
Segmentation as Selective Search for Object Recognition

Koen E. A. van de Sande∗ Jasper R. R. Uijlings† Theo Gevers∗ Arnold W. M. Smeulders∗

∗University of Amsterdam †University of Trento

Amsterdam, The Netherlands Trento, Italy

ksande@uva.nl, jrr@disi.unitn.it, th.gevers@uva.nl, a.w.m.smeulders@uva.nl

Abstract

For object recognition, the current state-of-the-art is

based on exhaustive search. However, to enable the use

of more expensive features and classifiers and thereby

progress beyond the state-of-the-art, a selective search

strategy is needed. Therefore, we adapt segmentation as

a selective search by reconsidering segmentation: We pro-

pose to generate many approximate locations over few and

precise object delineations because (1) an object whose lo-

cation is never generated can not be recognised and (2) ap-

pearance and immediate nearby context are most effective

for object recognition. Our method is class-independent

and is shown to cover 96.7% of all objects in the Pascal

VOC 2007 test set using only 1,536 locations per image.

Our selective search enables the use of the more expensive

bag-of-words method which we use to substantially improve

the state-of-the-art by up to 8.5% for 8 out of 20 classes on

the Pascal VOC 2010 detection challenge.

1. Introduction

Object recognition, i.e. determining the position and

the class of an object within an image, has made impres-

sive progress over the past few years, see the Pascal VOC

challenge [8]. The state-of-the-art is based on exhaus-

tive search over the image to find the best object positions

[6, 9, 13, 28, 29]. However, as the total number of images

and windows to evaluate in an exhaustive search is huge

and growing, it is necessary to constrain the computation

per location and the number of locations considered. The

computation is currently reduced by using a weak classifier

with simple-to-compute features [6, 9, 13, 28, 29], and by

reducing the number of locations on a coarse grid and with

fixed window sizes [6, 9, 27]. This comes at the expense of

overlooking some object locations and misclassifying oth-

ers. Therefore, we propose selective search, greatly reduc-

ing the number of locations to consider. Specifically, we

propose to use segmentation to generate a limited set of lo-

cations, permitting the more powerful yet expensive bag-of-

(a)

(c)
(d)
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Figure 1. Given an image (a) our aim is to find its objects for which

the ground truth is shown in (b). To achieve this, we adapt seg-

mentation as a selective search strategy: We aim for high recall by

generating locations at all scales and account for many different

scene conditions by employing multiple invariant colour spaces.

Example object hypotheses are visualised in (d).

words features [5, 23, 26].

Selective search has been exploited successfully by [3, 7]

for object delineation, i.e. creating a pixel-wise classifica-

tion of the image. Both concentrate on 10-100 possibly

overlapping segments per image, which best correspond to

an object. They focus on finding accurate object contours,

which is why both references use a powerful, specialized

contour detector [2]. In this paper, we reconsider segmen-

tation to use as an instrument to select the best locations for

object recognition. Rather than aiming for 10-100 accurate

locations, we aim to generate 1,000-10,000 approximate lo-

cations. For boosting object recognition, (1) generating sev-

eral thousand locations per image guarantees the inclusion

of virtually all objects, and (2) rough segmentation includes

the local context known to be beneficial for object classifi-

cation [6, 25]. Hence we place our computational attention

precisely on these parts of the image which bear the most

information for object classification.

Emphasizing recall (encouraging to include all image

fragments of potential relevance) was earlier proposed by
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Hoiem et al. [14] for surface layout classification and

adopted by Russell et al. [22] for latent object discovery.

In the references its use is limited to changing the scale of

the segmentation, while its potential for finding objects has

yet to be investigated. Malisiewicz and Efros [21] investi-

gated how well segments capture objects as opposed to the

bounding boxes of an exhaustive search. They also mainly

change the scale of the segmentation. In contrast, this pa-

per uses a full segmentation hierarchy and accounts for as

many different scene conditions as possible, such as shad-

ows, shading, and highlights, by using a variety of invariant

colour spaces. Furthermore, we demonstrate the power of

segmentation as selective search on the challenging Pascal

VOC dataset in terms of both recall and recognition accu-

racy.

