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Abstract: Segmentation and classification of urban range data into different object classes

have several challenges due to certain properties of the data, such as density variation,

inconsistencies due to missing data and the large data size that require heavy computation

and large memory. A method to classify urban scenes based on a super-voxel segmentation

of sparse 3D data obtained from LiDAR sensors is presented. The 3D point cloud is first

segmented into voxels, which are then characterized by several attributes transforming them

into super-voxels. These are joined together by using a link-chain method rather than the

usual region growing algorithm to create objects. These objects are then classified using

geometrical models and local descriptors. In order to evaluate the results, a new metric

that combines both segmentation and classification results simultaneously is presented. The

effects of voxel size and incorporation of RGB color and laser reflectance intensity on the

classification results are also discussed. The method is evaluated on standard data sets using

different metrics to demonstrate its efficacy.

Keywords: segmentation; 3D point cloud; super-voxel; classification; urban scene;

3D objects
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1. Introduction

The automatic segmentation and classification of 3D urban data have gained widespread interest

and importance in the scientific community due to the increasing demand of urban landscape analysis

and cartography for different popular applications, coupled with the advances in 3D data acquisition

technology. The automatic extraction (or partially supervised) of important urban scene structures such

as roads, vegetation, lamp posts, and buildings from 3D data has been found to be an attractive approach

to urban scene analysis, because it can tremendously reduce the resources required for analyzing the data

for subsequent use in 3D city modeling and other algorithms.

A common way to quickly collect 3D data of urban environments is by using an airborne LiDAR [1,2],

where the LiDAR scanner is mounted in the bottom of an aircraft. Although this method generates a 3D

scan in a very short time period, there are a number of limitations in 3D urban data collected from this

method, such as a limited viewing angle. These limitations are overcome by using a mobile terrestrial

or ground based LiDAR system in which, unlike the airborne LiDAR system, the 3D data obtained is

dense and the point of view of the images is closer to the urban landscapes. However, this leads to

both advantages and disadvantages when processing the data. The disadvantages include the demand

for more processing power required to handle the increased volume of 3D data. On the other hand, the

advantage is the availability of a more detailed sampling of the object’s lateral views, which provides a

more comprehensive model of the urban structures including building facades, lamp posts, etc.

Over the last few years an important number of projects has been undertaken globally to analyze

and model 3D urban environments. The presented work is also realized as part of the French

government project ANR iSpace&Time, which involves classification, modeling and simulation of urban

environment for 4D Visualization of cities.

Our work revolves around the segmentation and then classification of ground based 3D data of urban

scenes. The aim is to provide an effective pre-processing step for different subsequent algorithms or

as an add-on boost for more specific classification algorithms. The main contribution of our work

includes: (1) a voxel based segmentation using a proposed Link-Chain method; (2) classification of these

segmented objects using geometrical features and local descriptors; (3) introduction of a new evaluation

metric that combines both segmentation and classification results simultaneously; (4) evaluation of the

proposed algorithm on standard data sets using 3 different evaluation methods; (5) study of the effect

of voxel size on the classification accuracy; (6) study of the effect of incorporating reflectance intensity

with RGB color on the classification results.

2. Related Work

In the context of the proposed work, the literature review presented here is divided into two main

sections: segmentation and classification. In each of these sections the relevant work is discussed and

grouped under different techniques used in these domains.
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2.1. Segmentation of 3D Data

In order to fully exploit 3D point clouds, for scene understanding and object classification, effective

segmentation has proved to be a necessary and critical pre-processing step in a number of autonomous

perception tasks.

2.1.1. Specialized Features and Surface Discontinuities

Earlier works including [3,4] employed the use of small sets of specialized features, such as local

point density or height from the ground, to discriminate only few object categories in outdoor scenes, or

to separate foreground from background. In literature survey, we also find some segmentation methods

based on surface discontinuities such as Moosman et al. [5], who used surface convexity in a terrain

mesh as a separator between objects.

2.1.2. Graph Clustering

Lately, segmentation has been commonly formulated as graph clustering. Instances of such

approaches are Graph-Cuts including Normalized-Cuts and Min-Cuts. Golovinskiy and Funkhouser [6]

extended Graph-Cuts segmentation to 3D point clouds by using k-Nearest Neighbors (k-NN) to build a

3D graph. In this work, edge weights based on exponential decay in length were used. But the limitation

of this method is that it requires prior knowledge of the location of the objects to be segmented.

