is designed as a max-
imization problem, that attempts to create MBRs in
such a way that the original pairwise distances between
trajectories are minimized. We also provide a method
for trajectory segmentation having global criteria but
this splitting is entailed by the “representativeness” of
the trajectory, which is not simply defined in terms of
distance but via a novel voting method.

In [24], we have proposed an approach for expressing
the “representativeness” in MOD via a voting process
that is applied for each segment of a given trajectory.
Moreover, a simplistic trajectory ranking method selects
the trajectories of highest voting and as such ignores
trajectories in low density regions of the MOD. In the
current work, we improve the voting scheme originally
proposed in [24] with the use of a metric distance func-
tion that further allows us to propose an index-based
algorithm for the efficient implementation of the voting
scheme. More importantly, we improve [24] by handling
trajectory segmentation and sub-trajectory sampling as-
pects.

Trajectory sampling is a new topic in the spatiotem-
poral database literature with a variety of applications
including MOD summarization, visualization, searching
and retrieval. Although very interesting as a problem
and with great potentials in the MOD domain, to the best
of our knowledge there is no related work that tackles
the problem in a tailored way to the complex nature
of trajectory datasets. In [13], [14] the authors propose
techniques for density biased sampling (DBS) in point
sets that obviously can not be applied to trajectory data.
In our approach, we extend the idea of DBS in a way that
density properties as well as the similarity of trajectories
segments is taken into account in a way that allows us to
effectively apply sampling in the MOD domain. In [17]
we have proposed an approach for unservised trajectory
sampling, however this work operates on approximate,
symbolic trajectories (i.e. represented as sequences of
cells of a spatio-temporal grid wherefrom the moving
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Fig. 2: Scheme of the proposed system architecture.

object pass), while it focuses on the selection of whole
trajectories and not portions of them (i.e. sub-trajectories
produced by a segmentation method). These two obser-
vations make the problem addressed in the current work
completely different.

An interesting approach focusing on the visualization
of large trajectories datasets and which uses standard
sampling techniques has been proposed in [15], [16].
The authors use uniform sampling as a starting step to
minimize the volume of the trajectories that can be clus-
tered by the T-OPTICS algorithm [8]. At a subsequent
step, they either select a certain percent of trajectories
from a cluster using distance-based thresholds or they
apply a partitioning on each cluster so as to identify
spherical sub-clusters, each of which is represented by its
medoid. Obviously, the outcome of this approach could
be reached by directly applying K-Means or K-Medoid
algorithm and then choosing the mean or medoid of each
cluster as the representatives that will be sampled. Of
course, this choice has the disadvantage that the number
of clusters should be known apriori. This approach,
which is basically a stratified sampling technique, where
strata are produced by the clustering algorithm, has the
limitation that it is user-supervised and it depends on the
results of the clustering. Notwithstanding our method-
ology is automated, which is a self-evident advantage,
in our experimental study we show the superiority of
our approach in comparison to uniform random and
stratified sampling techniques used in [15], [16], by using
standard sampling evaluation metrics.

3 SETTING THE SCENE

In this section, we set the scene of the various aspects of
the problem that this paper addresses, and concurrently
we present the stepping-stones where our subsequent
developments base on. Let us assume a MOD D =
{T1, T2, · · · , TN} of N trajectories, where Tk denotes the
k-th trajectory of the dataset, k ∈ {1, 2, ..., N}. We assume
that the objects are moving in the xy plane. Let pk(i) =
(xk(i), yk(i), tk(i)) be the i-th point, i ∈ {1, 2, ..., Lk}, of
k-th trajectory, where Lk denotes the number of points of
k-th trajectory. xk(i), yk(i) and tk(i) denote the 2-D loca-
tion and the time coordinate of point pk(i), respectively.

Similar to the work of [25], we consider linear interpo-
lation between successive sampled points pk(i), pk(i+1),
so that each trajectory consists of a sequence of 3-D line
segments ek(i) = pk(i)pk(i+1), where each line segment
represents the continuous moving of the object during
sampled points.

Symbols Definitions
D Given MOD, D = {T1, T2, · · · , TN}
Tk k−th trajectory of MOD
Lk Number of points of Tk

pk(i) i-point of Tk , pk(i) = (xk(i), yk(i), tk(i))
xk(i) x-spatial coordinate of pk(i)
yk(i) y-spatial coordinate of pk(i)
tk(i) time coordinate of pk(i)
ek(i) 3-D line segment, ek(i) = pk(i)pk(i + 1)
lk(i) Lifespan of ek(i), lk(i) = tk(i + 1) − tk(i)
Vk Voting trajectory descriptor of Tk

LPk Number of Tk sub-trajectories
Pk(i) i − th sub-trajectory of Tk

V Pk(i) Voting descriptor of i − th sub-trajectory of Tk in D
Nlk(i) Normalized lifespan vector of i − th sub-traj. of Tk in D
S Sub-trajectory sampling set of D

V̂ P k(i) Voting descriptor of i − th sub-traj. of Tk in S
SR(S) Representativeness function of S

TABLE 1: Symbol table.

The goal of this work include:

• the automatic segmentation of the given trajectories
Tk, into “homogenous” sub-trajectories according to
their “representativeness” in MOD and

• sampling of the most representative sub-trajectories
of the MOD.

Fig. 2 illustrates a scheme of the proposed system archi-
tecture. The following three sections formalize the issues
of trajectory representativeness, trajectory segmentation,
and sub-trajectory sampling, respectively. Table 1 sum-
marizes the symbols’ definitions used in this work.

3.1 Trajectory line segment representativeness

In this research, the “representativeness” in MOD is
defined by extending the definition of density biased
sampling (DBS) in point sets [13] for trajectory segments.
According to DBS, the local density for each point of the
set is approximated by the number of points in a region,
divided by the volume of the region. In our case, the
“representativeness” of a trajectory segment is defined
by the number of the objects that follow this segment
along with time, space and direction.

Technically, “representativeness” is calculated by a
voting process that is applied for each segment ek(i) of
the given trajectory Tk, improving a preliminary version
of the proposed method, presented in [24]. Thus, ek(i)
will be voted by the trajectories of MOD, according to
the distance of ek(i) to each trajectory. The sum of these
votes is related to the number of trajectories that are close
and similar to ek(i), having the number of trajectories in
MOD as upper limit. We avoid to give each segment the
ability of voting, because, in such a case, long trajectories
moving around the same area could vote many times.
Moreover, under this definition, voting has the physical
meaning of how many objects co-move (i.e. co-location
and co-existence) for a period of time. Thus, the voting
results will be used to detect the representative paths
and sub-trajectories.