To summarize, we make the following contributions: (1)

We reconsider segmentation by adapting it as an instrument

to select the best locations for object recognition. We put

most emphasis on recall and prefer good object approxima-

tions over exact object boundaries. (2) We demonstrate that

accounting for scene conditions through invariant colour

spaces results in a powerful selective search strategy with

high recall. (3) We show that our selective search enables

the use of more expensive features such as bag-of-words

and substantially improves the state-of-the-art on the Pascal

VOC 2010 detection challenge for 8 out of 20 classes.

2. Related Work

In Figure 2, the relation of this paper with other work

is visualized. Research within localisation can generally

be divided into two categories. 1) Work with emphasis on

recognition (Section 2.1). Here determining the object class

is more important than finding the exact contours and an

exhaustive search is the norm. 2) Work with emphasis on

object delineation (Section 2.2). Here object contours are

most important and the use of segmentation is the norm.

There are two exceptions to these categories. Vedaldi

et al. [27] use jumping windows [4], in which the rela-

tion between individual visual words and the object loca-

tion is learned to predict the object location in new images.

Maji and Malik [20] combine multiple of these relations to

predict the object location using a Hough-transform, after

which they randomly sample windows close to the Hough

maximum. Both methods can be seen as a selective search.

In contrast to learning, we adopt segmentation as selective

search to generate class independent object hypotheses.

2.1. Exhaustive Search for Recognition

As an object can be located at any position and scale in

the image, it is natural to search everywhere [6, 13, 28].

However, the visual search space is huge, making an ex-

haustive search computationally expensive. This imposes

constraints on the evaluation cost per location and/or the
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Figure 2. Positioning of this paper with respect to related work.

number of locations considered. Hence most of these slid-

ing window techniques use a coarse search grid and fixed

aspect ratios, using weak classifiers and economic image

features such as HOG [6, 13, 28]. This method is often used

as a preselection step in a cascade of classifiers [13, 28].

Related to the sliding window technique is the highly

successful part-based object localisation method of Felzen-

szwalb et al. [9]. Their method also performs an exhaustive

search using a linear SVM and HOG features. However,

they search for objects and object parts, whose combina-

tion results in an impressive object detection performance.

Lampert et al. [15] developed a branch and bound tech-

nique to directly search for the optimal window within an

image. While they obtain impressive results for linear clas-

sifiers, [1] found that for non-linear classifiers the method

in practice still visits over a 100,000 windows per image.

While the previous methods are all class-specific, Alexe

et al. [1] propose to search for any object, independent of

its class. They train a classifier on the object windows of

those objects which have a well-defined shape (as opposed

to e.g. grass). Then instead of a full exhaustive search they

randomly sample boxes to which they apply their classifier.

The boxes with the highest “objectness” measure serve as

a set of object hypotheses. This set is then used to greatly

reduce the number of windows evaluated by class-specific

object detectors.

Instead of an exhaustive search, in this paper, we pro-

pose to do segmentation as a selective search enabling the

immediate use of expensive and potentially more powerful

recognition techniques. In contrast to all exhaustive meth-

ods except [1], our method yields an object hypotheses set

which is completely class independent.

2.2. Selective Search for Object Delineation

In the domain of object delineation, both Carreira et

al. [3] and Endres and Hoiem [7] propose to generate a set

of class independent object hypotheses using segmentation.

Both methods generate multiple foreground/background

segmentations, learn to predict the likelihood that a fore-



Figure 3. Two examples of our hierarchical grouping algorithm showing the necessity of different scales. On the left we find many objects

at different scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

ground segment is a complete object, and use this to rank

the segments. Both algorithms show a promising ability

to accurately delineate objects within images, confirmed by

[17] who achieve state-of-the-art results on pixel-wise im-

age classification using [3]. This paper uses selective search

for object recognition, hence we put more emphasis on re-

call and welcome rough object locations instead of precise

object delineations. We can omit the excellent yet expensive

contour detector of [2] included in [3, 7], making our algo-

rithm computationally feasible on large datasets. In contrast

to [3, 7], we use a hierarchical grouping algorithm instead

of multiple foreground/background segmentations.

Gu et al. [12] address the problem of carefully segment-

ing and recognizing objects based on their parts. They first

generate a set of part hypotheses using a grouping method

based on [2]. Each part hypothesis is described by both ap-

pearance and shape features. Then an object is recognized

and carefully delineated by using its parts, achieving good

results for shape recognition. In their work, the segmenta-

tion is limited to a single hierarchy while its power of dis-

covering parts or objects is not evaluated. In this paper, we

use multiple hierarchical segmentations diversified through

employing a variety of colour spaces, and evaluate their po-

tential to find complete objects.