Another segmentation algorithm for natural images, introduced by Felzenszwalb and Huttenlocher

(FH) [7], has gained popularity for several robotic applications due to its efficiency. This algorithm

makes simple greedy decisions, and yet produces segmentations that satisfy the global properties by

using a particular region comparison function that measures the evidence for a boundary between pairs

of regions. Zhu et al. [8] presented a method in which a 3D graph is built with k-NN while assuming

the ground to be flat for removal during pre-processing. 3D partitioning is then obtained with the FH

algorithm. We have used the same assumption.

Triebel et al. [9] modified the FH algorithm for range images to propose an unsupervised probabilistic

segmentation technique. In this approach, the 3D data is first over-segmented during pre-processing.

Schoenberg et al. [10] have applied the FH algorithm to colored 3D data obtained from a co-registered

camera laser pair. The edge weights are computed as a weighted combination of Euclidean distances,

pixel intensity differences and angles between surface normals estimated at each 3D point. The FH

algorithm is then run on the image graph to provide the final 3D partitioning. The evaluation of the

algorithm is done on road segments only.

Strom et al. [11] proposed a similar approach but modified the FH algorithm to incorporate angle

differences between surface normals in addition to the differences in color values. Segmentation

evaluation was done visually without ground truth data. Our approach differs from the abovementioned

methods as, instead of using the properties of each point for segmentation resulting in over segmentation,

we have grouped the 3D points based on Euclidian distance into voxels and then assigned normalized

properties to these voxels transforming them into super-voxels. This not only prevents over segmentation

but in fact reduces the data set by many folds thus reducing post-processing time.



Remote Sens. 2013, 5 1627

2.1.3. Geometrical Primitives

A spanning tree approach to the segmentation of 3D point clouds was proposed in [12]. Graph nodes

represent Gaussian ellipsoids as geometric primitives. These ellipsoids are then merged using a tree

growing algorithm. The resulting segmentation is similar to a super-voxel type of partitioning with

voxels of ellipsoidal shapes and various sizes. Unlike this method, our approach uses cuboids of different

shapes and sizes as geometric primitives and a link-chain method to group them together.

2.1.4. Markov Random Fields

In the literature review, we also find some techniques, such as [13,14], that segment and label 3D

points by employing Markov Random Fields to model their relationship in the local vicinity. These

techniques proved to outperform classifiers based only on local features, but at a cost of computational

time. Different methods such as [15] have been introduced to increase the efficiency.

2.2. Classification of 3D Data

In the past, research related to 3D urban scene classification and analysis had been mostly

performed using either 3D data collected by airborne LiDAR for extracting bare-earth and building

structures [16,17] or 3D data collected from static terrestrial laser scanners for extraction of building

features such as walls and windows [18]. Recently, classification of urban environment using data

obtained from mobile terrestrial platforms (such as [19]) has gained much interest in the scientific

community due to the ever increasing demand of realistic 3D models for different popular applications

coupled with the recent advancements in the 3D data acquisition technology.

2.2.1. Discriminate Models and Model Fitting

In [20] a method of multi-scale Conditional Random Fields is proposed to classify 3D outdoor

terrestrial laser scanned data by introducing regional edge potentials in addition to the local edge and

node potentials in the multi-scale Conditional Random Fields. This is followed by fitting Plane patches

onto the labeled objects such as building terrain and floor data using the RANSAC algorithm as a

post-processing step to geometrically model the scene. In [21] the authors extracted roads and objects

just around the roads like road signs. They used a least square fit plane and RANSAC method to first

extract a plane from the points followed by a Kalman filter to extract roads in an urban environment.

Douillard et al. [22] presented a method in which 3D points are projected onto the image to find regions

of interest for classification. Object classification is implemented using a rule based system to combine

binary deterministic and probabilistic features.

2.2.2. Features Based

A method of classification based on global features is presented in [23] in which a single global

spin image for every object is used to detect cars in the scene, while in [24] a Fast Point Feature

Histogram (FPFH) local feature is modified into global feature for simultaneous object identification and

view-point detection. Classification using local features and descriptors such as Spin Image [25],
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Spherical Harmonic Descriptors [26], Heat Kernel Signatures [27], Shape Distributions [28], 3D SURF

feature [29] is also found in the literature survey. In [30], the authors use both local and global features

in a combination of bottom-up and top-down processes. In this approach, spin images are used as local

descriptors to classify cars in the scene in the bottom-up stage while Extended Gaussian Images are used

as global descriptors for verification in the top-down stage. The work shows that the combination of

local and global descriptors provides a good trade-off between efficiency and accuracy. There is also a

third type of classification based on Bag Of Features (BOF) as discussed in [31].