The previous discussion implies that we have to
compute the distance (d(ek(i), em(j))) between two 3-D
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line segments. More specifically, we need to be able to
identify the trajectories that are the closest (i.e. Nearest
Neighbors - NNs) to a 3-D line segment, and this process
should be done in an efficient and preferably in an
incremental way, in the sense that the k-th NN can be
obtained with very little additional work once the (k-
1)-th NN has been found. These requirements imply
that data should be indexed and, as such, the distance
function should be obey the metric properties. To meet
the above prerequisites, in this framework we use and
extend the approach for incremental continuous NN
search algorithms proposed by Frentzos et al. in [26]. In
this approach, which assumes that data are indexed by
one of the two following members of the R-tree family
for trajectory data (namely, the TB-tree [25] or the 3D-
R-tree [27]), the distance between 3-D line segments is
defined as their Minimum Euclidean Horizontal distance
(MEH , for short) during their common lifespan (see
Fig. 3(a))1. As proved in [26], the Euclidean horizontal
distance function between two 3-D line segments follows
the quadratic form D(t) =

√
at2 + bt + c, where a, b, c

are the factors of this trinomial (real numbers, a ≥ 0),
and whose minimum is a closed formula that can be
computed in O(1). Note that, by simply defining the
distance between two 3-D line segments using MEH

distance, will make the distance function dependable
to a single value and not to the whole lifespan of the
segments and, as such, very sensitive to small varia-
tions. As a counter-example consider the case where
two objects move on the same road segment following
different directions. At some timepoint they will meet,
so their MEH will be (very close to) zero, but obviously
this is not representative of their co-motion. As in our
approach we aim at transforming trajectories into 1-D
continuous descriptors that will smoothly describe the
representativeness of the trajectories in the database, a
more consolidated approach for measuring the distance
between 3-D segments is needed.

Intuitively, an ultimate distance function would make
use of the fact that for a single 3-D segment, different
portions of it may have different NNs of other segments,
and the sizes of these portions are taken into account. To
this end, from the palette of algorithms proposed in [26]
we base on the best-first historical continuous trajectory
NN IncT rajectoryNNSearch algorithm (HCNN QT ,
for short). The HCNN QT (D, QT , Qper) query over the
query moving object with trajectory QT during a time
period Qper returns a list of triplets for each of the k-
NN, i.e. LoTkNN =< · · · , (Rj , Tj, [tj−start, tj−end)), · · · >

consisting of the time-varying real value Rj along with
a moving object Tj (belonging in database D) and the
corresponding time period [tj−start, tj−end) for which the
nearest distance between QT and Tj stands. These time-
varying real values Rj are, in any time instance of their
lifetime, smaller or equal to the distance between any

1. If there does not exist common lifespan, the distance is given by
the diameter of the dataset.
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Fig. 3: (a) The distance between 3-D line segments is
defined as their Minimum Euclidean Horizontal distance
during their common lifespan. (b) The 2-NN of the query
segment e1.

moving object in D and the query trajectory QT . The
time periods [tj−start, tj−end) are mutually disjoint and
their union forms Qper. With ej we denote the portion of
the segment that corresponds to each triplet in LoTkNN .

Recall that, in our case, we want to apply such a NN
query for each segment ek(i) of a trajectory, so following
the notation of the HCNN QT query, the QT is the
ek(i) and Qper becomes the respective temporal period
of lk(i). To exemplify the proposed k-NN, in Fig. 3(b) we
depict the 2-NN of the query segment e1. The 1-NN list
includes e2 for the interval [t1, t3) and e3 for the interval
[t3, t6]; the 2-NN list includes e3 for the interval [t1, t3)
and e1 for the interval [t3, t6].

Given a segment ek(i) of a trajectory we calculate
its distance from the NN segments ej provided by a
LoTkNN , by computing the definite integral of the time-
varying distance Rj between the two segments during
the same period, following the approach proposed by
Frentzos et al. in [21]:

d(ek(i), ej) =

∫ tj−end

tj−start

Rj(t)dt (1)

As Rj follows the trinomial previously discussed, and
as proved in [21] its integral can be computed in O(1)
by distinguishing between two cases for the value of
the non-negative factor a (a = 0 and a > 0). As
also proved in [21], d(ek(i), ej) can be efficiently com-
puted by approximating the integral with the Trapezoid

Rule (
(Rj(tj−start)+Rj(tj−end))·(tj−end−tj−start)

2 ), providing
also bounds for the approximation error.

Given the previous setting, let Vk of Lk−1 components
be considered the voting trajectory descriptor (“represen-
tativeness” value) along the Tk line segments, computed
by using the previous distance function. Each component
of this signal Vk(i) corresponds to the number of votes
of ek(i), i ∈ {1, 2, ..., Lk − 1} of Tk. Section 4.1 describes
the proposed global voting method that estimates Vk(i).
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Fig. 4: (a) A MOD of four trajectories. (b) Segmentation
of T1 using the TRACLUS method (six sub-trajectories).
(c) Segmentation of T1 using the proposed method (three
sub-trajectories). (d) The two most representative sub-
trajectories according to the proposed method.

3.2 Trajectory Segmentation

In this section, the trajectory segmentation is presented.
The goal of trajectory segmentation is a trajectory parti-
tioning into sub-trajectories of homogenous representa-
tiveness irrespectively of their shape complexity.

Let V Pk of LPk partitions be considered the voting
sub-trajectory representativeness of Tk trajectory. Let
Pk(i), i ∈ {1, ..., LPk} be the i-th sub-trajectory of Tk,
where LPk denotes the number of partitions of Tk. Then
according to previous definition, V Pk(i) is the vector
(descriptor) of votes along the line segments of Pk(i)
partition, showing how many objects follow each line
segment of sub-trajectory. This value will turn out to be
useful for sampling purposes, as it will be presented in
the section that follows.

Fig. 4 illustrates an example of a MOD comprised
by four trajectories ({T1, ..., T4}). In this figure, the time
dimension has been ignored for visualization reasons.
The segmentation of T1 according to the TRACLUS
method [4] and the proposed method are illustrated
in Figs. 4(b) and 4(c), respectively. Indeed, most of the
proposed techniques in literature like TRACLUS first
simplify the trajectories into large line segments and then
apply a grouping of similar of line segments, see six sub-
trajectories on Fig. 4(b). On the contrary, according to our
approach, the segmentation is applied on the original
trajectory by taking into account its neighborhood in
the rest of the MOD. In addition, there is not any
constraint on sub-trajectory shape complexity, yielding
a segmentation that is related only on line segment rep-
resentativeness (voting results), see three sub-trajectories
on Fig. 4(c). In Fig. 4(c), the line thickness is related with
the line segments representativeness (voting results). It
holds that the sub-trajectory representativeness values
will be almost the same along the line segments of each
sub-trajectory (see Fig. 4(c)). According to the proposed
methodology, the top-2 representative sub-trajectories

({S1, S2}) that best describe the MOD are illustrated in
Fig. 4(d).

3.3 Subtrajectory Sampling

The trajectory segmentation provides homogenous sub-
trajectories concerning their representativeness. The goal
of sub-trajectory sampling is to select the most represen-
tative subset of these sub-trajectories. By selecting the
higher voting segments as in [24], which sounds to be an
obvious decision, the high density regions of the MOD
will be oversampled, resulting in a non-representative
sample when the aim is to cover the whole space-time
of the MOD as much as possible.