3. Segmentation as Selective Search

In this section, we adapt segmentation as selective search

for object recognition. This adaptation leads to the follow-

ing considerations:

High recall. Objects whose locations are not generated

can never be recognized. Recall is therefore the most im-

portant criterion. To obtain a high recall we observe the fol-

lowing: (1) Objects can occur at any scale within an image.

Moreover, some objects are contained within other objects.

Hence it is necessary to generate locations at all scales, as

illustrated in Figure 3. (2) There is no single best strategy

to group regions together: An edge may represent an object

boundary in one image, while the same edge in another im-

age may be the result of shading. Hence rather than aiming

for the single best segmentation, it is important to combine

multiple complementary segmentations, i.e. we want to di-

versify the set of segmentations used.

Coarse locations are sufficient. As the state-of-the-art

in object recognition uses appearance features, the exact ob-

ject contours of the object hypotheses are less important.

Hence instead of a strong focus on object boundaries (e.g.

[2]), the evaluation should focus on finding reasonable ap-

proximations of the object locations, such as is measured by

the Pascal overlap criterion [8].

Fast to compute. The generation of the object hypothe-

ses should not become a bottleneck when performing object

localisation on a large dataset.

3.1. Our Segmentation Algorithm

The most natural way to generate locations at all scales

is to use all locations from a hierarchical segmentation al-

gorithm (illustrated in Figure 1). Our algorithm uses size

and appearance features which are efficiently propagated

throughout the hierarchy, making it reasonably fast. Note

that we keep the algorithm basic to ensure repeatability and

make clear that our results do not stem from parameter tun-

ing but from rethinking the goal of segmentation.

As regions can yield richer information than pixels, we

start with an oversegmentation, i.e. a set of small regions

which do not spread over multiple objects. We use the fast

method of [10] as our starting point, which [2] found well-

suited for generating an oversegmentation.

Starting from the initial regions, we use a greedy algo-

rithm which iteratively groups the two most similar regions

together and calculates the similarities between this new re-

gion and its neighbours. We continue until the whole image

becomes a single region. As potential object locations, we

consider either all segments throughout the hierarchy (in-

cluding initial segments), or we consider the tight bounding

boxes around these segments.

We define the similarity S between region a and b as

S(a, b) = Ssize(a, b) + Stexture(a, b). Both components

result in a number in range [0,1] and are weighed equally.



Ssize(a,b) is defined as the fraction of the image that the

segment a and b jointly occupy. This measure encourages

small regions to merge early and prevents a single region

from gobbling up all others one by one.

Stexture(a, b) is defined as the histogram intersection be-

tween SIFT-like texture measurements [18]. For these mea-

surements, we aggregate the gradient magnitude in 8 direc-

tions over a region, just like in a single subregion of SIFT

with no Gaussian weighting. As we use colour, we fol-

low [26] and do texture measurements in each colour chan-

nel separately and concatenate the results.

3.2. Shadow, Shading and Highlight Edges

To obtain multiple segmentations which are complemen-

tary, we perform our segmentation in a variety of colour

channels with different invariance properties. Specifically,

we consider multiple colour spaces with different degrees

of sensitivity to shadow, shading and highlight edges [11].

Standard RGB is the most sensitive. The opponent colour

space is insensitive to highlight edges, but sensitive to shad-

ows and shading edges. The normalized RGB space is in-

sensitive to shadow and shading edges but still sensitive to

highlights. The hue H is the most invariant and is insensi-

tive to shadows, shading and highlights. Note that we al-

ways perform each segmentation in a single colour space,

including the initial segmentation of [10].

An alternative approach to multiple colour spaces would

be the use of different thresholds for the starting segmenta-

tion. We evaluate this approach as well.

3.3. Discussion

Our adaptation of segmentation as selective search for

object recognition is designed to obtain high recall by con-

sidering all levels of a hierarchical grouping of image seg-

ments. Furthermore, by considering multiple colour spaces

with increasing levels of invariance to imaging conditions,

we are robust to the additional edges introduced into an im-

age by shadows, shading and highlights. Finally, our ap-

proach is fast which makes it applicable to large datasets.