In our work, we use geometrical models based on local features and descriptors to successfully

classify different segmented objects represented by groups of voxels in the urban scene. Ground is

assumed to be flat and is used as an object separator. Our segmentation technique is discussed in

Section 3. Section 4 deals with the classification of these segmented objects. In Section 5, a new

evaluation metric is introduced to evaluate both segmentation and classification together while, in

Section 6, we present the results of our work. Finally, we conclude in Section 7.

3. Voxel Based Segmentation

The proposed voxel based segmentation method consists of three main parts, which are the

voxelisation of data, the transformation of voxels into super-voxels and the clustering by

link-chain method.

3.1. Voxelisation of Data

When dealing with large 3D data sets, the computational cost of processing all individual points is

very high, making it impractical for real time applications. It is therefore sought to reduce these points

by grouping together or removing redundant or un-useful points. Similarly, in our work the individual

3D points are clustered together to form a higher level representation or voxel as shown in Figure 1.

Figure 1. A number of points is grouped together to form cubical voxels of maximum size

2r. The actual voxel sizes vary according to the maximum and minimum values of the

neighboring points found along each axis to ensure the profile of the structure.

For p data points, a number of s voxels, where s << p, are computed based on r-NN, where r is the

radius of ellipsoid. The maximum size of the voxel 2r depends upon the density of the 3D point cloud
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(the choice of this maximum voxel size is discussed in Section 6.5). In order to create the voxels, first a

3D point is selected as centre and using an r-NN with a fixed diameter (equal to maximum voxel size),

all the 3D points in the vicinity are selected. All these 3D points now belong to this first voxel. Then,

based on the maximum and minimum values of the 3D points contained in this voxel, the actual voxel

size is determined. The same step is then repeated for other 3D points that are not part of the earlier

voxel until all 3D points are considered (see Algorithm 1). In [20], color values are also added in this

step but it is observed that for relatively smaller voxel sizes, the variation in properties such as color is

not profound and just increases computational cost. For these reasons, we have only used distance as

a parameter in this step. The other properties are used in the next step of clustering the voxels to form

objects. Also we have ensured that each 3D point that belongs to a voxel is not considered for further

voxelisation. This not only prevents over segmentation but also reduces processing time.

Algorithm 1 Segmentation

1: repeat

2: Select a 3D point for voxelisation

3: Find all neighboring points to be included in the voxel using r-NN within the specified maximum

voxel length

4: Transform voxel into s-voxel by first finding and then assigning to it all the properties found by

using PCA, including surface normal.

5: until all 3D points are used in a voxel

6: repeat

7: Specify an s-voxel as a principal link

8: Find all secondary links attached to the principal link

9: until all s-voxels are used

10: Link all principal links to form a chain removing redundant links in the process

For the voxels we use a cuboid because of its symmetry, as it avoids fitting problems while grouping

and also minimizes the effect of voxel shape during feature extraction. Although the maximum voxel

size is predefined, the actual voxel sizes vary according to the maximum and minimum values of the

neighboring points found along each axis to ensure the profile of the structure.

3.2. Transformation of Voxels into Super-Voxels

A voxel is transformed into a super-voxel when properties based on its constituting points are assigned

to it. These properties mainly include:

• VX,Y,Z : geometrical center of the voxel;

• VR,G,B: mean R, G, & B value of constituting 3D points;

• V ar(R,G,B): maximum of the variance of R, G & B values;

• VI : mean laser reflectance intensity value of constituting 3D points;

• V ar(I): variance of laser reflectance intensity values;

• sX,Y,Z is the voxel size along each axis X , Y & Z;
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• Surface normals: A surface normal is calculated using PCA (Principal Component Analysis). The

PCA method has been proved to perform better than the area averaging method [32] to estimate the

surface normal. Given a point cloud data set D = {xi}ni=1
, the PCA surface normal approximation

for a given data point p ∈ D is typically computed by first determining the k-Nearest Neighbors,

xk ∈ D, of p. Given the K neighbors, the approximate surface normal is then the eigenvector

associated with the smallest eigenvalue of the symmetric positive semi-definite matrix

P =
K
∑

k=1

(xk − p)T (xk − p) (1)

where p is the local data centroid: p = 1

K

K
∑

j=1

xj .

The estimated surface normal is ambiguous in terms of sign; to account for this ambiguity it is

homogenized using the dot product. Yet for us the sign of the normal vector is not important as we

are more interested in the orientation. A surface normal is estimated for all the points belonging to

a voxel and is then associated with that particular voxel.