On the contrary, in this paper, we propose the sam-
pling to be done by minimizing a formula (see Equation
3), taking into account the votes (i.e. representativeness)

V Pk(i) in the original MOD as well as the votes V̂ P k(i)
in the sampling MOD and the vector of the lifespans of
the line segments divided by the lifespan of the trajectory

(Nlk(i)). V̂ P k(i) is computed in sampling MOD using
the voting method similar to V Pk(i) computation in the
original MOD. Thus, it takes into account the fact that
the sampling set should contain dissimilar representative
sub-trajectories. So, our goal is that the sampling set
should contain high voting trajectories of the MOD and,
at the same time, should cover the whole 3-D space
as much as possible. This means that the resulting set
should avoid to contain similar sub-trajectories.

Let S denote the sampling set, so that Sk(i) is one,
if Pk(i) sub-trajectory belongs to the sampling set, and
zero otherwise. According to the previous properties,
the number of moving objects of the original MOD
that are represented in sampling set SR(S), should be
maximized over the time. This is formalized in Equations
2 and 3.

SRgain(k, i) =

|Pk(i)|∑

j=1

V Pk(i)(j) ·Nlk(i)(j) · (1− V̂ P k(i)(j))

(2)

SR(S) =
N∑

k=1

LPk∑

i=1

Sk(i) · SRgain(k, i) (3)

SRgain(k, i) expresses the gain of SR(S) if we add in
sampling set the ith sub-trajectory of the kth trajectory of
the MOD. |Pk(i)| denotes the number of line segments
of the i − th sub-trajectory of Tk. The values V Pk(i)(j),

Nlk(i)(j) and V̂ P k(i)(j) denote for the votes in D, the
normalized lifespan and the votes in S of the jth line
segment of ith sub-trajectory of kth trajectory of the
MOD, respectively. In other words, the number of objects
of the MOD that follows the sub-trajectories of S is
maximized over the time. Fig. 4(d) illustrates the top-
2 representative sub-trajectories S1 and S2 according to
the proposed method (S1 is the top-1st since it represents
all four objects, while S2 is the top-2nd since it represents
two objects. Let us suppose that the normalized lifespan
of S1 is 1

2 and the normalized lifespan of S2 is 1
3 . It
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holds that S1 will be selected first, since the SRgain of
S1 is about 3

2 (see Equation 2). S2 will be selected next,
since the SRgain of S2 is about 2

3 (see Equation 2). In

both of the cases, the corresponding V̂ P k(i)(j) is zero,
since S1 and S2 are defined into different time periods.
Next, the SRgain of other sub-trajectories will be zero
or a negative value. Therefore, the proposed sampling
method will select these two sub-trajectories, covering
the time and space of the MOD.

4 METHODOLOGY

In this section, the proposed methodology is presented,
consisting of the trajectory voting, the trajectory segmen-
tation and the sub-trajectory sampling methods.

4.1 Global Voting Method

This section describes the Global Voting Algorithm
(GVA). The input of the algorithm is a MOD D =
{T1, T2, · · · , TN} indexed by a R-tree-like structure such
as the TB-tree [25] or the 3D-R-tree [27], as described
in [26], a trajectory Tk ∈ D and an intrinsic parameter
σ > 0 of the method. The output of the method is the
vector Vk of Lk − 1 components that can be consid-
ered as a trajectory descriptor along the line segments
ek(i), i ∈ {1, 2, ..., Lk − 1} of trajectory Tk (recall from
Section 3, that Lk denotes the number of points of Tk

trajectory). As such, each component of the vector Vk(i)
corresponds to the number of votes (representativeness)
for each ek(i) of Tk.

According to the problem formulation presented in
Section 3, for each line segment ek(i) of Tk, the
proposed GVA algorithm incrementally identifies the
NN segments of other trajectories Tj ∈ D, j �= k.
For each set of NN segments represented by the
list of segments/triplets in LoTkNN , the distances
d(ek(i), ej) from the corresponding segments are com-
puted. These distances are used to define the vot-
ing function V (ek(i), LoTkNN ), which quantifies the
representativeness of the line segment to a LoTkNN .
In the literature, a lot of voting functions have been
proposed, like step functions or continuous functions
[28]. In this work, we have selected to use the continuous
function of a gaussian kernel, which is widely used
in a variety of applications of pattern recognition [29].
Formally,

V (ek(i), LoTkNN ) =
∑

∀ej∈LoTkNN ,Tk �=Tj

e−
d2(ek(i),ej )

2·σ2 (4)

Note that for data collected from GPS devices where
the segments are very small (due to the high sampling
rate), in practice the previous function degenerates to the
computation of a single gaussian kernel, as the HCNN
of a segment results in a LoTkNN containing only one
NN. This is actually verified in our experiments where
we used real GPS datasets. However, in cases where the
datasets are highly compressed (in applications where

storage cost is important), e.g. by an approach like the
one proposed in [30], this may have an influence in
the smoothness of the Vk(i) descriptor. We leave such a
study as future work. The control parameter σ > 0 shows
how fast the function (“voting influence”) decreases with
distance. Given the previous assumption, and according
to Equation 4, it holds that 0 ≤ V (ek(i), LoTkNN) ≤ 1.
If d(ek(i), ej) is close to zero, the voting function gets
its maximum value, i.e. 1. This means, that there exists
a line segment of Tj that is being (in time, space and
direction) very close to ek(i). Otherwise, if d(ek(i), ej) is
high, e.g. greater than 5 ·σ, the voting function results in
almost 0, meaning that Tj is very far away from ek(i).

The use of a continuous voting function, like the
gaussian kernel, gives smooth results for small changes
on parameters (σ in our case), and the possibility to get
decimal values as results of voting process increasing
the robustness of the method. However, σ depends on
space units the object movements of MOD and it is
difficult to tune it. We have solved this problem by
estimating σ as the percentage (e.g. 0.1%) of dataset
diameter (maximum space distance). This percentage can
be kept almost constant for every dataset. Finally, Vk(i)
is computed by getting the sum of votes for all of the
nearest neighbor segments of trajectories Tj ∈ D, j �= k,
according to GVA (see Algorithm 1).

input : An (indexed) database
D = {T1, T2, · · · , TN}, a trajectory Tk in
D and the parameters σ, ε.

output: Voting vector Vk of Tk

for i = 1 to Lk − 1 do1

Vk(i) = 02

repeat3

LoTkNN =4

Get Next HCNN QT (D, ek(i), lk(i))
V (ek(i), LoTkNN) =5

∑
∀ej∈LoTkNN ,Tk �=Tj

e−
d2(ek(i),ej )

2·σ2

if V (ek(i), LoTkNN) > ε then6

Vk(i) = Vk(i) + V (ek(i), LoTkNN )7

else8

break9

end10

until LoTkNN = ∅11

end12

Algorithm 1: Global Voting Algorithm (GVA).

Note that for each ek(i) (line 1) the algorithm starts a
loop (loop 3) wherein each time it incrementally retrieves
the next LoTkNN (line 5, function Get Next HCNN ),
for which its representativeness is computed. This mea-
sure is added to the Vk(i) if the current voting is
significant (i.e. larger than a small value (ε is a very
small number comparing to one, e.g. ε = 10−3), lines
6,7), otherwise the loop is terminated (line 9), which
means that we stop retrieving subsequent NN. The loop
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Fig. 5: The two sequential sliding windows W1 (light
gray horizontal lines) and W2 (heavy gray vertical lines)
locating at sample n on the given voting signal Vk.

is also terminated if there are no other NN given the
spatiotemporal criteria of ek(i) (line 11). Given the above
discussion, a nice property that holds for the proposed
local trajectory descriptor Vk is that it smoothly changes
over the trajectory segments.