4. Object Recognition System

In this section, we detail how to use the selective search

strategy from Section 3 for a complete object recognition

system. As feature representation, two types of features are

dominant: histograms of oriented gradients (HOG) [6] and

bag-of-words [5, 23]. HOG has been shown to be successful

in combination with the part-based model by Felzenszwalb

et al. [9]. However, as they use an exhaustive search, HOG

features in combination with a linear classifier is the only

feasible choice. To show that our selective search strat-

egy enables the use of more expensive and potentially more

powerful features, we use Bag-of-Words for object recog-

nition [13, 15, 27]. We use a more powerful (and expen-

sive) implementation than [13, 15, 27] by employing multi-

ple colour spaces and a finer spatial pyramid division [16].

Specifically we sample descriptors at each pixel on a sin-

gle scale. We extract SIFT [18] and two recommended

colour SIFTs from [26], OpponentSIFT and RGB-SIFT.

Software from [26] is used. We use a visual codebook of

size 4,096 and a spatial pyramid with 4 levels. Because a

spatial pyramid results in a coarser spatial subdivision than

the cells which make up a HOG descriptor, our features con-

tain less information about the specific spatial layout of the

object. Therefore, HOG is better suited for rigid objects and

our features are better suited for deformable object types.

As classifier we employ a Support Vector Machine with

a histogram intersection kernel using [24]. We use the fast,

approximate classification strategy of [19].

Our training procedure is illustrated in Figure 4. The ini-

tial positive examples consist of all ground truth object win-

dows. As initial negative examples we use all object loca-

tions generated by our selective search that have an overlap

of 20% to 50% with a positive example, unless they have

more than 70% overlap with another negative, i.e. we avoid

near duplicates. This selection of training examples gives

reasonably good initial classification models.

Then we enter a retraining phase to iteratively add hard

negative examples (e.g. [9]): We apply the learned models

to the training set using the locations generated by our se-

lective search. For each negative image we add the highest

scoring location. As our initial training set already yields

good models, our models converge in only two iterations.

For the test set, the final model is applied to all locations

generated by our selective search. The windows are sorted

by classifier score while windows which have more than

30% overlap with a higher scoring window are considered

near-duplicates and are removed.

5. Evaluation

To evaluate the quality of our selective search strategy,

we perform the following four experiments:

• Experiment 1 evaluates how to adapt segmentation for

selective search. Specifically we compare multiple flat

segmentations against a hierarchy and evaluate the use

of increasingly invariant colour spaces.

• Experiment 2 compares segmentation as selective

search on the task of generating good object locations

for recognition with [1, 13, 27].

• Experiment 3 compares segmentation as selective

search on the task of generating good object delin-

eations for segmentation with [3, 7].

• Experiment 4 evaluates the use of our object hypothe-

ses in the object recognition system of Section 4, on

the widely accepted object localisation method of [9]

and compares it to the state-of-the-art [8, 9, 29].



Positive examples

Object hypotheses

Ground truth

Difficult negatives

if overlap with

positive 20-50%

Training Examples

Train SVM
(Histogram Intersection 

Kernel)

Model

Search for

false positives

False Positives

Add to training

examples

Training Examples

Retrain

Figure 4. The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives

we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

In all experiments, we report results on the challenging

Pascal VOC 2007 or 2010 datasets [8]. These datasets con-

tain images of twenty object categories and the ground truth

in terms of object labels, the location in terms of bounding

boxes, and for a subset of the data the object location in

terms of a pixel-wise segmentation.

As in [13, 27], the quality of the hypotheses is defined

in terms of the average recall over all classes versus the

number of locations retrieved. We use the standard Pascal

overlap criterion [8] where an object is considered found if

the area of the intersection of a candidate location and the

ground truth location, divided by the area of their union is

larger than 0.5. Note that in the first two experiments the

location is a bounding box, and in the third it is a segment.

Any parameter selection was done on the training set

only, while results in this paper are reported on the test set.

5.1. Exp. 1: Segmentation for Selective Search

In this experiment, we evaluate how to adapt segmen-

tation for selective search. First, we compare multiple flat

segmentations against a hierarchical segmentation. Second,

we evaluate the use of a variety of colour spaces.