With the assignment of all these properties, a voxel is transformed into a super-voxel. All these

properties would then be used in grouping these super-voxels (from now onwards referred to as s-voxels)

into objects and then during the classification of these objects.

Instead of using thousands of points in the data set, the advantage of this approach is that we can now

use the reduced number of s-voxels to obtain similar results for classification and other algorithms. In

our case, the data sets of 110, 392, 53, 676 and 27, 396 points were reduced to 18, 541, 6, 928 and 7, 924

s-voxels respectively, which were then used for subsequent processing.

3.3. Clustering by Link-Chain Method

When the 3D data is converted into s-voxels, the next step is to group these s-voxels to segment into

distinct objects. Usually for such tasks, a region growing algorithm [33] is used in which the properties

of the whole growing region may influence the boundary or edge conditions. This may sometimes lead

to erroneous segmentation. Also common in such type of methods is a node based approach [5] in which

at every node, boundary conditions have to be checked in all 5 different possible directions. In our work,

we have proposed a link-chain method instead to group these s-voxels together into segmented objects.

In this method, each s-voxel is considered as a link of a chain. Unlike the classical region growing

algorithm, where a region is progressively grown from a seed (carefully selected start point), in the

proposed method any s-voxel can be taken as a principal link and all secondary links attached to this

principal link are found. The same is repeated for all s-voxels till all s-voxels are taken into account

(see Algorithm 1 for details). Thus there is no need of a specific start point, no preference for choice

of principal link nor any directional constraint, etc. In the final step, all the principal links are linked

together to form a continuous chain removing redundant secondary links in the process as shown in

Figure 2. These clusters of s-voxels represent the segmented objects.

Let VP be a principal link and Vn be the nth secondary link. Each Vn is linked to VP if and only if

the following three conditions are fulfilled:
∣

∣VPX,Y,Z
−VnX,Y,Z

∣

∣ ≤ (wD + cD) (2)
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∣

∣VPR,G,B
−VnR,G,B

∣

∣ ≤ 3
√
wC (3)

|VPI
−VnI

| ≤ 3
√
wI (4)

where, for the principal and secondary link s-voxels respectively:

• VPX,Y,Z
, VnX,Y,Z

are the geometrical centers;

• VPR,G,B
, VnR,G,B

are the mean R, G & B values;

• VPI
, VnI

are the mean laser reflectance intensity values;

• wC is the color weight equal to the maximum value of the two variances V ar(R,G,B), i.e.,

max(VPV ar(R,G,B)
,VnV ar(R,G,B)

);

• wI is the intensity weight equal to the maximum value of the two variances V ar(I).

wD is the distance weight given as

(

VPsX,Y,Z
+VnsX,Y,Z

)

2
. Here sX,Y,Z is the voxel size along X , Y

& Z axis respectively. cD is the inter-distance constant (along the three dimensions) added depending

upon the density of points and also to overcome measurement errors, holes and occlusions, etc. The

value of cD needs to be carefully selected depending upon the data (see Section 6.5 for more details

on the selection of this value). The orientation of normals is not considered in this stage to allow the

segmentation of complete 3D objects as one entity instead of just planar faces.

Figure 2. Clustering of s-voxels using a link-chain method is demonstrated. (a) shows

s-voxel 1 taken as principal link in red and all secondary links attached to it in blue;

(b) and (c) show the same for s-voxels 2 and 3 taken as principal links; (d) shows the linking

of principal links (s-voxels 1, 2 & 3) to form a chain removing redundant secondary links.

(a) (b) (c)

(d)

This segmentation method ensures that only the adjacent boundary conditions are considered for

segmentation with no influence of a distant neighbor’s properties. This may prove to be more adapted

to sharp structural changes in the urban environment. An overview of the segmentation method is

presented in Algorithm 1. The programming structure adopted for implementation is based on standard

graph-based algorithms [34].
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With this method 18, 541, 6, 928 and 7, 924 s-voxels obtained from processing 3 different data sets

were successfully segmented into 237, 75 and 41 distinct objects respectively.

4. Classification of Segmented Objects

In order to classify these segmented objects, we assume the ground to be flat and use it as separator

between objects. For this purpose we first classify and segment out the ground from the scene and then

the rest of the objects. This step leaves the remaining objects as if suspended in space, i.e., distinct

and well separated, making them easier to be classified as shown in Figure 3. In order to classify these

segmented objects, a method is used that compares the geometrical models and local descriptors of these

already segmented objects with a set of standard, predefined thresholds. The object types are so distinctly

different that a simple choice of values for these differentiating thresholds is sufficient.

Figure 3. Segmented objects in a scene with prior ground removal.