4.2 Trajectory Segmentation Method

Having presented the voting procedure in the previous
section, the next step is to provide a solution to the
trajectory segmentation problem defined in section 3.2.
For this purpose we propose the Trajectory Segmentation
Algorithm (TSA) (see Algorithm 2). The input of the
algorithm is the normalized trajectory voting signal Vk,
and two intrinsic parameters w, τ of the method. The
normalization is done by dividing Vk by the maximum
over all Vk, thus bounding Vk ≤ 1. The output of the
method is the segmentation Pk of Tk into LPk partitions,
where LPk is automatically estimated by the proposed
scheme.

The method uses two sequential sliding signal win-
dows W1 and W2 of w samples estimating the sample
when the “difference” between the two windows is
maximized.

This methodology has been successfully applied on
sound signal segmentation [31] and P Phase Picking of
seismic signals [32]. To facilitate the discussion, Fig. 5
illustrates the two sequential sliding windows W1 (light
gray horizontal lines) and W2 (heavy gray vertical lines)
locating at sample n on the given voting signal Vk.
First, as the two windows slide, the two means m1,
m2 and two variances σ2

1 , σ2
2 of two sequential signal

windows and W1, W2 locating at sample n are estimated,
respectively (see Fig. 5) (see lines 1-7 of Algorithm 2).
The next equations define m1 and σ2

1 ; m2 and σ2
2 are

similarly defined in window W2.

m1 =
1

w

∑

i∈W1

Vk(i) (5)

σ2
1 =

1

w

∑

i∈W1

(Vk(i) − m1)
2 (6)

The symmetric Mahalanobis Distance [32], [33], pre-
sented in Equation 7, is used to measure the distance
between the two windows locating at sample n.

d(n) = (m1 − m2)
2 · ( 1

σ2
1

+
1

σ2
2

) (7)

The symmetric Mahalanobis Distance has been selected
since it outperforms other frequently used distances like
symmetric Kullback-Leibler (KL2) or Bhattacharyya [34]
in segmentation problem, which has been shown in [32].

A sample n is characterized as border point (start of
a new partition),

1) if d(n) > τ and
2) d(n) ≥ d(i), i ∈ {n − w, ..., n + w} (see lines 12-17

of Algorithm 2).

The first statement ensures that the difference of two
windows W1, W2 will be high enough while the second
selects the sample n, where d(n) is locally maximized,
meaning that the difference of two windows W1, W2 is
locally the highest. Both statements are related with the
number of partitions LPk, while the second ensures that
the minimum partition size is w samples (w 3-D line
segments) [32].

Parameter w sets the minimum size of a partition, so w

depends on the given dataset and the user preferences.
In other words, w expresses the minimum number of line
segments that can define a sub-trajectory. In addition,
w is analogous to sampling rate of the trajectories (e.g.
if a MOD has double sampling rate, then w should be
multiplied by two). TSA needs to estimate mean and
variance measures, thus we need at least two samples
(w ≥ 2). Low values on w can affect the robustness
of mean and variance estimation yielding false alarms
(over-segmentation). High values on w gives more ro-
bust results, and it will affect the results of the method,
only if there is a sub-trajectory with length less than w

that will not be detected. According to our experiments,
when w ∈ [5, 15] most of sub-trajectories were robustly
detected without important false alarms.

Regarding τ , it should be a positive number close to
zero, in order to be sure that TSA will detect all the
sub-trajectories. According to our experiments, when τ ∈
[0.001, 0.1] most of sub-trajectories were detected without
important false alarms, since this parameter is related
with the segmentation sensitivity of our method. As τ

increases, the number of sub-trajectories reduces. It holds
that τ can be set as a positive number close to zero (e.g.
0.01), due to the fact that in the first step, we perform
normalization by dividing Vk by the maximum over all
Vk, thus bounding Vk ≤ 1.

4.3 Subtrajectory Sampling

In the previous sections, we have presented our method-
ology for segmenting the trajectories of a MOD into sub-
trajectories using the votes gathered for the MOD. In this
section, we exploit on this knowledge in order to select
the top representative sub-trajectories to be the result
of a sampling process. In particular, we propose the
Subtrajectory Sampling Algorithm (SSA). SSA solves the
sampling problem defined in section 3.3 (see Algorithm
3). The input of the algorithm is the set of sub-trajectories
of the MOD Pk as estimated by TSA, the voting V Pk(i)
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input : A normalized trajectory voting vector Vk

and two parameters w and τ .
output: The segmentation Pk of LPk partitions.

for n = w + 1 to Lk − w − 1 do1

m1 = 1
w

∑n−1
i=n−w Vk(i)2

m2 = 1
w

∑n−w−1
i=n Vk(i)3

σ2
1 = 1

w

∑n−1
i=n−w(Vk(i) − m1)

2
4

σ2
2 = 1

w

∑n−w−1
i=n (Vk(i) − m2)

2
5

d(n) = (m1 − m2)
2 · ( 1

σ2
1

+ 1
σ2
2
)6

end7

LPk = 1, a = 18

Pk(1) = [a : Lk − 1]9

for n = w + 1 to Lk − w − 1 do10

m = maxi∈{n−w,...,n+w}d(i)11

if d(n) > τ ∧ d(n) ≥ m then12

Pk(LPk) = [a : n − 1]13

Pk(LPk + 1) = [n : Lk − 1]14

a = n15

LPk = LPk + 116

end17

end18

Algorithm 2: Trajectory Segmentation Algorithm
(TSA).

and the normalized lifespan Nlk(i) vectors of the tra-
jectory segments. The output of the method is the sub-
trajectory sampling set S consisting of M samples. M can
be given as input to the method or (more interestingly) it
can be automatically estimated by the proposed scheme.

The goal of SSA is the maximization of the num-
ber of sub-trajectories SR(S) of the original MOD that
are represented in the sampling set (see Equation 3).
The complexity of an exhaustive algorithm that would
search for all the possible solutions in order to maximize
Equation 3 is O(

(
N
M

)
). On the other hand, our proposed

algorithm suboptimally solves the problem in O(N ·M)
iterations by applying iterative optimization.

SSA starts with an empty sampling set (Sk(i) = 0),
where Sk(i) is defined in section 3.3. In each iteration
step, SSA adds in sampling set an unselected sub-
trajectory of MOD that maximizes Equation 3. This
is equivalent with the maximization of SR(S) gain
SRgain(k, i) (see Equation 2). Recall that SRgain(k, i)
expresses the gain of SR(S) if we add in sampling set the
ith sub-trajectory of kth trajectory of the MOD. Accord-
ing to the proposed algorithm, it holds that SR(S) gain
is a monotonically decreasing function as sampling size

increases. Since V̂ P k(i)(j) ≥ 0, and recalling Equation 2,
it holds that:

SRgain(k, i) ≤
|Pk(i)|∑

j=1

V Pk(i)(j) · Nlk(i)(j) (8)

Let SRgain zero(k, i) denotes the sum of Equation 8, that

corresponds to the SRgain(k, i) when S = ∅.