Flat versus Hierarchy. As our segmentation algorithm

starts with the initial oversegmentation of [10], we compare

our hierarchical version with multiple flat segmentations by

[10]. We do this in RGB colour space. We vary the scale

of [10] by setting the threshold k from 100 to 1000 both in

steps of 10 and in steps of 50. For our hierarchical algorithm

we use the smallest threshold 100. Varying the threshold k

results in many more segments than a single hierarchical

grouping, because in [10] the segment boundaries resulting

from a high threshold are not a subset of those from a small

threshold. Therefore we additionally consider two hierar-

chical segmentations using a threshold of 100 and 200.

Experiment 1: Multiple Flat segmentations versus Hierarchy

Max. recall (%) # windows

[10] k = 100, 150 . . . 1000 84.8 665

[10] k = 100, 110 . . . 1000 87.7 1159

Hierarchical k = 100 80.6 362

Hierarchical k = 100, 200 89.4 511

Table 1. Comparison of multiple flat segmentations versus a hier-

archy in terms of recall and the number of windows per image.

As can be seen from Table 1, multiple flat segmentations

yield a higher recall than a single hierarchical grouping but

using many more locations. However, if we choose two ini-

tial thresholds and combine results, our algorithm yields re-

call of 89.4 instead of 87.7, while using only 511 locations

instead of 1159. Hence a hierarchical approach is preferable

over multiple flat segmentations as it yields better results,

fewer parameters, and selects all scales naturally. Addition-

ally, we found it to be much faster.

Multiple Colour Spaces. We now test two diversifica-

tion strategies to obtain higher recall. As seen in the previ-

ous experiment it is beneficial to use multiple starting seg-

mentations. Furthermore we test how combining different

colour spaces with different invariance properties can in-

crease the number of objects found. Specifically, we take

a segmentation in RGB colour space, and subsequently add

the segmentation in Opponent colour space, normalized rgb

colour space, and the Hue channel. We do this for a single

initial segmentation with k = 100, two initial segmenta-

tions with k = 100, 200, and four initial segmentations with

k = 100, 150, 200, 250. Results are shown in Figure 5.

Experiment 1: Influence of Multiple Colour Spaces

RGB RGB+Opp RGB+Opp+rgb RGB+Opp+rgb+H

80

90

100

Colour Spaces

R
e

c
a

ll

k=100,150,200,250

k=100,200

k=100

Figure 5. Using multiple colour spaces clearly improves recall;

along the horizontal axis increasingly invariant colour spaces are

added.

As can be seen, both changing the initial segmentation

and using a variety of different colour channels yield com-

plementary object locations. Note that using four differ-

ent colour spaces works better than using four different ini-

tial segmentations. Furthermore, when using all four colour

spaces the difference between two and four initial segmen-

tations is negligible. We conclude that varying the colour

spaces with increasing invariances is better than varying the



threshold of the initial segmentation. In subsequent experi-

ments we always use these two initial segmentations.

On the sensitivity of parameters. In preliminary exper-

iments on the training set we used other colour spaces such

as HSV, HS, normalized rg plus intensity, intensity only,

etc. However, we found that as long as one selects colour

spaces with a range of invariance properties, the outcome is

very similar. For illustration purposes we used in this paper

the colour spaces with the most clear invariance properties.

Furthermore, we found that as long as a good oversegmen-

tation is generated, the exact choice for k is unimportant.

Finally, different implementations of the texture histogram

yielded little changes overall. We conclude that the recall

obtained in this paper is not caused by parameter tuning

but rather by having a good diversification of segmentation

strategies through different colour invariance properties.

5.2. Exp. 2: Selective Search for Recognition

We now compare our selective search method to the slid-

ing windows of [13], the jumping windows of [27], and

the ‘objectness’ measure of [1]. Table 2 shows the max-

imum recall obtained for each method together with the

average number of locations generated per image. Our

method achieves the best results with a recall of 96.7% with

on average 1,536 windows per image. The jumping win-

dows of [27] come second with 94% recall but uses 10,000

windows instead. Moreover, their method is specifically

trained for each class whereas our method is completely

class-independent. Hence, with only a limited number of

object locations our method yields the highest recall.