The ground or roads followed by these objects are classified using geometrical and local descriptors

based on the constituting super-voxels. These mainly include:

a. Surface normals: The orientation of the surface normals is found essential for the classification

of ground and building faces. For ground object the surface normals are predominantly (threshold

values greater than 80%) along Z-axis (height axis), whereas for building faces the surface normals are

predominantly (threshold values greater than 80%) parallel to the X-Y axis (ground plane), see Figure 4.

b. Geometrical center and barycenter: The height difference between the geometrical center

and the barycenter along with other properties is very useful in distinguishing objects like trees and

vegetation, etc., where h(barycenter− geometrical center) > 0, with h being the height function.

c. Color and intensity: Intensity and color are also an important discriminating factor for

several objects.

d. Geometrical shape: Along with the abovementioned descriptors, geometrical shape plays an

important role in classifying objects. In 3D space, where pedestrians and poles are represented as long

and thin with poles being longer, cars and vegetation are broad and short. Similarly, as roads represent a

low flat plane, the buildings are represented as large (both in width and height) vertical blocks (as shown

in Figure 5). The values for these comparison threshold on the shape and size for each of the object types

are set accordingly.
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Figure 4. (a) Normals of building—shows surface normals of building s-voxels that are

parallel to the ground plane. In (b) Normals of road—it can be clearly seen that the surface

normals of road surface s-voxels are perpendicular to the ground plane.

(a) (b)

Figure 5. Bounding boxes for buildings, trees, cars, pedestrians and poles.

Using these descriptors we successfully classify urban scenes into 5 different classes (mostly present

in our scenes), i.e., buildings, roads, cars, poles and trees. The object types chosen for classification are

so distinctly different that if they are correctly segmented out, a simple classification method like the one

proposed may be sufficient. The classification results and a new evaluation metric are discussed in the

following sections.

5. Evaluation Metrics

Over the years, as new segmentation and classification methods are introduced, different

evaluation metrics have been proposed to evaluate their performances. In previous works, different

evaluation metrics are introduced for both segmentation results and classifiers independently. Thus in our

work we present a new evaluation metric that incorporates both segmentation and classification together.

The evaluation method is based on comparing the total percentage of s-voxels successfully classified

as a particular object. Let Ti, i ∈ {1, · · · , N}, be the total number of s-voxels distributed into

objects belonging to N number of different classes, i.e., this serves as the ground truth, and let tji ,

i ∈ {1, · · · , N}, be the total number of s-voxels classified as a particular class of type-j and distributed

into objects belonging to N different classes (for example an s-voxel classified as part of the building
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class may actually belong to a tree). Then the ratio Sjk (j is the class type as well as the row number of

the matrix and k ∈ {1, · · · , N}) is given as:

Sjk =
tjk
Tk

These values of Sjk are calculated for each type of class and are used to fill up each element of

the confusion matrix, row by row (refer to tables in Section 6.1 for instance). Each row of the matrix

represents a particular class.

Thus, for a class of type-1 (i.e., first row of the matrix) the values of:

• True Positive rate TP = S11 (i.e., the diagonal of the matrix represents the TPs)

• False Positive rate FP =
N
∑

m=2

S1m

• True Negative rate TN = (1− FP)

• False Negative rate FN = (1−TP)

The diagonal of this matrix or TPs gives the Segmentation ACCuracy (SACC), similar to the

voxel scores recently introduced by Douillard et al. [35]. The effects of unclassified s-voxels are

automatically incorporated in the segmentation accuracy. Using the above values, the Classification

ACCuracy (CACC) is given as:

CACC =
TP+TN

TP+TN+ FP+ FN
(5)

This value of CACC is calculated for all N types of classes of objects present in the scene. Overall

Classification ACCuracy (OCACC) can then be calculated as

OCACC =
1

N

N
∑

i=1

CACCi (6)

where N is the total number of object classes present in the scene. Similarly, the Overall Segmentation

ACCuracy (OSACC) can also be calculated. The values of Ti and tji used above are laboriously

evaluated by hand matching the voxelised data output and the final classified s-voxels and points.

6. Results

In order to test our algorithm two different data sets were used:

1. 3D data sets of Blaise Pascal University;

2. 3D Urban Data Challenge data set [36].