SRgain zero(k, i) =

|Pk(i)|∑

j=1

V Pk(i)(j) · Nlk(i)(j) (9)

Therefore, an efficient way to reduce the computa-
tion cost of the maximization of SRgain, is to keep
the sub-trajectories’ indexes in a vector (vec) sorted in
descending order by SRgain zero (line 6 of Algorithm
3). Instead of computing SRgain for each sub-trajectory
of the MOD in order to find the maximum, we get

the jth, j ∈ {1, 2, ...,
∑N

k=1 LPk} (line 9 of Algorithm
3) sub-trajectory from the vector and we compare its
voting with current highest SRgain (SRmax

gain) (lines 11-
15 of Algorithm 3). First, SRmax

gain is set to minus infinity
(line 8 of Algorithm 3). Let the jth sub-trajectory of
vec be the ith sub-trajectory of kth trajectory of the
MOD (line 10 of Algorithm 3). This loop terminates,
if SRmax

gain will be higher than the V Pk(i), because it
holds that the SRgain of each sub-trajectory from the
rest sub-trajectories from the list would be lower than
its SRgain zero (see Equation 8) and lower than SRmax

gain,
since we sort them in descending order by SRgain zero.
Then, the vth sub-trajectory of uth trajectory of the MOD
that corresponds to SRmax

gain is added on sampling set (line
18).

SSA terminates when the size of the sampling set
reaches M (which is an input parameter). Alternatively,
the algorithm terminates if SRgain(k, i) is lower than a
given threshold (ǫ, a positive number close to zero, see
line 19 of Algorithm 3). If this threshold is set to zero,
it means that SR(S) has been maximized, as the latter
is increased in each step by SRmax

gain. An advantage of
the proposed method is that it provides a deterministic
solution in contrary with other probabilistic techniques
[13], [14] that provide a randomly constructed sampling
set trying to fit it to a desired distribution or user-
supervised, explorative approaches [15], [16] that base
on clustering, which in turn depends on the algorithm
itself, its parameters and the distance function adopted.

4.4 Computational Complexity Issues

Concerning the complexity of GVA, and given the use of
the R-tree-like structures, the computational cost for each
line segment ek(i), of Tk is O(log(L̄·N)), where L̄ denotes
the mean number of trajectory points. Executing GVA
for each trajectory of the database, the total computation
cost is O(L̄ · N · log(L̄ · N)).

Concerning the complexity of TSA, the computational
cost for the segmentation of a trajectory Tk is O(Lk),
since the mean and the variance of a sliding window
can be estimated recursively in O(1) by the mean and
the variance of the sliding window of the previous step.
For example, let m1 be the mean of the window W1 =
Vk(n−W : n−1) and ḿ1 be the mean of the next window
Ẃ1 = Vk(n − W + 1 : n). Then, it holds that

ḿ1 =
m1 · w − Vk(n − W ) + Vk(n)

w
(10)
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input : The voting vector V Pk(i), the
normalized lifespan vector Nlk(i) and
the segmentation Pk(i),
∀k ∈ {1, ..., N}, i ∈ {1, ..., LPk}, ǫ. The
size of sampling set M .

output: The sampling set Sk(i).

for k = 1 to n do1

for i = 1 to LPk do2

Sk(i) = 0 //Empty sampling set3

end4

end5

vec = sort(VP,dt) //sorted in descending order6

for m = 1 to M do7

SRmax
gain = −∞8

for j = 1 to
∑N

k=1 LPk do9

[k,i] = vec(j)10

if Sk(i) = 0 ∧ SRgain(k, i) > SRmax
gain then11

SRmax
gain = SRgain(k, i)12

u = k13

v = i14

end15

if SRmax
gain > V Pk(i) then break16

end17

Su(v) = 118

if SRmax
gain ≤ ǫ then break19

end20

Algorithm 3: Subtrajectory Sampling Algorithm
(SSA).

If we perform TSA for each trajectory of the MOD, then
the total computation cost is O(L̄ · N).

Concerning the complexity of SSA, the sorting of
V P costs O(N · L̄

LP
· log(N · L̄

LP
)), where LP denotes

the mean number of trajectory segments and L̄

LP
de-

notes the mean number of sub-trajectory points. Next,
in the worst case, the method computes SRgain(k, i)

(M ·∑N

k=1 LPk = M ·LP ·N ) times. SRgain(k, i) computa-
tion requires the computation of Vk(S). The cost of Vk(S)

is O( L̄

LP
·log(L̄·M)), since the maximum size of sampling

set is M and the mean number of a sub-trajectory points
is L̄

LP
. Therefore, in the worst case, the overall cost

of the proposed segmentation-and-sampling method is
O(N · L̄

LP
·log(N · L̄

LP
)+L̄·M ·N ·log(L̄·M)). In the best case,

the break of line 16 of the algorithm can stop the intrinsic
loop in two (O(1)) instead of N · L̄ steps. In this case, the
cost turns out to be Ω(N · L̄

LP
·log(N · L̄

LP
)+M ·log(L̄·M)).

Conclusively, the most computationally intensive part
of the proposed method is the GVA with O(L̄ · N ·
log(L̄ ·N)) complexity. In turn, the most time consuming
step in GVA is the search of the nearest neighbors of a
trajectory in a given time period. In order to make the
application of our approach feasible to large datasets,
we have adopted efficient Continuous Nearest Neighbor
query processing techniques [26], where trajectories are
indexed by R-tree-like structures. Scalability experiments

under various cases for such queries have been pre-
sented in [26], where it has been shown their applica-
bility in large datasets, with an almost linear behavior
with the size of dataset. Actually, this conclusion is in
accordance with the above theoretical analysis of the
computational complexity of the proposed method.

4.5 On the effect of the MOD extension

As already mentioned, the proposed method is deter-
ministic, which implies that different invocations for
a given MOD will have the same result. This is a
crucial and distinct characteristic of our approach w.r.t.
other sampling approaches. In this section, we discuss
the behavior of the proposed methods when the MOD
is extended either in space or time dimensions. More
specifically, we study the following scenario: In a given
dataset S, we add trajectories which come from a differ-
ent spatial or temporal space (extension of the MOD).
The question is whether the GVA, TSA and SSA are
affected by such an extension?

According to this scenario, the results of the voting
procedure (GVA) will not change concerning the given
dataset S. The new trajectories do not affect the tra-
jectory descriptors of the trajectories of S, since they
exist in different spatial or temporal space (see Equation
4). Therefore, the results of TSA will be exactly the
same concerning the given dataset S. Similarly, the new
sampling set will contain the same sub-trajectories as
the sampling set of S (when the algorithm terminates
if SRgain is lower than a given threshold), with some
additional samples selected from the new trajectories,
since the input of the SSA algorithm concerning S

remains the same. In other words, the sampling set
of the union of two distinct (in space and/or in time
dimension) MOD, is the same with the union of the
sampling sets, when the sampling process is performed
to each MOD independently. Therefore, the effectiveness
of the proposed method is not affected by the extension
of the MOD.