Experiment 2: Maximum Recall of Selective Search for Recognition

Max. recall (%) # windows

Sliding Windows [13] 83.0 200 per class

Jumping Windows [27] 94.0 10,000 per class

‘Objectness’ [1] 82.4 10,000

Our hypotheses 96.7 1,536

Table 2. Comparison of maximum recall between our method and

[1, 13, 27]. We achieve the highest recall of 96.7%. Second comes

[27] with 94.0% but using an order of magnitude more locations.

We also compare the trade-off between recall and the

number of windows in Figure 6. As can be seen, our method

gives a higher recall using fewer windows than [1, 27]. The

method of [13] seems to need only few windows to obtain

their maximum recall of 83%. However, they use 200 win-

dows per image per class, which means they generate 4,000

windows per image. Moreover, the ordering of their hy-

potheses is based on a class specific recognition score while

the ordering of our hypotheses is imposed by the inclusion

of segmentations in increasingly invariant colour spaces.

In conclusion, our selective search outperforms other

methods in terms of maximum recall while using fewer

locations. Additionally, our method is completely class-

independent. This shows that segmentation, when adapted

Experiment 2: Recall of Selective Search for Recognition

1 200 400 600 800 1000 1200 1400 1600
50
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Sliding Windows (# per class)

Jumping Windows (# per class)

Objectness

Our locations

Figure 6. The trade-off between the number of retrieved windows

and recall on the Pascal VOC 2007 object detection dataset. Note

that for [13, 27] the reported number of locations is per class; the

total number of windows per image is a factor 20 higher.

for high recall by using all scales and a variety of colour

spaces with different invariance properties, is a highly ef-

fective selective search strategy for object recognition.

5.3. Exp. 3: Selective Search for Object Delineation

The methods of [3, 7] are designed for object delineation

and computationally too expensive to apply them to the

VOC 2007 detection dataset. Instead we compare to them

on the much smaller segmentation dataset using not boxes

but the segments instead. We generated candidate segments

for [3, 7] by using their publicly available code. Note that

we excluded the background category in the evaluation.

Results are shown in Table 3. The method of [7] achieves

the best recall of 82.2% using 1,989 windows. Our method

comes second with a recall of 79.8% using 1973 segments.

The method of [3] results in a recall of 78.2% using only

697 windows. However, our method is 28 times faster than

[3] and 54 times faster than [7]. We conclude that our

method is competitive in terms of recall while still com-

putationally feasible on large datasets.

Experiment 3: Recall of Selective Search for Segmentation

Max. recall (%) # windows Time (s)

Carreira [3] 78.2 697 432

Endres [7] 82.2 1,989 226

Our hypotheses 79.8 1,973 8

Combination 90.1 4,659 666

Table 3. Comparison of our paper with [3, 7] in terms of recall on

the Pascal VOC 2007 segmentation task. Our method has compet-

itive recall while being more than an order of magnitude faster.

Interestingly, we tried to diversify the selective search

by combining all three methods. The resulting recall is

90.1%(!), much higher than any single method. We con-

clude that for the purpose of recognition, instead of aiming

for the best segmentation, it is prudent to investigate how

segmentations can complement each other.



Experiment 4: Object Recognition Accuracy on VOC2007 Test Set
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Figure 7. Object recognition results on the PASCAL VOC 2007 test set. For the left plot, object models are trained using the part-based

Felzenszwalb system [9], which uses exhaustive search by default. For the right plot, object models are trained using more expensive

bag-of-words features and classifiers; exhaustive search is not feasible with these models.

5.4. Exp. 4: Object Recognition Accuracy

In this experiment, we evaluate our object hypotheses on

a widely accepted part-based object recognition method [9]

and inside the object recognition system described in Sec-

tion 4. The latter is compared to the state-of-the-art on the

challenging Pascal VOC 2010 detection task.

Search strategies using part-based models. We com-

pare various search strategies on the method of Felzen-

szwalb [9]. We consider the exhaustive search of [9] to be

our baseline. We use our selective search boxes as a filter

on the output of [9], as facilitated by their code, where we

discard all locations whose Pascal Overlap is smaller than

0.8. In practice this reduces the number of considered win-

dows from around 100,000 per image per class to around

5,000. Results are shown on the left in Figure 7. Overall

using our boxes as a filter reduces Mean Average Precision

from 0.323 MAP to 0.296 MAP, 0.03 MAP less while eval-

uating 20 times fewer boxes. Note that for some concepts

like aeroplane, dog, dining table, and sheep there is even

a slight improvement, suggesting a trade-off between high

recall and precision for object detection accuracy.