The 3D Urban Data challenge data set not only is one of the most recent data set but also contains

the corresponding RGB and reflectance intensity values necessary to validate the proposed method. The

proposed method is also suitable and well adapted for directly geo-referenced 3D point clouds obtained

from mobile data acquisition and mapping techniques [37].
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6.1. 3D Data Sets of Blaise Pascal University

These data sets consist of 3D data acquired from different urban scenes on the Campus of Blaise

Pascal University in Clermont-Ferrand, France, using a LEICA HDS-3000 3D laser scanner. The results

of three such data sets are discussed here. The data sets consist of 27, 396, 53, 676 and 110, 392 3D

points respectively. These 3D points were coupled with corresponding RGB and reflectance intensity

values. The results are summarized in Table 1 and shown in Figures 6–8 respectively. The evaluation

results using the new evaluation metrics for the three data sets are presented in Tables 2–4 respectively.

These results are evaluated using a value of maximum voxel size equal to 0.3 m and cD = 0.25 m.

Table 1. Segmentation Results of 3D Data Sets of Blaise Pascal University.

Data Set # Number of 3D Data Points Number of Segmented s-voxels Number of Segmented Objects

# 1 27, 396 7, 924 41

# 2 53, 676 6, 928 75

# 3 110, 392 18, 541 237

Figure 6. (a) 3D data points—shows 3D data points of data set 1. (b) Voxelisation and

segmentation into objects—shows s-voxel segmentation of 3D points (along with orientation

of normals). (c) Labeled points—shows classification results (labeled 3D points).

(a)

(b)
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Figure 6. Cont.

(c)

Figure 7. (a) 3D data points—shows 3D data points of data set 3. (b) Voxelisation and

segmentation into objects—shows s-voxel segmentation of 3D points (along with orientation

of normals). (c) Labeled points—shows classification results (labeled 3D points).

(a)

(b)
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Figure 7. Cont.

(c)

Figure 8. (a) 3D data points—shows 3D data points of data set 3. (b) Voxelisation and

segmentation into objects—shows s-voxel segmentation of 3D points (along with orientation

of normals). (c) Labeled points—shows classification results (labeled 3D points).

(a)

(b)
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Figure 8. Cont.

(c)

Table 2. Classification results of data set 1 with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.943 0.073 0 0 0 0.935

Road 0.007 0.858 0.015 0.008 0 0.914

Tree 0 0.025 0.984 0 0 0.979

Pole 0 0.049 0 0.937 0 0.944

Car – – – – – –

Overall segmentation accuracy: OSACC 0.930

Overall classification accuracy: OCACC 0.943

Table 3. Classification results of data set 2 with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.996 0.007 0 0 0 0.995

Road 0 0.906 0.028 0.023 0.012 0.921

Tree 0 0.045 0.922 0 0 0.938

Pole 0 0.012 0 0.964 0 0.976

Car 0 0.012 0 0 0.907 0.947

Overall segmentation accuracy: OSACC 0.939

Overall classification accuracy: OCACC 0.955



Remote Sens. 2013, 5 1639

Table 4. Classification results of data set 3 with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.901 0.005 0.148 0 0 0.874

Road 0.003 0.887 0.011 0.016 0.026 0.916

Tree 0.042 0.005 0.780 0 0 0.867

Pole 0 0.002 0 0.966 0 0.982

Car 0 0.016 0.12 0 0.862 0.863

Overall segmentation accuracy: OSACC 0.879

Overall classification accuracy: OCACC 0.901

6.2. 3D Urban Data Challenge Data Set

The algorithm was further tested on the data set of the recently concluded 3D Urban Data Challenge

2011, acquired and used by the authors of [36]. This standard data set contains a rich collection of 3D

urban scenes of the New York city mainly focusing on building facades and structures. These 3D points

are coupled with the corresponding RGB and reflectance intensity values. A value of maximum voxel

size equal to 0.5 m and cD = 0.15 m were used for this data set. Results (image results will be available

in our website along with performance measures for comparison, after paper acceptance) of different

scenes from this data set are shown in Figures 9–11 and Tables 5–7.

Figure 9. Segmentation and classification results for a particular scene-A of scenes from

3D Urban Data Challenge 2011, image # ParkAvenue SW12 piece07 [36]. (a) 3D

data points—shows 3D data points of data set 1. (b) Voxelisation and segmentation

into objects—shows s-voxel segmentation of 3D points (along with orientation of normals).

(c) Labeled points—shows classification results (labeled 3D points).

(a)
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Figure 9. Cont.

(b)

(c)

Figure 10. Segmentation and classification results for a particular scene-B of scenes from

3D Urban Data Challenge 2011, image # ParkAvenue SW12 piece00 [36]. (a) 3D

data points—shows 3D data points of data set 1. (b) Voxelisation and segmentation into

objects—shows s-voxel segmentation of 3D points (along with orientation of normals).