5 EXPERIMENTAL RESULTS

In this section, the experimental results of our perfor-
mance study are presented. In order to evaluate the
effectiveness and robustness of the proposed scheme,
we have performed two different experiments, with
synthetic and real datasets. The implementation of the
proposed algorithms was done in Matlab. A linear scan
instead of an R-tree-based index scan was performed
for HCNN search. However, this does not affect the
effectiveness of our approach but only scalability. In
other words, the results of GVA produce the same results
either by using the R-tree-based index-based implemen-
tation, or by adopting a linear scan for the HCNN search.

In all of presented experiments, we have used τ = 0.01
and w = 8. Similar results were obtained when we set
w equal to a percentage (e.g. 20% − 25%) of the mean
number of line segments per trajectory. In addition, we
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Fig. 6: The 2-D map of SMOD with the four one-
directional and two bidirectional roads.

have run several experiments that show that the quality
of sampling results not sensitive to those parameters.
These parameters affect only the results of segmentation
(e.g. when τ and w decrease, TSA will gives an overseg-
mentation of the MOD).

5.1 Experimenting with Synthetic Data

In order to measure the performance of segmentation
and sampling for movements that can be created by
vehicles, we have created a synthetic MOD (SMOD).
Note that in order to evaluate our approach, well known
synthetic trajectory generators [35] cannot be utilized
as we would not be aware of the ground truth of the
generated trajectories. As such, assume the following
points A(0, 0), B(1, 0), C(2,−1), D(2, 1) and E(4, 0) be
the destination nodes of a simple graph upon which
objects move. We assume that the half of the objects
are moving with normal speed (5 units per second) and
the rest of them are moving with high speed (10 units
per second). The objects are moving under the following
scenario (rules), for a lifetime of one second.

• There are four one-directional roads (B → D, D →
E, E → C, C → B) and two bidirectional roads
(A ⇆ B, B ⇆ E).

• At t = 0 sec, all objects of MOD start from (in a real
application, very close to) point A. Thus, the first
destination of all objects is point B.

• When an object arrives at a destination point, it ends
its trajectory with a probability of 10%. Otherwise,
it continues with the same speed to the next point
according to the road network rules. If there exist
more than one possible next points, it decides ran-
domly the next destination.

As an example, if an object moves from A to B, then
the next destination could be A, D or E with the same
probability 30% (the rest 10% is the case where the object
ends its trajectory at B). Fig. 6 illustrates the 2-D map
of SMOD with the four one-directional and the two
bidirectional roads.

According to the rules that the generated trajectories
should obey, there exist 78 distinct sub-trajectories in
the MOD (ground truth). Table 2 illustrates the spatial
(first column) and temporal (second column) projection

Path Time Support
A → B [0, 0.1] 50%
A → B [0, 0.2] 50%
B → A [0.2, 0.4] 15%
B → A [0.1, 0.2] 15%
B → D [0.1, 0.26] 15%
B → D [0.2, 0.52] 15%
B → E [0.1, 0.4] 15%
B → E [0.2, 0.8] 15%

TABLE 2: Some representative sub-trajectories and their
support in the synthetic MOD (ground truth).

of the top-8 representative sub-trajectories, along with
their support (third column), i.e. the average percentage
of objects in the MOD that “vote” for the correspond-
ing sub-trajectory. These percentage values have been
computed under the aforementioned assumptions of the
previous paragraph. The percentage of objects of MOD
that follows a path could change between experiments
due to random decisions of the prementioned scenario.

According to this synthetic MOD, the possible end-
points of each trajectory partition are points A, B, C,
D, and E (ground truth). The above dataset is ideal
for the purposes of experimentation: It consists of a
high number of predefined sub-trajectories with each
one being associated with a known representativeness
(as ground truth).

In order to measure the stability of our method to
noise effects, we have added Gaussian white noise of
different Signal to Noise Ratio (SNR) levels, measured
in db, to spatial coordinates of synthetic MOD. The
synthetic MOD with additive noise of SNR = 50 db
and SNR = 30 db projected in 2-D spatial and 3-D
spatiotemporal space is illustrated in Fig. 7.

According to this synthetic MOD, there exist eight
different paths that are defined by four one-directional
roads and two bidirectional roads. We have used 600
moving objects with 1934 sub-trajectories. The mean
value and the standard deviation for number of line
segments per trajectory (Lk) are 82.03 and 30.95, respec-
tively. The proposed GVA/TSA gives between 1800 and
2200 sub-trajectories under any case of additive noise.
The average accuracy of trajectory segmentation method
is measured using the average distance error (in spatial
coordinates) between estimated segment borders and
the ground truth borders. In order to get a normalized
error, we divide the average distance error by the half
of each corresponding sub-trajectory length getting the
normalized segmentation error in the range [0, 1]. Fig. 8
plots this segmentation error for SMOD under additive
noise of various SNR.

Fig. 9 illustrates the segmentation results projected on
d(n) and on normalized voting signal for the trajectories
A → B → A → B → E → C with additive noise of 50
db (Fig. 9(a)) and A → B → D → E → B → A → B with
additive noise of 30 db (Fig. 9(b)). Concerning the first
trajectory, in Fig. 9(c), the samples 1, 10, 20, 30, 60 and
100 (horizontal axis) correspond to ground truth ends
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Fig. 7: The trajectories of our synthetic MOD (SMOD) with additive noise of SNR = 50 db projected in (a) 2-D
spatial space ignoring time dimension and (b) spatiotemporal 3-D space. The trajectories of our synthetic MOD
with additive noise of SNR = 30 db projected in (c) 2-D spatial space ignoring time dimension and (d) spatiotemporal
3-D space.
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Fig. 8: The segmentation error for SMOD under additive
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of borders. In this case, we get almost zero error results
under any case (see dotted lines of Fig. 9(c)) apart from
the sample 20, that was not detected by TSA, since 90%
the object of the third sub-trajectory A → B continues to
B → A, yielding an almost zero d(n).

Concerning the second trajectory, in Fig. 9(d), the
samples 1, 10, 30, 45, 80, 90 and 100 (horizontal axis)
correspond to ground truth ends of borders. In this case,
we get errors on borders’ approximation less than 3
samples due to additive white noise.