If we use all 10,000 boxes of [1] in the same manner

on [9], the MAP reduces to 0.215. But in [1] they have

an additional hill-climbing step which enables them to con-

sider only 2,000 windows at the expense of 0.04 MAP. This

suggest that a hill-climbing step as suggested by [1] could

improve results further when using our boxes.

Part-based HOG versus bag-of-words. A major ad-

vantage of selective search is that it enables the use of more

expensive features and classifiers. To evaluate the potential

of better features and classifiers, we compare the bag-of-

words recognition pipeline described in Section 4 with the

baseline of [9] which uses HOG and linear classifiers. Re-

sults on the right in Figure 7 show improvements for 10

out of 20 object categories. Especially significant are the

improvements the object categories cat, cow, dog, sheep,

diningtable, and aeroplane, which we improve with 11%

to 20%. Except aeroplane, these object categories all have

flexible shape on which bag-of-words is expected to work

well (Section 4). The baseline achieves a higher accuracy

for object categories with rigid shape characteristics such

as bicycle, car, bottle, person and chair. If we select the

best method for each class, instead of a MAP of 0.323 of

the baseline, we get a MAP of 0.378, a significant, absolute

improvement of 5% MAP.

To check whether the differences on the right in Figure 7

originate mainly from the different features, we combined

bag-of-words features with the exhaustive search of [9] for

the concepts cat and car. With cat, bag-of-words gives

0.392 AP for selective and 0.375 AP for exhaustive search,

compared to 0.193 AP for part-based HOG features. With

car, bag-of-words gives 0.547 for selective and 0.535 for

exhaustive search, and 0.579 for part-based HOG features.

Comparison to the state-of-the-art. To compare our

results to the current state-of-the-art in object recognition,

we have submitted our bag-of-words models for the Pascal

VOC 2010 detection task to the official evaluation server.

Results are shown in Table 4, together with the top-4 from

the competition. In this independent evaluation, our system

improves the state-of-the-art by up to 8.5% for 8 out of 20

object categories compared to all other competition entries.

In conclusion, our selective search yields good object

locations for part-based models, as even without the hill-

climbing step of [1] we need to evaluate 20 times fewer

windows at the expense of 0.03 MAP in average precision.

More importantly, our selective search enables the use of



Experiment 4: Object Recogntion Accuracy on VOC2010 Test Set

System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403

MIT UCLA [29] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408

NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384

UoCTTI [9] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380

This paper .582 .419 .192 .140 .143 .448 .367 .488 .129 .281 .287 .394 .441 .525 .258 .141 .388 .342 .431 .426

Table 4. Results from the Pascal VOC 2010 detection task test set, comparing the approach from this paper to the current state-of-the-art.

We improve the state-of-the-art up to 0.085 AP for 8 categories and equal the state-of-the-art for one more category.

expensive features and classifiers which allow us to sub-

stantially improve the state-of-the-art for 8 out of 20 classes

on the VOC2010 detection challenge.

6. Conclusions

In this paper, we have adopted segmentation as a selec-

tive search strategy for object recognition. For this purpose

we prefer to generate many approximate locations over few

and precise object delineations, as objects whose locations

are not generated can never be recognised and appearance

and immediate nearby context are effective for object recog-

nition. Therefore our selective search uses locations at all

scales. Furthermore, rather than using a single best seg-

mentation algorithm, we have shown that for recognition it

is prudent to use a set of complementary segmentations. In

particular this paper accounts for different scene conditions

such as shadows, shading, and highlights by employing a

variety of invariant colour spaces. This results in a power-

ful selective search strategy that generates only 1,536 class-

independent locations per image to capture 96.7% of all the

objects in the Pascal VOC 2007 test set. This is the highest

recall reported to date.

We show that segmentation as a selective search strategy

is highly effective for object recognition: For the part-based

system of [9] the number of considered windows can be

reduced by 20 times at a loss of 3% MAP overall. More

importantly, by capitalizing on the reduced number of lo-

cations we can do object recognition using a powerful yet

expensive bag-of-words implementation and improve the

state-of-the-art for 8 out of 20 classes for up to 8.5% in

terms of Average Precision.
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