(c) Labeled points—shows classification results (labeled 3D points).

(a)
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Figure 10. Cont.

(b)

(c)

Figure 11. Segmentation and classification results for a particular scene-C of scenes from

3D Urban Data Challenge 2011, image # ParkAvenue SW14 piece00 [36]. (a) 3D

data points—shows 3D data points of data set 1. (b) Voxelisation and segmentation into

objects—shows s-voxel segmentation of 3D points (along with orientation of normals).

(c) Labeled points—shows classification results (labeled 3D points).

(a)
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Figure 11. Cont.

(b)

(c)

Table 5. Classification results of scene-A with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.980 0.002 0 0 0 0.989

Road 0.002 0.950 0.002 0 0.080 0.933

Tree 0 0.040 0.890 0 0.080 0.885

Pole 0 0 0 0 0 -

Car 0.040 0.020 0.030 0 0.900 0.905

Overall segmentation accuracy: OSACC 0.930

Overall classification accuracy: OCACC 0.928
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Table 6. Classification results of scene-B with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.985 0.002 0 0 0 0.991

Road 0.002 0.950 0.002 0 0.080 0.933

Tree 0 0.012 0.680 0.080 0 0.794

Pole 0 0.006 0 0.860 0.016 0.919

Car 0.060 0.050 0.020 0.050 0.970 0.895

Overall segmentation accuracy: OSACC 0.889

Overall classification accuracy: OCACC 0.906

Table 7. Classification results of scene-C with the new evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.955 0.002 0.005 0.001 0 0.976

Road 0.002 0.950 0 0 0.007 0.970

Tree 0 0 0. 800 0.035 0 0.882

Pole 0 0 0 0.950 0 0.950

Car 0 0.003 0 0 0.900 0.948

Overall segmentation accuracy: OSACC 0.911

Overall classification accuracy: OCACC 0.945

6.3. Comparison of Results with Existing Evaluation Methods

The classification results were also evaluated using already existing methods along with the proposed

evaluation metrics for comparison purpose. Firstly, F-measure is used, which is one of the more

frequently used metrics based on the calculation of Recall and Precision as described in [38]. Secondly,

V-measure is used, which is a conditional entropy based metrics based on the calculation of Homogeneity

and Completeness as presented in [39]. The later method overcomes the problem of matching suffered

by the former and evaluates a solution independent of the algorithm, size of the data set, number of

classes and number of clusters as explained in [39]. Another advantage of using these two metrics is

that, just like the proposed metrics, they have the same bounded score. For all three metrics, the score

varies from 0 to 1 and higher score signifies better classification results and vice versa. The results are

summarized in Table 8.
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Table 8. Classification results evaluated using three different metrics. For the calculation of

V-measure the value β = 1 is used.

Data Set # OCACC F-measure V-measure

# 1 0.943 0.922 0.745

# 2 0.955 0.942 0.826

# 3 0.901 0.831 0.733

# A 0.928 0.917 0.741

# B 0.906 0.860 0.734

From Table 8 it can be seen that the results evaluated by all three evaluation metrics are consistent

with data set 2 receiving the highest scores and data set 3 the lowest. The results not only validate the

proposed metrics but also indicate that it can be used as an alternative evaluation method. The results

evaluated using these standard existing evaluation methods also permits to compare the performance of

the proposed algorithm with other published techniques evaluated using them.

6.4. Performance Evaluation and Discussion

The proposed method gives good (in terms of scores) segmentation and classification results in all

three evaluation methods. In general, the classification accuracy (OCACC) was found to be slightly

better than the segmentation accuracy (OSACC). Not taking anything away from the segmentation

method, one of the main reasons is that the 5 types of objects chosen for classification are distinctly

different and that if the segmentation is good, classification becomes easier and a simple method like the

one proposed is sufficient.

As compared with V-measure, the proposed method of evaluation can provide more information

regarding individual segmentation and classification results (SACC and CACC). These results show

that in most of the cases, the buildings, roads and poles have been classified the best with consistent

scores of SACC and CACC higher than 90%, except in the case of data set 3 in which the building

classification accuracy CACC is slightly deteriorated due to a large overlapping tree that is wrongly

classified as a building rather than a tree. This is also reflected in the low Homogeneity value of 0.670

obtained when calculating V-measure for this data set. The classification of cars is generally good and

the results are consistent but they are slightly hampered due to occlusions in some scenes (data set 3:

CACC 86.3%, Scene B: CACC 89.5%). In case of trees, the SACC and CACC are found to vary the

most. This is mainly due to the fact that the proposed classification method is based on local descriptors

and geometrical features, which in the case of trees are very difficult to define (due to large variation

of shapes, sizes and types). Thus, where the proposed algorithm succeeded in classifying smaller trees

of more classical shapes with higher SACC and CACC scores, it produced low SACC and CACC

scores of 68% and 79.4% respectively for Scene B. The Recall and Precision scores obtained during the

calculation of F-measure for the tree class of this scene were found to be similarly low as well (0.682

and 0.614 respectively).
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6.5. Effect of Voxel Size on Classification Accuracy and Choice of Optimal Values

Because the properties of s-voxels are constant mainly over the whole voxel length and these

properties are then used for segmentation and classification, their size impacts the classification process.

However, as the voxel size changes, the inter-distance constant cD also needs to be adjusted accordingly.

The effect of voxel size on the classification result was studied. The maximum voxel size and the

value of cD were varied from 0.1 m to 1.0 m on data set 1 and corresponding classification accuracy was

calculated. The results are shown in Figure 12(a). Then for the same variation of maximum voxel size

and cD, the variation in processing time was studied as shown in Figure 12(b).

Figure 12. (a) Influence of voxel size on OCACC—is a 3D plot in which the effect of

maximum voxel size and variation on OCACC is shown. In (b) Influence of voxel size

on processing time—the effect of maximum voxel size and variation on processing time is

shown. Using the two plots we can easily find the optimal value for maximum voxel size

and cD.

(a)

(b)
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An arbitrary value of time Ta is chosen for comparison purposes (along Z-axis time varies from 0 to

200Ta). This makes the comparison results independent of the processor used, even though the same

computer was used for all computations.

The results show that with smaller voxel size the segmentation and classification results are improved

(with a suitable value of cD) but the computational cost increases. It is also evident that variation in value

of cD has no significant impact on time t. It is also observed that after a certain reduction in voxel size, the

classification result does not improve much but the computational cost continues to increase manifolds.

As both OCACC and time (both plotted along Z-axis) are independent, using and combining the results

of the two 3D plots in Figure 12 we can find the optimal value (in terms of OCACC and t) of maximum

voxel size and cD depending upon the final application requirements. For our work, we have chosen a

maximum voxel size of 0.3 m and cD = 0.25 m.

6.6. Influence of RGB Color and Reflectance Intensity

The effect of incorporating RGB Color and reflectance intensity values on the segmentation and

classification was also studied. The results are presented in Table 9.

It is observed that incorporating RGB color alone is not sufficient in an urban environment due to

the fact that it is heavily affected by illumination variation (part of an object may be under shade or

reflect bright sunlight) even in the same scene. This deteriorates the segmentation process and hence the

classification. This is perhaps responsible for the lower classification accuracy as seen in the first part

of Table 9. It is the reason why intensity values are incorporated as they are more illumination invariant

and found to be more consistent. The improved classification results are presented in the second part of

Table 9.

Table 9. Overall segmentation and classification accuracies when using RGB-Color and

reflectance intensity values.

Data Set #
Only RGB-Color Intensity Value with RGB-Color

OSACC OCACC OSACC OCACC

# 1 0.660 0.772 0.930 0.943

# 2 0.701 0.830 0.939 0.955

# 3 0.658 0.766 0.879 0.901

6.7. Considerations for Further Improvements

The evaluated results of the proposed method on real and standard data sets show great promise.

In order to complete this performance evaluation, comparison with other existing segmentation and

classification methods is underway. While the method has successfully classified the urban environment

into 5 basic object classes, an extension of this method to introduce more object classes is also being

considered. One possible way could be to increase the number of features being used and train

the classifier.
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7. Conclusions

In this work we have presented a super-voxel based segmentation and classification method for 3D

urban scenes. For segmentation a link-chain method is proposed. It is followed by the classification of

objects using local descriptors and geometrical models. In order to evaluate our work we have introduced

a new evaluation metric that incorporates both segmentation and classification results. The results show

an overall segmentation accuracy (OSACC) of 87% and an overall classification accuracy (OCACC)

of about 90%. The results indicate that with good segmentation, a simplified classification method like

the one proposed is sufficient.

Our study shows that the classification accuracy improves by reducing voxel size (with an appropriate

value of cD) but at the cost of processing time. Thus a choice of an optimal value, as discussed, is

recommended. The study also demonstrates the importance of using laser reflectance intensity values

along with RGB colors in the segmentation and classification of urban environment, as they are more

illumination invariant and more consistent.

The proposed method can also be used as an add-on boost for other classification algorithms.
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