Next, we present the results of the proposed sampling
method, in other words the results of the proposed
GVA/TSA/SSA three-step methodology. Fig. 10 illus-
trates results of sampling method for synthetic MOD
with additive noise of SNR = 50db. It holds that SR(S)
gain (see Fig. 10(b)) is almost zero when the sampling
set size is greater than 60 meaning that the sampling
set of the top-60 representative sub-trajectories is an
appropriate minimum number of sampling set size. We
get 60 sub-trajectories instead of 78 (ground truth), since
some sub-trajectories are not perfectly segmented, e.g.
see the sub-trajectory A → B → A of Fig. 9(a). Figs. 10(c),
10(d) illustrate sampling/visualization of the dataset
using the top-60 representative sub-trajectories under the
proposed method using a colormap according to SR(S)
gain and line segments representativeness, respectively.
The most representative sub-trajectories belong to two
bidirectional roads (A ⇆ B (629 movements), B ⇆ E

(523 movements)) which always appear to have high
traffic, while the less representative sub-trajectories be-

long to a one-directional road (C → B) which has the
lowest traffic (66 movements) mainly appeared during
two time periods (see Fig. 7(b)). The sub-trajectories of
sampling set are projected in spatiotemporal 3-D space
using a colormap according to SR(S) gain (Fig. 11(c))
or line segments representativeness (10(d)). We have
used dark blue-to-dark red colormap according to the
corresponding to segments representativeness (dark red
color for high values, dark blue color for low values).
Moreover, the proposed method is not affected by the
trajectories’ shape, yielding high performance results for
both the non-straight and straight movements. Fig. 11
illustrates results of sampling method for synthetic MOD
with additive noise of SNR = 30db. The selected sub-
trajectories represent well the dataset, getting similar
results with the case of SNR = 50db.

5.2 Experimenting with Real Data

Moreover, we have evaluated the proposed scheme us-
ing two real MODs:

• the “Athens trucks” MOD containing 1100 trajecto-
ries. The original dataset consisted of 276 trajecto-
ries. From this original dataset, the number of 1100
trajectories was identified by splitting the recordings
of a truck in subsets when a temporal gap larger
than 15 minutes appears between two consecutive
recordings. The dataset is available online at [36].
The GVA/TSA produces 1453 sub-trajectories, since
the dataset is sparse in time. The mean value and
the standard deviation for number of line segments
per trajectory (Lk) are 84.54 and 52.77, respectively.

• The “Milano” dataset consists of GPS traces de-
scribing the movement of a set of 17K vehicles
during one week at the beginning of April 2007.
The original dataset contains 45k trajectories, for a
total of 4.7 million points. The dataset is property
of Octo Telematics S.p.A., therefore it cannot be
made available. The dataset was provided to us
for research purposes in the context of the GeoP-
KDD project [37]. From this dataset, we extracted
two subsets; a dense one and a sparse one in the
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Fig. 9: Two trajectories of the synthetic MOD used for the segmentation method evaluation projected in spatiotem-
poral 3-D space (a) with additive noise of SNR = 50db, (b) with additive noise of SNR = 30db. (c), (d) The dotted
lines shows the segmentation results projected on d(n) and on normalized voting signal Vk for the trajectory (a)
and (b), respectively.
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Fig. 10: Results of sampling method for synthetic MOD with additive noise of SNR = 50db. (a) The function SR(S)
under different sizes of sampling set. (b) The SR(S) gain as sampling set increases for synthetic MOD. (c), (d) The
60 most representative sub-trajectories are projected in spatiotemporal 3-D space using a colormap according to (c)
SR(S) gain (d) line segments representativeness.
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Fig. 11: Results of sampling method for synthetic MOD with additive noise of SNR = 30db. (a) The function SR(S)
under different sizes of sampling set. (b) The SR(S) gain as sampling set increases for synthetic MOD. (c), (d) The
60 most representative sub-trajectories are projected in spatiotemporal 3-D space using a colormap according to (c)
SR(S) gain (d) line segments representativeness.

temporal domain, called “Milano-I” and “Milano-
II”, respectively. The “Milano-I” MOD contains 5910
trajectories all existing inside a temporal period of
100 minutes duration. For this MOD the GVA/TSA
produces 9835 sub-trajectories. The mean value and
the standard deviation for number of line segments
per trajectory (Lk) are 31.04 and 29.41, respectively.
The “Milano-II” consists of 11500 randomly selected
trajectories from the original dataset, spanning in-
side a temporal period of 5 days duration. The mean
value and the standard deviation of the number of
line segments per trajectory (Lk) are 30.77 and 31.34,

respectively. For this MOD the GVA/TSA produces
12895 sub-trajectories. As such, the “Milano-II” is a
very sparse in time dataset and we have used it in
order to show the limitations of our method.

Fig. 15 illustrates the trajectories of “Athens trucks”
MOD projected in 2-D spatial space ignoring time di-
mension (Fig. 15(a)) and in 3-D spatiotemporal space
(Fig. 15(b)). Fig. 16 illustrates the trajectories of “Milano-
II” MOD projected in 2-D spatial space ignoring time
dimension (Fig. 16(a)) and in 3-D spatiotemporal space
(Fig. 16(b)) (the corresponding figures for “Milano-I”
MOD are quite similar). It is clear that the full visual-
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ization cannot be effective, due to the large number of
projected trajectories in almost the same time and space.
In order to solve this problem, we have used the results
of SSA sampling the most representative sub-trajectories
of the MOD.

Fig. 12 illustrates the functions SR(S) and SR(S)
gain, as sampling set size increases for the “Athens
trucks” MOD. It holds that SR(S) gain is low when
the sampling set size is greater than 150, meaning that
the most appropriate number of sampling set size is
at least 150. SR(S) gain always decreases as sampling
size increases. Similarly, Fig. 13 illustrates the functions
SR(S) and SR(S) gain, as sampling set size increases
for the “Milano-I” MOD. It holds that SR(S) gain is
very low, when the sampling set size is greater than 120,
meaning that the most appropriate number of sampling
set size is about 120. Fig. 14 illustrates the functions
SR(S) and SR(S) gain, as sampling set size increases
for the “Milano-II” MOD. This is a very sparse in time
dataset, since the maximum value of SR(S) gain is
about 10, while the dataset contains more than 11.000
trajectories. It holds that SR(S) gain is less than one,
when the sampling set size is greater than 150.

Fig. 15(c) illustrates a sampling/visualization of the
dataset using the top-150 representative sub-trajectories
under the proposed SSA method for “Athens trucks”
MOD. We have used dark blue-to-dark red colormap
according to the corresponding to SR(S) gain (dark
red color for high values, dark blue color for low
values). Similarly, Fig. 15(d) uses a dark blue-to-dark
red colormap according to the corresponding to sub-
trajectories representativeness V Pk(i) (dark red color
for high values, dark blue color for low values) for
“Athens trucks” MOD. The low values of sub-trajectories
representativeness is due to the fact that “Athens trucks”
MOD is sparse on its temporal dimension. Fig. 16(c) and
16(d) illustrate a sampling/visualization of the dataset
using the top-150 representative sub-trajectories under
the proposed SSA method for “Milano-II” MOD us-
ing colormaps according to SR(S) gain and V Pk(i),
respectively. The sub-trajectory sampling set includes the
perimeter of trajectories set as well as some intrinsic
trajectories.

5.3 Comparison with other sampling techniques

The results of the proposed sub-trajectory sampling
method have been compared with standard sampling
techniques (random and stratified sampling) as these
have been proposed in the literature [38]. The sampling
techniques have been evaluated on the same dataset of
sub-trajectories that is provided by the proposed TSA.
According to random sampling, each sub-trajectory is
chosen randomly and entirely by chance, such that each
sub-trajectory has the same probability of being chosen
at any stage during the sampling process. According to
stratified sampling, the sub-trajectories need first to be
divided into strata (groups). The only relevant approach
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Fig. 12: (a) The function SR(S) under different sizes of
sampling set for “Athens trucks” MOD. (b) The SR(S)
gain as sampling set increases for “Athens trucks” MOD.
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Fig. 13: (a) The function SR(S) under different sizes of
sampling set for “Milano-I” MOD. (b) The SR(S) gain
as sampling set increases for “Milano-I” MOD.

that has been proposed in the literature for MOD is [15],
which uses the state-of-the-art T-OPTICS algorithm [8].
As such, in a way, we compare our method with the
state-of-the-art stratified sampling technique proposed
so far in the literature [15]. Following the stratification,
the number of sub-trajectories that are selected from
each of the strata is analogous to the size of the stra-
tum (i.e. the number of sub-trajectories in this group).
Finally, the sub-trajectories are randomly selected from
each stratum. In order to measure the performance of
sampling, we have used the root mean square error
(RMSE) metric, that is defined by the square root of the
mean of minimum squared distances between the line
segments of dataset (D) and the line segments of the
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Fig. 14: (a) The function SR(S) under different sizes of
sampling set for “Milano-II” MOD. (b) The SR(S) gain
as sampling set increases for “Milano-II” MOD.
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Fig. 15: The trajectories of “Athens trucks” dataset (1.100 traj.) projected in (a) 2-D spatial space ignoring time
dimension and (b) spatiotemporal 3-D space. (c), (d) The top 150 representative sub-trajectories of the dataset
projected in 2-D spatial space using a colormap according to (c) SR(S) gain (d) sub-trajectories representativeness
V Pk(i).
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Fig. 16: The trajectories of “Milano-II” dataset (11500 traj.) projected in (a) 2-D spatial space ignoring time dimension
and (b) spatiotemporal 3-D space. (c), (d) The top 150 representative sub-trajectories of the dataset projected in 2-D
spatial space using a colormap according to (c) SR(S) gain (d) sub-trajectories representativeness V Pk(i).

sampling set (S) weighted by the normalized lifespan of

line segment ( lk(i)∑ Lk−1

i=1 lk(i)
) (see Equations 11 and 12).

SD(S, D) =

N∑

k=1

Lk−1∑

i=1

(d(ek(i), eu(v)) · lk(i)
∑Lk−1

i=1 lk(i)
)2 (11)

RMSE(S, D) =

√
SD(S, D)

∑N

k=1

∑Lk−1
i=1 1

(12)

eu(v) is the line segment from sampling set that mini-
mizes d(ek(i), eu(v)). Intuitively, the smaller the RMSE
metric the better the sampling, as this implies better
coverage of the space-time of the MOD, or equivalently,
it means that less “useless” sub-trajectories have been
sampled, where by “useless” we mean trajectories that
are already represented in the sampling set by some
other sub-trajectory.

Fig. 17 illustrates the function RMSE(S, D) under
different sizes of sampling set for the synthetic MOD
with additive noise of 50 db (see Fig. 17(a)), the synthetic
MOD with additive noise of 30 db (see Fig. 17(b)), for
“Athens trucks” MOD (see Fig. 17(c)), for “Milano-I”
MOD (see Fig. 17(d)) and for “Milano-II” MOD (see Fig.
17(e)). The blue, red dashed and black dashdot lines have
been used to plot SSA, random and stratified sampling
RMSE curves.

According to the experimental results, the proposed
method outperforms the other sampling techniques in all

the cases of synthetics and “Milano-I” MODs. Concern-
ing, the “Athens trucks” MOD, the proposed method
outperforms the other sampling techniques in more than
85% of the cases. This is due to the fact that this MOD is
temporally sparse. When a MOD is temporally sparse,
most of the sub-trajectories have low representativeness,
since the number of common time periods between
different trajectories is low (see Equation 1). Therefore,
in such cases, a sampling method that takes into account
the time, as the proposed method does, could not always
give the best results, since the selected samples do not
represent other samples due to low representativeness
values of sub-trajectories. In other words, the sparser in
time a MOD is, the closer the behavior of our sampling
method is with the random sampling. This is rational,
as in highly sparse MOD (where an example of a highly
sparse MOD could be the one in which each trajectory
exists in different time periods) it is like omitting one of
the two dimensions under which the problem definition
is formulated, which obviously is a different kind of
problem. As shown in Fig. 17(e), the above intuition
is verified in this experiment for the “Milano-II” MOD,
which is a very sparse in time. Nevertheless, the effec-
tiveness of the proposed method is still high, since it
outperforms or gives almost the same results with the
other sampling techniques in more than 75% of the cases.
In general, by using the standard evaluation metric of
RMSE, which is independent to any distribution that
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a dataset may follow, the results clearly show that our
methodology covers better that space-time of a MOD.

6 CONCLUSIONS

In this paper, we have discussed the problem of finding
representative sub-trajectories in a MOD. Especially, we
addressed this issue by segmentation and sub-trajectory
sampling based on global spatiotemporal similarity of
trajectories. In particular, we have proposed three algo-
rithms: GVA, TSA and SSA for trajectory voting, segmen-
tation and sub-trajectory sampling, respectively. GVA ex-
tends the density biased sampling (DBS) from point sets
[13] to trajectory segments providing a local trajectory
descriptor per line segment that is related to line seg-
ment representativeness. Next, TSA automatically and
effectively estimates the number of sub-trajectories and
their borders, separating each trajectory of MOD into
homogenous partitions concerning their representative-
ness. Finally, SSA is applied over the resulting partitions
providing the most representative sub-trajectories of the
MOD, also taking into account that high density regions
of the MOD should not be oversampled. SSA can be
automatically terminated by thresholding the number of
moving objects of the original MOD that are represented
in sampling set SR(S). Moreover, the index-based voting
algorithm, which is the computationally most expensive
step in our framework, and the polynomial computa-
tional cost of the proposed algorithms makes the scheme
applicable to large databases. In our approach, contrary
to related work, the temporal dimension of the MOD is
taken into consideration, while there is not any inher-
ent constraint on sub-trajectory complexity and shape,
yielding trajectory segmentation and sub-trajectory sam-
pling that are related only to representativeness. We
have evaluated the proposed method under real and
synthetic databases, and the experimental results show
the effectiveness and robustness of the proposed scheme.

As future work, we plan to investigate the applicabil-
ity of the proposed method for (sub-)trajectory cluster-
ing. The idea is that MOD clustering can be provided
concurrently with MOD sampling. It holds that each
sub-trajectory of the sampling set has been voted by
different sub-trajectories of the MOD (cluster), under the
minimization of the objective function proposed in the
current work. Therefore, each sub-trajectory of the sam-
pling set can be considered as a cluster representative
(i.e. a seed around which a cluster is formatted). This
is a different tactic as the one followed in [4]. In the
same context, outliers [39] can be discriminated from low
values in voting sub-trajectory descriptor (Vk).
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Fig. 17: The function RMSE(S, D) under different sizes of sampling set for (a) the synthetic MOD with additive
noise of 50 db. (b) the synthetic MOD with additive noise of 30 db. (c) for “Athens trucks” MOD. (d) for “Milano-I”
MOD. (e) for “Milano-II MOD.
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